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We briefly review the supernatural supersymmetry (SUSY), which provides a most promising solution
to the SUSYelectroweak fine-tuning problem. In particular, we address its subtle issues as well. Unlike the
minimal supersymmetric standard model (MSSM), the next to MSSM (NMSSM) can be scale invariant and
has no mass parameter in its Lagrangian before SUSY and gauge symmetry breakings. Therefore, the
NMSSM is a perfect framework for supernatural SUSY. To give the SUSY breaking soft mass to the
singlet, we consider the moduli and dilaton dominant SUSY breaking scenarios in M-theory on S1=Z2. In
these scenarios, SUSY is broken by one and only one F term of moduli or dilaton, and the SUSY breaking
soft terms can be determined via the Kähler potential and superpotential from Calabi-Yau compactification
of M-theory on S1=Z2. Thus, as predicted by supernatural SUSY, the SUSY electroweak fine-tuning
measure is of unity order. In the moduli dominant SUSY breaking scenario, the right-handed sleptons are
relatively light around 1 TeV, stau can even be as light as 580 GeV and degenerate with the lightest
neutralino, chargino masses are larger than 1 TeV, the light stop masses are around 2 TeVor larger, the first
two-generation squark masses are about 3 TeV or larger, and gluinos are heavier tha.n squarks. In the
dilaton dominant SUSY breaking scenario, the qualitative picture remains the same but we have heavier
spectra as compared to the moduli dominant SUSY breaking scenario. In addition to it, we have Higgs
H2=A1-resonance solutions for dark matter (DM). In both scenarios, the minimal value of DM relic density
is about 0.2. To obtain the observed DM relic density, we can consider the dilution effect from supercritical
string cosmology or introduce the axino as the lightest supersymmetric particle.
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I. INTRODUCTION

Supersymmetry (SUSY) provides a natural solution to
the gauge hierarchy problem in the Standard Model (SM).
In the supersymmetric SMs (SSMs) with R parity, gauge
coupling unification can be obtained, the lightest super-
symmetric particle (LSP) such as neutralino can be a dark
matter (DM) candidate, and the electroweak (EW) gauge
symmetry can be broken radiatively due to the large top
quark Yukawa coupling, etc. Moreover, gauge coupling
unification strongly implies the grand unified theories
(GUTs), and the SUSY GUTs can be constructed from
superstring theory, which is the most competitive candidate
for quantum gravity. Therefore, supersymmetry is not only
the most promising new physics beyond the SM, but also a
bridge between the low energy phenomenology and high
energy fundamental physics.
It is well known that a SM-likeHiggs bosonwithmassmH

around 125 GeV was discovered during the first run of the
LHC [1,2]. In the minimal supersymmetric standard model
(MSSM), to realize such a Higgs boson mass, we need the
multi-TeV top squarks with small mixing or TeV-scale top
squarks with large mixing [3]. There also exists strong
constraints on the parameter space in the SSMs from the

LHC SUSY searches. For example, the gluino mass m~g and
first two-generation squark mass m ~q should be heavier than
about 1.7 TeV if they are roughly degenerate m ~q ∼m~g, and
the gluino mass is heavier than about 1.3 TeV for m ~q ≫ m~g
[4,5]. Thus, the naturalness in the SSMs is challenged from
both the Higgs boson mass and the LHC SUSY searches.
To quantize the size of fine-tuning in the SSMs, we need

to define the measure. There are two kinds of definitions for
fine-tuning measures: the low energy definition [6–8] and
the high energy definition [9,10]. We emphasize that the
naturalness conditions from the low energy definition can
still be satisfied in principle, but the naturalness condition
from the high energy definition is indeed a big challenge.
However, because SUSY is the connection between the low
and high energy physics, we do need to consider seriously
the fine-tuning problem via the high energy definition. To
solve this problem, we proposed the supernatural SUSY,
which provides a most promising solution to the SUSY EW
fine-tuning problem. It was shown in Refs. [11–13] that the
high energy fine-tuning measure will automatically be at
the order oneOð1Þ in the F -SUð5Þmodels [14–17] and the
MSSM with no-scale supergravity (SUGRA) [18] and
Giudice-Masiero (GM) mechanism [19]. We will briefly
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review the supernatural SUSY in Sec. III and for the first
time address its subtle issues publicly. Especially, the major
challenge to the previous studies is the μ term, which is
generated by the GM mechanism and then is proportional
to the universal gaugino massM1=2. The ratio μ=M1=2 is of
order one but cannot be determined as an exact number. We
have studied it carefully before and did not find any
loophole [11–13].
On the other hand, the MSSM suffers from the so-called

μ problem [20]. In the next to MSSM (NMSSM) which is
the simplest extension of the MSSM [21–23], due to the
presence of an extra singlet superfield Ŝ, the effective μeff ≡
λhŜi term can be generated via the superpotential term
λŜĤdĤu after Ŝ acquires a vacuum expectation value
(VEV), where λ is the Yukawa coupling while Ĥd and
Ĥu are one pair of Higgs doublets in the MSSM. Moreover,
the SUSY breaking scale is the only scale in the
Lagrangian, since it allows for a scale invariant super-
potential [24]. The SM-like Higgs, due to the above
superpotentional term, gets additional contributions at tree
level, and its mass can be pushed up by the mixing effects
in diagonalizing the mass matrix of CP-even Higgs fields
[25–27]. This results in a SM-like Higgs boson with mass
around 125 GeV without large loop contributions, and then
the SUSY EW fine-tuning problem can be ameliorated
[28]. Similar to the constrained MSSM (CMSSM)/minimal
supergravity (mSUGRA) [29], one can also define the
constrained NMSSM (CNMSSM) [30–42], where the
SUSY breaking (SSB) soft terms are the universal scalar
mass m0, the universal gaugino mass M1=2, and the
universal trilinear coupling term A0 at the GUT scale
MGUT. In the CNMSSM, in contrast to the unconstrained
NMSSM, one needs a small value of λ but a large value of

tan β≡ hĤui
hĤdi to get the SM-like Higgs mass around 125 GeV

(for example, see [30]).
In this paper, we point out that the NMSSM provides an

excellent framework for supernatural SUSY since its
superpotential can be scale invariant [24]. In particular,
we do not have the μ term issue any more. To satisfy three
conditions of supernatural SUSY (see Sec. III) and give a
soft mass to the singlet, we shall consider the moduli
dominant SUSY breaking (MDSB) and dilaton dominant
SUSY breaking (DDSB) scenarios in M-theory on S1=Z2

