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We study the impact of bound state formation on dark matter annihilation rates in models where dark
matter interacts via a light mediator, the dark photon. We derive the general cross section for radiative
capture into all possible bound states, and point out its nontrivial dependence on the dark matter velocity
and the dark photon mass. For indirect detection, our result shows that dark matter annihilation inside
bound states can play an important role in enhancing signal rates over the rate for direct dark matter
annihilation with Sommerfeld enhancement. The effects are strongest for large dark gauge coupling and
when the dark photon mass is smaller than the typical momentum of dark matter in the Galaxy. As an
example, we show that for thermal dark matter the Fermi gamma ray constraint is substantially increased
once bound state effects are taken into account. We also find that bound state effects are not important for
dark matter annihilation during the freeze-out and recombination epochs.
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I. INTRODUCTION

It is very likely that dark matter (DM) requires degrees
of freedom that are not in the standard model (SM) for
its explanation. As its name implies the electromagnetic
interactions of DM must be small. A convenient way to
realize this is to suppose that the DM is not charged under
the SM gauge group. A simple model of this type that does
not have any fine tunings, beyond the usual ones to keep the
cosmological constant and Higgs mass small, is to have the
DM be a Dirac fermion coupled to a new massive Uð1ÞD
gauge boson (the dark photon). Since the DM couples to a
conserved current the new gauge boson can have a mass
term in the Lagrange density. This model adds to the SM
seven new dark degrees of freedom: two spin components
for both the DM and anti-DM particles, and the three spin
states for the massive dark photon. The model has three
additional parameters, a dark fine structure constant,
αD ¼ g2D=ð4πÞ, the DM mass mD and the dark photon
mass mV . In addition there is one dimensionless renorma-
lizable coupling κ that characterizes the kinetic mixing of
the hypercharge Uð1ÞY and Uð1ÞD kinetic terms. It is only
through gravity and this kinetic mixing that SM degrees of
freedom communicate with those in the dark sector.
In this paper we will assume thermal DM, i.e., at early

times when the Universe is at a very high temperature, the
DM sector is in thermal equilibrium, and moreover has the
same temperature as the SM. As the Universe evolves it
cools and when the temperature drops below the DM mass,
DM and anti-DM particles start to annihilate, eventually

freezing out at T ∼mD=30. In this scenario achieving the
correct DM density relates the dark fine structure constant
to the DM mass, roughly αD ∼ 0.02ðmD=1 TeVÞ. For DM
much heavier than a TeV, one needs to take into account the
Sommerfeld effect during freeze-out and αD is somewhat
lower than the value predicted by the above relation. For
example, αD ¼ 0.2 for mD ¼ 16.7 TeV.
The light mediator scenario with mD ≫ mV has been

studied for a variety of reasons. In the same region of
parameter space there are indirect detection signals that are
the topic of study in this paper. ForαDmD=ð2mVÞ > 0.84, two
body DM-anti-DM bound states exist. They are the analog of
positronium bound states in electromagnetism. It is the impact
of these darkonium bound states on the rate for DM-anti-DM
annihilation in the Galaxy today that we focus on.
The region of parameter space in the mV −mD plane

where bound states exist and are potentially important for
DM cosmology is shown in Fig. 1. We assume these
darkonium states are nonrelativistic and so we restrict our
attention to the region of parameter space where αD < 0.3
or its equivalent (for thermal DM mD < 30 TeV). Very
small dark photon masses, mV < 30 MeV, are inconsistent
with direct detection, the supernova constraints and the
requirement that dark photons decay away before big bang
nucleosynthesis (BBN). The region of Fig. 1 below the
green line does not have darkonium states and the region
between the brown and green lines has darkonium states
but the mass of the dark photon is too large for these bound
states to be produced with the low kinetic energy for the
DM during recombination or at the Galactic center. Thus,
the region of parameter space for our study of the impact of
bound states on indirect detection signals is the triangular
region marked as the “Focus of this study” in Fig. 1.
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The main finding of our work is that the bound state
effects are important for DM indirect detection when
mV=mD ≲ 10−3 and αD ≳ 0.1. The goal of this paper is
not to provide a comprehensive list of all the indirect
detection constraints but rather to highlight the important
role bound state formation plays in this region of parameter
space. To this end we focus on the photon spectrum
resulting from DM near the center of our Galaxy annihilat-
ing either directly or through bound states.
In Sec. II, we derive the general cross section for dark

matter bound state formation via radiation of an on-shell
dark photon and its dependence on the dark matter velocity
and the dark photon mass. In Sec. III, we apply our results
to calculate the indirect detection constraints on dark matter
annihilation and discuss the importance of bound state
effects. We discuss the bound state effects on dark matter
freeze-out and on the cosmic microwave background
(CMB) in Secs. IV and V, and conclude in Sec. VI.

