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Recently the ATLAS and CMS Collaborations have reported evidence of a diphoton excess which may
be interpreted as a pseudoscalar boson Swith a mass around 750 GeV. To explain the diphoton excess, such

a boson is coupled to the Standard Model gauge fields via SF ~F operators. In this work, we consider the
implications of this state for early universe cosmology; in particular, the S field can acquire a large vacuum
expectation value due to quantum fluctuations during inflation. During reheating, it then relaxes to its
equilibrium value, during which time the same operators introduced to explain the diphoton excess induce a
nonzero chemical potential for baryon and lepton number. Interactions such as those involving right-
handed neutrinos allow the system to develop a nonzero lepton number and, therefore, this state may also
be responsible for the observed cosmological matter-antimatter asymmetry.
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I. INTRODUCTION

Recently, the ATLAS and CMS Collaborations have
reported evidence of a diphoton excess at an invariant mass
of mS ≈ 750 GeV [1,2]. One possible explanation for the
excess is the resonant process pp → S → γγ, where S is a
new scalar or pseudoscalar field with mass mS [3–5]. To
produce the signal, this field should couple to the SUð3ÞC
field strength tensor Ga

μν (for production from gluons) and
to the Uð1ÞQED field strength tensor Fμν (to enable decays
to two photons).
The discovery of beyond-the-Standard-Model physics

may have implications for unresolved issues such as the
nature of dark matter [6–13] and the matter-antimatter
asymmetry of the Universe [14,15]. While Ref. [14,15]
considered the impact of a 750 GeV scalar for electroweak
scale baryogenesis, we here show that a 750 GeV-scalar
pseudoscalar can produce the observed cosmological mat-
ter excess during an epoch of relaxation in the early
Universe, similar to the Higgs- and axion-relaxation lepto-
genesis scenarios discussed in [16–27].
The structure of this paper is as follows: In the sub-

sequent section, we introduce a concrete model with a
pseudoscalar field with a mass of 750 GeV. We then discuss
how the very operators introduced to explain the LHC
diphoton excess can also produce an effective chemical
potential in the early universe, if the pseudoscalar field

acquire a time-dependent vacuum expectation value
(VEV). Then in Sec. III, we discuss how a large VEV
can be produced during the inflationary epoch in the early
universe, which will subsequently relax to its equilibrium
value. In Sec. IV, we discuss the lepton-number-violating
processes in the early universe which, in the presence of the
chemical potential, result in a lepton asymmetry. The model
parameters are restricted by isocurvature constraints and
the fact that the entire observable universe is a domain of
baryon excess (as opposed to anti-baryonic excess). These
constraints are discussed in Sec. V. Finally, we present a
numerical analysis of the available parameter space in VI.

II. THE MODEL AND EFFECTIVE
CHEMICAL POTENTIAL

In order to explain the observed diphoton excess, we
supplement the Standard Model (SM) with a real singlet S
which interacts via the terms [3–5]:

L ⊃ ~λg
αs

12πvEW
SGa

μν
~Gμν
a þ ~λW

α

π sin2 θWvEW
SWa

μν
~Wμν
a

þ ~λB
α

π cos2 θWvEW
SBμν

~Bμν; ð1Þ

where θW is the weak mixing angle, and W and B are the
SUð2ÞL and Uð1ÞY field strength tensors, respectively.
After the Higgs boson acquires a nonzero vacuum expect-
ation value, the Lagrangian contains the couplings

L ⊃ ~λg
αs

12πvEW
SGa

μν
~Gμν
a þ ~λγ

α

πvEW
SFμν

~Fμν; ð2Þ
*kusenko@ucla.edu
†lpearce@umn.edu
‡louis.yang@physics.ucla.edu

PHYSICAL REVIEW D 93, 115005 (2016)

2470-0010=2016=93(11)=115005(10) 115005-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.93.115005
http://dx.doi.org/10.1103/PhysRevD.93.115005
http://dx.doi.org/10.1103/PhysRevD.93.115005
http://dx.doi.org/10.1103/PhysRevD.93.115005


where Fμν is the Uð1ÞQED field strength tensor, and
~λγ ¼ ~λW þ ~λB. Ref. [5] has explored the parameter space
in which this model reproduces the observed excess,
finding ~λγ ¼ 0.48� 0.08, although the lower values are
in some tension with dijet resonance searches. Production
via gluon interaction is controlled by ~λg ∼ 0.1 to 1. For
leptogenesis, we will make use of the operators with the
SUð2ÞL and Uð1ÞY gauge fields. These are O5 operators
with an effective scale of πvEW=α~λγ ∼ 105 GeV, although
as discussed in Ref. [5], these operators are generally
constructed from fermions with masses on the TeV scale.
Next, we show that these operators can lead to an

effective chemical potential for baryon and lepton number
when the S field has a time-dependent vacuum expectation
value (VEV). In the Standard Model, the baryon number
and lepton number currents (jμB and jμL) are not conserved;
baryon and lepton number can be violated by sphaleron
processes. The divergence of these currents is given by the
electroweak anomaly equation