[43–47], and propose the M-theory inspired CNMSSM
(MCNMSSM). In the MCNMSSM, SUSY is broken by
one and only one F term of moduli or dilaton. The SUSY
breaking soft terms, such as m0, M1=2, and A0, can be
calculated explicitly via the Kähler potential and super-
potential from Calabi-Yau compactification of M-theory on
S1=Z2, and they are functions of the gravitino mass (M3=2)
and hidden/observable sector gauge couplings at the GUT
or string scale [47] which should be determined after
moduli stabilization. Therefore, according to the super-
natural SUSY, the fine-tuning measure is order of unity. In
other words, there will be no EW fine-tuning problem at all

in the MCNMSSM. In the MDSB scenario, we find that the
minimal values for m0 and M1=2 consistent with sparticle
mass bounds, B-physics bounds, and the light CP-even
Higgs mass bound of 125� 2 GeV are about 0.6 TeV and
1.4 TeV, respectively, and the corresponding A0 range is
½−4;−2� TeV. We also find that the range of parameter λ is
[0, 0.1], and tan β is from 5 to 28. Moreover, we notice
mH2

≈mH� ≈mA1
in most of the parameter space, while we

have mH3
≈mH� in the mass range [1.8,2.7] TeV. The

gluino massm~g is found to be relatively heavy≳3 TeV, and
the light stop is the lightest colored sparticle (≳2 TeV). The
first two-generation squarks are about 3 TeV but they are
lighter than the gluinos. In the slepton sector, the first two-
generation sleptons have masses around 1 TeV or larger,
while the light stau, which is mainly the right-handed stau,
can be as light as 560 GeV. The LSP neutralino (which is
bino in both the models) are in the mass range [0.55, 1.1]
TeV while charginos are heavier than 1 TeV. We notice that
despite the fact that the LSP neutralino and light stau are
almost degenerate, the minimal value of DM relic density
we get is about 0.2. In the DDSB scenario, the minimal
values for m0 and M1=2 consistent with various constraints
are about 0.8 TeVand 1.6 TeV, respectively. The ranges for
A0, λ, and tan β are, respectively, ½−8.8;−2� TeV, [0, 0.15],
and [2, 41]. Because of this slightly larger range of λ, the
low mass values of the CP-even Higgs mH2;3

and CP-odd
HiggsmA1;2

are somewhat smaller than the MDSB. So these
Higgs particles can come closer in mass with the LSP
neutralino which can have mass in the range [0.6,4] TeV. It
is also observed that mA1

¼ mH� , while mA1
≈mAA2

≈
mH2

≈mH3
in some portions of parameter space. The light

stop is still the lightest colored sparticle with mass≳2 TeV,
the first two-generation squark masses are≳3.4 TeV, while
the gluino mass is ≳3.5 TeV. The first two-generation
sleptons are heavier than 1 TeV while the light stau can be
as light as 600 GeV. The chargino masses are ≳1.2 TeV.
Even though we have the resonance conditions such as
2m~χ0

1
≈mH2;A1

as well as the neutralino-stau coannihilation
scenario, the minimal relic density we get is still around
0.2. We also present a couple of tables for benchmark
points as examples of our findings. Furthermore, the
minimal DM relic density is about 0.2 in both scenarios.
To obtain the correct DM relic density, we can consider the
lightest neutralino as the next to the LSP (NLSP) which
decays to the LSP axino ( ~a) and gamma (γ) final state.
Moreover, in the supercritical string cosmology, the DM
relic density can be diluted by a factor of 10 [Oð10Þ] [48],
but it is model dependent.
This paper is organized as follows. In Sec. II, we

introduce the CNMSSM as well as its SUSY breaking
soft terms. In Sec. III, we briefly review the supernatural
SUSY and address its subtle issues. We give the SUSY
breaking soft terms from M-theory on S1=Z2 as well. We
outline the detailed scanning procedure and the relevant
experimental constraints in Sec. IV. We present in detail
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results of our scans in Sec. V. A summary and conclusion
are given in Sec. VI.

II. THE CONSTRAINED NEXT TO MINIMAL
SUPERSYMMETRIC STANDARD MODEL

The NMSSM is the simplest extension of the MSSM. In
the NMSSM, we introduce an SM singlet superfield Ŝ, as
well as a Z3 symmetry that forbids the μ term in the MSSM.
The scale-invariant superpotential is

WNMSSSM ¼ ðMSSM Yukawa termsÞ þ λŜĤuĤd þ
κ

3
Ŝ3;

ð1Þ

where λ and κ are Yukawa couplings. The above two terms
substitute the μĤuĤd term in the MSSM superpotential.
After spontaneous EW gauge symmetry breaking, a non-
vanishing VEV vS of Ŝ at the minimum of the Higgs
potential generates an effective μeff term in the MSSM, i.e.,
μeff ≡ λvS. The SUSY breaking soft terms in the Higgs
sector are then given by

Vsoft ¼ m2
Hu
jHuj2 þm2

Hd
jHdj2 þm2

SjSj2

þ
�
λAλSHuHd þ

1

3
κAκS3 þ H:c:

�
; ð2Þ

where Aλ and Aκ are soft trilinear terms associated with the
λ and κ terms in the superpotential. The VEV vS of Ŝ,
determined by the minimization conditions of the Higgs
potential, is effectively induced by the SUSY breaking soft
terms in Eq. (2) and is naturally set by MSUSY. Thus, the μ
problem in the MSSM is solved.
Just like the CMSSM/mSUGRA, we can assume that the

SSB terms are universal at the GUT scale and the SUSY
breaks spontaneously in a hidden sector. The gravitational
interactions then mediate SUSY breaking effects from the
hidden sector to the observable sector. This Z3-invariant
NMSSM is denoted as CNMSSM. In the CNMSSM, we
assume universality for all the soft scalar masses squared,
gaugino masses, and trilinear scalar couplings denoted as
m2

0, M1=2, and A0 at the GUT scale. In addition to these
parameters, we also have new Yukawa couplings λ and κ.
Through the minimization of the Higgs potential,m2

S can be
traded for tan β, and κ can be determined in terms of the
other parameters for a correct value of MZ [32,40].
Moreover, one can also chose either κ or sgnðμeffÞ. For
conventional reasons we chose sgnðμeffÞ. In short, the
CNMSSM can be defined in terms of five continuous
input parameters and one sign as follows:

m0;M1=2; A0; tan β; λ; sgnðμeffÞ: ð3Þ

It is important to note that the addition of a gauge singlet
superfield in the NMSSM modifies the neutralino and

