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We have completed the one-loop renormalisation of the Next-to-Minimal Supersymmetric Standard
Model (NMSSM) allowing for and comparing between different renormalisation schemes. A special
attention is paid to on-shell schemes. We study a variety of these schemes based on alternative choices of
the physical input parameters. In this paper we present our approach to the renormalization of the NMSSM
and report on our results for the neutralino-chargino and sfermion sectors. We will borrow some results
from our study of the Higgs sector whose full discussion is left for a separate publication. We have
implemented the setup for all the sectors of the NMSSM within SloopS, a code for the automatic
computation of one-loop corrections initially developed for the standard model and the MSSM. Among the
many applications that allows the code, we present here the one-loop corrections to neutralino masses and
to partial widths of neutralinos and charginos into final states with one gauge boson. One-loop electroweak
and QCD corrections to the partial widths of third generation sfermions into a fermion and a chargino
or a neutralino are also computed.
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I. INTRODUCTION

Supersymmetry has long been considered as the most
natural extension of the standard model that can address the
hierarchy problem while providing a dark matter candidate.
The discovery of a Higgs boson with a mass of 125 GeV
whose properties are compatible with those of the Standard
Model is a great achievement of the first run of the LHC
[1,2] and in some sense supports supersymmetry. Indeed,
one can argue that a Higgs with a mass below 130 GeV is a
prediction of the minimal supersymmetric standard model
(MSSM). However, the fact that the observed Higgs mass is
so close to the largest value that can be achieved in the
MSSM, a value obtained by requiring a rather heavy
supersymmetric spectrum, raises the issue of naturalness
[3,4]. Another issue with the MSSM is the μ problem [5].
Namely why μ, a supersymmetry preserving mass param-
eter as it appears in the superpotential through the operator
mixing the two (superfield) Higgs doublets μĤd · Ĥu,
should be, for a viable phenomenology, small, i.e., of
the order the electroweak scale, whereas one expects its
value to be rather of order the cutoff scale. Both these
problems are solved in the singlet extension of the MSSM,
the Next-to-Minimal Supersymmetric Standard Model
(NMSSM) where the μ parameter is generated dynamically
through the vacuum expectation value of the scalar

component of the additional singlet superfield.
Moreover, as a bonus new terms in the superpotential
are now present and give a contribution to the quartic Higgs
couplings beside the gauge induced quartic coupling of the
MSSM. These new contributions can lead to an increase of
the tree-level mass of the lightest Higgs, thus more easily
explaining the observed value of the Higgs mass [6,7]
without relying on very large corrections from the stop/top
sector. Although fine-tuning issues remain [8–11] they are
not as severe as in the MSSM.
The Higgs discovery has thus led to a renewed interest in

the NMSSM both at the theoretical and experimental level
with new studies of specific signatures of the NMSSM
Higgs sector [12,13] and/or of the neutralino and sfermion
sectors [14–16] being pursued at the LHC. With the
exciting possibility of discovering new particles at the
second run of the LHC, it becomes even more important for
a correct interpretation of a future new particle signal to
know precisely the particle spectrum as well as to make
precise predictions for the relevant production and decay
processes.
The importance of loop corrections to the Higgs mass in

supersymmetry cannot be stressed enough. After all, it is
because of radiative corrections that the MSSM has
survived. The large radiative corrections from the top
and stop sector are necessary to raise the Higgs mass
beyond the bounds imposed by LEP and to bring it in the
range compatible with the LHC. Higher-order corrections
are also of relevance for supersymmetric particles, higher-
order SUSY-QCD and electroweak corrections to the full
SUSY spectrum have been computed for some time in the
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MSSM and are incorporated in several public codes
[17–20]. More recently higher-order corrections to Higgs
and sparticle masses have been extended to the NMSSM
[21,22]. Several public codes incorporate these corrections
with different scopes and approximations, NMSSMTools
[23,24], SPheno [25,26], SoftSUSY [27], NMSSMCalc
[28] and FlexibleSUSY [29]. See also the recent work
[30] on the corrections to the Higgs masses in the NMSSM.
Moreover, higher-order corrections to decays have also
been computed with some of these codes [31–34].
The code SloopS was developed for the MSSM

with the objective of computing one-loop corrections for
collider and dark matter observables in supersymmetry.
The complete renormalization of the model was performed
in [35,36] and several renormalization schemes were
implemented. This code relies on an improved version
of LanHEP [37–39] for the generation of Feynman rules
and counterterms. The model file generated is then inter-
faced to FeynArts [40], FormCalC [41] and
LoopTools for the automatic computation of one-loop
processes [42]. One-loop corrections to masses, two-body
decays and production cross sections at colliders were
realized together with one-loop corrections for various dark
matter annihilation [43–47] and coannihilation processes
[44]. SloopS has first been extended to include the
NMSSM for one-loop processes not requiring renormali-
zation, such as the rates for gamma-ray lines relevant for
Dark Matter indirect detection [48,49] and Higgs decays to
photons at the LHC [50,51].
The present paper is the first in a series that describes the

implementation of the one-loop corrections for all sectors
of the NMSSM. We will concentrate in this first paper on
the details and issues having to do mainly with the
neutralino/chargino sector since the addition of a singlet
brings new features compared to the MSSM. We will be
brief on the setup of the renormalization in the sfermion
sector since the particle content is the same as within the
MSSM. For this sector, we therefore adhere to the approach
given in [36] for the MSSM. The chargino-neutralino
sector, in particular through the singlet superfield, is quite
tied up with the Higgs sector. We will, therefore, have to
borrow some elements from our study of the Higgs sector
which we will go over in more detail in a follow-up paper
[52]. For the neutralino/chargino sector, different renorm-
alization schemes are defined. In particular, we have aimed
at studying different on-shell, OS, schemes. The latter are
based on choosing a minimal set of observables, namely
masses of physical particles in the NMSSM spectrum.
These will define the set of input parameters and necessary
counterterms which will allow to get rid of all ultra-violet
divergences in all calculated observables. Finding the
minimal set of necessary counterterms requires solving a
system of coupled equations. For the case of the NMSSM,
where mixing between different components occurs and
where the same parameters appear in different sectors, the

system of equations can be large. Moreover, some choices
of the minimal set (and, therefore, the relevant coupled
equations) will lead to solutions that are extremely sensitive
to a particular choice of a parameter which may, in some
process, induce large radiative corrections. It is also
possible, when a renormalization scale μ̄ has been chosen,
to follow a simpler implementation of the counterterms,
à la DR, where these counterterms are pure divergent
terms. In some instances, these can also lead to splitting a
large system of coupled equations to a smaller and more
manageable system of equations. The renormalization of
the ubiquitous tβ which, at tree level, represents the ratio
of the vacuum expectation values (vev) of the 2 Higgs
doublets is a case in point. We will also study mixed
schemes where some parameters are DR while others are
OS. The study of different renormalization schemes is very
important. First it can provide an estimate on the theoretical
uncertainty due to the truncation to one-loop of the
perturbative prediction and may also point at a bad choice
of a renormalization scheme. Second, for the NMSSM
where a large part of the spectrum has not been seen it is
difficult to predict which, from the point of view of an OS
scheme, are the input parameters that one can use or which
are the masses that will be discovered and measured
(precisely) first. It is, therefore, wise to be open and prepare
for different possibilities. In particular, our discussion will
touch on some important issues regarding the relationship
between the underlying parameters at the level of the
Lagrangian and the physical parameters. This will bring
up the issue of the reconstruction of the underlying
parameters which is very much tied up to the renormaliza-
tion scheme and the differences in how we define the
counterterms.
One of our goals has been to implement our approach in

a code for the automatic generation of one-loop corrected
observables and for an easy implementation of the counter-
terms. We have relied on SloopS. Therefore, this work is
also a natural extension of the work performed in [35,36]
for the MSSM. Taking advantage of this automation we
are able to provide and discuss a series of applications,
pertaining to corrections to masses and various decays
involving charginos, neutralinos and sfermions.
The paper is organized as follows. Section II contains a

brief description of the NMSSM. Our general approach to
the renormalization of the NMSSM and its implementation
in SloopS as well as how we handle infra-red divergences
is explained in Sec. III. The renormalization of the
neutralino and chargino sector is detailed in Sec. IV. We
also give a rather extensive presentation of the different
choices for the on-shell schemes and the problematic of the
choice of the input parameters. The renormalization of the
sfermion sector follows the one of the MSSM. It is briefly
reviewed in Sec. V. We are then ready to apply the general
approach and principles to specific observables. We start
in Sec. VI by defining a set of five benchmark points. In
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Sec. VII, we first start by giving results for different
schemes for the one-loop corrected masses of the neutra-
linos before presenting results for the one loop corrected
two-body decays of charginos and neutralinos into gauge
bosons. This is performed for all five benchmark points
and for different schemes. We then turn in Sec. VIII to the
one-loop two-body decays of third generation sfermions
into a fermion and chargino or neutralino. Section IX
contains our conclusions.

II. DESCRIPTION OF THE NMSSM

The NMSSM contains all the superfields of the MSSM
as well as one additional gauge singlet superfield Ŝ. Thus,
the Higgs sector consists of two SU(2) Higgs doublets
superfields Ĥd,Ĥu and the singlet superfield,

Ĥu ¼
�
Ĥþ

u

Ĥ0
u

�
; Ĥd ¼

�
Ĥ0

d

Ĥ−
d

�
; Ŝ: ð1Þ

The interaction Lagrangian can be decomposed in terms
derived from the superpotential and from the soft SUSY
breaking Lagrangian. In the Z3-invariant NMSSM that we
consider here, the superpotential can be split into two parts
[5]. The first one depends only on the Higgs superfields Ĥd,
Ĥu, Ŝ via two dimensionless couplings λ and κ,

WNMSSM ¼ −λŜĤd · Ĥu þ
1

3
κŜ3; ð2Þ

where Ĥd · Ĥu ¼ ϵabĤ
a
dĤ

b
u and ϵab is the two dimensional

Levi-Civita symbol with ϵ12 ¼ 1. The second part corre-
sponds to the Yukawa couplings between Higgs and quarks
or leptons superfields,

WYukawa ¼ −yuĤu · Q̂Ûc
R þ ydĤd · Q̂D̂c

R þ yeĤd · L̂Ê
c
R;

ð3Þ

where

Q̂i ¼
�
ÛiL

D̂iL

�
; L̂i¼

�
ν̂iL

ÊiL

�
; ÛiR; D̂iR; ÊiR; ð4Þ

are respectively the superfields associated with the left-
handed (LH) quark doublets, LH lepton doublets, right-
handed (RH) quark and lepton singlets. The index i ¼ 1…3
indicates the generation. In what follows, this index will
be omitted and a sum over the three generations will be
implicit. No generation mixing is assumed in our study.
These supersymmetric scalar partners will be denoted as
~Q ¼ ð ~uL~dLÞ and ~L ¼ ð~νL

~eL
Þ for the LH states and ~uR, ~dR and ~eR

for the partners of the RH states. In an abuse of language,
we will also refer to these partners as LH and RH. Let us
keep in mind, at this point, that parameters from the

superpotential will find their way into the Lagrangian of
the particle and the superparticles. For example, the same λ,
κ enter both the Higgs sector and the neutralino (Higgsino)
sector, thus offering ways to extract these parameters from
different sectors. The soft SUSY breaking Lagrangian
reads,

−Lsoft¼m2
Hu
jHuj2þm2

Hd
jHdj2þm2

SjSj2

þ
�
λAλHu ·HdSþ

1

3
κAκS3þh:c

�
þm2

~Q
j ~Qj2þm2

~uj ~u2Rjþm2
~d
j ~d2Rjþm2

~L
j ~L2jþm2

~ej~e2Rj
þðyuAu

~Q ·Hu ~ucR−ydAd
~Q ·Hd

~dcR−yeAe
~L ·Hd ~ecRÞ

−
1

2
ðM1

~B ~BþM2
~Wi

~WiþM3
~Ga ~GaÞ; ð5Þ

(i) The first two lines belong to the Higgs sector with
the first two terms in the first line representing the
soft mass terms for the Higgs doublets and the third,
not present in the MSSM, of the singlet. The second
line, not present in the MSSM either, represents the
NMSSM trilinear Higgs couplings Aκ, Aλ.

(ii) The third and fourth lines belong to the sfermion
sector with a structure and a content exactly the same
as in the MSSM with first the soft sfermion masses
(m ~Q= ~L for the doublet squark/slepton, and m ~u; ~d;~e

for the RH singlets) followed by the MSSM-like
trilinear A terms for squarks and sleptons Au, Ad and
Ae. We have only written the terms for one generic
generation since we are not considering inter-
generation mixing.

(iii) The last line contains the soft mass terms for,
respectively, the Uð1Þ, SUð2Þ and SUð3Þ gauginos,
also called bino, winos and gluinos.

We consider the NMSSM with CP conservation so that all
parameters are taken to be real.
The neutral components of the Higgs doublets, Hu and

Hd, contain both a CP even and a CP odd part. After
expanding around their vacuum expectation values, their
scalar neutral component reads

H0
d ¼ vd þ

1ffiffiffi
2

p ðh0d þ ia0dÞ;

H0
u ¼ vu þ

1ffiffiffi
2

p ðh0u þ ia0uÞ;

S0 ¼ sþ 1ffiffiffi
2

p ðh0s þ ia0sÞ ð6Þ

The vacuum expectation values, vu; vd; s are chosen to be
real and positive. As in the MSSM we define tan β≡ tβ ¼
vu=vd and v2 ¼ v2u þ v2d such that theW mass comes out to
be M2

W ¼ g2v2=2.
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The so-called Higgsino mass parameter in the MSSM is
now a derived parameter. μ is generated dynamically from
the vev of the singlet field,

μ ¼ λs: ð7Þ

It is convenient to keep μ as an independent parameter,
comparison with the MSSM will then be easier. With μ, we
take λ and κ as independent parameter while s is kept as a
shorthand notation for μ=λ in the same way as we use cW as
a short-hand notation for MW=MZ.
The particle content of the NMSSM has extra particles

in the neutralino and Higgs sector than what constitutes
the MSSM. The physical scalar fields consist of 3 neutral
CP-even Higgs bosons, h01, h

0
2, h

0
3, 2CP-odd Higgs bosons,

A0
1, A

0
2 and a charged Higgs boson, H�. The fermionic

component of Ŝ is a neutralino called singlino. It mixes
with the two Higgsinos. With the two gauginos (from U(1)
and SU(2)) the NMSSM has five neutralinos.
To summarize, the parameters that will be relevant for

the present paper which covers the neutralino, chargino and
sfermion sector and which need to be renormalized (apart
from the SM parameters) are

tβ; λ; κ; μ|fflfflfflfflffl{zfflfflfflfflffl}
in Higgs also

;M1;M2; m ~Q;m ~uR; m ~dR
; Au; Ad; m ~L;m~eR ; Ae;

ð8Þ

The first six of these parameters enter the chargino/
neutralino sector. tβ, λ, κ, μ also enter the Higgs sector. In
fact, tβ and μ are also present in the sfermion sector. The
second group corresponds to the squark sector while the
last group corresponds to the sleptons.
Other parameters not listed in Eq. (8), such as Aκ and Aλ,

enter only the Higgs sector. They will be studied in a
separate publication detailing the treatment of the Higgs
sector. Because of the supersymmetric nature of the model,
in particular the origin of the μ parameter, the neutralino/
chargino and the Higgs sectors share parameters in
common as was presented in Eq. (8). Since it may be
advantageous to use inputs from the Higgs sector to extract
one or all of the parameters tβ, λ, κ, μ in Eq. (8), their
extraction will be influenced by how all the parameters of
the Higgs sector are extracted. Let us, therefore, list the nine
parameters of the Higgs sector:

tβ; λ; κ; μ|fflfflfflfflffl{zfflfflfflfflffl}
in ~χ sector also

; Aλ; Aκ; mHd
; mHu

; mS: ð9Þ

Finally since we concentrate on electroweak corrections
and do not consider gluino production or decay, the
renormalization of M3 is not needed.

