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The rare kaon decays K → πνν̄ are strongly suppressed in the standard model and widely regarded as
processes in which new phenomena, not predicted by the standard model, may be observed. Recognizing
such new phenomena requires a precise standard model prediction for the branching ratio of K → πνν̄ with
controlled uncertainty for both short-distance and long-distance contributions. In this work we demonstrate
the feasibility of lattice QCD calculation of the long-distance contribution to rare kaon decays with the
emphasis on Kþ → πþνν̄. Our methodology covers the calculation of both W-W and Z-exchange
diagrams. We discuss the estimation of the power-law, finite-volume corrections and two methods to
consistently combine the long-distance contribution determined by the lattice methods outlined here with
the short-distance parts that can be reliably determined using perturbation theory. It is a subsequent work of
our first methodology paper on K → πlþl−, where the focus was made on the γ-exchange diagrams.
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I. INTRODUCTION

The ultrarare kaon decays K → πνν̄ have attracted
increasing interest in recent decades. As flavor changing
neutral current processes, these decays are highly sup-
pressed in the standard model (SM) and thus provide ideal
probes for the observation of new physics effects. In
addition, the dominant, standard model contribution from
the top quark loop to K → πνν̄ decays makes these
processes very sensitive to the Cabibbo-Kobayashi-
Maskawa (CKM) quark mixing matrix elements, Vts and
Vtd. Therefore these decays can be used to determine Vtd in
particular in a complementary and independent manner to
B decays.
Experimentally K → πνν̄ decays represent a very sub-

stantial challenge. The first upper limit on the Kþ → πþνν̄
branching ratio was set by the heavy-liquid bubble chamber
experiment in 1969 [1]. It then took almost 30 years to
actually observe the first Kþ → πþνν̄ event in the E787
experiment at the Brookhaven National Laboratory (BNL)
in 1997 [2]. The current value for the branching ratio [3],

BrðKþ → πþνν̄Þexp ¼ 1.73þ1.15
−1.05 × 10−10; ð1Þ

is a combined result based on the seven events collected by
BNL E787 [2,4–6] and its successor E949 [3,7]. The new
experiment, NA62 at CERN [8], aims at an observation of

Oð100Þ events and a 10%-precision measurement of
BrðKþ → πþνν̄Þ. In the coming decades Kþ → πþνν̄
decays are therefore likely to lead to precision determi-
nations of the SM parameters and stringent tests of possible
effects of new physics.
The search for the decays KL → π0νν̄, with only neutral

particles in the initial and final states, is even more
challenging experimentally. Indeed, KL → π0νν̄ events
have never been observed and currently there is only the
upper bound for the branching ratio,

BrðKL→ π0νν̄Þ≤2.6×10−8 at90%confidence level; ð2Þ

set by the E391a experiment at the 12 GeV proton
synchrotron at KEK in 2010 [9]. This bound is 3 orders
of magnitude larger than a recent SM prediction [10],

BrðKL → π0νν̄ÞSM ¼ ð3.00� 0.30Þ × 10−11: ð3Þ

The new KOTO experiment at J-PARC [11] will be
sensitive to much lower branching ratios than that given
by the bound in Eq. (2), indeed to ones also below the
Grossman-Nir model-independent upper bound [12],
BrðKL → π0νν̄Þ < 4.4BrðKþ → πþνν̄Þ. KOTO will thus
explore much of the parameter space of theories beyond the
standard model (BSM).
On the theoretical side, K → πνν̄ decays are known to be

short-distance (SD) dominated. The required hadronic
matrix elements can be obtained from measurements of
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charged-current semileptonic kaon decays, such as Kþ →
π0eþν decays. We will explain in more detail in the next
section that the long-distance (LD) contributions, i.e.
contributions from distances on the order of, or larger
than, the inverse of the mass of the charm quark, are safely
neglected in KL → π0νν̄ decays and are expected to be
small in Kþ → πþνν̄ decays. However, a lattice QCD
calculation of these effects may be required to convincingly
establish their size and will become necessary when a
precise comparison between the SM prediction and the
NA62 or future measurements is required. The purpose of
this paper is to set out the framework necessary for the
lattice computation of long-distance effects in Kþ → πþνν̄
decays.
In our earlier paper [13] we had proposed a method for