Higgs sectors of the MSSM with two on-shell fermionic
and two on-shell scalar degrees of freedom. The two new
scalar degrees of freedom yield two extra Higgs bosons and
alter the mixing angles between the physical Higgs bosons
and the gauge eigenstates. There are now three CP-even
neutral Higgs bosons,H1,H2, andH3; two CP-odd neutral
Higgs bosons, A1 and A2; and one charged Higgs boson,
H�. The observed Higgs boson need not be the lightestCP-
even neutral Higgs boson in the CNMSSM as compared to
the CMSSM scenario where the SM-like Higgs boson has
to be the lightest CP-even Higgs boson.
The two on-shell fermionic degrees of freedom yield a

new fermionic state “singlino,” which after EW symmetry
breaking mix with the two neutral Higgsinos (which are
mixed with the two neutral gauginos), resulting in five
neutralinos. The Higgsino-singlino mixing is proportional
to λ. The singlino decouples, if λ is small, and as a
consequence we get four MSSM-like neutralinos and a
singlino. It might be difficult to distinguish the MSSM and
NMSSM neutralino sectors in a scenario where the singlino
soft-breaking mass, mS, is substantial and the singlino is
decoupled.
An important point to remember is that larger values

of λ do not necessarily imply an increase of the mass of the
SM-like CP-even Higgs scalar. It is indicated in [36] that
the mixing of the SM-like Higgs with a heavy singletlike
Higgs (which is also proportional to λ) leads to a decrease
of the SM-like Higgs mass. In the CNMSSM, the off-
diagonal matrix elements cannot be fine-tuned to 0. In this
way, the Higgs mass constraint puts an upper bound on λ.
Moreover, Since μeff ¼ λvS, if we know the μeff which is
approximately equal to the chargino mass m~χ�

1
, we can

estimate vS.

III. THE SUPERNATURAL SUSY AND THE
M-THEORY INSPIRED SUSY BREAKING

SOFT TERMS

To study the fine-tuning issue in the supersymmetric
SMs, we need to define the fine-tuning measures first.
There are two kinds of definitions: the low energy defi-
nition [6–8], and the high energy definition [9,10]. The low
energy definition of the fine-tuning measure does not give
strong constraints on the SSMs. In particular, if we allow a
few percent fine-tuning, we can still have the viable
parameter spaces in the MSSM and NMSSM, which satisfy
all the current experimental constraints including the low
bounds on the masses of the gluino, first/second generation
squarks, and sleptons, from the LHC SUSY searches
[4,5,49–51]. However, the high energy definition of fine-
tuning measure is still a big challenge. For example, it is
shown in Table 1 of Ref. [52] that the benchmark points 1
and 2 have the low energy fine-tuning measureΔEW around
20 while the high energy fine-tuning measure ΔEENZ is
around 1500. Since the fine-tuning measures for the high
energy definition in the viable SSMs are very large at the
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order of 103 [Oð103Þ], we shall concentrate on it in the
following discussions. The typical quantitative measure
ΔEENZ of SUSY EW fine-tuning is defined by the maxi-
mum of the logarithmic derivative ofMZ with respect to all
fundamental parameters ai at the GUT scale [9,10]

ΔEENZ ¼ MaxfΔGUT
i g; ΔGUT

i ¼
���� ∂ lnðMZÞ
∂ lnðaGUTi Þ

����: ð4Þ

The fine-tuning measure in Eq. (4) is exactly one in the
dream case. So we would like to explore the supersym-
metry breaking scenario whose fine-tuning measure for the
high energy definition is automatically at the order one
[Oð1Þ]. Assuming that there is one and only one mass
parameterM� in the SSMs, to be concrete, we shall takeM�
as the universal gaugino mass M1=2 for no-scale super-
gravity and gravitino mass M3=2 for all the other super-
gravity including the M-theory supergravity. Thus,MZ will
be a trivial function of M�, and we have the following
approximate scale relation:

Mn
Z ¼ fnðciÞMn�; ð5Þ

where fn is a dimensionless parameter, and ci denote the
dimensionless coupling parameters, such as gauge and
Yukawa couplings, as well as the ratio between μ andM1=2
for the MSSM with the GM mechanism (for more details
see [13]). For the nearly constant fn of Eq. (5), we have

∂Mn
Z

∂Mn�
≃ fn; ð6Þ

and therefore we obtain

∂ lnðMn
ZÞ

∂ lnðMn�Þ
≃ Mn�

Mn
Z

∂Mn
Z

∂Mn�
≃ Mn�

Mn
Z

δMn
Z

δMn�
≃ 1

fn
fn: ð7Þ

Consequently, the fine-tuning measure is an order one
constant

���� ∂ lnðM
n
ZÞ

∂ lnðMn�Þ
����≃Oð1Þ: ð8Þ

For the first time, we would like to address a few subtle
issues publicly in the supernatural SUSY as follows:

(i) The EW symmetry breaking and determination of
M� from the Z boson mass.
Assuming that the SSMs arise from string theories

with suitable compactification and moduli stabiliza-
tion, and there is one and only one F term of moduli
or dilaton whose F term breaks SUSY, we can
calculate the corresponding Kähler potential and
superpotential, and then all the SUSY breaking soft
terms can be determined in terms of M�. Also, we
can calculate the corresponding gauge couplings and

Yukawa couplings at the GUT or string scale in
principle, which should be required to be consistent
with the low energy experimental values via renorm-
alization group equation (RGE) running. For any set
of the gauge couplings,Yukawa couplings, andSUSY
breaking soft terms at theGUTor string scale, because
the only free parameter is M�, we might have three
cases: (1) No RGE solution. (2) No EW gauge
symmetry breaking; for example, stau is tachyonic.
(3) The EW gauge symmetry breaking. In particular,
for case (3), the observed Z boson massMZ as a low
energy input will determine the corresponding M�
since it is the only dimensionful free parameter. Of
course, if the RGEs have several solutions, we may
have a few corresponding M� values.

(ii) New μ problem in the MSSM and F -SUð5Þ model.
In the MSSM and F -SUð5Þ model with no-scale

supergravity, to solve the μ problem, we employ the
GM mechanism [19]. Thus, we have μ ∝ M1=2 ∝
M3=2, and M� is assumed to be M1=2. The ratio c≡
μ=M1=2 is an order one constant, but we cannot
determine the exact value of c from the GM mecha-
nism since we cannot determine the coefficient of the
high-dimensional operator up to order one, which
generates the μ term. This new μ problemwas pointed
out to us not only by referees but also by audiences.