II. BOUND STATE FORMATION
CROSS SECTION

The Lagrangian for the dark sector is

L ¼ LSM þ χ̄iγμð∂μ − igDVμÞχ −mDχ̄χ − 1

4
VμνVμν

þ 1

2
m2

VVμVμ − κ

2 cos θw
BμνVμν; ð1Þ

where Bμν is the hypercharge field strength tensor and θw is
the Weinberg angle. Hence κ is the kinetic mixing between
the photon and the vector field V.
The interaction Hamiltonian for radiating one dark

photon V can be separated into transverse and longitudinal
mode parts. In the center-of-mass frame, the Hamiltonian
for radiating transverse V’s is

HT
int ¼

�
gDk
μ

��
AT

�
r
2

�
þAT

�
− r
2

��
; ð2Þ

where r is the relative coordinate of χ and χ̄, k is the relative
DM momentum and μ ¼ mD=2 is the DM reduced mass.
For the transverse modes, the polarization vectors satisfy
ϵþi ðqÞϵþ�

j ðqÞ þ ϵ−i ðqÞϵ−�j ðqÞ ¼ δij − qiqj=jqj2, and q is the
three-momentum of the radiated dark photon. For radiating
a longitudinal V, using current conservation qμJμ ¼ 0, the
interaction Hamiltonian can be written as

HL
int ¼

�
gDmV

jqj
��

ϕL

�
r
2

�
− ϕL

�
− r
2

��
: ð3Þ

Effectively it is equivalent to radiating a scalar particle.
For bound state formation, jqj ∼ α2Dμ and jrj ∼ 1=ðαDμÞ,

where αD ¼ g2D=ð4πÞ. Thus we use the dipole approxi-
mation and only keep the leading terms in q · r. Then the

matrix elements for the free-bound transitions with trans-
verse and longitudinal V radiation are

MT ¼ gD

Z
d3rΨ�

fðrÞðEi − EfÞr · ϵTΨiðrÞ;

ML ¼ −igD
Z

d3rΨ�
fðrÞmV

r · q
jqj ΨiðrÞ: ð4Þ

The total cross section for bound state formation from a
scattering state with momentum k at infinity is

ðσvÞB ¼ αD
3π

X
n;l

�
ω2
nl þ

1

2
m2

V

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
nl −m2

V

q

×

�
l

����
Z

drr3RnlðrÞRkl−1
����2

þ ðlþ 1Þ
����
Z

drr3RnlðrÞRklþ1

����2
�
; ð5Þ

where v is the relative velocity and ωnl ¼ Enl þ k2=ð2μÞ is
the sum of the binding energy of the ðnlÞth bound state
level and the kinetic energy of incoming state. For a
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FIG. 1. The parameter space relevant to this study (marked by
“Focus of this study”), where mD is the dark matter mass and mV
is the dark photon mass. The value of the dark fine structure
constant αD ¼ g2D=ð4πÞ is chosen to give the correct relic
abundance for dark matter. We do not consider αD < 0.3 (above
the black curve) where the next-to-leading order corrections
would be large. The gray region at the lower right corner does not
satisfy the light mediator condition, thus we also do not consider
it. Dark matter bound states do not exist below the green curve.
Between the brown and green curves, dark matter bound states
exist but the dark photon is too heavy for the bound states to be
produced with the low kinetic energy such as in the Galaxy today
or during recombination. The region to the left of the blue curve is
excluded by direct detection, the supernova constraints and
demanding that dark photons decay before BBN, see also Fig. 4.
The yellow region is excluded by CMB constraints on dark matter
annihilation during recombination, see Sec. V.
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Yukawa potential, the binding energy in general depends
on both n and l.
A couple of remarks relevant to the evaluation of Eq. (5)

follow.
(i) The sum over n, l includes all the energy levels

satisfying ωnl > mV . For low velocity DM with
k2=ð2μÞ ≪ mV , this amounts to Enl > mV . As a
rough estimate we can use Enl ∼ α2Dμ=ð2n2Þ for the
binding energy. Then if Enl > mV , the ratio of
the bound state size to the screening length of the
Yukawa potential, anmV ∼ nmV=ðαDμÞ, is less than
αD=ð2nÞ ≪ 1. In other words, those bound states
that are deep enough to emit an on-shell V in their
formation are all much smaller than 1=mV . There-
fore, from now on, we will approximate the relevant
bound states as Coulomb bound states, with energies
Enl ¼ En, ωnl ¼ ωn, that are l independent.

(ii) The bound and scattering wave functions that solve
the Schrödinger equation are written as

ψnðrÞ ¼
X
lm

RnlðrÞYlmðr̂Þ;

ψkðrÞ ¼
X
lm

RklðrÞYlmðr̂ÞY�
lmðk̂Þ: ð6Þ

Using the above approximation, the radial Coulomb
wave functions for bound states are

RnlðrÞ ¼
2

nlþ2ð2lþ 1Þ!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ lÞ!

ðn − l − 1Þ!

s
ð2rÞl
alþ3=2
0

× e−ðr=na0ÞF1

�
1þ l − n; 2þ 2l;

2r
na0

�
;

ð7Þ

where a0 ¼ 1=ðαDμÞ is the Bohr radius.
For the scattering state radial wave functions,

we numerically solve the Schrödinger equation with
a Yukawa potential and energy eigenvalue E ¼
k2=ð2μÞ using the “shooting method.” For the lth
partial wave, define RklðrÞ ¼ rl−1ϕðrÞ, the Schrö-
dinger equation for ϕðrÞ is

ϕ00ðrÞþ2l
r
ϕ0ðrÞþ

�
k2þ2αμe−mVr

r
−2l
r2

�
ϕðrÞ¼0:

ð8Þ

The boundary condition at r ¼ 0 is ϕð0Þ ¼ 0 and
ϕ0ð0Þ ¼ c. Because Eq. (8) is a linear equation,
the overall normalization of R is proportional to the
parameter c, and we fix it by requiring that Rkl
matches to the lth partial of a plane wave as r → ∞,
i.e.,

rRklðr→∞Þ∼ ð4πÞ
k

il cos

�
kr− ðlþ 1Þπ

2
þ δkl

�
:

ð9Þ

In the mV → 0 limit, Rkl is given by the Coulomb
scattering wave function,

RklðrÞ ¼
4πe

π
2ka0 jΓð1þ l − i

ka0
Þj

ð2lþ 1Þ! ð2krÞle−ikr1F1

×

�
1þ lþ i

ka0
; 2þ 2l; 2ikr

�
: ð10Þ

We first discuss the mV dependence of the bound state
formation cross section in Eq. (5). In the Coulomb limit
mV → 0, it is the Kramers formula for the recombination
cross section [1]. For αD ≫ k=μ≡ v, the leading terms of
the Kramers formula for the cross section are [2]

σB ¼ 32π

3
ffiffiffi
3

p α3D
μ2v2

�
ln

�
αD
v

�
þ 0.16þOðv=αÞ

�
: ð11Þ

The logarithmic factor arises from the sum over n in
Eq. (5). For a given level n ≫ 1 [3],

ðσBÞn ≃ 32π

3
ffiffiffi
3

p αD
μ2

E2
0

ðμv2=2Þðμv2=2þ E0=n2Þn3
: ð12Þ

Recall E0 is the binding energy of the Coulomb bound
state, E0 ¼ α2Dμ=2. The condition αD > v implies
E0 > μv2=2. It is important to note that σn ∼ 1=n for a
small n and σn ∼ 1=n3 for a large n. The transition between
these two behaviors occurs around ntrans ∼ αD=v. The sum
of σn from n ¼ 1 to ntrans results in the logarithmic factor
lnðαD=vÞ in Eq. (11).1

For mV ≠ 0 the situation is more complicated. For
nonzero mediator mass mV , we solved for the cross section
numerically using the approach described above. As mV
grows, the first effect it has is to change the upper limit of
the sum over n. The largest nmax corresponds to the highest
energy level that has a large enough binding energy that
allows V to be produced on shell. When we are still within

1We have verified the Kramers formulas (11) and (12) numeri-
cally. The calculations taking into account only the capture into
ground state [4–7] would miss the logarithmic factor and
underestimate the cross section, for the cases αD ≫ v and/or
αD ≫

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mV=mD

p
. We also note that Refs. [8,9] tried to sum over

all the energy levels (n ≥ 1) but concluded it yields a factor of
π2=6 compared to the ground state case. However, they used the
recombination cross section equation (75.6) in [3] that only
applies for n ¼ 1 and also underestimated the enhancement.
Moreover, these previous works have assumed a massless dark
photon limit which would neglect the nontrivial mV dependence
as shown in Fig. 2.
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the Coulomb limit, nmax ¼ αD
ffiffiffiffiffiffiffi
μ

2mV

q
. When nmax < ntrans,

the Kramers cross section is modified to

σB ≃ 32π

3
ffiffiffi
3

p α3D
μ2v2

ln

�
αD

ffiffiffiffiffiffiffiffiffi
μ

2mV

r �
: ð13Þ

The condition that nmax < ntrans is equivalent to μv2=2 <
mV and we find numerically that Eq. (13) is valid in the
range 1

2
μv2 < mV < μv. In the region mV > μv, the cross

section is resonantly enhanced when the kinetic energy of
the incoming state is nearly degenerate with a resonance
state of the Yukawa potential. These features are shown in
Fig. 2. In the region α2DmD=4 < mV < α2DmD=16 only the
ground state is available, which is in s-wave. Therefore, due
to the nature of dipole transition, in this region the initial
state must be in p-wave, and the single-peak resonances
shown in Fig. 2 correspond to p-wave resonances. In a
smaller mV region, more and more bound states become
available, one can see multiple-peak resonances.
Next, we discuss the velocity dependence of the bound

state formation cross section, and highlight the comparison
with the Sommerfeld enhanced cross section of direct
annihilation, often used for computing DM annihilation
in the literature [4,10–12]. This comparison is shown in
Fig. 3 for mD ¼ 16.7 TeV, αD ¼ 0.2 and mV ¼ 10 GeV.
We find that in the region mV=μ < v <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mV=μ

p
the

bound state formation cross section is consistently larger
than the direct annihilation cross section with Sommerfeld
enhancement (labeled with subscript A). For this range of

relative velocities, the two cross sections can be approxi-
mated as

ðσvÞB ∼
32πα3D
3
ffiffiffi
3

p
μ2v

ln
�
αD

ffiffiffiffiffiffiffiffiffi
μ

2mV

r �
; ðσvÞA ∼

π2α3D
2μ2v

:

ð14Þ

The direct annihilation cross section ðσvÞA is obtained by
enhancing the Born level cross section by the s-wave
Sommerfeld factor, defined as jRk;l¼0j2=ð4πÞ2 in our
convention.
The ratio of the two above cross sections is

Bound state formation rate
Direct Annihilation rate

¼ ðσvÞB
ðσvÞA

¼ 64

3
ffiffiffi
3

p
π
ln

�
αD

ffiffiffiffiffiffiffiffiffi
μ

2mV

r �
:

ð15Þ

With the parameters used in Fig. 3, the bound state
formation cross section can be larger by more than one
order of magnitude over the Sommerfeld enhanced anni-
hilation cross section.
For v >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mV=μ

p
, the bound state production cross

section is given by the Kramers formula in Eq. (11) and
the logarithmic enhancement factor is suppressed com-
pared with the region of velocity we have just discussed.
This is the region to the right in Fig. 3. Eventually, at
v ∼ αD, the argument of the log factor is ∼1 and the
Kramers and Sommerfeld cross sections become compa-
rable to each other.
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FIG. 2. Dark photon mass dependence in the bound state
formation cross section in today’s Galaxy (thick red curve),
calculated from the general formula, Eq. (5). We have fixed
the other parameters to be mD ¼ 16.7 TeV, αD ¼ 0.2 and the
velocity v ¼ 10−3. The solid black curve is obtained from the
modified Kramers formula equation (13), which does not capture
the resonance effects. The horizontal dotted line is the original
Kramers formula in the Coulomb limit (mV → 0), Eq. (11), and
the dashed line corresponds to only a ground state formation with
a massless dark photon with n ¼ 1.

FIG. 3. Dark matter bound state formation cross section for
various dark matter velocities (thick red curve), calculated from
the general formula, Eq. (5). We have fixed the other parameters,
mD ¼ 16.7 TeV, αD ¼ 0.2 and mV ¼ 10 GeV. For comparison,
we also show the direct annihilation cross section in the Born
approximation (dashed black) and the one with Sommerfeld
enhancement (thick blue curve). The bound state formation cross
section plays the most important role for dark matter indirect
detection if mV=mD < v < αD.
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For v < mV=μ, the kinetic energy of the incoming state
1
2
μv2 becomes smaller than the height of the bump of the

Yukawa potential barrier Vbarrier ∼ lðlþ 1Þm2
V=μ for the

l ≠ 0 partial wave, located near r ∼ 1=mV. As v
decreases, it becomes increasingly more difficult for these
partial wave states to penetrate through the barrier to find
the bound state wave function. In this region, the con-
tributions to the bound state formation cross section from
all partial waves with l ≠ 0 are suppressed. Eventually, at
a very tiny v, only the ks → np; ðn ≥ 2Þ transitions can
happen. In this region the bound state formation cross
section is smaller than the Sommerfeld enhanced annihi-
lation cross section.
The above velocity dependence can have an important

impact on indirect detection of DM annihilation in the
Milky Way Galaxy, where the DM velocity is ∼10−3. We
find for mV=μ < 10−3 and αD > 0.1 (corresponding to
multi-TeV scale thermal DM), it is much more likely for
two DM particles to form a bound state than to directly
annihilate.
After a bound state is formed, it could either annihilate

decaying to dark photon V’s or deexcite to a lower state.
The annihilation decay rate for the nl bound state goes as

Γn;s;l→V 0s ∼
�
αD
n

�
2lþ3

αð5−CÞ=2D μ; ð16Þ

where s ¼ 0, 1 is the total spin angular momentum of the
bound state, n is the principal quantum number, l is the
orbital angular momentum and C ¼ ð−1ÞlþS is the charge
conjugation. For C ¼ 1, the bound state decays into 2V’s,
while for C ¼ −1, it decays into 3V’s due to Furry’s
theorem in the dark sector. The l dependence arises
because the annihilation decay amplitude is proportional
to the lth derivative of the zero point wave function at the
origin, ðdl=drlÞRnlð0Þ. Each derivative yields a power of
αD. For a smaller n (and hence l) the time scale for
darkonium annihilation to dark gauge bosons is extremely
short compared with the age of our Galaxy, which in units
of inverse GeV is τg ∼ 0.62 × 1042 GeV−1. But for larger
principal quantum numbers n and values of l that is not the
case. As an explicit example, we consider the parameters
mD ¼ 16.7 TeV, αD ¼ 0.2 and mV ¼ 1 GeV. For these
parameters nmax ¼ 12 and for this value of the principal
quantum number, l ¼ nmax − 1 ¼ 11 and C ¼ −1, the
bound state annihilation decay has a lifetime associated
with it that is about one order of magnitude larger than the
age of our Galaxy.
Darkonium states with a larger n and l produced in our

Galaxy do disappear but the route is through deexcitation to
lower values of n and l and then annihilation to energetic
V’s with EV ≃mD=2. For simplicity we consider the case
where the transition is dark electric dipole to either a real or,
if that is kinematically not allowed, a virtual V. When this
can occur via a real dark V the rate is very rapid. For

deexcitation through a virtual V we estimate the rate for the
bound state transition n, l → n − 1, l� 1 to be

Γn→n−1 ∼
κ2αα13D
n19

μ5

4π2m4
V
: ð17Þ

It is convenient to introduce the “partial lifetimes,”
τn→n−1 ¼ 1=Γn→n−1. Assuming the transition to the ground
state occurs changing n by one unit at a time the total rate is

Γn→1 ∼
�
1

�Xn
i¼2

τi→i−1
�
∼ 20

κ2αα13D
n20

μ5

4π2m4
V
: ð18Þ

We find in this case for the allowed values of κ, mD
and mV that this deexcitation rate is shorter than the age of
the Galaxy. This is illustrated in Fig. 4 using the same
parameters as before (i.e., mD ¼ 16.7 TeV, αD ¼ 0.2,
mV ¼ 1 GeV and nmax ¼ 12). All the darkonium bound
states produced in our Galaxy do decay converting even-
tually into two or three very energetic V’s and some softer
V’s which all decay to standard model particles.
Without loss of generality, we imagine there is just one

type of bound state. Then its number density nB satisfies the
rate equation

dnB
dt

¼ −ΓBnB þ 1

4
n2DðσvÞB; ð19Þ

where nD is the unbound DM particle density,2 ΓB is the
decay rate of the dark bound state and ðσvÞB is the DM

FIG. 4. Constraints on the mV − κ parameter space for fixed
mD ¼ 16.7 TeV and αD ¼ 0.2. The blue region is excluded by
the LUX result in dark matter direct detection [13]. The gray
region is excluded from the supernova cooling argument [14–16].
In the green region, the dark photon lives longer than a second
and would threaten the success of BBN assuming the dark and
SM sectors had similar temperatures [17,18]. In the allowed
(white) region, all possible dark matter bound states have life-
times shorter than the age of the Milky Way Galaxy.