the computation ofK → πlþl− decay amplitudes (where l
is a charged lepton) using lattice QCD and focusing on the
dominant γ-exchange diagrams. In this work we extend the
discussion to K → πνν̄ decays which requires us to include
the W −W and Z-exchange diagrams. In addition to
Ref. [13], our work builds on several other earlier studies.
In Ref. [14] it had been first proposed to use lattice QCD to
calculate the LD contributions to rare kaon decay ampli-
tudes, including those for K → πνν̄ decays. That paper
focused on the ultraviolet divergences which appear in the
integral over the separation of the two operators (two weak
operators in the case of K → πνν̄ decays) as the two
operators approach each other. For the γ-exchange dia-
grams which give the dominant contribution to K →
πlþl− decays, the authors stressed the importance of
using the conserved electromagnetic current to reduce
the degree of divergence and to control this short-distance
divergence. For the axial current, necessarily present when
calculating K → πνν̄ decay amplitudes, this is a more
involved problem, particularly with the use of Wilson
fermions considered in Ref. [14]. Below we explain how
to deal with the corresponding SD divergences when using
domain wall fermions, a formulation which respects chiral
symmetry to good precision. We have also benefited from
the methods developed by the RBC-UKQCD collaboration
in their computations of long-distance effects in second-
order electroweak processes [15,16]; methods which have
been successfully applied to the lattice calculation of the
KL − KS mass difference [17,18] and are currently being
applied to the evaluation of the long-distance contribution
to the indirect CP-violating parameter ϵK [19].
The paper is organized as follows: We first introduce the

phenomenological background for K → πνν̄ decay with an
emphasis on the LD contributions in Sec. II. Then, in
Sec. III, we describe the detailed methodology proposed to
calculate this long-distance part using lattice QCD, spe-
cifically for the case of Kþ → πþνν̄. The technical issue of
how to use the standard, perturbative, short-distance result
for Kþ → πþνν̄ to determine the new low-energy constant
that appears in the second-order effective theory used in our

lattice calculation is described in Sec. IV. In Sec. V we
discuss the power-law, finite-volume effects which must be
subtracted in order to obtain the physical, infinite volume
result with sufficient precision. A summary and conclu-
sions are presented in Sec. VI. Finally, Appendixes A, B, C
and D describe the relation between the Minkowski- and
Euclidean-space amplitudes used in this paper, the con-
ventions adopted for the mesonic and leptonic states, the
extraction of the scalar amplitude FWWðpK; pν; pν̄Þ char-
acterizing the W −W exchange diagrams and the method
used to remove the unphysical contribution of intermediate
states with energy below MK, respectively.

II. PHENOMENOLOGICAL BACKGROUND

In the SMK → πνν̄ decays are second-order electroweak
processes, involving W-W exchange diagrams (diagrams
which contain two W-boson exchanges) and Z-exchange
diagrams (diagrams which contain a W- and Z-boson or a
W-W-Z vertex). As explained below, the dominant contri-
bution comes from diagrams inwhich a top quark propagator
explicitly appears. The corresponding contribution from the
propagation of the charm quark is suppressed by a factor of
ðmc=MWÞ2 through the Glashow-Iliopoulos-Maiani (GIM)
mechanism but is enhanced by a factor of logMW=mc. Here
mc andMW are the masses of the charm quark andW-boson
respectively. In the CP-violating decay KL → π0νν̄, the
amplitude depends on the imaginary parts of the CKM
matrix elements and this provides a further suppression of the
charm-quark contribution. As a result of the strong suppres-
sionof the charmquark contribution, this decay is completely
SD dominated and is one of the theoretically cleanest places
to search for the effects of new physics. The absence of LD
contributions implies that a lattice QCD calculation of
KL → π0νν̄ decays is unnecessary.
The situation is different however, for the CP-conserving

decays KS → π0νν̄ and Kþ → πþνν̄. For these decays the
real parts of the CKM matrix elements enhance the charm
quark contribution (estimated to be about ∼29% of the total
amplitude [20]) and even the contribution of the up quark is
not completely negligible (∼3% of the total amplitude [20]).
The decay length of the KS meson is so short that

KS → π0νν̄ decays are currently unobservable experimen-
tally. The CERN NA62 experiment, with its higher energy
beam, could in principle place the detector close enough to
the target but studies are still required to see whether it
could withstand the high intensities which would be present
[21]. KOTO instead has a low-energy beam which results in
a decay length which is too short to be observed. We
therefore concentrate our investigation on the Kþ → πþνν̄
decays which are already being studied by the NA62
experiment, with data taking having started in the summer
of 2015 [8].
In contrast to the KL − KS mass difference, where the

charm quark contribution has a large nonperturbative
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component [17,18,22], for Kþ → πþνν̄ decays the contri-
bution of the charm quark is expected to be
predominantly perturbative and come from SD effects. A
one-loop perturbative calculation of the electroweak inter-
actions performed by Inami and Lim [23] shows that the
charm quark contribution to the decay amplitude is propor-
tional to − 3