III. FULL ONE-LOOP CORRECTIONS:
GENERAL APPROACH

A. Renormalization: Our general approach

The renormalization procedure follows the same
approach as the one adopted in SloopS for the SM and
the MSSM. Namely we aim primarily at an on-shell
renormalization of all parameters [35,36]. Other realiza-
tions of on-shell renormalization schemes for the chargino/
neutralino sector have also been performed both in the
MSSM [31,53], the complex MSSM [54] and the
NMSSM [31].
OS schemes mean that one uses as inputs physical

observables which are, therefore, defined when particles
taking part in these observables are physical and on their
mass shell. Technically, the easiest and most obvious set of
this type of observables are the masses of the particles
themselves. In this case, one only exploits the pole structure
of two-point self-energy functions and require that the
residue at the pole be unity. One difficulty occurs when we
have mixing between particles sharing the same quantum
numbers and, therefore, transitions from one to the other
are possible. This will occur for Higgses, charginos,
neutralinos and sfermions. The OS conditions mean also
that when these physical particles are on their mass shell
these (nondiagonal) transitions vanish. From another tech-
nical point of view this means that in the calculation of
scattering amplitudes and decays we should not worry
about corrections on the external legs, the wave functions
will be automatically normalized. Recall that at tree level
one starts with the underlying parameters of a Lagrangian
in terms of current/gauge fields where mixing between
these fields is present. We then move to the physical basis
where the physical fields are defined. This is achieved by
some diagonalizing matrices. At one-loop each underlying
parameter is shifted by the addition of a counterterm. There
is then a minimum set of conditions to restrict the form and
the value of the counterterm. This shifting of parameters
will at one-loop mix some particles. To perform a full
definition of a physical particle at one-loop, in our
approach, we introduce a matrix of wave functions with
the conditions that when these transitions (containing one-
loop plus counterterms) are evaluated OS, all transitions
vanish. It is important to stress that it is unnecessary to
introduce shifts in the diagonalizing matrix that was used
at tree level.
Related to mixing also is the fact that one physical

parameter, for example the mass of one neutralino in the
NMSSM, depends on a large number of independent
underlying parameters contained, in this case, in the 5 × 5
mixing matrix. For instance, besides the SM parameters,
six parameters [the first set in Eq. (8)] contribute to the
neutralino mass matrix. In this particular case, one needs to
solve a system of six coupled equations. This is the reason
why the reconstruction of the parameters, or in other words
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the necessary counterterms, requires finding the solution to
a (large) system of coupled equations. Finding the solutions
can be extremely difficult and sometimes impossible from a
partial or even total knowledge of the physical parameters.
For example, the chargino masses can furnish M2; μ but
with a M2 ↔ μ degeneracy. If the system of coupled
equations can be split into different independent subsys-
tems of equations, the extraction of the parameters will be
much easier and their evaluations less subject to uncer-
tainties in the sense of being less sensitive to small
variations in the input parameters. Therefore, by combining
different sectors one can work with smaller, independent
blocks which are easier or more efficiently solved. For
example, take the set in Eq. (8), tβ originates from the
Higgs sector and finds it way in all sectors of the NMSSM.
As wewill illustrate, it is much easier to get the counterterm
for tβ from the Higgs sector for which we could revert to a
DR scheme. In this case, this involves a one-to-one
mapping between the required counterterm for tβ and some
simple evaluation of 2-point functions involving the Higgs.
Reverting to the Higgs sector for this particular parameter
is, therefore, technically much easier than trying to extract
all the six parameters in the first set of Eq. (8) solely from
the neutralino/chargino sector. Moreover by extracting tβ
from the Higgs sector we can choose a scheme where one
further decomposes the remaining system of the 5 × 5
coupled equations into two blocks: two equations from the
chargino sector that will then furnish μ;M2 and the rest can
be determined from the neutralino sector. Another advan-
tage is that we have a much better handle on the extraction
of tβ. Indeed, as we stressed and as we will see explicitly,
the effect of tβ on the neutralino/chargino is quite small. In
a nutshell, a physical mass Mχ of a neutralino/chargino is
essentially given by a soft mass M with a small correction
ϵm which is proportional to tβ, such that Mχ ¼ M þ tβϵm,
then tβ ∝ 1=ϵm. Although we will propose to use the Higgs
sector for a definition of tβ, we will in this first paper
be very brief about the renormalization of the Higgs,
the full renormalization of the Higgs sector will be detailed
in a forthcoming publication [52]. In order to facilitate the
comparison with other computations, we will also use a DR
scheme in which the six parameters of the neutralino/
chargino sector are taken as DR while on-shell conditions
are used for the SM parameters.
Leaving aside the issue of tβ (where it is defined from),

the chargino/neutralino sector through the masses of the
seven particles it contains, could furnish enough input to
constrain the set of six parameters. There are various
choices for the minimal set of inputs. We will propose a
few. The most appropriate choice of input may depend on
the observable considered. For example, imagine a scenario
whereM1 is much larger than all other masses. The scheme
with the three lightest neutralinos will be quite insensitive
to M1 and its counterterm. As long as we concentrate on

correcting observables that are not sensitive to the bino
component, this should be fine but clearly within this
scheme we should not expect to make a good prediction to
any observable where the bino component plays a role.
Similar issues occur with the singlino. The mention of the
bino and singlino component, or any other component for
that matter, raises the issue of how can one weigh any of
these components from a knowledge of masses only. In
general, this is not possible. This is one of the shortcomings
of the OS approach based solely on masses that we will
present here. Schemes where one can use a particular decay
of a neutralino which is sensitive to a particular coupling
and hence component, in lieu of a mass, are possible but
they are technically challenging (use of three-point func-
tion) and we will not implement this approach in this first
publication.
To be complete, let us recall that the fermion and gauge

sector of the SM is renormalized on-shell which means that
the gauge boson masses are defined from the pole masses
and that the electromagnetic coupling, α, is defined in the
Thomson limit. One should keep in mind that the scale of
the latter, q2 ¼ 0, is far smaller than the electroweak scale
or the masses of the various supersymmetric particles we
are dealing with. A running of α, from q2 ¼ 0 to q2 ¼ M2

Z
brings in about a 7% correction.
If a complete and proper renormalization procedure has

been achieved, all observables should be ultra-violet finite.
We always perform this stringent test and check for the
absence of ultraviolet divergences. Such divergences arise
in loop integrals and are encoded in the parameter CUV
defined in dimensional reduction as CUV ¼ 2=ϵ − γE þ
lnð4πÞ where ϵ ¼ 4 − d, d being the number of dimensions
and γE is the Euler constant1. Since physical processes must
be finite, we simply check that the numerical results, for
one-loop corrections to masses or to decay processes, are
independent of CUV by varying the numerical value of CUV

from 0 to 107. We require that the numerical results agree
up to five or seven digits (recall that SloopS uses double
precision). Such tests have proven extremely useful in
testing the code at each step of its implementation. In
schemes where at least one parameter is taken to be DR, a
dependence on the renormalization scale μ̄ also appears.
For all decay processes, we have set this scale to the mass
of the decaying particle and in calculating corrected masses
this scale is set at the tree-level mass of the particle.

B. Infrared and real corrections

A second test concerns infrared finiteness. Infrared
divergences arise in processes involving charged particles
in external legs. The regularization of the divergence from
the pure loop contribution is done in FormCalc by adding

1In SloopS, we apply the constrained differential renormal-
ization scheme which has been shown to be equivalent to the
SUSY conserving dimensional reduction scheme [41].
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a fictitious mass to the photon (λ). After adding the real
photon emission, the divergence associated with the soft
photon emission will exactly cancel that of the pure loop
contribution (1V)

σ1Vþsoftðs; kcÞ ¼ σ1Vðs; λÞ þ σsoftðs; λ; kcÞ ð10Þ

where kc is a cut on the energy of the photon introduced to
separate the soft and hard part when performing the phase
space integral for the real emission,

σ1softþhardðs; λÞ ¼ σsoftðs; λ; kcÞ þ σhardðs; kcÞ: ð11Þ

To check the convergence we modify the value of λ. Note
that the kc dependence should disappear when calculating
the sum of the soft and hard part. This check is not
automatized in SloopS, one has to calculate the sum of
soft and hard emission for different values of kc until a
plateau is reached.
In our calculations of the decays of squarks, we have also

considered QCD corrections. In all examples we have
considered in the present paper, the genuine non-Abelian
structure of QCD is not present. For all these cases, we
adopt the same procedure for taming the infrared diver-
gences concerning gluons as the one we apply to infrared
photons. For these applications, we give the gluon a mass.

IV. RENORMALIZATION OF THE CHARGINO
AND NEUTRALINO SECTOR

A. Implementing our general considerations

Before entering into the details of the chargino/
neutralino sector let us review our setup for the renorm-
alization of the fermions as fit for the neutralinos and
charginos. We will follow, almost verbatim, the implemen-
tation in the MSSM carried out in [35,36]. We reproduce
the different steps so the reader can follow exactly how we
impose our conditions on the different counterterms.

For a Dirac fermionic field ψ ¼ ð ψ
L

ψR† Þ with a bare mass

M0, the kinetic and mass terms of the Lagrangian can be
written at tree level as

LDirac
0 ¼ iðψR

0 σ
μ∂μψ

R†
0 þ ψL†

0 σ̄μ∂μψ
L
0 Þ

− ðψRT
0 M0ψ

L
0 þ ψL†

0 M†
0ψ

R†
0 Þ: ð12Þ

When several fermions mix, the mass term M0 simply
becomes a matrix. M0 can involve a large number of
underlying parameters. The mass eigenstates are obtained
after diagonalizing the mass matrix with two unitary
matrices DR and DL,

χR0 ¼ DRψR
0 ; χL0 ¼ DLψL

0 ; : ð13Þ

such that

~M0 ¼ DR�M0DL† ¼ ~M†
0 ¼ diagðmχ1 ; mχ2 ;…Þ: ð14Þ

We now shift M0 by shifting the parameters of its
elements and proceed to shift fields through wave function
normalization,

M0 ¼ M þ δM ð15Þ

χR;Li0
¼

�
δij þ

1

2
δZR;L

ij

�
χR;Lj ð16Þ

M and χi are the renormalized matrix and fields respec-
tively and χR;Li ¼ PR;Lχi where PR;L ¼ ð1� γ5Þ=2 are
projection operators. For a Majorana fermion, as will be
the case for the neutralinos, ψL

0 ¼ ψR
0 ¼ ψ , only one

counterterm matrix is required; likewise, one unitary matrix
is needed for the diagonalization of the mass matrix.
Following [36] the renormalized two-point function
describing the i → j transition can be written in a compact
notation,

Σ̂ijðqÞ ¼ ΣijðqÞ − PLδmij − PRδm�
ji

þ 1

2
ðq −mχiÞ½δZL

ijPL þ δZR�
ij PR�

þ 1

2
½δZL�

ji PR þ δZR
jiPL�ðq −mχjÞ ð17Þ

including the one-loop self-energy ΣijðqÞ and the counter-
terms δmij that represent the correction to the element ~Mij,
i.e., δmij ¼ DR�δMDL†. We stress again that we are using
the same diagonalizing matrices DR;L as those used at
tree level. This formula makes it clear that the mass and
wave-function counterterms can be obtained separately
from on-shell (OS) conditions.
Using one of the masses mχi one can impose one of the

OS conditions on the physical pole mass

fReΣ̂~χi ~χiðqÞuχiðqÞ ¼ 0 for q2 ¼ m2
χi : ð18Þ

fRe means that the imaginary dispersive part of the loop
function is discarded so as to maintain Hermiticity at one-
loop. mχi is the tree-level mass. Using a mass mχi as an
input means that the tree-level mass that is used in Eq. (18)
receives no correction at one-loop. This gives a direct
constraint on the δmii element which will be used as one
condition to solve for the system of equations that define
the full set of counterterms. When this full set of counter-
terms is solved, Eq. (18) is used to calculate the pole mass
for the particles that were not used as input, see [36] for
the algebraic details. Considering the number of coupled
equations, finiteness of the mass(es) derived at one-loop is a
highly nontrivial test and shows the robustness of our code.
We always perform this finiteness test.
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Wave-function renormalization constants are derived by
requiring that

(i) the diagonal renormalized 2-point self-energies for
i → i transitions have residue of 1 at the pole mass.
This pole mass may get a one-loop correction. For
our treatment at one-loop, it is sufficient to impose
the residue condition by taking the tree-level mass.
This translates into

lim
q2→m2

χi

qþmχi

q2 −m2
χi

fReΣ̂χiχiðqÞuχiðqÞ ¼ uχiðqÞ and

lim
q2→m2

χi

ūχiðqÞfReΣ̂χiχiðqÞ
qþmχi

q2 −m2
χi

¼ ūχiðqÞ: ð19Þ

(ii) To avoid any i → j, i ≠ j, transition we impose

fReΣ̂χiχjðqÞuχjðqÞ ¼ 0 for q2 ¼ m2
χj ; ði ≠ jÞ:

ð20Þ

B. Specializing to the case of the charginos
and neutralinos

The new fermions in the electroweak sector of the
NMSSM are the two charginos, combination of charged
winos and Higgsinos as in the MSSM, and the five
neutralinos, combination of bino, wino, neutral Higgsinos
and the singlino. In the basis

ψR
c ¼

�
−i ~W−

~H−
d

�
; ψL

c ¼
�
−i ~Wþ

~Hþ
u

�
; ð21Þ

the mass matrix for the charginos reads,

X ¼
�

M2

ffiffiffi
2

p
MWsβffiffiffi

2
p

MWcβ μ

�
; ð22Þ

while for the neutralinos in the basis

ψRT
n ¼ ψLT

n ¼ ψ0T ¼ ð−i ~B0;−i ~W0
3; ~H

0
d; ~H

0
u; ~S

0Þ ð23Þ
the mass matrix reads

Y ¼

0BBBBBB@

M1 0 −MZsWcβ MZsWsβ 0

0 M2 MZcWcβ −MZcWsβ 0

−MZsWcβ MZcWcβ 0 −μ −λvsβ
MZsWsβ −MZcWsβ −μ 0 −λvcβ

0 0 −λvsβ −λvcβ 2κs

1CCCCCCA; ð24Þ

The charginos and neutralinos eigenstates are obtained with the help of two unitary matricesU and V for charginos and one
unitary matrix N for neutralinos [U, V, N are particular manifestations of the matrices DL;R introduced in Eq. (13)],

χR ¼ UψR
c ; χL ¼ VψL

c ; χ0 ¼ Nψ0; ð25Þ

leading to the mass eigenstates

~X ¼ U�XV† ¼ diagðm~χþ
1
; m~χþ

2
Þ; ~Y ¼ N�YN† ¼ diagðm~χ0

1
; m~χ0

2
; m~χ0

3
; m~χ0

4
; m~χ0

5
Þ: ð26Þ

Following our program, we proceed to shift the underlying parameters. This results in introducing counterterms to the mass
matrices

δX ¼
�
δM2 δX12

δX21 δμ

�
; δY ¼

0BBBBBB@
δM1 0 δY13 δY14 0

0 δM2 δY23 δY24 0

δY13 δY23 0 −δμ δY35

δY14 δY24 −δμ 0 δY45

0 0 δY35 δY45 δY55

1CCCCCCA; ð27Þ

with, in the chargino case,

(
δX12 ¼

ffiffiffi
2

p
sβδMW þ ffiffiffi

2
p

MWsβc2β
δtβ
tβ
;