∂μj
μ
B¼∂μj

μ
L¼

Nf

32π2
ð−g2Wa

μν
~Wμν
a þg02Bμν

~BμνÞ; ð3Þ

where Nf ¼ 3 is the number of families in the
Standard Model.
Using the anomaly equation, the terms in (1) generate a

coupling between the pseudoscalar S and the divergence of
the (Bþ L) current,

L ⊃ −~λW
8

NfvEW
S∂μj

μ
BþL ¼ ~λW

8

NfvEW
ð∂μSÞjμBþL; ð4Þ

where we have integrated by parts and dropped a total
derivative in the second step. This effective operator is valid
when electroweak sphalerons to be in thermal equilibrium;
in the early Universe, this occurs for temperatures below
T ≲ 1012 GeV [28,29].
For a patch of the Universe where the VEV hSi is

approximately spatially homogeneous but evolves in time,
this operator becomes

LO5
¼ ~λW

8

NfvEW
ð∂0hSiÞj0BþL: ð5Þ

which acts as an effective chemical potential

μ0 ¼ ~λW
8

NfvEW
ð∂0hSiÞ ð6Þ

for the Bþ L charge j0BþL.
We assume that the axion-like couplings in (1), which

are nonrenormalizable operators, are effective couplings.
These may be generated by integrating out a loop of
fermions which are heavy compared to 750 GeV. As noted

above, we expect these effective operators to break down
around the TeV scale. In the scenario outlined here, we will
consider temperatures in the early Universe above this. If
this operator is generated by a fermionic loop, these degrees
of freedom will typically acquire thermal corrections to
their masses, proportional to their coupling times the
temperature. For temperatures T ≫ 105 GeV, the thermal
masses will dominate. Similar finite temperature consid-
erations will apply to other mechanisms of generating the
O5 operators in (1). Therefore, we will use the effective
chemical potential

μ0 ∼
1

T
ð∂0hSiÞ: ð7Þ

The interpretation of the term in Eq. (5) as a chemical
potential [30,31] simplifies the analysis of the asymmetry
generation. However, in some cases, such an interpretation
may fail [32,33]. The effective chemical potential is a
valid approximation when there is a separation of scales:
the plasma interactions at temperature T are very rapid on
the time scales on which the scalar field is moving. In this
regime, one can introduce two Wilsonian cutoffs, one at
some high energy scale Λh and one at an energy scale Λl,
such that ð∂0hSi=hSiÞ ≪ Λl ≪ T. One can then integrate
out all degrees of freedom outside these two cutoffs and
construct an effective theory for the scales between Λl and
Λh. In this effective theory, the field S and its time
derivative are not propagating degrees of freedom, but
slowly varying external parameters. From the remaining
degrees of freedom, describing plasma at temperature T,
one can construct the Hamiltonian in the usual manner. The
term in Eq. (5) becomes μ0nBþL, where μ0 ∝ ∂0S is the
effective chemical potential.
We observe that this chemical potential, generated by the

relaxation of a scalar field, is similar to that in the models
considered in Refs. [16–19]; however, in this model μ0
depends on the time-derivative of hSi rather than the time-
derivative of hS2i. Consequently, the sign of hSi is
important to determining whether an excess of particle
or antiparticles is produced; this will lead to constraints
discussed in Sec. V below.

III. VACUUM EXPECTATION VALUE
DURING INFLATION

In the previous section, we demonstrated how the terms
between the 750 GeV pseudoscalar field and SM field
strengths introduced to explain the observed LHC excess
can themselves lead to an effective chemical potential for
baryon and lepton number in the early Universe, provided
that the pseudoscalar field acquired a time-dependent
vacuum expectation value. In this section, we explain
how this can naturally occur during inflation.
In addition to the LO5

operator discussed above, the
scalar S must have the canonical kinetic term, quadratic
coupling, and quartic self-coupling
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LS ¼
1

2
∂μS∂μS − 1

2
m2

SS
2 − 1

4
λSS4 ð8Þ

for the theory to be renormalizable. The LHC data
suggested that mS ≈ 750 GeV. During inflation, the scalar
field S can acquire a nonzero vacuum expectation value
(VEV), of magnitude S0 ≡

ffiffiffiffiffiffiffiffiffi
hS2i

p
due to quantum fluctu-

ations. The average initial VEV can be computed through
the Hawking-Moss instanton or via a stochastic approach
[34–38]. In the massive noninteracting limit (λS ¼ 0), the
average initial VEV has magnitude [39]