We have considered it in detail and confirmed that
there is no gap in our previous studies [11–13]. Froma
top-down approach, c is a fixed real number at the
order one, and it can be determined from our above
string model assumptions in principle. So the low
energy Z boson mass MZ is predicted from the high
energy fundamental theory. From the phenomeno-
logical point of view, the observed value of Z boson
mass MZ determines the gaugino mass M1=2 at the
GUT scale for some narrow range of c. By theway, for
the other numerical values of c, we do not have the
correctMZ value, or the EW gauge symmetry break-
ing, or the RGE solution for no-scale boundary
conditions. To be concrete, from Fig. 2 of Ref. [12],
we found that for a fixed c, there is clearly one-to-one
correspondence between MZ and M1=2.

On the other hand, if people are still not satisfied
with our above explanation to the new μ problem, we
can study the supernatural supersymmetry in the
NMSSM, which solves the μ problem. This is one
of the main motivations of our current paper.

(iii) Symmetry for supernatural supersymmetry.
In the supernatural supersymmetry, the fine-

tuning measure is exactly one for the perfect
scenario. So it is naive to think that there may exist
a symmetry behind it. This symmetry acts like the
scale invariance: for the fixed dimensionless coef-
ficients at the unification scale from the top-down
approach, we define the mass ratio rϕ ≡Mϕ=M�,
where ϕ is a supersymmetric particle (sparticle) and
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Mϕ is its mass at low energy. We found rϕ is scale
invariant; i.e., rϕ does not depend on M�. This has
been confirmed numerically by the previous studies
in the MSSM and F -SUð5Þ model with no-scale
supergravity and GM mechanism [11–13]. In other
words, the sparticle mass spectra for differentM� are
correlated by an overall rescale.
Similar to the low energy definition of the fine-

tuning, we may require extra naturalness conditions
at the GUT or string scale. In the MSSM, with the
one-loop effective potential contributions to the tree-
level Higgs potential, we get the Z-bosom massMZ

1

m2
Z

2
¼ m2

Hd
þ Σd

d − ðm2
Hu

þ Σu
uÞtan2β

tan2β − 1
− μ2; ð9Þ

where Σu
u and Σd

d denote the corrections to the scalar
potential coming from the one-loop effective poten-
tial defined in [8] while mHu

and mHd
are the Higgs

soft masses. tan β≡ hHui=hHdi is the ratio of the
Higgs VEVs. For moderate large tan β, we have

M2
Z

2
≃ −m2

Hu
− μ2: ð10Þ

At the GUTor string scale, although we do not have
the EW gauge symmetry breaking, i.e., MZ ¼ 0, to
be natural, one might still require

m2
Hu

μ2
∼
jm2

Hu
− μ2j

m2
Hu

þ μ2
∼Oð1Þ: ð11Þ

In the no-scale supergravity, the above requirement
cannot be satisfied since the universal scalar mass
m0 vanishes, i.e., m0 ¼ 0. However, our models,
such as the MSSM and F -SUð5Þ model with no-
scale supergravity and GM mechanism, are indeed
technically natural since m0 ¼ 0 arises from the
SUðN; 1Þ=SUðNÞ ×Uð1Þ symmetry or a Heisen-
berg symmetry in the Kähler potential [53].

(iv) Multi F-term SUSY breakings.
If SUSY is broken by two or more F terms

of moduli and/or dilaton, we should define the
corresponding fundamental mass parameters as
Mi� ≡ Fi=

ffiffiffi
3

p
MPl, and calculate the corresponding

fine-tuning measures ΔGUT
Mi�

. In other words, M�
cannot be the gravitino mass. This kind of scenarios
should be studied in detail as well since there might
exist the corresponding supernatural SUSY, which is
different from our current study. For example, if the
Kähler potential and superpotential are determined
from string constructions and the moduli and dilaton

are stabilized properly, the supernatural SUSY can
still be valid.

(v) Effective supernatural SUSY.
The above definition for supernatural SUSY is

very strong, so we can relax the conditions, in
addition to the above multi F-term SUSY break-
ings. In fact, to solve the SUSY EW fine-tuning
problem, we only require that the dimensionful
parameters at the GUT scale, which have large
fine-tuning measures ΔEENZ, are related to the
fundamental mass parameter M� [54]. Similar to
the natural SUSY or more effective SUSY where
only the third generation sfermions like stops need
to be light while the first two-generation sfermions
can be very heavy, we shall call it the effective
supernatural SUSY [54]. Furthermore, for the
supernatural SUSY, we can make small perturba-
tions to the leading order SUSY breaking soft
terms. Obviously, the solution to the SUSY EW
fine-tuning problem is still valid. Interestingly,
although it might only change the particle spectra
a little bit, it will have big effects on the DM
candidate and DM relic density, which will be
studied elsewhere.

In this paper, we shall study the scale invariant NMSSM.
Because Ŝ is an SM singlet, its scalar mass can only be
generated via two-loop effects via RGE running, and then it
is too small for no-scale supergravity. To solve this
problem, we consider the SUSY breaking soft terms from
M-theory on S1=Z2 [43–47]. As we know, in the weakly
coupled heterotic string theory, there exist two simplified
scenarios: (1) The moduli dominant SUSY breaking
scenario or, say, no-scale scenario [18,55] with
m0 ¼ A ¼ 0; (2) the dilaton dominant SUSY breaking
scenario [56,57] withM1=2 ¼ −A ¼ ffiffiffi

3
p

m0, which can also
escape the above problem. Generically speaking, the
M-theory on S1=Z2 seems to be a better candidate than
the weakly coupled heterotic string theory to explain the
low energy phenomenology and high energy unification of
all the fundamental interactions. In particular, we can have
the next-to-leading order corrections to the Kähler
potential and gauge kinetic functions and then to the
SUSY breaking soft terms as well [43–47]. To parametrize
the next-to-leading order corrections to the SUSY breaking
soft terms, we define [47]

x≡ αðT þ TÞ
Sþ S

¼ α−1GUTαH − 1

α−1GUTαH þ 1
; ð12Þ

where α is related to the extra space dimensions and defined
in Refs. [45–47], S and T are dilaton and moduli fields, and
αGUT and αH are the gauge couplings at the GUT scale in
the observable and hidden sectors, respectively. With the
assumption αH ≥ αGUT and to avoid αH to be infinity, we
obtain

1The following comment is based on the private discussions
with Daniel Chung.