2nD is the sum of DM and anti-DM particle number densities.
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bound state production cross section multiplied by the
relative velocity of the DM particles. In the Galaxy, if only a
small fraction of DM has formed bound states or annihi-
lated today, the free DM density nD is constant in time.
Solving the rate equation for the number density of dark
bound states using this approximation gives

nBðtÞ ¼
1

4ΓB
n2DðσvÞBð1 − e−ΓBtÞ: ð20Þ

Taking the time t to be the age of our Galaxy,
τg ∼ 1018 sec, for ΓBt ≫ 1, the value of nB approaches
an equilibrium value given by 4nBΓB ¼ nDðσvÞB.
The DM today includes both free DM and that inside

(unstable) bound states nðtotÞD ¼ nD þ 2nB. The total anni-
hilation rate R relevant to the indirect detection signal,
including DM annihilation both directly [∝ ðσvÞA] and
inside the bound states [∝ ðσvÞB], is

R ¼ 2nBΓB þ 1

2
n2DðσvÞA ¼ 1

2
n2D½ðσvÞA þ ðσvÞB�; ð21Þ

where, in the second step, we have used the above
equilibrium value for nB. Hence the indirect detection
signal discussed in the next section is fully determined
by the sum of DM direct annihilation and bound state
formation rates.

III. INDIRECT DETECTION

In this section, we quantify the importance of bound state
formation on DM indirect detection. The V particles from
the annihilation of DM will further decay into SM charged
particles via the kinetic mixing with the photon and the Z
boson, and contribute to the cosmic gamma ray spectrum.
We will consider the Fermi constraint on the photon
spectrum from DM annihilation at the Galactic center
[19]. The goal of this paper is not to provide a compre-
hensive list of all the constraints but rather to highlight the
important role bound state formation plays in some regions
of parameter space.
The gamma ray flux at Earth is obtained from the DM

annihilation rate averaged over the Galactic center region
via

dΦγ

dEγ
¼
X3
n¼2

1

16πm2
D

dNðnÞ
γ

dEγ

Z
dΩ
Z
l:o:s:

dsρðrðs; θÞÞ2ðσvÞnV;

ð22Þ

where ρ is the DM density profile, s is the distance of the
annihilation point to Earth, θ is the angle between the line
of sight and the direction of the Galactic center in view of
Earth, rðs; θÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2⊙ þ s2 − 2r⊙s cos θ

p
and r⊙ ¼ 8.4 kpc

is the distance between Earth (or the Sun) and the Galactic

center. We use the Navarro-Frenk-White profile for dark
matter mass density distribution in the Galaxy,

ρðrÞ ¼ ρ0
ðr=RÞð1þ r=RÞ2 ; ð23Þ

where GN is the Newton’s constant, R ¼ 20 kpc and we
choose ρ0 ¼ 0.34 GeV=cm3 such that near the Solar
System ρðr⊙Þ ¼ 0.4 GeV=cm3. For the gamma ray obser-
vation by Fermi-LAT, the Ω integral covers the 15° × 15°
region around the Galactic center [19].
As discussed in the previous section, the annihilation of

DM could happen in two ways:

χχ̄ → 2V; χχ̄ → B → nV ðn ¼ 2; 3Þ:

The first line is the usual direct annihilation with
Sommerfeld enhancement, while the second line corre-
sponds to having a bound state formation and then DM
annihilating within the bound states. The number of dark
photons resulting from this annihilation, n ¼ 2, 3, depends
on the C parity C ¼ ð−1ÞlþS of the bound state B that
decays via DM annihilation. In Eq. (22), the function

dNðnÞ
γ =dEγ is the photon spectrum at the source, depending

on the number of V ’s in the final state ðn ¼ 2; 3Þ. We

describe the details of our calculation of dNðn¼2;3Þ
γ =dEγ in

Appendix A.
The cross sections for n ¼ 2, 3 are related to the ones

discussed in the previous section as

ðσvÞ2V ¼ ðσvÞA þ ðσvÞBf2; ð24Þ

ðσvÞ3V ¼ ðσvÞBð1 − f2Þ: ð25Þ

The factor f2 is the fraction of bound states annihilating
into 2V from the state with C ¼ þ1. The rest of the bound
states will annihilate to 3V with C ¼ −1. As shown by
Fig. 5, we find the 3V channel yields only a slightly larger
(and slightly softer) gamma ray flux than the 2V channel.
Thus our numerical results are insensitive to the value of f2.
For convenience, we use f2 ¼ 1 in the following calcu-
lations, which yields the most conservative limits.
In general, one has to calculate the cross section ðσvÞnV