S0 ¼
ffiffiffi
3

2

r
H2

I

2πmS
≈ 0.19

H2
I

mS
; ð9Þ

where HI ≡
ffiffiffiffiffiffiffiffiffiffi
8π=3

p
Λ2
I =Mpl is the Hubble parameter dur-

ing inflation. For the massless interacting limit (mS ¼ 0),
the VEV is [39]

S0 ¼
ffiffiffiffiffiffiffiffiffi
Γð3

4
Þ

Γð1
4
Þ

s �
3

2π2λS

�
1=4

HI ≈ 0.36
HI

λ1=4S

: ð10Þ

At the end of inflation, the field rolls down classically to
the minimum of its potential. The relaxation of the VEV
after inflation provides the time-dependence in the chemi-
cal potential (6). The evolution of the VEV is governed by
the equation of motion,

S̈þ 3H _Sþ ΓS
_Sþ V 0ðSÞ ¼ 0; ð11Þ

where VðSÞ is the potential from Eq. (8), and ΓS is the
decay width of the S boson. The total decay width has been
explored in the parameter space for the diphoton excess in
Ref. [5]; it is constrained from below by

ΓðS → ggÞ ¼ 47 MeV · ~λ2g

�
mS

750 GeV

�
3

;

ΓðS → γγÞ ¼ 3.4 MeV · ~λ2γ

�
mS

750 GeV

�
3

; ð12Þ

although additional couplings between the S boson and
other fields can enhance the decay width. Ref. [5] found
that in the preferred region of parameters, a decay width
between Oð0.1Þ and Oð0.01Þ GeV is preferred. As in the
case of the Higgs relaxation, the evolution of the con-
densate can be treated as classical coherent motion as long
as the condensate decay width is not too large [40,41].
We note that this potential is invariant under S → −S,

and therefore when a nonzero vacuum expectation value
develops, domains with either sign generally occur, sep-
arated by domain walls. In regions where < S > has
different signs, the chemical potential given by (6) also
has different signs, which means that whether production

particles or antiparticles are biased depends on the sign of
the initial vacuum expectation value hSi.
We note that the potential implied by (8) will also

generally acquire finite temperature corrections, generally
of the form λSS2T2. We will focus below on the case in
which λS is small, and therefore these corrections are not
significant.

IV. LEPTON-NUMBER-VIOLATING
PROCESS—THE STANDARD
SEESAW MASS MATRIX

The results of the previous two sections establish that in
the early Universe, the pseudoscalar field S naturally
acquires a vacuum expectation value and subsequently
relaxes to its equilibrium value; furthermore, the very terms
introduced to account for the LHC diphoton excess lead to
a nonzero chemical potential which can bias the production
of particles or antiparticles. However, this can only occur if
the model also includes a lepton-number-violating process.
While there are myriad possibilities for this, we here
consider processes mediated by neutrino Majorana mass.
This is motivated by the well-known neutrino seesaw
mechanism [42–45].
Interactions mediated by a massive right-handed

Majorana fermion can violate lepton number, including
those shown in Fig. 1. These processes are suppressed by
the right-handed Majorana mass, which is required to be
large in the standard seesaw mechanism. In the scenario
considered here, this is advantageous: if the right-handed
Majorana mass is significantly larger than the reheat
temperature, then the production of a lepton asymmetry
via the production and decay of right-handed neutrinos (as
in [46,47]) is suppressed. We also note that we ensure that
maxðmS ¼ 750 GeV;

ffiffiffiffiffi
λS

p
S0Þ is smaller than MR, so that

decays of the condensate into right-handed neutrinos is also
suppressed.
The thermally averaged cross section for these processes

is [19]