δX21 ¼
ffiffiffi
2

p
cβδMW −

ffiffiffi
2

p
MWs2βcβ

δtβ
tβ
;

ð28Þ
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and for the neutralino counterterms8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

δY13 ¼ −MZsWcβ

�
1
2

δM2
Z

M2
Z
þ 1

2

δs2W
s2W

�
þMZsW

t2β
ð1þt2βÞ3=2

δtβ
tβ
;

δY14 ¼ þMZsWsβ

�
1
2

δM2
Z

M2
Z
þ 1

2

δs2W
s2W

�
þMZsW

tβ
ð1þt2βÞ3=2

δtβ
tβ
;

δY23 ¼ þMZcWcβ

�
1
2

δM2
Z

M2
Z
þ 1

2

δc2W
c2W

�
−MZcW

t2β
ð1þt2βÞ3=2

δtβ
tβ
;

δY24 ¼ −MZcWsβ

�
1
2

δM2
Z

M2
Z
þ 1

2

δc2W
c2W

�
−MZcW

tβ
ð1þt2βÞ3=2

δtβ
tβ
;

δY35 ¼ −vsβδλ − λvsβc2β
δtβ
tβ
− λsβvðδMW

MW
− δe

e þ δsW
sW
Þ;

δY45 ¼ −vcβδλþ λvs2βcβ
δtβ
tβ
− λcβvðδMW

MW
− δe

e þ δsW
sW
Þ;

δY55 ¼ 2ðκδsþ sδκÞ:

ð29Þ

with the constraint δc2W ¼ −δs2W ¼ δðM2
W=M

2
ZÞ and

δμ ¼ δðλsÞ [v is also defined from α,MW ,MZ, a constraint
which is implemented explicitly in Eq. (29)].
As we have shown in the general presentation, the

renormalized self energies lead to corrections, δmχi , to
the tree-level masses. Imposing that some of these correc-
tions vanish will put constraints on δX, δY or else will give
finite one-loop correction to the mass. Note again that since
after the shifts on the parameters are made we still keep
the same diagonalizing matrices, we have for the correc-
tions on the physical masses

diagðδm~χ�i
Þ ¼ δ ~X ¼ U�δXV†;

diagðδm~χ0i
Þ ¼ δ ~Y ¼ N�δYN†: ð30Þ

C. Issues in the reconstruction of the counterterms
of the chargino and neutralino sector

To fully define the chargino/neutralino sector one needs,
besides the SM parameters α and MW;Z, to reconstruct and
define the six parameters listed in Eq. (8), namely, tβ, λ, κ,
μ,M1,M2. This set defines the matrices X, Y; see Eqs. (22)
and (24). Three of these parameters are common to both the
neutralino sector and the chargino sector; these are tβ, μ,
M2 while M1, λ, κ are present only in the neutralino sector.
Clearly, the sole knowledge of two chargino masses is not
sufficient to constrain μ, M2 and tβ. However, if tβ is
provided from some other source then input from the two
chargino masses can reconstruct M2, μ. In this case, three
neutralino masses are sufficient to defineM1, λ, κ. For this,
one needs to solve a system of three equations.
In principle, the chargino/neutralino sector by providing

seven physical masses can furnish enough constraint to
define the set of the six counterterms. However, apart from
assuming that one is in the lucky situation that as many as
six (or seven) masses in the chargino/neutralino sector have

been measured, a cursory look at the tree-level mass
matrices X in Eq. (22) and Y in Eq. (24) already reveals
the problems encountered in reconstructing the fundamen-
tal parameters of these mass matrices from the masses of
the charginos and neutralinos only. First of all, we see that
in the chargino sector, the tβ contribution is quite small. In
the neutralino sector, the situation as concerns this param-
eter is not much better since either its contribution vanishes
in the gaugeless limit (g → 0 or MW, MZ → 0), as in the
chargino case or it is very much tangled up with the
parameter λ. Moreover both tβ, λ represent mixing effects
that may be difficult to extract from masses only. This is
different from the extraction ofM1 for example where, if an
almost binolike neutralino mass, m~χ0i

, is used as input, we
would have an almost one-to-one mappingM1 ∼m~χ0i

. This
said one must not forget that the problematic tβ, λ are also
present in the Higgs sector and, in view of the observations
we have made, it is worth studying whether some input
from the Higgs sector may not be a better way of extracting
tβ, λ. However, other parameters enter the Higgs sector but
not the chargino/neutralino sector; see Eq. (9). Hence
combining the Higgs and the chargino/neutralino sectors
as many as 11 parameters should be reconstructed and we
would, therefore, need as many inputs.
We would also like to point out an important conceptual

issue having to do with the reconstruction of the underlying
parameters from the sole knowledge of the physical masses,
in particular from the chargino and neutralino sector. As is
clear from the chargino mass matrix in Eq. (22) there is a
M2 ↔ μ symmetry. Although the system can be solved by
giving the two physical chargino masses, it is impossible to
unambiguously assign the value of μ or M2 to the correct
“position” in the mass matrix. In other words, the Higgsino/
wino content is not unambiguously assigned. This would,
however, be important to know when we want to solve for
the other remaining parameters in the neutralino sector.
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Even without this caveat a similar problem occurs if
one wants to unambiguously extract M1 for example.
A good reconstruction would require knowing not only
the mass but the bino or singlino content of that mass. This
is a challenging problem even in the (simpler) MSSM,
[53,55,56]. We will assume that some knowledge of the
content is available from a measurement of some decay
or cross section and from comparing the chargino and
neutralino mass spectrum, see [36] for a discussion on
this issue.
Setting aside these issues and remarks, let us return to the

problem of defining and reconstructing the underlying
parameters and counterterms. Since, for the chargino/
neutralino system, we need to define and solve for six
counterterms, we need a trade-off that supplies six inputs or
conditions, input1;…;input6. Different choices of the
n ¼ 6 inputs correspond to a renormalization scheme. We
have also discussed that we may have to revert to a larger
set that includes the Higgs sector, in this case solving
for both the Higgs and chargino/neutralino we may have
to extend the six needed inputs to as many as n ¼ 11;
see Eq. (9).
Therefore, in all generality, one needs to invert a system

such as

0BBB@
δinput1

� � �
� � �

δinputn

1CCCA ¼ Pn;param

0BBBBBBBBBB@

δμ

δM2

δκ

δM1

δλ

δtβ
� � �

1CCCCCCCCCCA
þRn;residual; ð31Þ

Where Rn;residual contains other counterterms, such as
gauge couplings, that are defined separately. Using the
physical mass of one of the neutralinos/charginos as an
input [see Eq. (18)] is a possible choice in an OS scheme.
Not all inputs need to be OS. In fact, it is perfectly
legitimate to adopt a fully DR scheme. In this particular
case, the counterterms can be simply read off from an
external code such as NMSSMTools or any code based on
the solution of the renormalization group equation (RGE),
at one-loop. In passing, let us add that we have checked
systematically that the CUV part of our counterterms are the
same, independently of how we extract them and we
checked that they are consistent with the values extracted
from NMSSMTools.
To make the system Eq. (31) manageable, one should

strive to reduce the rank of the matrix Pn;param by breaking
it into independent blocks, such that

Pn;param ¼ Pm;param ⊕ Pp;param ⊕ � � � ;
mþ pþ… ¼ n: ð32Þ

We will compare a few schemes and implementations. In
what we will call the mixed DR on-shell schemes, we work
to reconstruct the six parameters of the chargino/neutralino
sector, therefore n ¼ 6. tβ will be extracted from a DR
condition on tβ (from the Higgs sector), M2, μ from the
charginos and the rest of the three parameters solely from
the neutralinos. In this case, we have

P6;param ¼ P1;param ⊕ P2;param ⊕ P3;param: ð33Þ

As with all resolutions of a system of equations, the
inversion of the matrix P could introduce the inverse
of a small determinant. We have already encountered such
an example with tβ and the division by the small ϵm in
Sec. III A. Another case concerns M1 that can only be
reconstructed precisely using the neutralino that is domi-
nantly bino. This can easily be seen from the first term in
Eq. (30), δm~χ0i

¼ N�2
i1 δM1 þ… If the mass of the domi-

nantly bino neutralino is not chosen as an input parameter,
then the extraction of δM1 involves a division by a small
number since Ni1 is suppressed, hence can induce numeri-
cal instabilities. This is the reason we have brought up the
issue of the content of the particle when its mass is used
as input.
A second set of schemes, full OS-scheme, is a full

P6;param where all inputs are masses from the chargino/
neutralino sector. We have pointed at some of the short-
comings of this approach, lack of sensitivity to tβ and to λ to
some extent. To achieve a better determination of the
parameters, in particular the problematic tβ, we get help
from the Higgs sector but this time all parameters are
defined OS. In this case, among the inputs we will take
some Higgs masses. This will be done at the expense of
having a larger system, P8;param., the extra two parameters
that come into play are Aλ;κ.

D. Mixed DR on-shell schemes

This setup is done along the decomposition P1;param ⊕
P2;param ⊕ P3;param where P1;param gets its source in the
Higgs sector, implementing a DR condition for tβ.

1. tβ from the Higgs sector

The renormalization of the Higgs sector is done within
the same spirit as the one followed for the neutralino sector
by the introduction of wave function renormalization
constants, details will be given in a separate paper. The
DR condition calls for the wave function renormalization
constants of the Higgs doublets. It is an extension of the
DCPR scheme [57,58] used in the context of the MSSM to
the NMSSM[59],

δtβ ¼
�
tβ
2
ðδZHu

− δZHd
Þ
�
∞
; ð34Þ
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where δZHu
and δZHd

are the wave function renormaliza-
tion constants of the Hu and Hd doublets. The infinity
symbol indicates that we take the divergent part of the
expression. δZHu

and δZHd
are related to the wave function

renormalization constants Zhihi of the physical CP-even
eigenstates h01, h

0
2 and h03. The latter are obtained from the

CP-even neutral elements of Hu and Hd through the
diagonalizing matrix Sh

ðh01; h02; h03Þ ¼ ðh0d; h0u; h0sÞSTh ð35Þ

Explicitly,

δZHd
¼ 1

R

X3
i;j;k¼1

ϵijkSh;j3Sh;k2δZhihi ;

δZHu
¼ 1

R

X3
i;j;k¼1

ϵijkSh;j1Sh;k3δZhihi ; ð36Þ

with

δZhihi ¼ Σ0
hihi

ðm2
hi
Þ; R ¼ −

X3
i;j;k¼1

ϵijkS2hi1S
2
h;j2S

2
h;k3;

ð37Þ

where ϵijk is the fully antisymmetric rank-3 tensor with
ϵ123 ¼ 1 and Σ0

hihi
ðm2

hi
Þ is the derivative of the self-energy

of the Higgs hi (with respect to its external momentum),
evaluated at its mass mhi . This condition is such that the
residue of the Higgs propagator is unity. The same require-
ment was imposed on the charginos and neutralinos.
In a DR scheme, only the divergent part of the counter-

tem is defined, i.e., any finite term is set to 0. Nonetheless,
the scheme and the one-loop result is still not fully defined
unless one specifies the renormalization scale μ̄. The latter
is the remnant scale introduced by the regularization
procedure, dimensional reduction. Varying μ̄ can give some
estimate on the theoretical uncertainty of the calculation
due to the truncation at one-loop. In the numerical results
obtained using a DR scheme, the default value of μ̄ is fixed
to be equal to the mass of the decaying particle or to the
(tree-level) mass of the particle whose one-loop correction
is calculated.

2. The charginos

Having solved for tβ, the chargino system, P2;param

provides the simplest setup for defining μ, M2 from the
masses of both charginos as input. Exactly the same
approach and the same expressions are found for the
MSSM

δM2 ¼
1

M2
2 − μ2

�
ðM2m2

~χþ
1

− μ detXÞ
δm~χþ

1

m~χþ
1

þ ðM2m2
~χþ
2

− μ detXÞ δm~χþ
2

m~χþ
2

−M2
WðM2 þ μs2βÞ

δM2
W

M2
W

− μM2
Wc2βs2β

δtβ
tβ

�
;

δμ ¼ 1

μ2 −M2
2

�
ðμm2

~χþ
1

−M2 detXÞ
δm~χþ

1

m~χþ
1

þ ðμm2
~χþ
2

−M2 detXÞ
δm~χþ

2

m~χþ
2

−M2
WðμþM2s2βÞ

δM2
W

M2
W

−M2M2
Ws2βc2β

δtβ
tβ

�
:

ð38Þ

The explicit solutions shown in Eq. (38) give us the
opportunity to go over the ambiguity on the true
reconstruction of M2, μ. In fact, Eq. (38) corresponds to
four solutions since M2, μ are given up to a sign and
we have a M2 ↔ μ ambiguity. This issue was discussed
at some length, and some suggestions were given on how
to lift the degeneracy [36]. By looking at the values of
some decays (or cross sections) involving a chargino, for
example, we can check that only one of the solutions is
compatible with the value of the decay rate. This is a
limitation on using only the value of the physical masses as
input. Having chosen the correct δμ, δM2 we can now pass
them to the neutralino sector.2

3. Three neutralino masses as input

We are now left with determining δM1, δκ (or δðκsÞ)
and δλ using three neutralino masses, this is the P3;param.
Out of the five possible neutralino masses, assuming they
have all been measured, one must pick up three masses
that give the best reconstruction of the remaining param-
eters. As we pointed out, technically we should avoid
having DetðP3;paramÞ → 0. Obviously the best extraction
of M1 would, ideally, need the binolike neutralino,
whereas δκ (or δðκsÞ) is most directly tied up with the
singlino component. A winolike neutralino as a third
input will not do since this is essentially sensitive to M2

with only feeble mixing with the λ contribution. The third
neutralino to use as input is necessarily a Higgsino-like
neutralino, again this is evident since λ in the NMSSM is
intimately related to μ, the Higgsino parameter. One can
also look at the mass matrix [Eq. (24)] to see that λ
enters only in the singlino-Higgsino off-diagonal element.
Therefore, the subset to choose calls for δm~χ0“singlino”

,

2Numerical problems may arise in the limit μ ¼ M2, see [36]
for a more thorough discussion.
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δm~χ0“bino”
and δm~χ0“Higgsino”

. We see again that a judicious

choice calls for a knowledge of the identity of the particle
apart from knowing the value of the corresponding mass
exactly.
Having implemented the P1;param ⊕ P2;param ⊕ P3;param

approach this way, one can calculate the one-loop correc-
tions to two neutralinos, the remaining winolike and the
remaining Higgsino-like neutralinos.

E. Full OS schemes

1. The neutralino/chargino sector

Since all six parameters tβ, λ, κ, μ, M1, M2 are
necessary to describe the chargino/neutralino sector
which provides seven physical masses, one could enter-
tain defining all these parameters from this sector. We
have pointed out at the shortcomings of this extraction
which has to do with the fact that the dependence on tβ is
very weak and that the dependence on λ is complicated.
From the technical point of view the reconstruction is
also involved as it requires inverting a 6 × 6 system,
P6;param. The best choice for P6;param builds up on the
remarks we have just made in picking up the three most
appropriate neutralinos in the previous paragraph. Based
on those arguments the P6;param. OS scheme uses the
following set of inputs:0BBBBBBBBBB@

δm~χ�
1

δm~χ�
2

δm~χ0“singlino”

δm~χ0“bino”

δm~χ0“Higgsino”

δm~χ0“Higgsino”

1CCCCCCCCCCA
¼ P6;param

0BBBBBBBBBB@

δμ

δM2

δκ

δM1

δλ

δtβ

1CCCCCCCCCCA
þR6; ð39Þ

In the above, we have ordered the inputs in correspon-
dence with the countertems they affect most directly, with
the proviso that the Higgsinos do not reconstruct tβ and λ
efficiently.