4
xc log xc − 1

4
xc, where xc ¼ m2

c=M2
W . Here, the

logarithmic term xc log xc is the largest part of the charm
contribution, which suggests that the dominant energy scale
lies between MW and mc. However, when the leading-log
QCD corrections, which sum those terms of the form
xcαns lnnþ1xc to all orders in αs, are included it is found that
the SD, charm-quark contribution is suppressed by 35%
[24–26], relative to the leading-order, Inami-Lim result.
This large suppression has two consequences. First it

motivates the work to include the SD QCD effects to
higher orders in perturbation theory [27–29]. Second it
gives increased importance to the LD QCD contributions
coming from energy scales at or below the charm quark
mass. This makes the first-principles, lattice calculation of
these LD QCD effects increasingly necessary for the
comparison between SM predictions and future experi-
mental results for this decay.
A very recent SM prediction for the Kþ → πþνν̄

branching ratio is given by [10]

BrðKþ → πþνν̄ÞSM ¼ ð9.11� 0.72Þ × 10−11: ð4Þ

To understand the origin of the uncertainty in Eq. (4), we
write the branching ratio as in Eq. (4.5) of Ref. [30]:

BrðKþ → πþνν̄ÞSM ¼ κþð1þ ΔEMÞ ·
��

Imλt
λ5

XtðxtÞ
�

2

þ
�
Reλc
λ

Pc þ
Reλt
λ5

XtðxtÞ
�

2
�
: ð5Þ

In Eq. (5), ΔEM is the electromagnetic correction, λ ¼ jVusj
and λq ¼ V�

qsVqd are CKM (or products of CKM) matrix
elements, XtðxtÞ is the top-quark contribution (with
xt ¼ m2

t =M2
W) and Pc is the total charm quark contribution.

More precisely, we have included the up quark contribution
in both Xt and Pc, eliminating λu by using the unitarity
relation λu þ λc þ λt ¼ 0. We distinguish two contributions
to Pc,

Pc ¼ PSD
c þ δPc;u; ð6Þ

where PSD
c is the SD contribution coming from energy

scales above the charm quark mass. The remaining LD
contribution, denoted as δPc;u, includes contributions from
both the charm and up quark loops. The parameter κþ in
Eq. (5) contains the remaining factors, including the
hadronic matrix element from semileptonic Kþ decay.
The dominant uncertainty in Eq. (4) arises from the SM

input parameters, especially the CKM matrix elements.
Because of the dominance of the top quark contribution
XtðxtÞ, the CKM matrix elements in λt associated with the
top quark have a large impact on the branching ratio. In
order to make a more precise SM prediction it is therefore
necessary to know these CKM matrix elements more
accurately. On the other hand, as a result of higher-order
perturbative calculations, especially the next-to-leading
order QCD [31,32] and the two-loop electroweak correc-
tions [30] to the top quark contribution XtðxtÞ, as well as
the next-to-next-to leading order QCD [28,29] and the
NLO electroweak corrections [33] to the charm quark
contribution PSD

c , the omitted, higher-order perturbative
effects in the top and SD charm quark contributions are no
longer the main source of theoretical uncertainty.

Although the size of the LD contribution is estimated to
be small, it now contributes a significant, if still subdomi-
nant, source for the SM uncertainty. Reference [34] gives a
phenomenological estimate of this LD effect based on
chiral perturbation theory and the operator production
expansion. The resulting estimate of the LD contribution,
δPc;u ¼ 0.04� 0.02, enhances the branching ratio
BrðKþ → πþνν̄ÞSM by 6%, which is comparable to the
8% total SM parametric error given in Eq. (4). Here the
quoted �0.02 error is necessarily a rough estimate which
cannot easily be systematically improved. This quoted error
translates into a 3% uncertainty for the branching ratio, but
it is possible that the LD contribution might be somewhat
larger or even much smaller than this estimate. We do not
have a clear answer at present and this provides the
motivation for the development of lattice techniques to
compute these LD contributions.
Lattice QCD can provide a first-principles determination

of the LD contribution with controlled errors. Therefore it
was proposed in Ref. [14] and endorsed in Ref. [29] to
perform a direct lattice QCD calculation of the LD
contribution to Kþ → πþνν̄ decay amplitudes.
Recognizing that the SM predictions will be confronted
with new NA62 measurements in the near future, it is
timely to have a lattice QCD calculation of these LD
effects.