σR ∼m2
ν=16πv4EW ∼ 10−31 GeV−2; ð13Þ

FIG. 1. Lepton-number-violating processes mediated by right-
handed neutrinos which generate a lepton asymmetry in the early
Universe.
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provided that the effective Higgs mass is less than the
temperature. Like the pseudoscalar S field, the Higgs field
can acquire a vacuum expectation value during inflation
such that mH;eff ∼HI, and it will subsequently also relax to
its equilibrium position. This relaxation may occur before
or after the relaxation of the pseudoscalar field; however,
we will show in Sec. VI that the asymmetry is generated
when the temperature T ≫ HI and so this expression for
the cross section is valid.
The heavy Majorana mass does suppress lepton-

violating processes in this model as well; however, this
is counterbalanced by the chemical potential (6), which can
be large if the pseudoscalar field relaxes to equilibrium
rapidly. We observe that the scattering processes can even
be out of thermal equilibrium (hσvin < H). The small
probability for a single particle to undergo a lepton-
number-violating interaction is counterbalanced by the fact
that we only need to generate a final asymmetry Oð10−10Þ
(and the number density remains significant).
In this analysis, we consider these lepton-number-

violating processes occurring in the plasma of particles
produced during reheating. (We note that because the
VEV is trapped at large values until the end of inflation,
the relaxation of the pseudoscalar field will generally
occur during reheating, without any fine-tuning neces-
sary.) This is similar to the processes considered in
Higgs relaxation analyses such as [16,19,21] and for
axion relaxation in [17]. An additional asymmetry is
produced by the decay of the condensate itself, as
analyzed for Higgs relaxation in [18] and axion relaxation
in [22,23].
With the inclusion of the right-handed Majorana neu-

trinos, we have all of the necessary ingredients for
relaxation-generated leptogenesis: an effective chemical
potential for lepton number, which is generated by a
field which acquires a large VEV during inflation that
subsequently relaxes to equilibrium, and lepton-number-
violating processes which can occur during this
relaxation.

V. DOMAIN SIZE AND BARYONIC
ISOCURVATURE CONSTRAINT

Equations (9) and (10) give the magnitude of the average
vacuum expectation value of the S field; however, as the
vacuum expectation value is produced via quantum fluc-
tuations, different patches of the Universe will generally
have different VEVs. In relaxation leptogenesis scenarios,
the lepton asymmetry depends on the initial VEV of the
field, and therefore, each patch of the Universe could have a
different final asymmetry. As discussed above, not only the
magnitude, but also the sign of the final lepton/baryon
asymmetry of the Universe is determined by the VEV.
Consequently, in this model the Universe would be divided
between domains with a matter excess and domains with
an antimatter excess. Therefore, the observable Universe

must fit inside a patch with a single sign of the VEV.
Similar concerns apply to many models of spontaneous
baryogenesis [30,31].
We note that Z2 symmetry of the potential Eq. (8) is

broken by the interactions in Eq. (1). Through renorm-
alization group equations, these interactions could pro-
duce linear or cubic terms in the potential. Consequently,
one of the two vacua could have a lower energy. If the
energy difference is larger than the inflationary
Hubble parameter, this vacuum would dominate during
inflation, which would suppress the production of
domain walls.
In this section, we will first calculate the constraint from

avoiding domain walls in the limit of an exact Z2

symmetry, which is the most constraining scenario.
Then we will discuss baryonic isocurvature and show
that this leads to stronger constraints than concerns about
domain walls.
The characteristic size of one domain can be estimated

by the correlation length of the field S during de Sitter
expansion. The spatial physical correlation radius Rc is
given by [39]

Rc ¼ H−1
I exp

�
HItc
2

�
; ð14Þ

where tc is the correlation time. For the massive non-
interacting limit (λS ¼ 0),

tc ¼ 3ðln 2ÞHI

m2
S
: ð15Þ

For the massless interacting limit (mS ¼ 0),

tc ≈
7.62

HI
ffiffiffiffiffi
λS

p : ð16Þ

To avoid domain walls, our observable patch of the
Universe has to be within one domain. This patch has a
physical radius

RRH ≃ RnowTnow=TRH ∼ 5 × 1029=TRH ð17Þ

at the end of reheating. During reheating, the patch grows
by a factor of

RRH=R0 ≃ ðΛ4
I =T

4
RHÞ1=3: ð18Þ

Thus, the patch of our observable Universe corresponds to a
patch with radius
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R0 ≃ RnowTnow

�
TRH

Λ4
I

�
1=3

≃ RnowTnow

�
3

π3g�

�
1=12M1=6

pl Γ1=6
I

Λ4=3
I

¼ H−1
I RnowTnow

ffiffiffiffiffiffi
8π

3

r �
3

π3g�

�
1=12
�
Λ4
IΓI

M5
pl

�
1=6

∼ 8 × 1029
�
Λ4
IΓI

M5
pl

�
1=6

H−1
I

≈ 2 × 1023
�

ΛI

1013 GeV

�
2=3
�

ΓI

104 GeV

�
1=6

H−1
I

ð19Þ
at the end of inflation, where ΓI is the inflaton decay rate
parameter. For our observable Universe to be within one
domain, the correlation radius has to be Rc ≳ R0, which
gives