2. The neutralino/chargino and Higgs sectors

To improve the determination of λ and possibly tβ,
while keeping with a full OS scheme, one has to get help
from the Higgs sector. In that sector, the nature of the
mixing between the scalar Higgses means that there is
not a one-to-one mapping between tβ and a single Higgs
mass. tβ gets tangled up with a reconstruction of Aκ and
Aλ which are not needed for the chargino/neutralino
sector. Therefore, at least three Higgs masses are needed.
The most natural Higgs masses for this setup, directly
related to Aκ and Aλ, are the two pseudoscalar masses

mA0
1
, mA0

2
. To these one can add the charged Higgs boson,

H�, or one of the neutral CP even Higgsses. In any case,
the addition of two more inputs for a better determination
of the whole set of the chargino/neutralino sector means
we are dealing with P8;param. One can also appeal to the
Higgs sector for a better determination of λ trading
another (second) CP even Higgs for a Higgsino-like
neutralino. Summarizing these observations, the variants
of the full OS scheme to extract the counterterms for tβ,
λ, κ, μ, M1, M2, Aλ, Aκ use the masses

m~χ�
1
; m~χ�

2
; m~χ0“singlino”

; m~χ0“bino”
; ðm~χ0“Higgsino”

or mh0i
Þ;

ðmH� or mh0j
Þ; mA0

1
; mA0

2

We refrain from giving the complete formulas for this
setup since it relies heavily on the details of the
implementation of the renormalization of the Higgs sector
which will be presented elsewhere [52]. Although using
an OS approach with the help of Higgs masses can
constrain the singlino parameters we should not expect
to have a very good determination of tβ. Indeed, even in
the MSSM limit, we have shown [35] that if one takes
the heavy CP-even Higgs mass, MH0 as input together
with the pseudoscalar from the doublet, MA0 , then when
MA0 ≫ MZ,

δtβ
tβ

∼
1

M2
H0=M2

A0 − 1
ð−δM2

A0=M2
A0 þ δM2

H0=M2
H0Þ: ð40Þ

This could lead to a large finite part when MH0 ∼MA0 as
occurs in the decoupling limit.

V. RENORMALIZATION OF THE
SFERMIONIC SECTOR

We now deal with the determination of the last set of the
parameters listed in Eq. (8) concerning the sfermion sector.
Since the implementation of the sfermionic sector in the
NMSSM is exactly the same as in the MSSM, we have
followed the same approach as the one we developed in
[36]. We, therefore, refer to [36] for details and only
summarize the setup here.

A. Squarks

For each generation, five parameters, m ~Q, m ~uR , m ~dR
, Au,

Ad, need to be defined (or renormalized) in the squark
sector. Recall that each quark q (q ¼ u, d) has two scalar
superpartners, one for each chirality, ~qL and ~qR. The squark
mass matrix encodes the elements one needs to renorm-
alize. In the ( ~qL, ~qR) basis, the mass matrix M2

~q takes the
form [see also Eq. (5)]
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M2
~q ¼

0B@m2
~Q
þm2

q þ c2βðT3
q −Qqs2WÞM2

Z mqðAq − μt
−2T3

q

β Þ

mqðAq − μt
−2T3

q

β Þ m2
~q þm2

q þ c2βQqs2WM
2
Z

1CA; ð41Þ

where T3
q is the third component of the isospin for q whose

mass ismq. To define the physical eigenstates, we introduce
the diagonalizing matrix R such that�

~q1
~q2

�
¼ R

�
~qL
~qR

�
; R ¼

� cθq sθq
−sθq cθq

�
; ð42Þ

The mass eigenstates will be denoted as ~q1;2 with masses

diagðm2
~q1
; m2

~q2
Þ ¼ RM2

~qR
T: ð43Þ

We will take ~q1 to be the lightest eigenstate.
We then follow exactly the same procedure as in the

neutralino/chargino sector. Namely we shift the underlying
parameters in the mass matrix [Eq. (41)] and introduce
wave function renormalization for the fields

M2
~q ¼ M2

~q þ δM2
~q; ð44Þ

~qi ¼
�
δij þ

1

2
δZ ~q

ij

�
~qj: ð45Þ

The ensuing renormalized self-energies for the squarks read

Σ̂ ~qi ~qjðq2Þ ¼ Σ ~qi ~qjðq2Þ − δm2
~qij
þ 1

2
δZ ~q

ijðq2 −m2
~qi
Þ

þ 1

2
δZ ~q

jiðq2 −m2
~qj
Þ: ð46Þ

As was the case in the neutralino/chargino sector, the
rotation matrices R, Eq. (42), are not renormalized. This
means that the counterterms δm2

~qij
of the physical mass

matrix are given by

δm2
~qij

¼ ðRδM ~q2R
TÞij: ð47Þ

Keeping with our general strategy we forbid mixing
between different fields when they are on their mass shell,
ReΣ̂ ~qi ~qjðm2

~qi
Þ ¼ 0. Furthermore, we set the residue of the

renormalized propagators to unity, ReΣ̂0
~qi ~qi

ðm2
~qi
Þ ¼ 0.

Because SUð2Þ symmetry imposes a common mass to
two of the four squarks (before mixing), in our scheme we
take three physical squark masses as input. In SloopS
the selected squark masses are m ~d1

, m ~d2
and m ~u1 . The

definition of the mixings is directly related to physical
observables namely the amplitude describing the decays

~u2 → ~u1Z0 and ~d2 → ~d1Z0. At tree level, this amplitude
is a substitute for the mixing parameter θq, q ¼ u, d,
M ~q2 ~q1Z ¼ igZT3

q sinð2θqÞ=2. θq defined this way is then
promoted to the status of a physical observable
(gZ ¼ e=sWcW is extracted from the gauge sector).
Therefore. the other two input parameters are θu;d for
which a counterterm can be defined as

δm2
~q12

¼ −ReΣ ~q1 ~q2

�
m2

~q1
þm2

~q2

2

�
; ð48Þ

see [36] for details. These inputs and conditions allow to
construct the counterterms for the five underlying param-
eters of the squark sector [Eq. (8)]. Among the many
predictions is that the mass of the squark ~u2 receives a
one-loop correction. UV finiteness of this correction is
another test of our implementation.

B. Sleptons

The renormalization of the slepton sector follows the
same methodology and can be considered as a simpler case
of the squark system. Indeed, the absence of right-handed
neutrinos means that, for each generation, there are only
three associated particles: two charged sleptons and one
sneutrino. Mixing occurs only in the charged sector. Three
parameters, for each family, need to be fixed, m ~L, m~eR , Ae;
see Eq. (8). The physical masses are ~e1, ~e2, and ~ν. A simple
OS scheme is to take the physical masses of these three
particles as input parameters, m~e1 , m~e2 , and m~ν. An
alternative scheme is to take the (two) charged slepton
masses as input with the addition of a constraint on the
mixing as we have done for the squark sector, namely

δm2
~e12

¼ −ReΣ~e1 ~e2ð
m2

~e1
þm2

~e2
2

Þ as could be extracted form
~e2 → ~e1Z, see [36]. We will stick with the first scheme
that requires the three slepton masses. These different
implementations for the squarks and sleptons may be
useful when comparing the scheme dependence of the
results for sfermion decays.

VI. BENCHMARK POINTS AND DEFINITION
OF THE SCHEMES

Toapplyour formalismweobviously need to fully define a
model. In particular, our OS renormalization requires physi-
cal input parameters andmost importantly, as we saw, the use
of a set of physical masses among the full spectrum. Since no
particle of theNMSSMhas been discovered yet it is difficult,
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even within a particular NMSSM scenario, to pick up the
minimal set of input masses. Moreover, even after agreeing
on a minimal set to carry the renormalization, the other
parameters of the model are still needed in order to perform a
complete calculation (some particles and their parameters
will only enter indirectly through their loop effects). The
reason we insist on this seemingly obvious point is that had a
particular manifestation of the NMSSM been discovered
experimentally, we would have had to use the physical
observables, such as some of the physical masses, to
reconstruct the underlying parameters of the model. Such
an inversion is notoriously complicated even when per-
formed at tree level, see [55] for instance and the discussion
for the counterterms in Sec. IV C. The reconstruction would
be easier if information on some decays and cross sections
were given [35]. The best we can do is the following. We
generate models by supplying all the needed underlying
parameters, such as M1;M2; � � � ; Ab; � � �. These parameters
can be considered as parameters at the electroweak scale.
Tree-level formulas are used to calculate the full spectrum. In
turn, for one-loop calculations, masses of a subset of this
spectrum are used as physical masses. The other masses will
receive a loop correction. For example, we can take three
neutralino masses as input and predict the one-loop correc-
tions for the remaining two neutralinos of the NMSSM.
Another related issue is that these theory generated (physical)
masses from a“known” set of underlying parameters intro-
duce a bias in our analysis in the sense that we knowwhat the
composition of the neutralino is. In particular, from the mass
alone one cannot distinguish the singlinolike or binolike
neutral state. What we want to stress here is that despite our
OS approach we have some insider’s knowledge due to the
way we generate the points. This is the reason we will talk
about a bino-dominated neutralino for example, an informa-
tion easily accessed through the underlying parameters but
much harder to assess from the mass spectrum. For the same
model, wewill consider different schemes. These correspond
to different choices of the input masses for example.

A. Choice of the benchmark points

We choose five benchmark points in order to cover
various hierarchies in the neutralino sector. In particular,
the points we selected are classified according to the nature
of the lightest supersymmetric particle (LSP) neutralino.
The crucial parameter that defines the properties of the
singlino component of the neutralino is λ, it ranges from a
small value 0.03 (point 4) to moderate values of the order of
the weak gauge coupling 0.1–0.4. The other parameter that
defines the singlino and controls its mass, m ~S, is κ. It is
chosen to cover the range 2κ=λ ¼ 0.5–2. 2κ=λ is roughly
the ratio between the singlino and Higgsino masses.
Sfermions masses of the first two generations as well as
the right-handed sbottom are ≈1 TeV for all the 5 bench-
mark points. While the mixing for the sbottom is always
tiny leading to ~b1 ¼ ~bR, we take large mixings for the

stops. Three benchmark points have the lightest stop
with mass around 0.5 TeV. Two scenarios have rather light
~τ1 of about 150 GeV. The LSPs are in the narrow range
110–140 GeV. The values for the underlying parameters for
each of the benchmarks are summarized in Table I. The
parameters of the NMSSM that do not appear in Table I
take a common value for all points, Ab ¼ Aτ ¼ mL1;2

¼
m ~D1;2

¼ m ~Q1;2
¼ 1000 GeV while the SM parameters are

fixed to α ¼ 1=137.06, MZ ¼ 91.188 GeV, sW ¼ 0.481,
αsðMZÞ ¼ 0.118. To summarize:

TABLE I. Parameters for the five benchmark points and
tree-level masses of the neutralinos, charginos and third
generation sfermions. For all points, mD1;2

¼ mQ1;2
¼ mL1;2

¼
Ab ¼ Aτ ¼ 1000 GeV. Parameters with mass dimension are
expressed in GeV.

Parameter Point 1 Point 2 Point 3 Point 4 Point 5

tβ 10 4.5 10 7 3.4
μ 250 250 120 600 550
M1 1000 230 700 140 400
M2 150 600 1000 200 150
M3 2500 1000 1000 1000 1000
λ 0.1 0.2 0.1 0.03 0.4
κ 0.1 0.05 0.1 0.007 0.1
Aλ 150 1250 150 1000 1800
Aκ 0 0 0 0 0
At 3000 2200 4000 2300 2400
m ~Q3

2000 1500 2000 1600 1500
m ~U3

2000 500 1000 400 500
m ~D3

1000 1000 1000 1000 1000
m ~L3

1000 1000 1005 1000 1001.5
m ~R3

1000 149.5 1000 140 1005

m~χ0
1

125.7 123.4 112.8 138.1 139.4
m~χ0

2
257.3 200.9 123.8 193.1 276.2

m~χ0
3

278.7 255.7 241.6 280.0 392.7
m~χ0

4
500.8 271.7 702.8 603.8 557.3

m~χ0
5

1002.2 614.8 1006.6 612.6 574.1
m~χþ

1
126.8 239.6 118.0 192.9 140.1

m~χþ
2

285.9 614.7 1006.6 612.8 564.0
m~t1 1873.0 459.7 935.4 358.3 453.4
m~t2 2132.9 1531.7 2045.1 1627.5 1533.7
sin θt 0.707 0.984 0.976 0.988 0.983
m ~b1

1000.3 1000.3 1000.3 1000.2 1000.3
m ~b2

2000.9 1501.1 2000.9 1601.1 1501.0
sin θb 1 1 1 1 1
m~τ1 999.7 155.2 1000.9 146.4 1000.8
m~τ2 1002.3 1001.0 1006.1 1001.1 1006
m~ντ 998.0 998.1 1003 998.0 998.3
sin θτ 0.727 1 0.997 1 0.153
mh1 (tree) 88.4 78.0 88.5 85.9 85.7
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(i) Point 1 features a winolike neutralino LSP. This
point exhibits the largest wino-Higgsino mixing
among all five scenarios, note that μ −M2 ∼MZ.

(ii) Point 2 has a singlino dominated LSP. It is also the
scenario where the singlino mixings to the other
components, while still quite small, are the largest
of all 5 scenarios. It also features the largest bino-
Higgsino mixing, observe that here μ−M1∼MW=4,
a property that will enhance the bino-Higgsino
mixing.

(iii) Point 3 features a Higssino-like LSP.
(iv) Point 4 has a binolike LSP. The singlino is practi-

cally decoupled with a very small value of λ.
(v) Point 5 also has winolike LSP but differs from

point 1 in that the Higgsinos are the heaviest
neutralinos. The lightest τ is mxed though domi-
nantly left-handed.

We have also ensured that these benchmarks were
phenomenologically viable, that is they possess a Higgs
boson in the 122–128 GeV mass range (after including all
loop corrections provided by NMSSMTools) and they
satisfy theoretical and experimental constraints imple-
mented in NMSSMTools. The SM-like Higgs is always
the lightest CP-even scalar and for further reference to the
benchmark points we give its mass at tree level in Table I.
Note that the precise value of the Higgs mass will not play
any role in the forthcoming numerical analysis. All these
points also feature a light pseudoscalar particle in the range
4–60 GeV. This particle is, however, not directly relevant
for the numerical examples that follow. We have also
checked that all points satisfy at least the upper bound on
the relic density extracted from Planck, Ωh2 < 0.131 after
taking into account a 10% theoretical uncertainty [60].
Points 1, 3, and 5 have a value for the relic density below
this range, as is typical of wino and Higgsino DM below the
TeV scale, while points 2 and 4 fulfill the Planck condition.
To achieve this, we required substantial coannihilation
with sfermions, by adjusting m ~R3

the soft mass term for
right-handed sleptons since, typically, scenarios with bino
or singlino LSP lead to too much dark matter.
The components (bino, wino, Higgsino, singlino) of

the neutralinos are shown in Table II. The neutralinos are
labeled from lightest ~χ01 to heaviest ~χ05. Since for most
points there is not a large mixing between the components,
in order to capture the main properties of the benchmark
point at a glance, we will refer to the benchmark in
terms of its largest components as ð~χ01; ~χ02; ~χ03; ~χ04; ~χ05Þ∼
ð ~W0

3; ~H
0; ~H0; ~S0; ~B0Þ. Note that in the gaugeless limit,

g → 0ðMZ;MW → 0Þ, mixing occurs only between a sin-
glino and a Higgsino, the strength of the latter being
measured by λ. In the MSSM limit, (λ is small) and
provided jM1;2 − μj > MZ, the mixing between the wino
and the Higgsino is of the order MW=Maxðμ;M2Þ and the
mixing between the bino and the Higgsino is of order
MZsW=Maxðμ;M1Þ. In the same limit, the mixing between

the bino and wino is vanishingly small, this mixing will
first transit via a Higgsino. The tβ dependence is weak, for
example in the chargino case the dependence is hidden in
the small mixing factor MWðμþM2=tβÞ=Maxðμ2;M2

2Þ
and/orMWðM2þμ=tβÞ=Maxðμ2;M2

2Þ. These general obser-
vations explain the values of the mixing in Table II.
In particular, the largest mixings occur for point 1
between the wino and the Higgsinos and for point 2
between the bino and the Higgsinos. Point 2 is also the
point where the singlino component may be relevant for
some of the states (apart from the LSP singlino, of course).
Points 3 and 4 are the ones where the all neutralinos are
the “purest.”