III. METHOD

Since the dominant contribution to the Kþ → πþνν̄
amplitude comes from the top quark loop and the sub-
leading charm quark contribution is also SD dominated, it
is natural to write these contributions in terms of the matrix
element of a low-energy effective Hamiltonian,
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A0ðKþ → πþνν̄Þ ¼ hπþνν̄jHeff;0jKþi; ð7Þ

where Heff;0 is given in terms of the dimension-six local
operator Q0 ¼ ðs̄dÞV−Aðν̄lνlÞV−A [27,31]:

Heff;0 ¼
GFffiffiffi
2

p α

2πsin2θW

X
l¼e;μ;τ

½λtXtðxtÞ þ λcXl
cðxcÞ�Q0; ð8Þ

and xq ¼ m2
q=M2

W . Here GF is the Fermi constant, α is the
fine-structure constant and θW is the Weinberg weak
mixing angle. The Inami-Lim functions XtðxtÞ and
Xl
cðxcÞ are the Wilson coefficients, representing the con-

tributions of the internal top quark and charm quark to the
operatorQ0. They were first calculated by Inami and Lim in
1980 at one-loop order [23]. As in Sec. II, we eliminate λu
by using the unitarity relation λu ¼ −λc − λt and absorbing
the contribution from the u-quark in Xt and Xl

c , in which
we set xu ¼ 0. In Eq. (8) the top and charm quark degrees
of freedom have both been integrated out. The remaining
hadronic effects are contained in the matrix element
hπþjðs̄dÞV−AjKþi, which, in the isospin-symmetric limit,
is the same matrix element as that containing the non-
perturbative QCD effects in Kl3 decays.
The Xl

c in Eq. (8) are related to PSD
c in Eq. (6) by

PSD
c ¼ 1

λ4
Xe
cðxcÞ þ Xμ

cðxcÞ þ Xτ
cðxcÞ

3
; ð9Þ

where the factor of 3 in the denominator performs the
conventional average of Xl

c over the three lepton flavors.
The subscript l on Xt is not included since the lepton mass
dependence is suppressed by a factor of ðml=mtÞ2 which
can be neglected even for the τ-lepton. For the charm quark
contribution the lepton mass dependence cannot be
neglected, particularly for the τ-lepton, and hence the
superscript l is introduced for this case.
The contribution A0ðKþ → πþνν̄Þ in Eq. (7), obtained

using the local effective Hamiltonian Heff;0 in Eq. (8),
accurately reproduces the contribution from the top quark
and the SD component of the charm quark contribution. Of
course it does not contain the LD component of the charm
quark contribution which is intrinsically bilocal. The
evaluation of this long-distance contribution is the main
subject of this paper and we now begin our discussion
of this.
To explore the bilocal structure of the up quark and

charm quark contributions, we begin with the first-order
effective field theory, where theW and Z bosons have been
integrated out. The bilocal contributions are constructed
from two insertions of the first-order effective Hamiltonian.
The four-Fermi, effective weak Hamiltonian relevant for
the Kþ → πþνν̄ decay amplitudes can be written as [14,35]

HLO
eff ¼ GFffiffiffi

2
p

X
q;l

ðV�
qsOΔS¼1

ql þ VqdOΔS¼0
ql Þ þ GFffiffiffi

2
p

X
q

λqOW
q

þ GFffiffiffi
2

p
X
l

OZ
l ; ð10Þ

where the sums over the quarks q run over q ¼ u, c and
those over the leptons l run over l ¼ e, μ, τ.
The first term on the right-hand side of Eq. (10) results

from the W-W diagrams, in which the W-boson exchanges
have been replaced by two effective operators,

OΔS¼1
ql ¼ CMS

ΔS¼1ðμÞ½ðs̄qÞV−Aðν̄llÞV−A�MSðμÞ;
OΔS¼0

ql ¼ CMS
ΔS¼0ðμÞ½ðl̄νlÞV−Aðq̄dÞV−A�MSðμÞ; ð11Þ

where for fermion fields fi, (i ¼ 1–4)

ðf̄1f2ÞV−Aðf̄3f4ÞV−A
≡ ðf̄1γμð1 − γ5Þf2Þðf̄3γμð1 − γ5Þf4Þ: ð12Þ

We absorb the Wilson coefficients CMS
ΔS¼1ðμÞ and CMS

ΔS¼0ðμÞ
into the definition of the operators OΔS¼1

ql and OΔS¼0
ql . Here

and below we will find it convenient to use the letter O to
represent an operator which incorporates a Wilson coef-
ficient and the letter Q for an operator which does not
include such a coefficient. These coefficients account for
the contributions from SD physics and are conventionally
and conveniently calculated in the MS scheme. For
the particular operators appearing in Eq. (11), the Ward-

Takahashi identity implies CMS
ΔS¼1ðμÞ ¼ CMS

ΔS¼0ðμÞ ¼ 1.
The quark current operators renormalized in the MS
scheme can be related to the bare lattice operators by