HItc
2

≳ 53.8þ 2

3
ln ðΛI=1013 GeVÞ þ 1

6
ln ðΓI=104 GeVÞ:

ð20Þ
This imposes constraints

HI

mS
≳ 7.19þ 0.05 ln ðΛI=1013 GeVÞ

þ 0.01 ln ðΓI=104 GeVÞ ð21Þ
for the massive noninteracting case, and

λS ≲ 5.02 × 10−3½1 − 0.09 ln ðΛI=1013 GeVÞ
−0.02 ln ðΓI=104 GeVÞ� ð22Þ

for the massless interacting case.
Furthermore, baryonic isocurvature perturbations are

constrained by the observations of cosmic microwave
background [48–52]. The upper bound on the baryonic
isocurvature perturbation imposed by observations by the
Planck satellite is [52–54]

jSbγj ¼
���� δYB

YB

����≲ 5.0 × 10−5: ð23Þ

To satisfy baryonic isocurvature constraints, and to protect
against matter-antimatter domain walls, we require that the
observable Universe be contained within a single matter
domain in which the initial VEV hSi does not vary
significantly.
We will show in Sec. VI below that the baryon

asymmetry YB ¼ nB=s ∝ S in this particular model where
we generate the asymmetry through operator (5). The
isocurvature constraint leads to a condition on the variation
of the initial VEV of S,

���� δSS0
���� ¼
���� δYB

YB

����≲ 5.0 × 10−5: ð24Þ

The variation of hSi about S0 is δS ¼ HI=2π in a de Sitter
space. Thus, this constraint gives

mS

HI
≲ 6.1 × 10−5 ð25Þ

for the massive noninteracting scenario, and

λS ≲ 1.7 × 10−16 ð26Þ

for the massless interacting scenario. As expected, these are
stronger than the requirement that the observable Universe
be contained within a domain of the same sign.
We note that in Higgs relaxation scenarios, such as those

in Ref. [16,18,19,21], it was necessary to introduce new
nonrenormalizable couplings to evade the baryonic iso-
curvature constraints. That is not necessary here, because of
the large amount of freedom in the quartic coupling.

VI. RESULTING ASYMMETRY

In the model introduced, we have shown how a chemical
potential is generated, andwith the lepton-number-violating
interactions, the system will approach its equilibrium state
of nonzero lepton number. In general, the system will not
reach its equilibrium state during the rapid relaxation
of theS field, and soweanalyze thegenerationof thenonzero
lepton number with the Boltzmann equation (see the
derivation in [19]),

dnL
dt

þ 3HnL ¼ − 2T3σR
π2

�
nL − 2

π2
μ0T2

�
; ð27Þ

where σR is the thermally averaged cross section given
by (13).
Following the analysis in [16] (setting Mn ¼ Trlx), we

derive an analytic approximation for the resulting asym-
metry. During the S field relaxation, we approximate the
chemical potential as

μ0 ∼
S0

Trlxtrlx
; ð28Þ

using (7). This gives the approximate lepton number
density at time trlx as

nL;rlx ∼
2S0Trlx

π2trlx
min

�
1;

2

π2
σRT3

rlxtrlx

�
: ð29Þ

The largest asymmetry is produced during the initial
relaxation of the hSi field. If the oscillations of the hSi
field are not significantly damped, there will be substantial
wash-out (as the chemical potential changes sign during the
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oscillations). Furthermore, even after the oscillations end
and the chemical potential goes to zero, ongoing lepton-
number-violating processes will equilibrate the system
towards zero lepton number until they go out of equilib-
rium. Therefore, we see that a large Majorana mass MR is
again desirable. During this washout, the system satisfies
the approximate Boltzmann equation,

dNL

dt
¼ − 2T3σR

π2
NL; ð30Þ

which leads the following scaling for the lepton number
NL ≡ nLa3 before and after reheating ends (at T ¼ TRH
and t ¼ tRH ≡ 1=ΓI),

NLðTÞ
NLðT0Þ

¼

8>>>>><
>>>>>:

exp
h
− 8

π2
σRT4

RH
ΓI

ðT−1 − T−1
0 Þ
i

T and T0 ≥ TRH

exp
h
− ffiffiffiffi

15
p
π2

σRT2
RH

ΓI
ðT0 − TÞ

i
T and T0 ≤ TRH:

ð31Þ

The asymptotic value of NL at late times is

NLðT → 0Þ ≈ NLðTrlxÞ exp
�
− 8þ ffiffiffiffiffi

15
p

π2
σRT3

RH

ΓI

�
; ð32Þ

for trlx < tRH, and

NLðT → 0Þ ≈ NLðTrlxÞ exp
�
−

ffiffiffiffiffi
15

p

π2
σRT2

RHTrlx

ΓI

�
ð33Þ

for trlx > tRH, where NLðTrlxÞ can be found using (29).
From this, we find the final ratio of the lepton asymmetry to
entropy,