B. Selecting the renormalization schemes

As we discussed in detail for the neutralinos, the choice
of the renormalization scheme is crucial for a most efficient
extraction of the counterterms. For instance, we argued that
δM1 will be badly reconstructed if the binolike neutralino
was not used as an input parameter in a scenario with little
mixing. This is the reason wewill adapt the renormalization
scheme for each benchmark point. We will compare the

TABLE II. Components of neutralino mass eigenstates for the
five benchmark points. The dominant component is highlighted.

Point 1 Point 2 Point 3 Point 4 Point 5

~χ01 ~B0 � � � 0.63% � � � 98.8% � � �
~W0 78.6% � � � � � � � � � 96.2%
~h0 21.4% 3.88% 98.4% 0.85% 3.31%
~S0 � � � 95.4% 0.77% � � � � � �

~χ02 ~B0 � � � 55.8% 0.49% � � �
~W0 1.6% 1.0% � � � 97.0% 0.67%
~h0 98.3% 40.0% 99.5% 2.54% 1.69%
~S0 � � � 3.20% � � � � � � 97.4%

~χ03 ~B0 � � � � � � � � � � � � 95.2%
~W0 19.8% � � � � � � � � � � � �
~h0 79.8% 98.9% 0.9% � � � 4.05%
~S0 0.58% 99.1% 99.98% 0.48%

~χ04 ~B0 � � � 43.3% 99.6% � � � � � �
~W0 � � � 2.31% � � � � � � � � �
~h0 53.6%% � � � 99.51% 99.1%
~S0 99.8% 0.83% � � � � � � 0.53%

~χ05 ~B0 99.7% � � � � � � 0.54% 4.52%
~W0 � � � 96.3% 99.3% 2.36% 2.53%
~h0 3.62% 0.69% 97.1% 91.8%
~S0 � � � � � � � � � � � � 1.13%
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predictions for the same observable for different renorm-
alization schemes within the same benchmark. The differ-
ence between these schemes lies in how we extract the (six)
underlying parameters entering the neutralino/chargino
sector. For all OS schemes, the chargino masses are always
chosen as input. We consider the following schemes:
(1) Fully OS schemes with four neutralino masses

classified as P6. These schemes will be denoted as
(a) OS1234 when taking the 4 lightest neutralinos
(b) OS2345 when taking the 4 heaviest neutralinos

(2) OS schemes where we take a DR condition for δtβ in
addition to three neutralino masses as input. We do
so in order to have a better determination of tβ and
decouple the system of equations for the neutralinos
and charginos. These schemes will be denoted as
(a) t123 when taking the three lightest neutralinos
(b) t345 when taking the three heaviest neutralinos
(c) t134 when taking the first, third, and fourth

neutralinos
(3) Fully OS schemes of the P8 class where some

masses from the Higgs sector are used as inputs.
To fully determine the system, we need all in all
(including the chargino masses) eight input param-
eters in this case. We resort to these schemes since,
as pointed out earlier, schemes based on using solely
the masses of the neutralinos are not expected to be
good enough in reconstructing neither tβ nor λ.
These two parameters will have a strong impact
on the couplings of the neutralinos and hence a
crucial influence on many of their decays. In this
category, we use two types of schemes,
(a) OSijkh2A1A2

or OSijkHþA1A2
schemes where three

neutralinos, both pseudoscalars Higgses and
either h2 or Hþ are chosen as input in addition
to the two charginos. The indices i, j, k indicate
the relevant neutralinos. For each of these scenar-
ios, we avoid taking the mass of the wino-
dominated neutralino as input since M2 is well
extracted form the chargino mass measurements.

(b) OSijh2HþA1A2
schemes where two neutralino

masses as well as the Higgs singlet, charged
Higgs and the two pseudoscalar Higgses are
used as inputs.

(4) Full DR scheme is also used for comparison. In this
case, we take the renormalization scale μ̄ at the mass
of the decaying particle as discussed earlier.

For processes involving sfermion decays, we stick with
only one scheme as described in Sec. V.

VII. ONE-LOOP RESULTS FOR NEUTRALINO
MASSES AND NEUTRALINO/CHARGINO

DECAYS TO GAUGE BOSONS

In the absence of not too large mixings between the
different components in the ~χ0=~χ� sector, like in the five
points we have chosen, the masses of the physical states are

determined essentially byM1;M2; μ; 2κs. These parameters
must, therefore, be determined accurately for a precise
determination of the physical masses. Small contributions
to these masses involve a knowledge of λ and tβ, but as
argued previously the dependence in these two parameters
is expected to be mild. When it comes to the decays, the
situation is different since most decays involve transitions
between different gauge eigenstates and, therefore, the
decays are very often quite sensitive on the parameters
that set the mixing. Therefore, in the decays we will be
more careful about how λ and tβ are defined.

A. Neutralino masses

The calculation of the one-loop corrected neutralino
masses only calls for the computation of two-point
functions. Yet, ultraviolet finiteness of the full one-loop
corrected neutralino masses is a nontrivial check on the
theoretical consistency of our setup and its good imple-
mentation in our automated calculator SloopS, since a
large number of counterterms is involved. Depending on
the schemes we will select, only one or two neutralino
masses will receive corrections at one-loop. For all five
points, we compare the results of the schemes OS1234,
OS2345, t123, t234 and DR for the masses. Predictions on the
masses based on the schemes that rely on the Higgs sector
will be briefly commented upon when we discuss the
decays, this is motivated by the fact that these Higgs
schemes bring in improvements on the mixings (essentially
λ and to a lesser degree tβ) which are not supposed to be
very important for the calculations of the masses.
We advocated that a good scheme should include at least

one binolike, one singlinolike and one Higgsino-like from
the neutralino sector (the winolike being well reconstructed
from the chargino masses). The numerical results given in
Table III generally follow our expectations.
In the OS1234 scheme, the only mass to be predicted is

that of the heaviest neutralino, m~χ0
5
. For point 1, the latter is

dominantly bino. Since M1 can not be reliably extracted
from the four input masses m~χ0

1;2;3;4
, the corrected mass m~χ0

5

is not trustworthy giving a correction of about 30%. This
is in contrast with points 2 and 3 where the heaviest
neutralino is dominantly wino. In this case, the chargino
masses constrain M2 very well. In both cases the heaviest
neutralino receives a mass correction at the per-mil level.
A similar statement can be made for points 4 and 5 for
which the heaviest neutralino is a Higgsino whose main
parameter, μ, is quite well constrained by the input from
the charginos. Note that the correction here, though very
modest, is slightly larger than in the case of the wino due to
the fact that a full reconstruction still requires a knowledge
of the underlying tβ and even λ for point 5.
In the OS2345 scheme, the only mass to be predicted is

that of the lightest neutralino, m~χ0
1
. As before, the masses

which get the smallest correction correspond to the
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winolike LSP, points 1 and 5. This is in sharp contrast to the
singlino in point 2 and the bino in point 4 whose masses
receive very large corrections. The LSP in point 3, although
Higgsino-like, gets a non-negligible correction. This
means, a point we hinted at previously, that the chargino
system does not fully define the Higgsino-like neutralino
due to the reconstruction of tβ. We expect the scheme t123 to
fare better than OS1234. Indeed, as compared to OS1234 the
masses of the heaviest neutralino are changed very little for
points 2, 3, and 5 and are predicted with a smaller
correction for point 4. The t123 scheme, however, does
not improve the situation for point 1 where the mass of the
heaviest bino is, as always, badly reconstructed. The same
problem afflicts the prediction of the mass of the binolike
χ04 for point 3 and of the singlino for point 1. Otherwise, the
corrections for ~χ04 are negligible since these neutralinos are
either winos or Higgsinos. Similar arguments explain the
results for the one-loop corrected neutralino masses in the
scheme t345. This schemeworks well for point 1 as the three
heaviest neutralinos correspond to the bino, singlino and
dominantly Higgsino. For point 2, the singlino component
is not accessed which explains why the mass of the
dominantly singlino ~χ01 cannot be predicted reliably. The
correction to the mass of ~χ02, a dominantly bino neutralino

with a large Higgsino admixture, is also large, around 30%.
For point 3, the two lightest neutralinos are Higgsino-like
and receive very large corrections, this illustrates the futility
in using the mass of the neutral wino as input at the expense
of one of the other neutralino masses. For point 4, the wino
dominated neutralino receives small corrections while, as
expected, the mass of the dominantly bino ~χ01 is unreliable.
Similarly for point 5 where the singlino dominated ~χ02 is
unreliably predicted. Note that a scheme which does not
allow a good reconstruction of some of the parameters, for
example the singlino mass term κs, can be nevertheless
appropriate for observables where the singlino component
does not play a role.
It is also interesting to look at the predictions given

by a DR scheme, the renormalization scale μ̄ is taken at the
(tree-level) mass of the particle. Here corrections to all
masses are calculated. For all masses and for all points, the
corrections are small and never exceed 10%, compare
Table I and Table III. However, note that when the under-
lying parameters for the OS scheme are reconstructed
efficiently, the OS scheme for that particular mass gives
smaller corrections than the DR scheme.
To summarize, in order to compute radiative corrections

to the masses reliably, one then has to be careful about the
choice of the renormalization scheme. A good scheme
should be chosen according to the characteristics of the
point considered, such that the input parameters should
reconstruct the main ingredients that define the nature of
the particle whose mass is to be corrected at one-loop. The
DR scheme is versatile and reliable but a good OS scheme
fares better, in the sense of leading to smaller corrections, as
far as masses are concerned.

B. Two-body neutralino/chargino decays
to a gauge boson

We now study the one-loop corrections to decays of the
type χi → χ0jV, V ¼ W�, Z. If the charginos and neutra-
linos did not mix these transitions would not be possible at
all. This of course applies to a (pure) singlino state. It also
applies to transitions between two neutralinos through a Z
for the case of a wino and bino. This transition is only
possible among Higgsinos but there is generally little mass
difference between these Higgsinos for these decays to
occur on-shell. Other transitions are possible among winos
and separately among Higgsinos, but again phase-space is
restrictive. These observations together with those we made
about mixing in Sec. VI A explain the main features of the
decays. We will study some of the schemes we used for the
calculations of the masses. For each of the five points, we
will add another scheme of the category P8 that requires
inputs from the Higgs sector. We restrict ourselves to
processes that have a branching ratio at tree level of at least
1% since they are the only ones of any physical relevance.
In the DR scheme, we take the scale μ̄ at the mass of the
decaying particle.

TABLE III. One-loop corrected masses of neutralinos for
different schemes and benchmark points. In bold, points for
which the masses cannot be computed reliably. All masses are
given in GeV. The one-loop corrections for all five neutralino
masses in the DR scheme are also given.

Scheme Masses Point 1 Point 2 Point 3 Point 4 Point 5

OS1234
mtree

~χ5
1002.17 614.78 1006.64 612.62 574.10

m1−loop
~χ5

729.01 614.81 1006.56 608.83 573.22

OS2345
mtree

~χ1
125.67 123.42 112.77 138.09 139.37

m1−loop
~χ1

125.56 −89.66 147.38 205.31 139.36

t123

mtree
~χ4

500.78 271.67 702.82 603.84 557.31

m1−loop
~χ4

−515.19 275.13 3802.01 601.19 556.98

mtree
~χ5

1002.17 614.78 1006.64 612.62 574.10

m1−loop
~χ5

1426.14 614.84 1006.99 613.34 577.17

t345

mtree
~χ1

125.67 123.42 112.77 138.09 139.37

m1−loop
~χ1

125.61−1808.4 −2151.8 −479.9 138.54

mtree
~χ2

257.30 200.86 123.80 193.12 276.19

m1−loop
~χ2

257.83 146.03 1236.66 189.51 74.11

DR

m1−loop
~χ1

136.00 124.10 120.38 140.90 147.84

m1−loop
~χ2

265.61 204.60 129.52 204.23 278.56

m1−loop
~χ3

286.68 259.56 241.533 280.01 395.25

m1−loop
~χ4

500.72 278.72 703.09 601.75 557.64

m1−loop
~χ5

995.41 625.50 1009.26 613.84 577.47
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1. Point 1

This benchmark point (see Table II) can be characterized
as ð ~W0

3; ~H
0; ~H0; ~S0; ~B0Þ and ð ~Wþ; ~HþÞ according to our

discussion in Sec. VI A. The LSP neutralino is very much
winolike. Choosing the LSP mass as an input is redundant
since, as we saw, the extraction of M2, which sets the
characteristics of the wino, from the chargino mass is
sufficient. Therefore, we take here the t345 and OS2345
schemes to get access to a maximum of information on
the neutralino sector. We did expose at some length the
shortcomings of these schemes when it comes to a good
reconstruction of the singlino and Higgsino characteristics
and for the need to revert to mass measurements from the
Higgs sector. The latter should constrain λ much better and
contribute to improve the determination of tβ. We, therefore,
study the predictions of the scheme OS245h2A1A2

. Note that
we advocate the use of the mass of the binolike and the
singlinolike neutralino in conjunction with the Higgs
masses. We first observe that in the scheme OS245h2A1A2

the one-loop corrected neutralino masses are m~χ0
1
¼

125.66 GeV and m~χ0
3
¼ 278.97 GeV. These are per-mil

level corrections. Therefore, a priori, this scheme seems
to be indeed a very good scheme. This statement is
confirmed if one looks at the one-loop corrections to all
the decays listed in Table IV. For all decays not involving the
singlino-dominated neutralino χ04, the corrections in the
schemeOS245h2A1A2

are below 5%. Even for singlino decays,

the corrections are not larger than 10%, the largest correc-
tion is reached for the smallest branching fraction.
The corrections in this scheme are smaller than in the DR
scheme for all the considered channels but χ04 → χ03Z which
is the smallest branching ratio for the singlino dominated χ04.
Both the t345 and OS2345 schemes give small corrections

(typically less than 10%) for all channels apart those
involving the decay of the singlino. For the case of the
singlino decays, the corrections in the mixed DR-OS
scheme t345 are under control (below 20%) but they should
not be trusted in the scheme OS2345. To summarize, a
reconstruction of λ is essential to compute the decays of the
singlino. As expected neutralino/chargino mass measure-
ments do not allow a good reconstruction in the OS2345
scheme while it is perfectly fine when it comes to the
decays of the other particles. We would have expected the
scheme t123 to do as badly as the OS2345 scheme for
singlino-dominated decays since a direct access to λ is not
possible here also. However, in the t123 scheme, tβ is solved
independently thus permitting a better access to λ, even if
not as good as in OS245h2A1A2

.
We argued earlier that the mixings in this sector are not

very sensitive to tβ. To quantify this statement we looked
precisely at the determination of the finite part of each of the
counterterms for ðμ; tβ; λÞ for the three schemes. We have,
respectively for the schemes t123;OS2345;OS245h2A1A2

,

TABLE IV. Point 1: Partial widths (in MeV) for decays of neutralinos and charginos into one gauge boson at tree-
level (tree) and at one-loop (treeþ one-loop) with four different renormalization schemes. The relative correction to
the partial decay widths is also indicated in parentheses. The schemes for the one-loop results (treeþ one-loop),
here t234, OS2345, OS245h2A1A2

and DR, are defined in the text.