SUPERNATURAL SUPERSYMMETRY AND ITS CLASSIC … PHYSICAL REVIEW D 93, 115014 (2016)

115014-5



0 ≤ x ≤ 1: ð13Þ

In the supernatural SUSY, there exists one and only one
moduli or dilaton field whose F term breaks the SUSY.
Thus, we will consider the MDSB and DDSB scenarios as
follows [47]:

(I) Moduli dominant SUSY breaking scenario. The
SUSY breaking soft terms are

m0 ¼
x

3þ x
M3=2; ð14Þ

M1=2 ¼
x

1þ x
M3=2; ð15Þ

A ¼ −
3x

3þ x
M3=2: ð16Þ

(II) Dilaton dominant SUSY breaking scenario. The
SUSY breaking soft terms are

m2
0 ¼ M2

3=2 −
3M2

3=2

ð3þ xÞ2 xð6þ xÞ; ð17Þ

M1=2 ¼
ffiffiffi
3

p
M3=2

1þ x
; ð18Þ

A ¼ −
ffiffiffi
3

p
M3=2

3þ x
ð3 − 2xÞ: ð19Þ

From the requirement m2
0 > 0, we obtain that x is

smaller than about 0.67423. Choosing x ¼ 0, we
obtain the relationM1=2 ¼ −A ¼ ffiffiffi

3
p

m0 in the weakly
coupled heterotic string theory.

In short, in the M-theory motivated CNMSSM with
MDSB and DDSB scenarios, all the SUSY breaking soft
mass parameters have fixed relations with gravitino mass
M3=2 after the moduli stabilization which determine αGUT
and αH as well. According to the supernatural SUSY, the
fine-tuning measure is automatically of order one. In other
words, such kinds of models are supernatural, even though
their particle spectra are heavy.

IV. PHENOMENOLOGICAL CONSTRAINTS

We use the publicly available code MicrOmegas3.5.5 [58]
for random scans on the following parameter space:

0 ≤ x ≤ 1;

0 ≤ M3=2 ≤ 5 TeV;

2 ≤ tan β ≤ 60;

0 ≤ λ ≤ 0.7: ð20Þ

We consider μ > 0,mt ¼ 173.3 GeV [59] andmDR
b ðMZÞ ¼

2.83 GeV.
After collecting the data, we require the following

bounds on sparticle masses from the LEP2 experiment

m~t1 ; m ~b1
≳ 100 GeV; ð21Þ

m~τ1 ≳ 105 GeV; ð22Þ

m~χ�
1
≳ 103 GeV: ð23Þ

We use the LEP2 bounds since they are somewhat model
independent. On the other hand, because of the LHC
ongoing searches, the above-mentioned SUSY particle
masses can be in several hundred GeVs ranges depending
on the decay channels. As we will also show later in this
paper, our sparticle spectra are heavy enough to escape
such LHC mass constraints. We implement the following
B-physics constraints [60,61]

1.6 × 10−9 ≤ BRðBs → μþμ−Þ ≤ 4.2 × 10−9ð2σÞ;
ð24Þ

2.99 × 10−4 ≤ BRðb → sγÞ ≤ 3.87 × 10−4ð2σÞ;
ð25Þ

0.70 × 10−4 ≤ BRðBu → τντÞ ≤ 1.5 × 10−4ð2σÞ.
ð26Þ

In addition, we impose the following bounds from the LHC
SUSY searches as well [1,2,4,5]:

mH1
¼ 123–127 GeV; ð27Þ

m~g ≳ 1.7 TeV ðfor m~g ∼m ~qÞ; ð28Þ

m~g ≳ 1.3 TeV ðfor m~g ≪ m ~qÞ. ð29Þ

For the muon anomalous magnetic moment aμ, we require
that the benchmark points be at least as consistent with the
data as the SM.

V. NUMERICAL RESULTS

In the following, we will present our results for MDSB
and DDSB scenarios.

A. Moduli dominant SUSY breaking scenario

In Fig. 1, we present our graphs in the Ωh2 −mH1

plane. The ranges of input parameters given in Eq. (20)
are also displayed in vertical bars, where red to blue
colors represent the lowest to highest values of input
parameters. Note that in Fig. 1, we just display data from
our scans without applying any constraints. In Fig. 1, we
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show the CP-even Higgs mass mH1
larger than 120 GeV

and the neutralino dark matter relic density Ωh2 between
0 and 10 to give a broader picture. These plots show that
in order to have mH1

in the range [123, 127] GeV, the
input parameters x should be greater than 0.2 and
gravitino mass M3=2 should be greater than 2 TeV.
From the left bottom panel, we see that the Higgs mass
constraint pushes tan β ≳ 5, and if we demand Ωh2 ≲ 1 to
further constrain the parameter space, it further pushes
tan β values above 20. In the right bottom panel, we see
that all the points have λ≲ 0.2. Moreover, these plots
show that the Higgs mass constraint alone severely
restricts the input parameter space, and we will study
this scenario in more detail below.
Since the SUSY breaking soft terms m0, M1=2, and A0

are functions of input parameters x and M3=2, we calculate
them using Eqs. (14)–(16) and show our results in Fig. 2. In
these plots, gray points satisfy successful radiative electro-
weak symmetry breaking. Blue points, which form a subset
of gray points, satisfy particle mass bounds, B-physics
bounds, and Higgs mass bounds. Although we do not have
the points which satisfy the dark matter relic density
bounds, for instance, WMAP9 5σ bounds, we will

comment on the possible mechanism to dilute relic density
later. Here, we want to see how much we can restrict the
parameter space if we insist on Ωh2 ≲ 1 besides the above-
mentioned constraints. Red color points satisfy Ωh2 ≲ 1.
As we have already observed, the light CP-even Higgs
mass ranges [123, 127] GeV constrain the input parameter
space a lot. This constraint already makes the spectra too
heavy so that the viable points satisfy various above-
mentioned bounds. From the first row of Fig. 2, we see
that the minimum value of m0 consistent with all the
constraints is about 0.6 TeV, corresponding to x ≈ 0.4 and
M3=2 ≈ 2.5 TeV while the maximum allowed values of m0

is about 1.3 TeV. The plots in the second row display
dependence of M1=2 on x and M3=2. Here, we see that the
minimum and maximum values of M1=2 consistent with all
the above-mentioned constraints are about 1.4 TeV and
2.5 TeV, respectively. Because Eqs. (14) and (16) show
A0 ¼ −3m0, we do not present plots for A0. But one can
estimate the allowed range for A0 from m0 plots in the first
row. It can be seen that the allowed ranges of universal
trilinear scalar coupling A0 are about ½−4;−2� TeV. This
indicates that the scalar top quarks are not highly mixed. So

FIG. 1. Plots in the Ωh2 −mH1
plane for the moduli dominant SUSY breaking scenario. The ranges of input parameters given in