Y ¼ nL
s

ð34Þ

≈
45

2π2g�

nL;rlx
T3
RH

NLðT → 0Þ
NLðTrlxÞ

�
arlx
aRH

�
3

ð35Þ

≈
45

2π2g�

�
2

π2

�
2

σR
S0
Mn

T5
rlxt

2
rlxΓ2

I

T3
RH

× exp

�
− 8þ ffiffiffiffiffi

15
p

π2
σRT3

RH

ΓI

�
ð36Þ

for trlx < tRH, and

Y ≈
45

2π2g�

nL;rlx
T3
rlx

NLðT → 0Þ
NLðTrlxÞ

≈
45

2π2g�

�
2

π2

�
2

σR
S0
Mn

T2
rlx exp

�
−

ffiffiffiffiffi
15

p

π2
σRT2

RHTrlx

ΓI

�
ð37Þ

for trlx > tRH at the end of reheating when the oscillation of
the scalar field has ended.
In general, the asymmetry is larger for the massive

noninteracting case than the massless interacting case, that
is, when the S2 term dominates the potential instead of the
S4 term. This may require fine-tuning the quartic coupling
to small values, which we discuss below. For the massive
noninteracting case, one can approximate trlx ≈ π=mS,
provided that mS ≪ HI [39]. Trlx, the temperature when
the field relaxes at time trlx, is

Trlx ≈

8>><
>>:

TRH

�
mS
πΓI

	
1=4

trlx < tRH�
45

16π3g�

	
1=4

ffiffiffiffiffiffiffiffiffiffi
MplmS

π

q
trlx > tRH:

ð38Þ

The reheat temperature is TRH ≈ ð3=π3Þ1=4g−1=4�
ffiffiffiffiffiffiffiffiffiffiffiffi
MplΓI

p
where Mpl is the Planck mass. Using these, the lepton
asymmetry can be expressed as

Y ¼ nL
s

≈
45ffiffiffiffiffiffiffiffiffiffiffiffi
2π9g�

p σRH2
I

T3
RH

Mplm2
S

× exp

 
− 8þ ffiffiffiffiffi

15
p

π7=2

ffiffiffiffiffi
3

g�

s
σRMplTRH

!
ð39Þ

≈ 8 × 10−8
�

σR
10−31 GeV−2

��
HI

5 × 1010 GeV

�
2

×

�
TRH

5 × 109 GeV

�
3
�
750 GeV

mS

�
2

× exp



−7 × 10−4

�
σR

10−31 GeV−2

��
TRH

5 × 109 GeV

��
ð40Þ

for trlx < tRH, and

Y ≈
�

45

π3g�

�
5=4

ffiffiffiffiffiffiffi
3

8π9

r
σRH2

I

ffiffiffiffiffiffiffiffi
Mpl

mS

s

× exp



−
�

45

π3g�

�
3=4 σR

2π5=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M3

plmS

q �
ð41Þ

≈ 2 × 10−8
�

σR
10−31 GeV−2

��
HI

1010 GeV

�
2
�
750 GeV

mS

�
1=2

× exp



−1.3 × 10−4

�
σR

10−31 GeV−2

��
mS

750 GeV

�
1=2
�

ð42Þ

for trlx > tRH. These estimation formulas agree within 1
order of magnitude with the numerical results.
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While these are useful analytic approximations, we can
also solve the full Boltzmann equation numerically (using
the exact cross section σR given in Ref. [19]). We have done
this to explore the available parameter space as a function
of S0 and Tmax, which is shown in Fig. 2. We note that the
initial VEV of the pseudoscalar field fixes the inflationary
scale by equation (9) and the relation

HI ¼
ffiffiffiffiffiffi
8π

3

r
Λ2
I

Mpl
: ð43Þ

The inflaton decay parameter ΓI is the fixed by the
maximum temperature reached during reheating via [55]

Tmax ¼


30

π2

�
3

8

�
8=5 2

3

ffiffiffiffiffiffi
3

8π

r
Λ2
IΓIMpl

g�

�1=4
; ð44Þ

where g� ≈ 107 is the total number of effectively massless
degrees of freedom; we assume that the 750 GeV boson and
related fields do not significantly alter this from the
Standard Model value.
As noted above, the right-handed neutrinos enable the

production of a lepton asymmetry via thermal leptogenesis,
with a lepton-to-photon ratio