½ðq̄q0ÞV=A�MS ¼ ZV=A½ðq̄q0ÞV=A�lat. Here ZV and ZA are the
renormalization constants for vector and axial-vector cur-
rents. They are quark-mass and renormalization scale
independent up to lattice artifacts. If the conserved lattice
current operators are used in a (almost) chirally symmetric
formulation of lattice QCD, such as domain wall fermions,
then ZV ¼ ZA ¼ 1. For simplicity in the remainder of the
paper we will neglect the Oða2Þ effects which distinguish
ZA from ZV and replace ZA with ZV , which will be assumed
to be quark-mass and scale independent.
The second and third terms on the right-hand side of

Eq. (10) are relevant for the Z-exchange diagrams.
Note that these diagrams include the exchanges of both
a W- and Z-boson. The W-boson exchange is described by
the four-quark operator OW

q ,

OW
q ¼ CMS

1 ðμÞQMS
1;q ðμÞ þ CMS

2 ðμÞQMS
2;q ðμÞ; ð13Þ

where QMS
i;q ðμÞ (i ¼ 1, 2) are conventional current-current

operators renormalized in the MS scheme. They can be
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related to the bare lattice operators by a matrix of

renormalization constants Zlat→MS
i;j ðaμÞ,

QMS
i;q ðμÞ ¼

X
j

Zlat→MS
i;j ðaμÞQlat

j;qðaÞ;

i; j ¼ 1; 2; where ð14Þ

Qlat
1;q ¼ ðs̄aqbÞV−Aðq̄bdaÞV−A;

Qlat
2;q ¼ ðs̄aqaÞV−Aðq̄bdbÞV−A; ð15Þ

and a, b are color indices. The detailed procedure to

compute the renormalization matrix Zlat→MS
i;j ðaμÞ can be

found in Refs. [17,36,37]. Note that the μ-scale dependence

in the Wilson coefficients CMS
i ðμÞ and the renormalized

operators QMS
i;q ðμÞ cancels, leaving the operator OW

q scale
independent. The exchange of the Z-boson propagator has
been replaced by a two-quark-two-neutrino operator OZ

l,

OZ
l ¼ CMS

Z ðμÞ½JZμ ν̄lγμð1 − γ5Þνl�MSðμÞ; ð16Þ

where the neutral current JZμ is given by

JZμ ¼
X

q¼u;c;d;s

ðTq
3q̄γμð1− γ5Þq−2Qem;qsin2θWq̄γμqÞ: ð17Þ

The weak isospin Tq
3 and the electric charge Qem;q take the

values þ 1
2
and þ 2

3
respectively for q ¼ u and c and the

values − 1
2
and − 1

3
for q ¼ d and s. As described above, we

have CMS
Z ðμÞ ¼ 1. The quark current operators renormal-

ized in the MS scheme can be related to the bare lattice

operator by ½JZμ �MS ¼ ZV ½JZμ �lat.
As the next step we work to second order in the standard,

nonrenormalizable, effective field theory of the weak
interactions and construct the bilocal product of two
first-order, four-fermi effective operators from Eq. (10)
as follows:

BðyÞ ¼ GFffiffiffi
2

p α

2πsin2θW

π2

M2
W
λc

X
l¼e;μ;τ

ðBWWðyÞ þ BZðyÞÞ;

ð18Þ

where

BWWðyÞ ¼
Z

d4xT½OΔS¼1
ul ðxÞOΔS¼0

ul ðyÞ� − fu → cg ð19Þ

and

BZðyÞ ¼
Z

d4xT½OW
u ðxÞOZ

lðyÞ� − fu → cg: ð20Þ

For compactness of notation we have suppressed the label l
in BWWðyÞ and BZðyÞ, but the reader should note that there
is such a dependence. We should also point out that in
Eq. (19) we have made an arbitrary choice of which of the
two operators is integrated over space-time and which is
evaluated at the fixed position y. The bilocal product BðyÞ
has been separated into two parts, BWWðyÞ and BZðyÞ, the
first associated with W-W diagrams and the second with
Z-exchange diagrams. The minus sign in Eqs. (19) and (20)
comes from the GIM mechanism under the approximation
of λu ≈ −λc. Here the bilocal product BðyÞ is defined in
Euclidean space to favor a lattice QCD calculation. Its
Minkowski-space definition can be found in Ref. [27].
In infinite-volume calculations of matrix elements,

performing an integral over y in Eqs. (19) and (20) would
introduce a four-dimensional, momentum-conserving delta
function. In computations using lattice QCD, which are
necessarily performed in a finite volume, this delta function
is replaced by a factor of the space-time volume. As will be
described in greater detail below, for the Kþ → πþνν̄ decay
amplitude discussed in this paper we propose to integrate y
over the full spatial volume and to integrate the times at
which each of the operators are evaluated over a fixed
interval ½−Ta; Tb�, chosen to lie sufficiently far from the
initial kaon and final pion to suppress possible excited
hadronic-state contamination. This follows closely the
procedure used earlier in the calculation of the KL − KS
mass difference [17].
The second-order Kþ → πþνν̄ decay amplitude can be

obtained by evaluating matrix elements of the bilocal

operators BWW and BZ and a third (local) operator C0QMS
0 :