Eq. (20) are shown in vertical bars where red to blue colors represent lowest to largest values.
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in order to have the CP-even SM-like Higgs boson mass
around 125 GeV, we need heavy squarks/stops. The large
values ofm0 andM1=2 indicate heavy spectra at low energy.
One can write the EW-scale masses of squarks and sleptons
in terms of m0 and M1=2 as follows [62]:

m2
~q ≃m2

0 þ ð5 − 6ÞM2
1=2; ð30Þ

m2
~eL
≃m2

0 þ 0.5M2
1=2; ð31Þ

m2
~eR
≃m2

0 þ 0.15M2
1=2: ð32Þ

By plugging in the minimum values of m0 and M1=2 in the
above semianalytical expressions we see that the squarks
may be around 3 TeV, the left-handed sleptons can be
around 1 TeV, while the right-handed slepton can be
relatively light around 650 GeV. We will see that this
indeed is the case and the right-handed staus are light. One
can also observe this trend in Table I.
To have the SM-like Higgs mass around 125 GeV in the

NMSSN, the Yukawa coupling λ also plays a very crucial
role. In the unconstrained NMSSM, one needs large λ
values (but less than 0.7 to avoid the Landau pole problem

in GUT models) and small tan β ≲ 10. However, in the
CNMSSM, the requirement is almost reversed. One usually
needs small values of λ and large values of tan β [30]. This
can be seen in Fig. 3 where we display plots in the λ −mH1

plane (left panel) and the tan β −mH1
plane (right panel). In

these plots, gray points satisfy the successful radiative
electroweak symmetry breaking, orange points satisfy all
the above mentioned constraints except the Higgs mass
constraints, and red points further form a subset of orange
points and satisfy Ωh2 ≲ 1. The horizontal black line
indicates the lower bounds on the Higgs mass of
123 GeV. Here, we see that orange points with mH1

≈
123 GeV have maximum value of λ about 0.1. The
maximum value of λ further shrinks to about 0.08 when
we demand Ωh2 ≲ 1. Also, the plot in the tan β −mH1

plane shows that the allowed range of tan β is [5, 28].
In the NMSSM, because of the presence of an additional

gauge singlet Ŝ, we have an extra CP-even Higgs H3 and a
pseudoscalar A2 as compared to MSSM. The approximate
tree-level Higgs boson masses in the NMSSM are given in
Ref. [63]. From there we see that these masses are
proportional to vS. From Fig. 3, we see that the minimum
value of λ consistent with all constraints is about 0.1. Note
that μeff ≡ λvS and μeff ≈ χ�1 ≳ 100 GeV from the LEP

FIG. 2. Plots of m0 and M1=2 as functions of x and M3=2 for the moduli dominant SUSY breaking scenario. Gray points satisfy
successful radiative electroweak symmetry breaking. Blue points form a subset of gray points and satisfy particle mass bounds, B-
physics bounds, and Higgs mass bounds. Red points further form a subset of blue points and satisfy Ωh2 ≲ 1.
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bound on chargino mass, and we obtain vS ≳ 1 TeV. Such
a large value of vS in turn implies heavy masses of Higgs
bosons as can be seen in Table I. Note that if we use the
chargino mass value greater than the LEP2 bound, it will

simply increase vS as shown above, and thus increase the
heavy Higgs masses.
The addition of a gauge singlet also affects the neutralino

sector of the NMSSM. Now we have the singlino-type
neutralino in addition to the bino-type, wino-type, and
Higgsino-type neutralinos. For dark matter relic density,
one can try to have mH1;2;3=A1;2

≃ 2m~χ0
1
resonance solutions.

Moreover, in the CMSSM, small values of m0 give rise to a
stable charged slepton LSP. While in the CNMSSM, this
problem can be evaded due to the presence of the extra
singlinolike neutralino [41]. We would like to remind
readers that in a good approximation one can show that
m~χ0

1;2
are proportional to gaugino masses M1;2, m~χ0

3;4
are

proportional to μeff , and singlino mass m~χ0
5
is directly

proportional to κ and μeff but inversely proportional to λ
[64]. From Fig. 2, we see that the minimum allowed value
of M1=2 is about 1.4 TeV. Since m~χ0

1
≈ 0.44M1=2, the

lightest neutralino should be much heavier than the SM-
like Higgs boson. We also find that mH2;3

and mA1;2
are

heavier than 1.5 TeV. So no resonance solutions can be
realized here. As we have already discussed in this case, λ is
small and μeff is about 1 TeV. Thus, the singlino is also
heavy (as m~χ0

5
∝ κ; μeff=λ), and the LSP neutralino in the

MDSB scenario is binolike. On the other hand, because
jA0j is not large enough, top squark masses must be heavy
to achieve mH1

∼ 125 GeV. And thus we do not have the
LSP neutralino-stop coannihilation channel. The focus
point SUSY or hyperbolic SUSY cannot be realized as
well due to m0 < M1=2 from Fig. 2. We have mentioned
earlier in Eq. (32) that the right-handed slepton can be
relatively light for relatively small values of m0; thus we
can expect the LSP neutralino-stau coannihilation. From
Fig. 4 it is evident that we do have a neutralino-stau
coannihilation region. The color coding for this figure is the
same as in Fig. 2. Here, for the red points, the minimum
masses for the light stau and LSP neutralino are, respec-
tively, 580 GeV and 570 GeV while the light stau and LSP
neutralino can be as heavy as ≈1400 GeV. We notice here

TABLE I. Sparticle and Higgs masses are in GeV units and
μ > 0. All of these points satisfy the sparticle mass, B-physics
constraints described in Sec. IV. Points 1 and 2 display the
neutralino-stau coannihilation scenario when mH3

≈mA1
≈mH�

and mH2
≈mA1

≈mH� , respectively.

Point 1 Point 2

x 0.67683 0.92663
M3=2 3396 4329.3
tan β 26.354 27.518
λ 9.9924 × 10−3 1.5796 × 10−2

m0 625.13 1021.7
M1=2 1370.7 2082.2
A0 −1875.4 −3065
mH1

123 124.7
mH2

1767 2731
mH3

1840 2979
mA1

1840 2731
mA2

2542 4201
mH� 1842 2732
m~χ0

1;2
596, 1119 923, 1716

m~χ0
3;4;5

1891, 1895, 2295 2810, 2813, 3837
m~χ�

1;2
1119, 1895 1716, 2813

m~g 2957 4369
m ~uL;R 2722, 2618 4025, 3865
m~t1;2 1923, 2377 2809, 3466
m ~dL;R

2723, 2605 4026, 3845
m ~b1;2

2344, 2344 3443, 3443
m~ν1;2 1084 1680
m~ν3 1019 1567
m~eL;R 1086, 801 1682, 1271
m~τ1;2 596, 1028 928, 1573
σSI (pb) 9.88 × 10−12 3.91 × 10−12