ηth ¼
nL;th
nγ

≈ ϵ

�
MRTmax

2π

�
3=2 e−MR=Tmax

T3
max

; ð45Þ

where we have taken ϵ ≈ 3MRMν=16πv2EW for the CP
asymmetry parameter in the lepton sector [56]. (This
estimate is found by multiplying the asymmetry parameter
by the ratio of nonrelativistic right-handed neutrinos to
photons at the temperature Tmax.) We note that this is an
optimistic estimate for the asymmetry from the thermal
decay of right-handed neutrinos, as washout effects and
small CP-violating phases can further suppress this. This
will be suppressed by a factor ∼30 due to the entropy
production resulting with the Standard Model particles go
out of thermal equilibrium. For the results shown in Fig. 2,
we have fixed MR by setting ηth ¼ 10−10, so that the
mechanism discussed here dominates the lepton asymme-
try. (We have verified that for these values, the neutrino
coupling constant y ¼ MRMν=v2EW is in the perturbative
regime, taking Mν ≈ 0.1 eV.) We have shown some con-
tours of MR on Fig. 2.
Over the parameter space of interest, the inflationary

scale ΛI ranges from 1013 GeV (at S0 ¼ 1014 GeV) to
1014 GeV (at S0 ¼ 1018 GeV). Using (43), we see that
Tmax ≫ HI , which validates the use of the cross section
(13). Contours for ΓI, which is significantly smaller, are
shown on the plot.
The blue region on the right of Fig. 2 is excluded because

the energy density of the pseudoscalar condensate comes to
dominate the energy density of the Universe. This can be
understood as follows: Before the pseudoscalar field S
relaxes, its energy density is approximately constant and
equal to VS ¼ m2

SS
2
0=2. However, the energy density in the

inflaton field and in radiation is decreasing. The relaxation
time, trlx ¼ π=mS, is less than 1=ΓI , and therefore the energy
density of the inflaton field still dominates the potential,
with ρI ≈m2

pl=6πt
2. Imposing VS < ρIðtrlxÞ constrains S0 <

mpl=
ffiffiffiffiffiffiffi
3π3

p
≈ 1018 GeV.

We note that constraint (25) imposes S0 ≳ 4 × 1010 GeV,
which does not eliminate any of the parameter space inwhich
a sufficiently large asymmetry is generated.
In Fig. 2, we have set the decay width of the S boson to

0.1 GeV, near the upper bound of the range suggested by
LHC data [5]. ΓI is less than 0.1 GeV only beneath the
dashed line in the lower right, which means that for much of
the parameter space ΓS < ΓI , and the S condensate is
relatively long lived. While the condensate is oscillating its
energy density is diluted like matter, while after reheating
has ended, the plasma loses energy as a−4. Consequently, it
is possible for the condensate to come to dominate the
energy-momentum density during oscillations, and its
decay would significantly re-reheat the Universe. We have
excluded this region in gray in the plot (under the
approximation that coherent oscillations of the S conden-
sate begin instantly at trlx).
We note that finite temperature corrections may affect

ΓS. Decay widths to light Standard Model fermions
will be suppressed as T−3 due to temperature corrections

FIG. 2. The final lepton asymmetry as a function of parameter
space for the massive noninteracting scenario. The dashed lines
indicate contours of constant right-handed neutrino massMR and
the dashed lines indicate contours of constant ΓI (the decay rate
of the inflaton). In the shaded region on the right, the pseudo-
scalar condensate comes to dominate the energy density of the
Universe.
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to the fermionic masses. However, decay widths to dark
sector particles may or may not be similarly affected,
depending on the strength of their coupling to electrically
charged Standard Model fields. If the decay width ΓS is
further suppressed in the early Universe, the pseudoscalar
field undergoes coherent oscillations for longer and the
bound represented by the gray region becomes more
severe.
In Fig. 2, we have restricted our maximum temperature to

1012 GeV. As noted above, at this temperature electroweak
sphalerons go out of thermal equilibrium, and therefore, the
replacement of the couplings in Eq. (1) with the baryon and
lepton current in (4) is invalid. However, as shown in Fig. 3,
most of the lepton asymmetry is produced after the temper-
ature has reached its maximum value. Therefore, there
should be some parameter space available at larger temper-
atures. However, a complete analysis of the situation in
which the electroweak sphalerons are in thermal equilibrium
during only part of the evolution of the pseudoscalar
condensate is beyond the scope of this paper.
As we mentioned above, this analysis is for the

massive noninteracting scenario, in which the potential
is dominated by the quadratic term. This is valid for quartic
terms λS < 2m2