AðKþ → πþνν̄Þ ∝ hπþνν̄jBWWð0Þ þ BZð0ÞjKþi
þ hπþνν̄jC0QMS

0 ð0ÞjKþi; ð21Þ

where C0 is a Wilson coefficient and QMS
0 ¼

ðs̄dÞV−Aðν̄νÞMS
V−A a local operator renormalized in the MS

scheme. Here C0QMS
0 is a regulator-dependent counterterm

which removes the new ultraviolet singularities in BWW and
BZ that arise when two of the dimension-six, four-fermi
operators which appear in the same diagram approach each
other. The need for such added counterterms is a standard
feature of a nonrenormalizable effective theory and is
discussed at length in Sec. IV.
The presence of this C0QMS

0 counterterm reflects a new
renormalization constant that must be introduced when the
effective theory is evaluated at second order and that must
be determined using some additional physical input. For the
case of the weak interactions, this new renormalization
constant C0 must be determined by requiring that the
effective theory, evaluated at second order, agrees with the
second-order predictions of the underlying SM. A conven-
ient way to formulate such a requirement is to impose
“Rome-Southampton” conditions on the second-order
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s̄d-ν̄ν Green’s function, which corresponds to the Kþ →
πþνν̄ decay, demanding that this Green’s function, evalu-
ated at a momentum scale μ0, agrees when evaluated in
both the effective theory and the SM. If infrared safe,
nonexceptional momenta are chosen when applying the
Rome-Southampton condition, as described in Sec. IV, and
the scale μ0 is chosen much larger than the scale of QCD,
μ0 ≫ ΛQCD, then the required SM calculation can be
accurately performed using perturbation theory. When
the effective theory is formulated as a lattice theory, the
corresponding lattice Green’s function is most easily
evaluated nonperturbatively. In the following we will refer
to this procedure as matching the lattice and SM theories
and μ0 as the matching scale.
Before we go into the details of the lattice-SM matching,

we start by introducing the lattice methodology used to
compute the local and the bilocal matrix elements. The
evaluation of the W-W diagrams will be described in detail
as this is a new type of calculation. For the Z-exchange
diagrams, we mainly focus on their difference from the
γ-exchange diagrams which dominate K → πlþl− decays
and which have already been discussed in detail in our
previous paper [13].

A. Evaluation of the matrix element
of the local operator Q0

In this subsection we discuss the evaluation of T0 ≡
hπþνν̄jQMS

0 ð0ÞjKþi, i.e. the matrix element of the local
operator Q0. The amplitude T0 can be written as a product
of a hadronic matrix element and neutrino spinor wave
functions:

T0 ¼ ZVhπþjs̄γμð1 − γ5Þdð0ÞjKþi½ūðpνÞγμð1 − γ5Þvðpν̄Þ�:
ð22Þ

The charge-conserving hadronic factor can be related by an
isospin rotation to the charge-changing matrix element
hπ0js̄γμð1 − γ5ÞujKþi which contains the hadronic effects
in Kl3 decay amplitudes. It can therefore be determined
accurately using precise measurements of Kþ → π0lþν
semileptonic decay amplitudes as input. In lattice QCD, the
matrix element hπþjs̄γμð1 − γ5Þdð0ÞjKþi can be deter-
mined by computing a three-point Euclidean correlation
function. The matrix element of the axial-vector current
vanishes because of parity symmetry and it is conventional
to write the matrix element of the vector current in terms of
two invariant form factors:

ZVhπþjs̄γμdð0ÞjKþi ¼ i · ðfþð−q2ÞðpK þ pπÞμ
þ f−ð−q2ÞðpK − pπÞμÞ; ð23Þ

where q ¼ pK − pπ. For negligible neutrino masses only
the fþð−q2Þ form factor contributes to T0, so that