σSD (pb) 3.45 × 10−9 6.98 × 10−10

ΩCDMh2 0.2085 0.6458

FIG. 3. Plots in the λ −mH1
and tan β −mH1

planes for the moduli dominant SUSY breaking scenario. Gray points satisfy successful
radiative electroweak symmetry breaking. Orange points, which form a subset of gray points, satisfy particle mass bounds and B-physics
bounds. We do not apply Higgs mass bounds here. Red points further form a subset of orange points and satisfy Ωh2 ≲ 1.
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that the best point we have here in this plot has Ωh2 ≈ 0.2.
However, we are not able to get the points with relic density
within 5σ of WMAP9 bounds [65].
We comment here that since relic density calculations are

highly sensitive to sparticle spectra, a slight change in
sparticle masses may change the relic density a lot.
Therefore, Ωh2 ≈ 0.2 is not that bad value. On the other
hand, we can employ some relic density dilution mecha-
nisms. For instance, one can assume that the lightest

neutralino is the NLSP and then decays into ~aγ, where the
axino ~a acts as the LSP [66]. Besides this, one can consider
the dilution effect fromsupercritical string cosmology (SSC).
In such a scenario, it was shown that in the presence of a time
dependent dilaton, a smoothly evolving dark energy can
modify the dark matter allowed region with standard cos-
mology. The dilaton field dilutes the neutralino relic density
by a factor [Oð10Þ], and consequently the regions with the
larger dark matter relic density in the standard scenario are
allowed in the SSC [48] but it is model dependent.

B. Dilaton dominant SUSY breaking scenario

In Fig. 5, we present plots for the DDSB scenario in the
Ωh2 −mH1

plane. We also display the ranges of input
parameters given in Eq. (20) in vertical bars. In the top left
panel we see that x should be in the range around [0.1, 0.2]
to havemH1

≳ 123 GeV, while the DM relic density can be
anywhere between 0 and 10. In Fig. 5 we see that the viable
points with Higgs mass above 123 GeV tend to have more
or less one particular color and hence show the narrow
ranges of input parameters. This is because of our dedicated
searches: if we generated more data around some good
points, the corresponding ranges of those input parameter’s
color dominate (this is very much true for x and tan β).
These dedicated search effects will also appear in Fig. 6. In
the top right panel of Fig. 5, we see that the Higgs mass

FIG. 4. Plots in the m~χ0
1
−mH2

, m~χ0
1
−mA1

, and m~χ0
1
−m~τ1

planes for the moduli dominant SUSY breaking scenario.
The color coding is the same as in Fig. 2.

FIG. 5. Plots in the Ωh2 −mH1
plane for the dilaton dominant SUSY breaking scenario. The ranges of input parameters given in

Eq. (20) are shown in vertical bars.
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larger than 123 GeV requiresM3=2 ≳ 1 TeV. In the bottom
left panel, for mH1

≳ 123 GeV, we need tan β ≳ 35, but we
can see some green points at the top of the figure which
shows that the low bound on tan β can be relaxed. The
appearance of only blue points is just an artifact of
dedicated searches. In Fig. 7 one will see that the actual
tan β lower limit consistent with 123 GeV Higgs mass is
about 5.
We use Eqs. (17)–(19) to calculate m0, M1=2, and A0 as

functions of input parameters x and M3=2. We show our
results in Fig. 6. The color coding is the same as in Fig. 2.

As compared to the MDSB scenario, in the DDSB scenario
the input parameters x and M3=2 are less constrained under
various bounds we mentioned earlier. The patches of points
correspond to our dedicated searches. From the plots in the
first row of Fig. 6, we observe that the minimum value of
m0 consistent with all the constraints is about 0.7 TeV,
corresponding to x ≈ 0.6, but the maximum value of m0 ∼
5 TeV occurs at very small values of x. On the other hand,
the minimum value of m0 is correlated to M3=2 and
increases linearly with M3=2 up to 5 TeV. We also notice
here that the red points havem0 ≲ 3.5 TeV. The plots in the

FIG. 6. Plots ofm0,M1=2, and A0 as functions of x andM3=2 for the dilaton dominant SUSY breaking scenario. The color coding is the
same as in Fig. 2.
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second row display dependence of M1=2 on x and M3=2.
The minimum and maximum values of M1=2 consistent
with all the above mentioned constraints is about 2 TeVand
8.5 TeV, respectively. Finally, the plots in the third row
display that the allowed range of universal trilinear soft
term A0 is ½−8.5;−2� GeV. Such relative large values of
jA0j show the top squarks have larger mixing in the DDSB
scenario than the MDSB scenario. This implies that now A0

will share the burden of achieving the SM-like Higgs mass
around 125 GeV with top squarks. Using Eqs. (30)–(32),
we see that in the DDSB scenario, we have heavier spectra
as compared to the MDSB scenario.
In Fig. 7, we depict our results in the λ −mH1

(left panel)
plane and the tan β −mH1

(right panel) plane. In the left
panel we immediately see that the allowed values of λ
consistent with Higgs mass bounds as well is about 0.15,
which is slightly larger than what we got in the MDSB
scenario (λ ∼ 0.1). This slightly larger value of λ has very
important consequences on the Higgs sector. Similar to the
above discussions, with μeff ¼ λvS, vS should be larger than
666 GeV (taking μ ¼ 100 GeV). Thus, we have relatively
small vS, and then the masses of the CP-even HiggsH2,H3

and CP-odd Higgs A1 and A2 can have relatively smaller
values as compared to the MDSB scenario. In the right
panel of Fig. 7, we see that tan β can have any value
between 2 to 41.
In Fig. 8, we display plots in m~χ0

1
−mH2

, m~χ0
1
−mA1

, and
m~χ0

1
−m~τ1 . The color coding of Fig. 8 is the same as in Fig. 2.

The black solid lines indicate 2m~χ0
1
¼ mH2;A1

in the first row
and m~χ0

1
¼ m~τ1 in the second row. Here, we see that for red

points, the neutralino mass range is about [0.75, 2.7] TeV
while ∼½1.5; 5.5� TeV is the corresponding mass range of
mA1

. In the bottom panel, we present the LSP neutralino-stau
coannihilation scenario. We see that for red points m~τ1 is in
the mass range ∼½0.75; 2.7� TeV while without demanding
Ωh2 ≲ 1 (blue points), m~τ1 can be as heavy as 5.8 TeV. It is
very clear that in such a parameter space the gluino and the
first two-generation squarks/sleptons cannot be probed at the
14 TeV LHC, which will provide a strong motivation for

33 TeV and 100 TeV proton-proton colliders. It is shown in
Ref. [67] that the squarks/gluinos of 2.5 TeV, 3 TeV, and
6TeVmaybeprobed by theLHC14, high luminosityLHC14
and high energyLHC33, respectively. Thus, ourmodels have
testable predictions. If we have the collider facility with even
higher energy in the future,wewill be able to probe over even
larger values of sparticle masses.