S=S
2
0. For this hold to S0 ¼ 1018 GeV

requires λS < 10−30, or to hold to S0 ¼ 1015 GeV requires
λS < 10−24. It would be difficult to arrange such small
couplings without some degree of fine-tuning, unless the S
boson is embedded in a larger scalar sector, such that the
potential has a flat direction. (Note that in contrast to
Affleck-Dine baryogenesis [57,58], such a flat direction
would not need to carry lepton or baryon number.)
In themassless interacting scenario, we have an additional

degree of freedom corresponding to λS. To explore the
parameter space, we set Tmax ¼ 1012 GeV, since in the
massive case a significant asymmetry was produced only
near this limit. Fixing ηth ¼ 10−10 setsMR ≈ 2 × 1013 GeV,
and as before, we have taken ΓS ¼ 0.1 GeV.

The results are shown in Fig. 4. The scale of inflation is
set by

Λ2
I ¼ MplS0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Γð1=4Þ
8πΓð3=4Þ

s �
2π2λS
3

�
1=4

; ð46Þ

In this plot, it ranges fromOð1012 GeVÞnearS0 ¼ 1010 GeV
and λS ¼ 10−13 to Oð1015 GeVÞ near S0 ¼ 1018 GeV and
λS ¼ 10−30. Contours of constant ΓI are shown; we have
marked the region in which no inflation occurs because
ΓI > HI in the lower left.
In the upper right, washout is strong enough that the

lepton asymmetry nL oscillates through zero. We note that
the quartic potential is steeper than the quadratic potential;
consequently, the pseudoscalar VEV relaxes to its equilib-
rium value faster. This increases μ0 given by Eq. (7), but the
system has less time in which to generate the asymmetry.
Furthermore, the VEV continues to evolve quickly during
its oscillation, leading to relatively large chemical poten-
tials during this epoch. Therefore, washout is a more severe
problem in the quartic potential. This can be alleviated if
the pseudoscalar field S were to acquire a larger decay
width ΓS; this increases the effective friction which
decreases the amplitude of the oscillation (in addition to
slowing the relaxation).
We see that generating a sufficiently large asymmetry

generally requires a small λS, although not quite a small as
required for the quadratic term to dominate the potential.
A sufficiently large asymmetry can be generated with
λS ∼ 10−20 if S0 ∼ 1015. This is more stringent than limit
(26), which is shown by the black dashed line.

FIG. 3. The evolution of the lepton asymmetry as a function of
time for the parameters indicated. The dashed vertical lines
indicate the time of maximum temperature, the beginning of the
radiation dominated era, and the first time the S VEV crosses
zero, from left to right.

FIG. 4. The final lepton asymmetry as a function of parameter
space for the quartic potential and Tmax ¼ 1012 GeV. In the lower
left section, ΓI > HI , and so there would be no inflationary
epoch. In the upper right section, nL oscillates through zero. The
black dashed line shows the constraint (26), while the gray dotted
lines show contours of constant ΓI .

KUSENKO, PEARCE, and YANG PHYSICAL REVIEW D 93, 115005 (2016)

115005-8



As mentioned above, a larger asymmetry can be
generated if we consider higher temperatures. We note,
however, that equation (45) would imply a nonperturba-
tive coupling for the neutrino sector for Tmax >
1.4 × 1013 GeV. However, a small CP-violating phase
in the neutrino can relax this.

VII. CONCLUSIONS

Observations of the 750 GeV diphoton excess at the
LHC has motivated the consideration of a pseudoscalar
field which couples to the electromagnetic field strength
[3–5]. To generate this operator, the pseudoscalar field S
should couple to the fundamental SUð2ÞL and/or Uð1ÞY
field strengths. The first of these couplings generates a
chemical potential for lepton and baryon number in the
early Universe, as the pseudoscalar field relaxes from a
large vacuum expectation value naturally generated by
quantum fluctuations during inflation. In the presence of
lepton-number-violating interactions, such as those medi-
ated by heavy right-handed neutrinos, a nonzero lepton
asymmetry is produced, which is transferred to baryons via
electroweak sphalerons.

We have explored the parameter space in which a
sufficiently large asymmetry is generated via this mecha-
nism for both a quadratic and quartic potential. In particu-
lar, there are regions of parameter space in which a
sufficiently large asymmetry is generated through this
mechanism while the asymmetry generated by thermal
leptogenesis is insufficient. We have also considered
constraints from the condition that the entire observable
Universe have a particle excess (in contrast to an anti-
particle excess) and baryonic isocurvature observations.
These do not restrict the available parameter space. This is
in contrast to the Higgs relaxation models [16,19,21], in
which additional nonrenormalizable couplings were
required to satisfy isocurvature constraints.
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