within the line of sight integral because the bound state
formation cross section is velocity dependent, as discussed
in Fig. 3, and the DM velocity near the Galactic center
depends on the position r. For simplicity, we neglect the r
dependence and assume Maxwell-Boltzmann velocity dis-
tribution of DM with a reasonable root-mean-square value
vrms ¼ 150 km=s throughout the signal region at the
Galactic center as suggested in [20]. This approximation
does not affect the main point of our work.
We compare the gamma ray spectrum with the one from

the Galactic center observed by Fermi-LAT [19]. We find
that for the multi-TeV DM in this study, the resulting
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gamma ray spectrum is peaked around a few hundred GeV
to a TeV, while in the Fermi data, a spectrum decreasing
with energy is provided only in the window 1–100 GeV.
Therefore, the last bin with Eγ ∼ 80 GeV provides the
strongest upper limit. As discussed above, we assume that
all DM bound states annihilate decay into 2V. The relevant
cross section is just

ðσvÞ2V ¼ ðσvÞA þ ðσvÞB: ð26Þ

This quantity as a function of mV is shown in Fig. 6, for
mD ¼ 16.7 TeV, αD ¼ 0.2. For mV less than the typical
DM momentum at the Galactic center, ðσvÞ2V has similar
dependence on mV as Fig. 2, because the DM annihilation

via bound state formation gives the dominant effect for
indirect detection. In contrast, we also show the direct
annihilation cross section with Sommerfeld enhancement
(often considered in the literature) in the blue curve, which
can be lower than the total effective cross section by an order
of magnitude. The solid black curve is the most conservative
upper limit on ðσvÞeff by assuming zero background and
requiring the signal from annihilation itself does not exceed
the Fermi observation. The dashed black curve corresponds
to taking into account the background using the interstellar
emission models discussed in [19], which sets a more
stringent upper limit than the conservative one by a factor
of ∼4. Clearly, the effect of bound state formation at the
Galactic center can make a large difference. Given the other
parameters, the upper limit on the dashed curve already rules
out the regionmV < 20 GeV, while it would still be allowed
if we only considered the direct annihilation channel with
Sommerfeld enhancement.
In Fig. 7, we show the impact of bound state formation

on indirect detection in the mV versus mD parameter space
plane. The value of αD is chosen to give the correct thermal
relic density for DM (see also the discussion in the next
section). In the plot on the left, we calculate the DM direct
annihilation cross section with Sommerfeld enhancement
and show the Fermi gamma ray constraint including the
astrophysical background. The green region is excluded. In
the plot on the right, we include the effect from DM bound
state formation and the magenta region is further ruled out.
Clearly, bound state effects can play a very important role
and must be included for DM masses above a few TeV. In
particular, for the window mV ∈ ð1 − 10Þ GeV, thermal
DM with mD ≳ 8 TeV is allowed by the Fermi gamma
ray data if we only consider the Sommerfeld enhanced
direct annihilation. However, if we take into account
of the contribution from the annihilation via bound state
formation, the region of allowed DM mass increases
to mD > 30 TeV.

IV. THERMAL RELIC DENSITY

In this section, we discuss the impact of bound state
formation on DM thermal freeze-out. As shown in Fig. 3,
around the freeze-out temperature when the DM velocity is
v ∼ 0.3, the bound state formation cross section is com-
parable to the direct annihilation one. One might think this
would modify the effective annihilation cross section and in
turn the value of αD that gives rise to the observed thermal
relic DM density.
However, there is another important process which is

bound state dissociation. Because the Universe is hot during
the time of freeze-out, there is a plasma of the mediator V
particles around. For the part of the parameter space where
bound states exist, the freeze-out temperature Tf is much
larger than mV . The dissociation process happens when an
energetic V particle collides with a bound state and breaks
it into free χ and χ̄ particles. Because αD=v ∼ 1 during

FIG. 6. Cross section for dark matter annihilation for indirect
detection of gamma rays. We takemD ¼ 16.7 TeV and αD ¼ 0.2.
The effect of dark matter bound states is included in the red curve
[we choose f2 ¼ 1, see Eqs. (24) and (25)] but not the blue one.
The horizontal black curves correspond to the most conservative
upper limit without including any interstellar emission back-
ground models (solid curve), and the upper limit with background
included (dashed curve). Including the dark matter bound state
formations results in a much stronger bound.
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FIG. 5. An example of gamma ray fluxes per unit cross
section as a function of photon energy for the 2V and 3V
channels. Here the dark matter is mD ¼ 16.7 TeV and dark
photon mass is mD ¼ 10 GeV.
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freeze-out, capture into the first few bound state energy
levels dominates. We will use the S ¼ 0 ground state to
compare the dissociation and decay rates.3

The decay rate of the ground state, which we call ηD, is
approximately

ΓðηD → 2VÞ ¼ 1

2
α5DmD; ð27Þ

where we neglect the impact of the ηD binding energy on
the mass of ηD.
The dissociation rate of ηD is

ΓðVηD → χχ̄Þ ¼
�
3ζ½3�
π2

T3
f

��
8
ffiffiffi
3

p

9

�
mD

Tf

�
3
�

×

�
128πα5D

9T1=2
f m3=2

D ðα2D þ 3Tf=mDÞ

�
; ð28Þ

where the first factor is the number density of V particles,
the second factor is the ratio of the bound state dissociation
cross section to the formation one obtained in [21] (which
applies for both vector and scalar mediator cases), and the
last factor is the bound state formation cross section
equation (12) for n ¼ 1. We have also used the condition
v≃ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3Tf=mD

p
and the approximation Tf ≪ mD.