T0 ¼ 2i · fþð−q2Þ½ūðpνÞpKð1 − γ5Þvðpν̄Þ�: ð24Þ

The q2 dependence of the form factor fþð−q2Þ can either
be determined by a lattice QCD calculation or provided by
experimental measurement or indeed a combination of the
two. For a recent lattice study and references to the original
literature see Ref. [38].
In lattice calculations, physical quantities are determined

from the computation of multilocal correlation functions in
Euclidean space. In this and the following sections of this
paper, we use Euclidean conventions for the γ-matrices
and momenta. Thus for an on-shell particle with mass m,
the Euclidean four-momentum p ¼ ðp0; ~pÞ is written as
p ¼ ðiE; ~pÞ where E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ~p2

p
. Using this convention,

q2 > 0 (q2 < 0) represents a spacelike (timelike) momentum
transfer. The physical matrix elements are obtained from
those defined using these Euclidean conventions by multi-
plying by the appropriate factors of i as explained in detail in
Appendix A. This Appendix also contains a full explanation
of the notation we use for Euclidean quantities and the
relations to the corresponding physical (Minkowski) ones.
The invariant form factors introduced in this paper, such as the
fþ andf− introduced in Eq. (23), will be defined consistently
in both Euclidean and Minkowski space conventions. This
requires that minus signs be introduced when their arguments
are expressed in terms of Euclidean four-vector dot products.

B. W-W diagrams

In this subsection we discuss elements of the calculation
of the W-W diagrams. We start in Sec. III B 1 by showing
that the hadronic effects are contained in an invariant
amplitude FWW . In Sec. III B 2 we discuss the unphysical
terms which increase exponentially in the length of the time
integration range and how to subtract them. Such terms are
generically present when evaluating the matrix elements of
bilocal operators in Euclidean space whenever there are
possible intermediate states of lower energy than the energy
of the external states.

1. Extracting the scalar amplitude FWW

The hadronic effects in the contributions from W-W
diagrams to the decay amplitude are contained in the
following matrix element of a bilocal operator:

TWW ¼
Z

d4xhπþνν̄jTfOΔS¼1
ul ðxÞOΔS¼0

ul ð0ÞgjKþi

− fu → cg: ð25Þ

The space-time location of OΔS¼0
ul ðyÞ defined in Eq. (19)

has been set at y ¼ 0 without loss of generality. The quark
and lepton contractions for TWW are shown in Fig. 1. The
contraction between the two operators OΔS¼1

ul and OΔS¼0
ul

produces an internal lepton propagator and the neutrino and
antineutrino are emitted from the two different operators;
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the neutrino is emitted fromOΔS¼1 at x and the antineutrino
from OΔS¼0 at the origin. A Euclidean-space quantity such
as that shown in Eq. (25) would normally be expressed
directly as a Euclidean path integral. Here we exploit the
more compact Hilbert space notation for such a quantity.
It should be kept in mind that the time ordering represented
by Tf� � �g is required and that the time dependence
of the operators is introduced by conjugation with the
Euclidean time development operator e−Ht as described in
Appendix A.
In Appendix C we show that TWW can be written in the

form

TWW ¼ i ·FWWðpK;pν;pν̄Þ½ūðpνÞpKð1− γ5Þvðpν̄Þ�; ð26Þ

where FWWðpK; pν; pν̄Þ is a scalar amplitude, which
depends on three of the independent external momenta
pK , pπ , pν, pν̄. Since FWWðpK; pν; pν̄Þ is Lorentz invariant,
it can be written as a function of invariants:

s ¼ −ðpK − pπÞ2; t ¼ −ðpK − pνÞ2;
u ¼ −ðpK − pν̄Þ2; ð27Þ

where sþ tþ u ¼ m2
K þm2

π . In a general Kl3 decay,
it is convenient to study the differential decay rate
d2Γ=ðdsd cos θÞ [39], where θ is the angle between pion
and one of the neutrinos in the neutrino-pair rest frame.
Following this convention, we choose the two independent
variables as s and Δ ¼ u − t. The former is the square of
the invariant mass of the neutrino pair and the latter is
proportional to cos θ.
To guarantee that the external particles are on shell, s and

Δ must be bounded by [40]

s ≥ 0 and Δ2 ≤ ðm2
K þm2

π − sÞ2 − 4m2
Km

2
π: ð28Þ

The physical range for fΔ; sg is shown in the Dalitz plot of
Fig. 2. Note that in K → πνν̄ decays it is not practical
to measure cos θ experimentally. Therefore a differential
decay rate dΓ=ds is of more interest in phenomenology.
Once the Δ dependence of TWW is determined, one can
integrate Δ over the physical phase space.