Tree t345 OS2345 OS245h2A1A2
DR

~χþ2 → Wþ ~χ01 406 412 (1%) 419 (3%) 420 (3%) 417 (3%)

~χþ2 → Z ~χþ1 341 349 (2%) 357 (5%) 355 (4%) 354 (4%)

~χ02 → W− ~χþ1 271 274 (1%) 280 (3%) 280 (3%) 276 (2%)

~χ02 → Z ~χ01 183 184 (0.8%) 192 (5%) 190 (4%) 190 (4%)

~χ03 → W− ~χþ1 452 456 (0.9%) 467 (3%) 461 (2%) 458 (1%)

~χ03 → Z ~χ01 33.5 37.2 (11%) 33.8 (1%) 35.1 (5%) 30.2 (−10%)

~χ04 → W− ~χþ1 10.4 10.6 (2%) 18.2 (75%) 9.56 (−8%) 9.54 (−8%)

~χ04 → W− ~χþ2 22.9 26.3 (15%) 42.1 (84%) 23.2 (1%) 24.6 (7%)

~χ04 → Z ~χ01 6.26 6.44 (3%) 11.0 (76%) 5.83 (−7%) 5.70 (−9%)

~χ04 → Z ~χ02 26.2 29.9 (14%) 47.7 (82%) 26.1 (−0.7%) 28.1 (7%)

~χ04 → Z ~χ03 3.12 3.64 (17%) 6.02 (93%) 3.44 (10%) 3.16 (1%)

~χ05 → W− ~χþ1 26.8 22.4 (−14%) 26.8(0.1%) 26.1 (−2.5%) 27.3 (2%)

~χ05 → W− ~χþ2 611 618 (1%) 625 (2%) 624 (2%) 630 (3%)

~χ05 → Z ~χ02 515 517 (0.4%) 533 (4%) 531 (3%) 531 (3%)

~χ05 → Z ~χ03 118 122 (3%) 116 (−2%) 117 (−1%) 121 (3%)
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ðδμ=μ; δtβ=tβ; δλ=λÞfinite ¼ ð−2.3%; 0;þ6%Þ
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{t123

; ð−2.6%;−20%;þ43%Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{OS2345

; ð−2.6%;−17%;þ0.9%Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{OS245h2A1A2

which shows first of all that μ is well reconstructed,
independently of the scheme. This is easy to understand
since all schemes rely on the chargino masses and confirm
that the tβ dependence in the masses is very weak. Note that
both OS2345 and OS245h2A1A2

do not determine tβ well. This
was to be expected from the discussion in Sec. VI, i.e.,
masses of the neutralinos and Higgses are not much
dependent on tβ. Using extra measurements with the Higgs
masses improves the extraction of tβ only marginally. Yet,
for these decays, the tβ dependence is generally very weak,
and so is the tβ scheme dependence. What makes a huge
difference is the extraction of λ. We see that the OS2345 is
ineffective, the contribution of the counterterm alone would
contribute about 2 × 43% ∼ 86% in decays directly propor-
tional to λ like those in transitions involving χ04. Indeed,
for χ04 decays the difference between the OS2345 and
OS245h2A1A2

can be, to a large extent, accounted for by
the difference in the value of δtβ for all channels listed in the
decays of χ04.
Two final remarks concerning this point. Leaving aside

the decays of the problematic singlino, we see that the
differences between the schemes is quite small, in fact the
largest discrepancies occur when the branching fraction is
smallest among all the decays of a given neutralino. Again,
the small branching fraction is an indication of the small-
ness of the coupling which is most sensitive to mixing
and hence would be most dependent on the scheme. The
corrections though generally small can not be accounted
simply by taking an effective running of the gauge coupling
(which would give a correction of about 7%), there are,
therefore, genuine electroweak corrections. These obser-
vations should be kept in mind for the other points we
will study.

2. Point 2

This benchmark point features a singlino LSP where the
neutralinos can be characterized as ð ~S0; ~B0; ~H0; ~H0; ~W0

3Þ
and the charginos ð~χþ1 ; ~χþ2 Þ ¼ ð ~Hþ; ~WþÞ. ~χ02 and ~χ04 are
almost equal mixture of bino and Higgsino. Note that phase
space does not allow the decay ~χ02 → Z ~χ01. Due to the
singlino nature of the LSP, decays to the LSP ~χ01 have a very
small partial width. The only exception is ~χ05 → Z ~χ04;
however, this is due to the very small Higgsino component
in ~χ04 compared for example to ~χ03 which is almost pure
Higgsino (recall that the coupling of the Z to neutralinos
requires both neutralinos to be Higgsino-like). The need to
access the singlino and bino component leads us to take the
masses of their corresponding neutralinos as input. We,
therefore, consider the schemes t123 and OS1234. As argued
previously this does not guarantee a good reconstruction of
the mixing λ which is crucial in calculating the decays
where the singlino dominated state, ~χ01, is involved.
For the OS scheme that uses the Higgs mass measure-

ments, we advocate OS12h2A1A2Hþ where only the singlino-
like and binolike are used from the neutralino sector (we
still of course use the masses of the charginos) as well as
four Higgs masses, the next-to-lightest CP-even neutral
Higgs, the twoCP-odd neutrals and the charged Higgs. The
aim here is a better determination of λ. We recall first that
this scheme does a very good job in predicting the masses
of the three heaviest neutralinos with corrections below 1%
for all three masses (we find for the corrected masses,
mχ0

2;3;4
¼ 253.12, 273.63, 614.82 GeV). Table V shows

clearly that the OS12h2A1A2Hþ and DR schemes are the ones
that give the smallest corrections to the decays especially

TABLE V. Point 2: same as Table IV.

Tree t123 OS1234 OS12h2A1A2Hþ DR

~χþ2 → Wþ ~χ01 79.0 155 (96%) 182 (130%) 84.4 (7%) 58.5 (−26%)

~χþ2 → Wþ ~χ02 368 216 (−41%) 134 (−64%) 293 (−20%) 266 (−28%)

~χþ2 → Wþ ~χ03 1370 1200 (−12%) 1140 (−17%) 1180 (−14%) 1170 (−15%)

~χþ2 → Z ~χþ1 1400 1270(−9%) 1210 (−14%) 1240 (−12%) 1221 (−13%)

~χ03 → Z ~χ01 34.5 70.9 (106%) 86.8 (152%) 42.7 (24%) 29.6 (−14%)

~χ04 → Z ~χ01 11.3 23.9 (110%) 26.8 (137%) 13.3 (18%) 11.9 (5%)

~χ05 → W− ~χþ1 1430 1270 (−12%) 1210 (−16%) 1240 (−14%) 1220 (−15%)

~χ05 → Z ~χ03 1250 1120 (−11%) 1040 (−17%) 1090 (−13%) 1080 (−14%)

~χ05 → Z ~χ04 58.8 55.1 (−6%) 65.1 (11%) 60.4 (3%) 57.3 (−2.5%)
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when the singlino is involved. In many channels, the
predictions of the full DR are within a few per-cent of what
is obtained with the OS12h2A1A2Hþ scheme, for these decays
the impact of singlinomixing ismarginal. It is, therefore, not
surprising that for these same channels the prediction of the
other two schemes agreewithin 5%. The channels where the
difference between the DR and OS12h2A1A2Hþ scheme is
above 5% are those where the t123 and the OS1234 become

totally unreliable with corrections of order 100% or worse.
Not surprisingly the worst cases involve decays into a
singlino, channels where the partial widths are very small.
These channels require an excellent knowledge of the full
mixing structure of the singlino. To confirm these findings
we have extracted, as for point 1, the finite part of each
of the counterterms for ðμ; tβ; λÞ for the three schemes
ðt123;OS1234;OS12h2A1A2HþÞ, we find

ðδμ=μ; δtβ=tβ; δλ=λÞfinite ¼ ð−2.6%; 0; 57%Þ
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{t123

; ð−3.0%; 23%;þ73%Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{OS1234

; ð−2.8%; 12%;þ10%Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{OS12h2A1A2Hþ

:

These values confirm the observation that we made for
point 1, t123 andOS2345 schemes entail large corrections for
δλ=λ. We note that for decays into singlinos the difference
between the relative corrections given by the schemes can
be approximated by ΔðδΓ=ΓÞ ∼ Δðδλ=λÞ. It should also be
observed that although tβ is not an issue for these decays,
the finite part of tβ in the OS12h2A1A2Hþ is not so small, it
amounts to about 12%. We have also computed one-loop
corrections in a scheme where we rather chose the lightest
CP-even Higgs OS245h1A1A2

and we found similar correc-
tions for the MSSM-like transitions but large corrections
for singlino processes. Once again using the singlet Higgs
h2 allows for a better reconstruction of δλ.

3. Point 3

Once the identification of the neutralinos has been made
we realize that this point is somehow a reshuffling of point
2. The rôle played by ~χ01 is replaced by ~χ03 and the neutral
Higgsino-like have become ~χ01, ~χ

0
2. Therefore, we expect

similar conclusions to emerge, especially as regards sin-
glinolike decays, even though all the states are almost pure
here. Following our characterization, the point is identified
as ð ~H0; ~H0; ~S0; ~B0; ~W0

3Þ and ð ~Hþ; ~WþÞ. The hierarchy in
the charginos has not changed as compared to point 2. We,

therefore, advocate the use of the scheme OS34h2A1A2Hþ . A
careful look at the predictions of the different decays,
taking into account the identity of the particles involved in
the decay, shows similar corrections as those for point 2,
see Table VI. Whenever large discrepancies occur they can
be explained along the same arguments as those we have
just put forward for point 2. In particular the schemes t134
and OS1234 give unreliable predictions when the decay
involves the singlinolike ~χ03. Results in the DR scheme are
very similar to the OS34h2A1A2Hþ scheme, the difference
between the two never exceeds more than 7%.
We should point at another issue not directly related to

the singlino. For the decays ~χ04, ~χ
0
5 → ~χ02Z, the predictions

in the scheme OS1234 differ by þ27% with those in the
scheme t134, while the difference betweenOS34h2A1A2Hþ and
t134 is just þ1%. Similarly for ~χ04, ~χ

0
5 → ~χ01Z the difference

is −42% (between the OS1234 and t134 schemes) and about
−2% (between OS34h2A1A2Hþ and t134). This has to do with
the tβ dependence. Although these decays are mildly
sensitive to tβ, it remains that tβ is so badly reconstructed
in the scheme OS1234 that it leads to noticeable differences
with the prediction for the other schemes. To wit, if we
again look into the finite part of the counterterms, we find

ðδμ=μ; δtβ=tβ; δλ=λÞfinite ¼ ð−3.3%; 0; 42%Þ
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{t134

; ð−1.5%;−169%; 80%Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{OS1234

; ð−3.2%;−5.39%;þ4%Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{OS34h2A1A2Hþ

:

We see that the scheme OS1234 fares quite badly
(δtβ=tβjfinite ∼ −170%). These values also confirm the
observation that we made for point 1, t134 and OS1234
schemes entail large corrections for δλ=λ. Note also that
here OS34h2A1A2Hþ proves to be a quite good scheme, in
particular for both tβ and λ. The fact that the extraction of tβ
proves very uncertain for this point in theOS1234 scheme is
easy to understand. Remember that all charginos and
neutralinos are to a very good approximation almost in a

pure state; therefore, from their masses the small tβ
dependence hidden in the mixing is reconstructed badly
(inversely proportional to the very small mixing).

4. Point 4

The most important feature of this scenario is that the
singlino is for all purposes totally decoupled, here λ is
extremely small. In particular, the near-pure singlino nature
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of ~χ03 explains why its partial decay width into gauge
bosons is strongly suppressed, the largest two-body decay
involving a gauge boson is into W ~χþ1 with a partial width
Γ ¼ 2.09 × 10−5 GeV. The preferred decays of ~χ03 involve
Higgses which we do not study here. We should, therefore,
not be surprised that in Table VII ~χ03 is not present. This
benchmark point is characterized as ð ~B0; ~W0

3; ~S
0; ~H0; ~H0Þ;

ð ~Wþ; ~HþÞ where the LSP is binolike. Therefore, the mass
of the LSP features in all the OS schemes. For the scheme
that relies on inputs from the Higgs sector, we propose
OS134A1A2Hþ . Since we are looking at decays in what is
essentially the MSSMwhereM1;2, μ are well reconstructed,

any discrepancy between the schemes has to do with tβ. We
first observe that the fully DR scheme and the t123 scheme
give predictions which for all decays shown in Table VII
are within 5%, the only exception is ~χ04 → Z ~χ02 where the
difference is 8%. The OS134A1A2Hþ scheme also agrees with
the fully DR scheme within 10%. For a few decays, the
OS1234 scheme gives corrections of order 70% and −40%
that are quite different from the results in the other schemes.
These observations lead to suspect that once again the
determination of tβ is in question especially in the OS1234
scheme. Indeed if we look at the finite part of the
counterterms we find

ðδμ=μ; δtβ=tβ; δλ=λÞfinite ¼ ð0.03%; 0;−1430%Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{t123

; ð0.3%;þ150%;−4500%Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{OS1234

; ð0.08%; 27.4%; 2841%Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{OS134A1A2Hþ

showing the very poor reconstruction of tβ inOS1234 and to
a lesser extent in OS134A1A2Hþ .
Observe that a good reconstruction of tβ has also an

impact on the reconstruction of μ, although all three
schemes perform well for μ, t123 does ten times better
than OS1234. Since many decays into gauge bosons are
triggered from Higgsino to Higgsino transitions a very
precise determination of μ is important. Note in passing
that δλ is totally unreliable as expected since the
resolution of the system leads to a division by λ, i.e.,
a division by a very small number. This has no direct
impact on the corrections computed since we did not
consider decays involving singlinos for this point. To
summarize, for this point all schemes, apart from OS1234,

do a good job giving moderate corrections. The largest
correction of order 20% occurs for ~χþ2 → Wþ ~χ01. This is a
genuine correctionwhich is fairly independent of the scheme.

5. Point 5

While point 4 had the smallest λ and featured the most
decoupled singlino of our benchmarks, point 5 has the
largest λ while the μ parameter has slightly changed. λ is
rather small but it is large enough to allow for a few per-
cent mixing of the singlino with the Higgsino (see Table II)
and subsequently with the other neutralinos, leading for
example to a partial width of 10−2 GeV for the decay of the
singlinolike neutralino, ~χ02 → W ~χþ1 . The LSP is winolike

TABLE VI. Point 3: same as Table IV.