Using the usual thermal value of αD that gives the DM
relic density, and the typical freeze-out temperature
Tf ∼mD=30, we find the ratio

ΓðVηD → χχ̄Þ
ΓðηD → 2VÞ > 10; ð29Þ

for all the parameter space where αD < 0.3. Therefore, the
DM bound state is quickly dissociated by a collision with
a V before it has enough time to decay by DM-anti-DM
annihilation. After the dark matter annihilates down to its
relic density bound states are rapidly dissociated by the
scattering process which has a rate with one less factor of
the dark number density than the bound state formation
process. This dissociation rate is much larger than the
Hubble rate at this time and so is effective at removing the
bound states. On the other hand, the formation of bound
states which involves two factors of the dark matter number
density occurs at a rate less than the Hubble rate and so is
ineffective. We conclude that bound state formation is
unimportant during the thermal freeze-out of DM.

V. CMB

Dark matter annihilation during recombination injects
energy in the Universe and could distort the CMB spec-
trum. In this era, the DM velocity is very low, v ∼ 10−10 ≪
mV=mD and αD. One cannot take a very tiny dark photon
mass to violate this condition, otherwise it would cause too
strong DM self-interactions and run into conflict with the
bullet cluster observation [22]. We find that the bound state
formation only involves the transition from s-wave scatter-
ing state to p-wave bound states, and its cross section is
much lower than the direct annihilation one with the
Sommerfeld enhancement (see Fig. 3). Thus the usual
constraint from CMB still applies [23–25]. For such low
velocity, we use an approximate Sommerfeld factor S

FIG. 7. The importance of dark matter bound states for constraining the parameter space of the dark matter–dark photon model. Here
we zoom in to the region of parameter space marked by “Focus of this study” in Fig. 1 in themV −mD plane. The green region shows the
exclusion from indirect detection of gamma ray and includes only dark matter direct annihilation from the Galactic center. The magenta
region in the plot on the right shows the (stronger) constraint when dark matter bound state formation effect is taken into account.

3The s ¼ 1 state decays into 3V at a slower rate, and the n > 1
bound states are shallower and easier to be dissociated.
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obtained from the Hulthén potential [26,27], which is
bounded from below, S ≥ 6αDmD=mV . We presented the
CMB excluded region of parameter space in yellow
in Fig. 1.

VI. SUMMARY AND DISCUSSION

One of the simplest and most studied models of dark
matter is a SM singlet Dirac fermion that annihilates down
to its relic density through its coupling to a massive dark
photon. We have shown that for dark matter mass in the
tens of TeV range and dark photon mass in the GeV range,
indirect detection constraints for dark matter in our Galaxy
are highly impacted by annihilation through dark matter–
anti-dark matter bound states. In the regions where bound
state formation is most important, annihilation through all
possible bound states must be taken into account. In this
work, we derived the general cross section for bound state
formation with the radiation of a dark photon, and explored
its dependence in the dark matter velocity and the dark
photon mass. Our most important results are illustrated by
Fig. 7 where the magenta region shows the additional
parameter space ruled out when annihilation through bound
states is taken into account. The effects are strongest for
large αD and when the dark photon mass is smaller than
the typical momentum of dark matter in the Galaxy. We
have also argued that bound state effects are not important
for dark matter annihilation during freeze-out and
recombination.
For dark matter indirect detection, we have only dis-

cussed the Fermi gamma ray constraint. Our goal in this
paper is to point out the importance of bound state
formation rather than providing a comprehensive list of
all the constraints. The bound state effects are expected to
be generic, and a more complete analysis of the bound state
effects on indirect detection via various cosmic ray com-
ponents will be published elsewhere [28].
Our results so far are based on the dark matter bound

state formation cross section taking into account the
emission of a single dark photon. In the limit of
mV → 0, this cross section section is given by the
Kramers formula in Eq. (11). Its ratio to the s-wave
geometric cross section σG ¼ 4π=k2 is

σB
σG

∼ α3D log

�
αD
v

�
: ð30Þ

For the parameters of interest in this paper σB=σG ≪ 1, the
unitarity bound is satisfied and hence we expect perturba-
tion theory to be valid.
Finally, we comment on the case when the light mediator

is a real scalar instead of a dark photon, which has also been
considered in the literature. As pointed out in [21], because
the operator for radiating a scalar is the unit operator and
the scattering and bound state wave functions are orthogo-
nal, the leading order matrix element arises from second

order in the multiple expansion. As a result, the bound state
formation cross section would go as α5D, in contrast to the
α3D for the dark photon model. Thus, the effects of bound
state formation on dark matter indirect detection is weaker
in the scalar model. It is worth mentioning that the scalar
force is also attractive for same sign χ’s and could result in
bound states with a large number of DM particles that are
stable, and may be cosmological important in the asym-
metric dark matter case [29].
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APPENDIX A: PROMPT PHOTON SPECTRUM