C. The benchmark points for the MDSB
and DDSB scenarios

InTable I,wedisplay twobenchmark points for theMDSB
scenario. The first point is an example of a relatively light
sparticle spectrum. Here, λ ∼ 9.9 × 10−3 and tan β ∼ 26
while the light CP-even Higgs mH1

∼ 123 GeV. This point
is also an example of solutions where mH3

≈mA1
≈mH� .

The first two generation squarks are about 2.5TeVor heavier.
Sincegluino is about 3TeV, the light stop ~t1withmass around
2 TeV is the lightest colored sparticle. The ~t2 and ~b1;2 have
comparable masses of about 2.3 TeV. The sleptonmasses are
≲1 TeV. We also notice that the LSP neutralino and NLSP
stau are almost degenerate ≈596 GeV. The neutralino-
proton spin independent and spin dependent cross sections
are very small for this point that is ∼10−12 and 10−9,
respectively. The dark matter relic density is about 0.2.
For the second benchmark point, the input parameters have
relatively large values and then imply a heavier sparticle
spectrum. For example, x ≈ 0.93, M3=2 ≈ 4329 GeV,
tan β ≈ 28, and λ ≈ 1.6 × 10−2. The light CP-even Higgs
mH1

≈ 125 GeV. This point represents the part of the
parameter space with mH2

≈mA1
≈mH� . Here, the light

stop is also the lightest colored sparticle with mass around
2.8 TeV while the gluino mass is around 4.3 TeV. The first
two generations of squarks havemasses about 4TeV,while ~t2
and ~b1;2 have comparable masses about 3.4 TeV. The slepton
masses are about 1 TeV or heavier. Although the LSP
neutralino and the lighter stau are almost degenerate and,
respectively, have masses 923 GeV and 928 GeV, the dark
matter relic density is still about 0.65.

FIG. 7. Plots in the λ −mH1
and tan β −mH1

planes for the dilaton dominant SUSY breaking scenario. The color coding is the same as
in Fig. 3.
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In Table II, we display three benchmark points for the
DDSB scenario. Because we have already seen in Fig. 6
that the minimum required values form0 andM1=2 are large
as compared to the MDSB scenario, all these three points
have heavier spectra. Point 1 is relatively light as compared
to point 2 and point 3. For point 1, since x and M3=2 have
smaller values, this translates into relatively small values of
m0, M1=2, and A0 as 998.06 GeV, 1755.4 GeV, and
−1738.8 GeV, respectively. The light CP-even Higgs
boson is about 123 GeV. In these three points, we have
mH3

≈mA1
≈mH� . As in the MDSB scenario, the gluino is

heavier than the light stop, and they are about 3.7 TeV and
2.6 TeV, respectively. The first two family squark masses
are heavier than 3 TeV while ~t2 and ~b1;2 are about 2.9 TeV.
The first two generation slepton masses and ~τ2 are heavier
than 1 TeV. The LSP neutralino and light stau masses are
degenerate and about 773 GeV. Here, we also notice that
apart from representing the neutralino-stau coannihilation
scenario, this point also satisfies the A-resonance condition
j2m~χ1

1
−mA1

j=mA1
≲ 0.3. But it still has relatively large

dark matter relic density 0.23569 and small neutralino-
proton spin independent and spin dependent cross sections.
Moreover, point 2 and point 3 share similar properties but
have relatively heavier spectra.

VI. DISCUSSIONS AND CONCLUSION

We briefly reviewed the supernatural SUSY and
addressed its subtle issues. We pointed out that the
NMSSM is a perfect framework for supernatural SUSY
since unlike the MSSM it can be scale invariant and then
has no mass parameter in its Lagrangian before SUSY and
gauge symmetry breakings. To generate the SUSY break-
ing soft mass to singlet, we studied the moduli and dilaton
dominant supersymmetry breaking scenarios in M-theory
on S1=Z2. In these scenarios, SUSY is broken by one and
only one F term of moduli or dilaton superfield, and the
SUSY breaking soft terms can be determined via the Kähler
potential and superpotential from Calabi-Yau compactifi-
cation of M-theory on S1=Z2. Thus, according to the
supernatural SUSY, the SUSY EW fine-tuning measure
is predicted to be of unity order. In the moduli dominant
SUSY breaking scenario, we found that the right-handed
sleptons are relatively light around 1 TeV, and stau can even
be as light as 580 GeV and degenerate with the LSP
neutralino. Moreover, charginos are ≳1 TeV, the light stop
masses are around 2 TeVor larger, the first two-generation
squark masses are about 3 TeV or larger, and gluinos are
heavier than squarks as well. In the dilaton dominant SUSY
breaking scenario, the above qualitative picture is preserved

FIG. 8. Plots in the m~χ0
1
−mH2

, m~χ0
1
−mA1

, and m~χ0
1
−m~τ1 planes for the dilaton dominant SUSY breaking scenario. The color coding

is the same as in Fig. 2.
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but the particle spectra are heavier as compared to the
moduli dominant SUSY breaking scenario. In addition to it,
we have Higgs H2=A1-resonance solutions. In both scenar-
ios, the minimum value of DM relic density is about 0.2. To
realize the correct DM relic density, we can employ the
dilution effect from supercritical string cosmology or
introduce the axino as the lightest supersymmetric particle.
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mH2

993 2299 2924
mH3

1811 3252 3874
mA1

1811 3252 3874
mA2

1990 4013 4938
mH� 1812 3553 3874
m~χ0

1;2
773, 1442 1502, 2760 1830, 3346

m~χ0
3;4;5

1516, 2184, 2188 3263, 3864, 3867 4083, 4579, 4581
m~χ�

1;2
1442, 2188 2760, 3867 3346, 4582

m~g 3732 6770 8085
m ~uL;R 3472, 3339 6277, 6021 7491, 7180
m~t1;2 2556, 2998 4625, 5403 5515, 6446
m ~dL;R

3473, 3322 6277, 5987 7491, 7139
m ~b1;2

2950, 2950 5369, 5369 6416, 6416
m~ν1;2 1506 2827 3415
m~ν3 1372 2580 3117
m~eL;R 1508, 1184 2828, 2237 3416, 2710
m~τ1;2 774, 1381 1503, 2584 1834, 3121
σSIðpbÞ 8.96 × 10−12 2.62 × 10−12 1.92 × 10−12

σSDðpbÞ 2.95 × 10−9 3.40 × 10−10 1.79 × 10−10

ΩCDMh2 0.23569 0.74549 0.99767
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