Tree t134 OS1234 OS34h2A1A2Hþ DR

~χþ2 → Wþ ~χ01 1960 1670(−15%) 1830 (−7%) 1680 (−15%) 1670 (−15%)

~χþ2 → Wþ ~χ02 2110 1730 (−18%) 1870 (−11%) 1740 (−17%) 1730 (−18%)

~χþ2 → Z ~χþ1 2050 1710 (−16%) 1860 (−9%) 1720 (−16%) 1730 (−16%)

~χ03 → W− ~χþ1 11.2 20.5 (84%) 27.0 (141%) 12.0 (7%) 12.0 (7%)

~χ03 → Z ~χ01 4.32 7.68 (78%) 11.7 (171%) 4.51 (4%) 4.20 (−3%)

~χ03 → Z ~χ02 3.78 7.00 (85%) 8.34 (120%) 4.08 (9%) 4.28 (13%)

~χ04 → W− ~χþ1 445 479 (8%) 525 (18%) 480 (8%) 460 (3%)

~χ04 → Z ~χ01 99.4 113 (13%) 70.3 (−29%) 110 (11%) 105 (6%)

~χ04 → Z ~χ02 306 328 (7%) 410 (34%) 332 (8%) 323 (6%)

~χ05 → W− ~χþ1 2060 1720 (−16%) 1860 (−10%) 1720 (−16%) 1710 (−17%)

~χ05 → Z ~χ01 578 500 (−14%) 256 (−56%) 487(−16%) 502 (−13%)

~χ05 → Z ~χ02 1480 1220 (−17%) 1620 (9%) 1240 (−16%) 1270 (−13%)

BÉLANGER, BIZOUARD, BOUDJEMA, and CHALONS PHYSICAL REVIEW D 93, 115031 (2016)

115031-20



and the point is characterized as ð ~W0
3; ~S

0; ~B0; ~H0; ~H0Þ and
ð ~Wþ; ~HþÞ. This hierarchy suggests to choose the masses of
~χ02 and ~χ03 as inputs for all OS schemes. With t123 and
OS2345 we also consider theOS234A1A2Hþ scheme where the
Higgs masses are used for a better extraction of δtβ and δλ.
In this scheme, the corrections to the masses ofm~χ0

1
andm~χ0

4

are totally negligible, not exceeding 0.5 per mil. Moreover
the corrections to all the decays we have considered are
quite moderate, below 10%, see Table VIII. Results in the
DR are very similar, the difference between the two never
exceeds more than 5%. The differences between the
OS234A1A2Hþ and t123 are also quite small, within a margin

of 7% even for the decay of the singlino. One can already
guess that the presence of a non-negligible λ can help not
only in better reconstructing this parameter from the Higgs
masses but also in better reconstructing tβ. This is in
contrast with the results obtained with the OS2345 scheme.
The latter is totally unreliable essentially due to a failed
reconstruction of both λ, see the large corrections involving
the singlino ~χ02, but also due to a quite bad reconstruction of
tβ (see the decays of the other neutralinos in particular the
decays of the binolike ~χ03). These observations are borne out
by the values of the finite part of the key counterterms in the
schemes t123; OS2345 and OS234A1A2Hþ with

ðδμ=μ; δtβ=tβ; δλ=λÞfinite ¼ ð−0.1%; 0;−1.2%Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{t123

; ð0.2%;þ115%;−30%Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{OS2345

; ð−0.1%; 1.9%; 1.6%Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{OS234A1A2Hþ

:

The numerical results presented here concerning the
decays of the neutralinos and charginos to gauge bosons
confirm the general expectation and arguments we have
given outlined in Secs. II–IV. Indeed, the choice of
neutralino masses to be used as input is crucial to allow
a precise reconstruction of the parameters of the neutralino
sector. Moreover a good reconstruction of tβ and λ is
important in order to make accurate predictions for partial
decay widths. In this regard, renormalization schemes using
some Higgs masses as input fare better than those using
only masses from the neutralino sector. This is especially
relevant for all decays involving singlinos where the
parameter λ plays an important role and, therefore, must
be reconstructed precisely.

VIII. ONE-LOOP CORRECTIONS TO TWO-BODY
SFERMION DECAYS TO FERMIONS

We now compute the one-loop corrections to the decays
of third generation sfermions into a fermion and a neu-
tralino/chargino. These processes are often the preferred
decay modes of sfermions and are the main channels used
for third generation squark searches at the LHC [61–63].
Other decay channels involving Higgses will be considered
in a separate publication [52]. For squarks, we compute
both QCD and EW corrections. As before we include only
the decays for which the tree-level branching ratio is above
a few percent as they are the only physically relevant ones.
For the definition of the parameters of the sfermions, we
will consider the scheme presented in Sec. V. Namely, for
the squarks the input parameters for the third generation
will be m ~b1

,m ~b2
,m~t1 θb and θt for the squarks and m~τ1 , m~τ2

and m~ντ for the staus. For the QCD corrections, we take
αsð1 TeVÞ ¼ 0.0894, this scale of αs corresponds to the
mass of ~b1 in all of our benchmarks. As in the previous
section we will test different schemes for the neutralino

sector. The difference between the latter schemes will
impact the predictions for the electroweak corrections.
QCD corrections do not impact these schemes but only
the squark sector. Since all the OS schemes adopt the same
definition for the input parameters for the squark sector
there will be no difference between the OS schemes,
including the t123-type schemes. There may be differences
in the QCD corrections between the OS schemes and the
full DR scheme. As we will see, the QCD scheme
dependence is very small and generally hardly noticeable.
The couplings of the type ~ff0 ~χ (for both charged and

neutral ~χ) responsible for these decays originate from two
sources. First, gauge type coulings (∝ g, g0) occur with
wino and binolike ~χ. A right-handed ~fR will only couple to
the bino component. Second, Yukawa type couplings

yd;u ¼
�
g

ffiffiffi
2

p

MW

��
md

cβ
;
mu

sβ

�
∼
g

ffiffiffi
2

p

MW
ðmdtβ; muÞ for tβ > 3

are important only for third family sfermions in particular
the stops and sbottoms. For sbottoms, this coupling is
enhanced by tβ. Therefore, if the phase space allows, the
main decay of the ~τ1 is into gauginos in particular into
the binolike neutralino for ~τ1 ∼ ~τR. For all our benchmarks,
the ~b1 is right-handed, ~b1 will, therefore, also decay
preferably into a bino if the latter is lighter, otherwise
decays into the Higgsino are preferred. For such decays, it is
crucial to specify the exact value of the sbottom mass. Our
tree-level calculation is done with a pole mass for the
bottom, mb ¼ 4.7 GeV. If the decay is indeed dominated
by the Yukawa coupling, we should note that the use of a
running ~qmass at the scale of the decaying particle, i.e., the
sbottommass of around 1TeV,would bemore appropriate in
order to take into account the bulk of the QCD corrections.
Using the running bottom mass brings in a relative correc-
tion of order 2δmb=mb ∼ −72%. Indeed, at one-loop, we
havemDR

b ðμ̄ ¼ 1 TeVÞ ∼mpole
b ð1þ asðlnðm2

b=μ̄
2Þ − 5=3ÞÞ,
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as ¼ αsðμ̄Þ=π. From these observations we should expect a
strong tβ (and scheme) dependence whenever the QCD
corrections are large for sbottom decays and could be
accounted for by the running of mb. For the stop, the
Higgsino coupling is large due to the largemt and, therefore,
decays into a Higgsino will generally dominate. Likewise
the correction driven by the running of the top mass is
2δmt=mt ∼ −30% at a scale of 1 TeV (and about -37% for a
scale at 2 TeV). In all cases, decays into singlinos are
strongly disfavored unless the singlino is the only kinemat-
ically accessible mode.

A. Point 1

For this point, all sfermions are at the TeV scale, in fact
the stops are even heavier with a mass around 2 TeV. ~τ1 and

~t1 are heavily mixed (between LH and RH) while the ~b1 is
dominantly RH. tβ is rather large. Recall that this point is

characterized as ð ~W0
3; ~H

0; ~H0; ~S0; ~B0Þ and ð ~Wþ; ~HþÞ with
rather large mixing between the winos and the Higgsinos;
see Table II.
The decays of the ~b1 are easy to understand. For this RH

state, the gauge decay would have been into the binolike
neutralino, but this channel is kinematically closed. Decays
are, therefore, totally triggered by the tβ enhanced Yukawa
coupling into Higgsino states which seep into ~χ01 through
~H − ~W mixing. Table IX shows large (negative) corrections
for sbottom decays with essentially the same corrections for
all channels. The bulk of the corrections comes from the
running of the bottom mass, remember the −72% QCD
correction, which our full calculations reproduces rather

TABLE VII. Point 4: same as Table IV for point 4.

Tree t123 OS1234 OS134A1A2Hþ DR

~χþ2 → Wþ ~χ01 307 364 (19%) 388 (26%) 371 (21%) 379 (23%)

~χþ2 → Wþ ~χ02 1420 1340 (−6%) 1040 (−27%) 1220 (−14%) 1360 (−4%)

~χþ2 → Z ~χþ1 1300 1210 (−7%) 950 (−27%) 1160 (−10%) 1260(−3%)

~χ04 → W− ~χþ1 1310 1210 (−7%) 960 (−27%) 1160 (−11%) 1260 (−3%)

~χ04 → Z ~χ01 383 425 (11%) 232 (−40%) 413 (8%) 417 (9%)

~χ04 → Z ~χ02 1020 916 (−10%) 605 (−41%) 927 (−9%) 1000 (−2%)

~χ05 → W− ~χþ1 1340 1240 (−8%) 1050 (−22%) 1150 (−14%) 1230 (−8%)

~χ05 → Z ~χ01 89.5 109 (21%) 152 (70%) 110 (23%) 103 (16%)

~χ05 → Z ~χ02 165 169 (2%) 293 (77%) 165(−0.6%) 158(−4%)

TABLE VIII. Point 5: same as Table IV.

Tree t123 OS2345 OS234A1A2Hþ DR

~χþ2 → Wþ ~χ01 1250 1160 (−7%) 909 (−27%) 1150 (−8%) 1190 (−5%)

~χþ2 → Wþ ~χ02 531 483 (−9%) 545 (3%) 518 (−2%) 501 (−6%)

~χþ2 → Wþ ~χ03 250 265 (6%) 172 (−31%) 261 (5%) 264 (6%)

~χþ2 → Z ~χþ1 1310 1220 (−7%) 945 (−28%) 1210 (−7%) 1240 (−5%)

~χ02 → W− ~χþ1 34.3 30.6 (−11%) 37.1 (8%) 33.0 (−4%) 34.1 (−1%)

~χ03 → W− ~χþ1 58.8 55.7 (−5%) −17.0 (−128%) 53.7 (−9%) 57.8 (−2%)

~χ03 → Z ~χ01 2.75 2.94 (7%) 5.41 (96%) 2.97 (8%) 2.83 (3%)

~χ04 → W− ~χþ1 1320 1220 (−8%) 953 (−28%) 1201 (−9%) 1210(−8%)

~χ04 → Z ~χ01 1280 1160 (−9%) 746 (−42%) 1150 (−10%) 1210 (−5%)

~χ04 → Z ~χ02 233 223 (−4%) 377 (62%) 240 (3%) 230(−3%)

~χ04 → Z ~χ03 157 168 (7%) 116 (−26%) 165 (5%) 166 (6%)

~χ05 → W− ~χþ1 1230 1120 (−9%) 940 (−23%) 1110 (−10%) 1150 (−7%)

~χ05 → Z ~χ01 108 106 (−3%) 254 (133%) 107 (−2%) 101 (−7%)

~χ05 → Z ~χ02 166 147(−11%) 13.0 (−92%) 155 (−7%) 151 (−9%)
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well. Once this correction is taken into account the
remaining QCD correction is less than 5% for all the
channels and no scheme dependence is to be noticed for
the QCD part of the corrections. As for the electroweak
corrections, these are very small in both the t345 and DR
scheme, they do not exceed 7%. The electroweak correc-
tions in the OS245h2A1A2

scheme are about −34% off
compared to any of the other two schemes. This difference
is due to the large finite term induced by the counterterm
δtβ=tβ, recall that compared to DR we had found a
difference of about −17%; see Sec. VII A. This is exactly
what is needed to account for the difference between the
predictions of the two schemes. ΔðδΓ=ΓÞ≃ 2Δðδtβ=tβÞ.
We are referring to Δ as the difference between two
schemes and δ as the loop correction. This calculation
shows that for such decays a very good reconstruction
(scheme) for tβ is crucial.
The decays of the ~t1 proceed dominantly through the

Yukawa coupling, again the bulk of the correction is from
QCD and can be accounted for by the running of the top
mass, as expected. Unlike the case with ~b1 the dependence
on tβ and, therefore, the scheme is hardly noticeable.
The electroweak corrections here are not larger than 3%.
For ~τ1, the largest decays process through the gauge SUð2Þ
component, since the mixing with the very heavy binos
are unreachable and the Yukawa couplings are too small
for a transition through the Higgsino. This also explain the
very weak scheme dependence.

1. Point 2

As compared to point 1, the bino is much lighter and at
the same time the Yukawa coupling is smaller due to a
smaller tβ (4.5 instead of 10). The decay of ~b1 ≃ ~bR is,

therefore, dominated by the bino when the neutralino has a
fair amount of bino. This is the case for ~b1 → b~χ02 that is
triggered by the (hypercharge) gauge coupling. Expectedly,
this decay which is not sensitive to the Yukawa of the
bottom shows no scheme dependence, for both the electro-
weak and the QCD corrections. The−16%QCD correction
is counterbalanced by a þ12% electroweak correction.
When the decay is into Higgsino dominated states
( ~b1 → t~χ−1 and ~b1 → b~χ03) we reach similar conclusions
as for point 1, namely the bulk of the correction is from
QCD and can be accounted for by a running of mb. For
decays into Higgsinos, the discrepancy between the DR
and t123 schemes on the one hand and the OS12h2A1A2Hþ

scheme on the other is due to the finite part of the δtβ
contribution; see Sec. VII B 2. The decay into ~χ04 involves
both the bino (gauge) and the Higgsino (Yukawa) cou-
plings, the bulk of the correction is due to the running b
mass, while the 10% discrepancy in the electroweak
corrections found for the OS12h2A1A2Hþ is due to the tβ
reconstruction.
Here the lightest stop is mainly ~tR and has a mass of

about 460 GeV. Normally, the dominant decays would be to
the Higgsino rich states and eventually to the bino rich ~χ02;
however, phase space penalizes the decays into ~t1 → b~χþ1 ,
t~χ03, t~χ

0
4. The corrections for these three decays are quite

moderate, in part because in the QCD corrections the
running top mass should be evaluated at lower scale and as
is the case for ~t1 → t~χ04 the bino (gauge decay contribution)
is competitive. In any case, contrary to the sbottom the tβ
dependence is weak as is reflected in Table X. Stop decays
into the LSP singlino, ~χ01, is fraught with uncertainties.
First, these decays are possible because of the small
Higgsino component which through mixing allows decays

TABLE IX. Point 1: Partial decay widths (in GeV) of third generation sfermions into a fermion and a neutralino/
chargino at tree-level (tree) and at one-loop in three schemes (see text for their definition) including for the squarks
both the electroweak and QCD effects. The total (electroweak and QCD) relative correction is indicated between
round parentheses (). The relative QCD correction is given in squared parentheses ½�. The relative QCD correction is
the same in both the t345 and OS245h2A1A2

scheme, see text. It is, therefore, not listed.

Tree t345 OS245h2A1A2
DR

~b1 → b~χ01 0.210 0.058 (−72%) −0.013 (−106%) [−68%] 0.065 (−69%) [−68%]
~b1 → b~χ02 0.551 0.164 (−70%) −0.034(−106%) [−75%] 0.165 (−70%) [−75%]
~b1 → b~χ03 0.408 0.133 (−67%) −0.018 (−104%) [−75%] 0.126 (−69%)[−75%]
~b1 → t~χ−1 0.357 0.077 (−78%) −0.044 (−112%) [−74%] 0.088 (−75%)[−74%]
~b1 → t~χ−2 0.732 0.231 (−68%) −0.040 (−105%) [−75%] 0.222 (−70%) [−75%]

~t1 → t~χ02 15.3 10.5 (−31%) 10.6 (−31%) [−34%] 10.5 (−31%)[−34%]

~t1 → t~χ03 20.1 14.5 (−28%) 14.7 (−27%) [−28%] 14.3 (−29%)[−28%]

~t1 → b~χþ2 23.4 16.8 (−28%) 16.7(−29%) [−29%] 17.1 (−27%)[−29%]

~τ1 → τ ~χ01 1.73 1.65 (−4%) 1.60 (−7%) 1.62 (−6%)

~τ1 → ντ ~χ
þ
1 3.13 3.01 (−4%) 2.93 (−6%) 2.98 (−5%)
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to an almost singlino state. The bulk of the corrections in
the fully DR scheme is in line with a running of mt which
provides about −20% corrections. The discrepancies in the
other two schemes are rendered by a large correction in the
finite part of δλ, see the values in Sec. VII B 2.
Due to phase space the light ~τ1 which is mostly ~τR can

only decay to the LSP singlino. Not surprisingly the rate is
ridiculously small. Since the only nonsinglino component
of ~χ01 is the Higgsino, the decay is sensitive to λtβ. The
difference between large corrections in the schemes t123
and OS12h2A1A2Hþ on the one hand and the fully DR on the
other hand can be explained by the finite part of the δλ and
δtβ which can be found in our discussion in Sec. VII B 2.