For V heavier than a few GeV perturbative methods for
calculating V decaying to quarks are applicable. We
extrapolate those results into the region of lighter V, much
of which is already strongly constrained by the CMB, see
Fig. 1. The prompt photons from the products of V decay

dominate the source term dNðnÞ
γ =dEγ at large photon energy

Eγ , and results in a peak in the spectrum. Other contribu-
tions to gamma ray from bremsstrahlung and inverse
Compton scattering by charged particles (electrons) in
the final states are only important for photon energies
much lower than the peak energy [30]. We first calculate
the energy spectrum of V from dark matter annihilations.
Because the dark matter is nonrelativistic in the Galaxy,
the energy distribution of a 2V final state per reaction is
always

dNð2Þ
V

dy
ðyÞ ¼ 2δðy − 1Þ; ðA1Þ

where y ¼ EV=mD. On the other hand, for the 3V final
state, the distribution is (for mV ≪ mD) [31]

dNð3Þ
V

dy
ðyÞ ¼ 9

4ðπ2 − 9Þy2
�
yð3y − 8Þ

þ ðy − 1Þðy2 − 6yþ 16Þ lnð1 − yÞ
y − 2

�

×

�
1

1 −mV=mD − 3m2
V=ð4m2

DÞ
�
; ðA2Þ

EFFECTS OF BOUND STATES ON DARK MATTER … PHYSICAL REVIEW D 93, 115020 (2016)

115020-9



and in this case y is between ymin ¼ mV=mD,
ymax ¼ 1 − 3m2

V=ð4m2
DÞ. The V’s will subsequently decay

into charged fermion pairs f, f̄. It is easy to show that the
energy distribution of f in the boosted V frame is flat,

dNf

dEf
ðyÞ≃ 2

ymD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

f

m2
V

r ;

ðEfÞmax
min ðyÞ ¼

1

2
ymD

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

f

m2
V

s !
: ðA3Þ

Here we have used the approximation that formD ≫ mV, in
most of the final state phase space EV ¼ ymD ≫ mV .
Therefore, the photon energy spectrum (prompt, from final
state radiation) per annihilation is given by

dNðn;fÞ
γ

dEγ
¼
Z

ymax

ymin

dy
dNðnÞ

V

dy
ðyÞ

×
Z ðEfÞmaxðyÞ

ðEfÞminðyÞ
dEf

dNf

dEf
ðyÞ dN

0
γ

dEγ
ðEf; Eγ=EfÞ;

ðA4Þ

where dN0
γ=dEγ is the photon distribution function per

each injection of a DM charged particle f, and is obtained
using the code PPPC4 [32]. Finally, the total photon energy
spectrum is obtained by summing over the possible fermion
flavors f, weighed by the branching ratio of the decay
V → ff,

dNðnÞ
γ

dEγ
¼
X
f

dNðn;fÞ
γ

dEγ
BrðV → ffÞ: ðA5Þ

We give the decay rates for V → ff in Appendix B.
For the 3V channel (n ¼ 3) Eq. (A5) can be simplified

by interchanging orders of integration. After some algebra,

dNð3;fÞ
γ

dEγ
¼
Z ðEfÞmaxðymaxÞ

ðEfÞminðyminÞ
dEf

1

mD
½FðyþÞ − Fðy−Þ�

×
dNγ

dEγ
ðEf; Eγ=EfÞ; ðA6Þ

where

FðyÞ ¼ −9½4yþ lnð1 − yÞð4 − 7yþ 3y2 − y2 lnð2 − yÞÞ − y2PolyLogð2; y − 1Þ�
2y2ðπ2 − 9Þð1 −mV=mD − 3m2

V=ð4m2
DÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

f=m
2
V

q ; ðA7Þ

and

yþ ¼ Min

2
641 − 3m2

V

4m2
D
;

2Ef=mD

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

f

m2
V

r
3
75;

y− ¼ Max

2
64mV

mD
;

2Ef=mD

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

f

m2
V

r
3
75: ðA8Þ

APPENDIX B: DARK PHOTON DECAY RATES

In general, the kinetic mixing between the dark photon
and the usual photon originates from the SUð2Þ ×Uð1Þ
gauge invariant operator κ

2 cos θw
BμνVμν, where Bμ is the

gauge field for hypercharge. After the electroweak sym-
metry breaking, this operator not only induces the kinetic
mixing term κ

2
FμνVμν in Eq. (1), but also a kinetic mixing

between V and the Z boson, − κ tan θw
2

ZμνVμν. Therefore, the
branching ratios of V is not simply like those of a massive

photon. The kinetic mixing between V and Z can play an
important role for mV ≫ GeV.
The Feynman diagrams for V decaying to fermion pairs

via the off-shell photon and the Z boson are shown in
Fig. 8. The effective coupling of an on-shell V to the left-
(right-) handed fermion current is

gL ¼ κg sin θw

�
Qf − m2

V

m2
V −m2

Z

1

cos2θw
ðTf

3 −Qfsin2θwÞ
�
;

gR ¼ κg sin θw

�
Qf − m2

V

m2
V −m2

Z

1

cos2θw
ð−Qfsin2θwÞ

�
:

ðB1Þ

FIG. 8. Feynman diagrams for the dark photon V decaying to
fermions, via an off-shell photon or the Z boson.
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The decay rates are then [33]

ΓV→ff ¼ Nf
cmV

24π
ð1 − 4rfÞ1=2½g2Lð2 − 2rfÞ

þ g2Rð2 − 2rfÞ − 12gLgRrf�; ðB2Þ

where rf ¼ m2
f=m

2
V , and Nf

c ¼ 3 for quarks and 1 for
charged leptons and neutrinos. For the parameter space of
interest to this study, mV lies between ∼GeV and the weak
scale. We obtain the total decay rate by summing over all
possible quark and lepton flavors that are kinematically
allowed for V to decay into.
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