2. Point 3

For this point, all third generation sfermions are around
the TeV scale. ~τ1 is almost ~τR and a similar statement can be

made for ~t1 ∼ ~tR. Apart from the heaviest neutralino and
chargino which are winolike, the other neutralinos and the
chargino are kinematically accessible to all 3 sfermions
studied. ~χ03 being dominantly singlino does not show up in
our list of decays, it couples to sfermions far too feebly.
Decays to ~χ01, ~χ02, ~χþ1 which are all Higgsino-like are
dominant for ~t1 and ~b1 and small for ~τ1, since these
couplings are proportional to the Yukawa coupling. As
for other points, large (negative) radiative corrections are
found for these decays for both stops and especially
sbottoms for all the schemes, see Table XI, these correc-
tions can be incorporated in the running of mt and mb. For
both ~τ1 and ~b1, we notice again a non-negligible scheme
dependence due to the implementation of δtβ. The differ-
ence between the t123 and the OS34h2A1A2Hþ is very well
accounted for by the finite value of δtβ=tβ of the scheme.
While for the squarks the difference between the full DR

TABLE X. Point 2: Same as in Table IX but for point 2.

Tree t123 OS12h2A1A2Hþ DR

~b1 → b~χ02 0.332 0.318 (−4%) 0.318 (−4%)[−16%] 0.320 (−4%)[−16%]
~b1 → b~χ03 0.120 0.037 (−69%) 0.059 (−51%)[−72%] 0.038 (−69%)[-−72%]
~b1 → b~χ04 0.258 0.208 (−19%) 0.234 (−9%)[−20%] 0.213 (−18%)[−20%]
~b1 → t~χ−1 0.228 0.066 (−71%) 0.107 (−53%)[−72%] 0.066 (−71%)[−72%]

~t1 → t~χ01 0.178 0.346 (94%) 0.185 (4%)[−20%] 0.133 (−25%)[−20%]

~t1 → t~χ02 0.414 0.241 (−42%) 0.334 (−19%) [−19%] 0.328 (−21%)[−19%]

~t1 → t~χ03 0.639 0.572 (−11%) 0.574 (−10%)[−17% 0.567 (−11%)[−16%]

~t1 → t~χ04 0.648 0.631 (−2%) 0.624 (−4%)[−11%] 0.648 (0%)[−12%]

~t1 → b~χþ1 4.19 3.76 (−10%) 3.73 (−11%) [−22%] 3.75 (−10%)[−21%]

104 × ð~τ1 → τ ~χ01Þ 6.16 15.9 (141%) 9.27 (40%) 6.99 (6%)

TABLE XI. Point 3: Same as in Table IX but for point 3.

Tree t134 OS34h2A1A2Hþ DR

~b1 → b~χ01 0.660 0.180 (−73%) 0.112 (−83%)[−75%] 0.190 (−71%)[−75%]
~b1 → b~χ02 0.624 0.192 (−69%) 0.118 (−81%) [−75%] 0.192 (−69%) [−75%]
~b1 → b~χ04 0.135 0.146 (8%) 0.146 (8%) [−1.5%] 0.146 (8%) [−1.5%]
~b1 → t~χ−1 1.21 0.350 (−71%) 0.207 (−83%) [−74%] 0.350 (−71%)[−74%]

~t1 → t~χ01 7.59 5.89 (−22%) 5.89 (−22%) [−27%] 5.88 (−23%)[−27%]

~t1 → t~χ02 7.89 5.91 (−25%) 5.95 (−25%) [−26%] 5.93 (−25%)[−26%]

~t1 → t~χ04 0.276 0.280 (2%) 0.281 (2%) [−0.3%] 0.281 (2%)[−0.01%]

~t1 → b~χþ1 15.8 12.5 (−21%) 12.5 (−21%) [−28%] 12.5 (−21%)[−28%]

~τ1 → τ ~χ01 0.116 0.150 (29%) 0.143 (23%) 0.120(3%)

~τ1 → τ ~χ02 0.0950 0.0820 (−14%) 0.0695 (−27%) 0.1024 (8%)

~τ1 → τ ~χ04 1.214 1.312 (8%) 1.311 (8%) 1.328 (9%)

~τ1 → ντ ~χ
þ
1 0.193 0.213 (10%) 0.191 (−1%) 0.198 (3%)
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scheme and the t123 scheme is not noticeable, it is not the
case for the ~τ1. We have traced this difference to the
implementation of the ~τ mixing angle, where we applied
different definitions for the squark and the slepton sector;
see Sec. V. Despite the fact that ~χ04 is far heavier than ~χ01 and
~χ02, ~τ1 → τ ~χ04 has the largest partial width for ~τ1. Decays of
~t1 and especially ~b1 into ~χ04 are also not negligible. This is
normal, ~χ04 is essentially binolike with a relatively large
coupling to fR states, in particular sleptons. In this case, the
radiative corrections are modest and scheme independent.
This is also not surprising since the decays are driven
essentially by the Uð1Þ gauge coupling.

3. Point 4

This point is the most MSSM-like with a very small λ so
that the singlino is practically decoupled. It is, therefore,
normal that ~χ03 does not show up in the table of decays,
Table XII. ~t1 and ~τ1 are quite light here and are, like ~b1,
mainly RH. Decays to the wino dominated states ~χ02; χ

þ
1 are,

therefore, suppressed. Because the Higgsino-like state are
too heavy for ~t1 and ~τ1 to decay into, the only channel left
for ~t1 and ~τ1 is into the LSP which is almost binolike.
Radiative corrections to the decays into the LSP (bino
dominated) for all three sfermions are relatively small and
most importantly the scheme dependence is hardly notice-
able. This is as expected since these transitions are
triggered by the Uð1Þ gauge coupling. For the sbottom,
the other decays heavily involve the Higgsino component.
Again it is the same story, the large negative QCD
corrections are accounted for by the running of mb and
the discrepancy between the full DR, the t123 and the
OS134A1A2Hþ scheme are accounted for by the large con-
tribution from the finite part of the δtβ counterterm derived
in the latter scheme.

4. Point 5

Compared to the previous point, point 4, the nature of the
stop and sbottom has not changed. ~t1 which is mainly ~tR is
not very heavy and the would-be preferred decays into the

bino-like, ~χ03 and Higgsino-like states, ~χ04, ~χ05, ~χþ2 are
kinematically not possible. Decays into the remaining
winolike, ~χ01, and singlinolike, ~χ02, state are extremely
suppressed as Table XIII shows. Note that point 5 has
the largest value of λ of all the benchmarks we proposed.
Although the amount of singlino mixing remains small, ~t1
decays into the singlino as it is the only kinematically
accessible state in this category. The decay is inherited from
the Yukawa Higgsino coupling and transmitted then to the
singlino-rich ~χ02. With stops, the tβ dependence is small but
the singlino parameter λ controls this decay. It turns out that
the difference between the three schemes is quite small and
follows from the fact the finite part of δλ is quite small
(contrary to what is found for many of the points we
studied); see Sec. VII B 5. It follows also that a large part of
the correction is due to QCD and is encoded in the running
of the top mass, while the electroweak corrections amount
to less than þ10%.

~b1 is much heavier than ~t1, in particular the channel into
the bino-rich ~χ03 is open. This constitutes the largest partial
width for ~b1. Again, since this is mediated by the hyper-
charge gauge coupling, the corrections are modest and
scheme independent with very small corrections for both
the QCD and the electroweak part. The decays of ~b1 to the
heavier Higgsino-dominated neutralinos and charginos are
Yukawa induced especially for the almost pure ~χ04, ~χþ2
states. Note also that ~χ05 has a non-negligible bino compo-
nent that seeps in also; see Table II. The large negative
corrections are essentially QCD corrections that can be
accounted for by a running of the b mass as we explained
for similar cases before. Note that this time theOS234A1A2Hþ

does not differ by more that 2% from the other schemes for
these type of decays. This again is easily understood on the
basis of the finite part for δtβ=tβ that we calculated for this
point; see Sec. VII B 5.
For the ~τ1 which has a large ~τL component, decays to the

winolike states ~χ01, ~χ
þ
1 dominate, note the (almost) factor 2

ratio between the charged and neutral channels (due to
isospin). Decays into the bino-rich ~χ03 are not small, of order
s2W=c

2
W compared to the decays into the wino dominated ~χ01.

TABLE XII. Point 4: Same as in Table IX but for point 4.

Tree t123 OS134A1A2Hþ DR

~b1 → b~χ01 0.508 0.563 (11%) 0.538 (6%) [−4%] 0.536 (5%)[−4%]
~b1 → b~χ04 0.131 0.030 (−75%) 0.101 (−23%) [−78%] 0.033 (−75%) [−78%]
~b1 → b~χ05 0.123 0.016 (−87%) 0.094 (−23%) [−77%] 0.030 (−76%)[−77%]

102 × ð ~b1 → t~χ−1 Þ 3.41 0.53 (−84%) 2.04 (−40%) [−67%] 0.65 (−81%) [−67%]

~b1 → t~χ−2 0.197 0.046 (−77%) 0.151 (−23%)[−77%] 0.0451 (−77%) [−77%]

~t1 → t~χ01 0.181 0.210 (16%) 0.211 (17%) [10%] 0.21 (16%) [10%]

103 × ð~τ1 → τ ~χ01Þ 8.01 8.78 (10%) 8.75 (9%) 8.79 (10%)
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The ~τR component is not large enough to participate in the
coupling. Since these decays are driven by couplings of a
gauge origin there is very little scheme dependence.
In summary, we have found that, as expected, the size of

the corrections for the decays of sfermions into neutralinos/
charginos strongly depend one the nature and composition
(L or R content, gaugino/Higgsino fractions) of the
particles involved. Large corrections are found for decays
into Higgsinos; however, the bulk of these corrections
originate from QCD and are easily accounted for by using
the running quark mass.A scheme dependence remains for
purely electroweak corrections, we advocate the use of a
scheme where tβ and/or λ are reconstructed precisely.

IX. CONCLUSIONS

The present paper is the first in a series that addresses
the renormalization, at one-loop, of the NMSSM, paying
particular attention to the implementation of on-shell
schemes. We have concentrated here on the neutralino/
chargino system and exposed the sfermion sector. We also
appealed to some issues and features that reside within the
Higgs sector and which help in better defining some key
parameters which are also of importance when studying
observables that only involve the neutralinos, charginos,
and sfermions. Details of the Higgs sector are left for a
follow-up paper. After presenting the theoretical setup, in
particular the different schemes that allow us to define the
necessary counterterms for a complete renormalization of
the chargino/neutralino and sfermion systems, we turn to
two classes of applications. For this, we have first defined a
set of five benchmark points which select different hier-
archies of neutralinos and charginos depending on the
nature of these particles (winolike, singlinolike, binolike,
Higgsino-like, and mixed). In the first class of applications,
we studied the electroweak radiative correction for the
decays of the type ~χ → ~χ0V, V ¼ W�, Z, ~χð0Þ ¼ ~χ0, ~χþ.
In the second class, we considered sfermion decays to a
fermion and a chargino/neutralino ( ~f → f0χ); in particular,
we calculated the one-loop QCD and electroweak correc-
tions to the lightest stop and sbottom and the electroweak

corrections to the lightest stau. The results are presented for
different on-shell renormalization schemes and compared
to a full DR scheme. Considering the importance of the
ubiquitous tβ, we also study a mixed scheme which is
essentially OS apart from a DR implementation of tβ.
All these calculations are obtained with SloopS a code
for the automatic generation of counterterms and the
calculation of corrected masses, decays, and cross sections.
The theoretical setup that we have detailed in this paper is
now fully implemented in SloopS.
The OS schemes we have presented in this study are

based on the use of a minimal set of physical masses with
the view of reconstructing the totality of the underlying
parameters of the NMSSM in order that any observable can
be predicted at the one-loop order. Obviously there are
different choices for the minimal set of physical masses.
One would have thought that if one is interested in the
chargino/neutralino system, providing the masses for a
subset of these particles should have been sufficient to
determine all the needed counterterms. Algebraically, this
is indeed the case; however, masses of the neutralinos and
charginos are not very sensitive to some key parameters
such as tβ and λ. The latter sets the amount of mixing
between the singlet and the other (MSSM-like) compo-
nents. As a consequence, when we study decays which
are much more sensitive to some of these parameters, we
may end up with large radiative corrections due to
ill-reconstructed mixing parameters. We have studied
how one can improve the predictions by trading off some
of the neutralino masses by some Higgs masses since the
Higgs sector also experiences mixing that are driven by the
same parameters. Our results indicate that a judicious
choice of Higgs masses leads to significant improvement
in the reconstruction of λ while issues remain with tβ,
even though some improvement on tβ is always found. We,
therefore, recommend to use an OS renormalization
scheme with at least three Higgs masses as input for a
reliable estimate of the partial decay widths of neutralino/
charginos. The issue of the best choice of scheme for the
decays involving Higgsinos and singlinos which are

TABLE XIII. Point 5: Same as in Table IX but for point 5.

Tree t123 OS234A1A2Hþ DR
103 × ð~t1 → t~χ02Þ 9.17 7.71 (−16%) 8.28 (−10%)[−17%] 8.18 (−11%)[−19%]

~b1 → b~χ03 0.362 0.383 (6%) 0.383 (6%) [−3%] 0.383 (6%)[−3%]

102 × ð ~b1 → b~χ04) 3.88 1.12 (−71%) 1.17 (−70%) [−74%] 1.12 (−71%)[−74%]

102 × ð ~b1 → b~χ05Þ 4.45 2.16 (−52%) 2.21 (−50%) [−57%] 2.15 (−52%) [−57%]

102 × ð ~b1 → t~χþ2 Þ 6.17 1.77 (−71%) 1.86ð−70%Þ[−74%] 1.75 (−72%) [−74%]

~τ1 → ντ ~χ
þ
1 7.07 6.912 (−2%) 6.98 (−1%) 6.872 (−3%)

~τ1 → τ ~χ01 3.49 3.409 (−2%) 3.441 (−1%) 3.381 (−3%)

~τ1 → τ ~χ03 1.04 1.129 (9%) 1.104 (6%) 1.145 (10%)
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still dependent on a precise reconstruction of tβ is left for
further investigation, one possiblity would be to use as
input parameter an observable other than a mass, say a
decay such as the decay of one of the neutral pseudoscalar
Higgses to bb̄ as was suggested for the MSSM,
see [35] or the two-body decay of a neutralino into a
gauge boson.
The electroweak corrections to the decays χ → χ0V are

generally modest, within 20% and often much less. Larger
corrections do show up in some schemes but these are due
to a large contribution for the finite part of the counterterm
of tβ and/or λ when those are extracted from a system of
masses which is marginally affected by tβ thus explaining
the large finite part of the counterterm. For sbottom decays,
the QCD one-loop calculation reveals corrections of order
−70% and about −20% for some stop decays. These large
corrections happen when the decays are triggered through
the Higgsino coupling. The large QCD corrections can be

absorbed, almost entirely, in the running of the respective
quark masses, set at the scale of the sbottom/stop mass.
The different renormalization schemes described here and
the extension of SloopS to include the NMSSM can now
be used to compute any scattering process, in particular
processes involving dark matter particles relevant for
computing the relic density or processes for sparticle
production and decays needed for collider physics.
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