2. Unphysical terms growing exponentially with the
Euclidean time integration range

In this subsection we study the terms which grow
exponentially as the time integration range is increased.
Such exponentially growing terms are a generic feature in the
evaluation of integrals of matrix elements of bilocal oper-
ators over a large, but finite Euclidean time interval. We note
that this is the only unphysical consequence of evaluating
such a bilocal operator in Euclidean space. Herewe consider
specifically

R
d4xhfjT½OΔS¼1ðxÞOΔS¼0ð0Þ�jKi. We insert a

complete set of states between the two operators and
integrate over the Euclidean time region −Ta < x0 < Tb,
where Ta and Tb are both positive:

Z
Tb

−Ta

dx0

Z
d3~xhfjT½OΔS¼1ðxÞOΔS¼0ð0Þ�jKi

¼
X
ns

hfjOΔS¼1jnsihnsjOΔS¼0jKi
Ens − Ef

ð1 − eðEf−Ens ÞTbÞ

−
X
n

hfjOΔS¼0jnihnjOΔS¼1jKi
EK − En

ð1 − eðEK−EnÞTaÞ: ð29Þ

The two terms on the right-hand side of Eq. (29) come from
the region x0 > 0 and x0 < 0 respectively. The states jni and
jnsi represent nonstrange and strangeness S ¼ 1 intermedi-
ate states respectively and include leptons as illustrated in
Fig. 1. For the Kþ → πþνν̄ decay, the final state is given by
hfj ¼ hπþνν̄j. Since jnsi are strange states, their energiesEns
are larger than Ef ¼ EK . Thus the exponential term
eðEf−Ens ÞTb vanishes at large Tb. However, the second term
in Eq. (29) still suffers from an exponentially growing
contamination at large Ta if En < EK. The lowest two
intermediate states for jni are given by a purely leptonic state
jlþνi and a semileptonic state jπ0lþνi. As the energies of
these intermediate states are lower than the energy of the
initial state, the unphysical exponentially growing contami-
nation must be removed from the Euclidean lattice
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FIG. 2. Dalitz plot for K → πνν̄.

FIG. 1. Quark and lepton contractions for W-W diagrams.
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calculation. In Appendix D we give a detailed discussion on
the removal of the exponentially growing contamination.
The remaining contamination fromother intermediate states,
such as jππlþνi and j3πlþνi are significantly suppressed
by a phase-space factor as discussed in Sec. V. They can
therefore be neglected.

C. Z-exchange diagrams

In this subsection we discuss the evaluation of the Z-
exchange diagrams. For these the neutrino and antineutrino
are emitted from the same vertex and there is no internal
lepton propagator. Examples of such diagrams for the four-
point correlation function are given in Fig. 3. We write the
bilocal matrix element in the form

TZ ¼
Z

d4xhπþνν̄jT½OW
u ðxÞOZ

lð0Þ�jKþi − fu → cg

¼ TZ
μ ½ūðpνÞγμð1 − γ5Þvðpν̄Þ�; ð30Þ

where the hadronic part is defined as

TZ
μ ¼

Z
d4xhπþjT½OW

u ðxÞJZμ ð0Þ�jKþi − fu → cg: ð31Þ

The weak neutral current JZμ has been defined in Eq. (17).
We separate TZ

μ into two parts: TZ
μ ¼ TZ;V

μ þ TZ;A
μ , corre-

sponding to the vector (V) and axial-vector (A) components
of JZμ . The K → πZ� form factors are defined by

TZ;i
μ ¼ i · ðFZ;i

þ ð−q2ÞðpK þ pπÞμ þ FZ;i
− ð−q2ÞqμÞ;

i ¼ V; A; ð32Þ

with q ¼ pK − pπ . Because the only possible Lorentz
vectors are pK and pπ , the matrix element TZ;i

μ must
transform as a vector, not an axial-vector, under parity.
This means that when calculating TZ;i

μ , we either keep the
vector component of JZμ with the parity-even component of
OW

u or the axial-vector component of JZμ with the parity-odd
component ofOW

u . The form factors FZ;i
� ð−q2Þ depend only

on a single Lorentz invariant q2.

Since the spinor product ūðpνÞq ð1 − γ5Þvðpν̄Þ vanishes
for massless neutrinos, FZ;V

− ð−q2Þ and FZ;A
− ð−q2Þ

do not contribute to the amplitude. Only the form
factors FZ;i

þ ð−q2Þ are of interest. For the vector
current, the Ward-Takahashi identity guarantees
ðm2

K −m2
πÞFZ;V

þ ð−q2Þ ¼ q2FZ;V
− ð−q2Þ, so that there is only

one independent form factor. For the axial-vector
current, to separate FZ;A

þ ðq2Þ from TZ;A
μ , we can compute

the amplitude TZ;A
μ for different Lorentz indices μ. This

would require that either the kaon in the initial state or the
pion in the final state should carry nonzero spatial
momentum.
As in the case of TWW a complete set of intermediate

states can be inserted between OW
u and JZμ in Eq. (31). We

need to remove the exponentially growing contamination
for those intermediate states whose energies are lower than
that of the initial kaon. A detailed discussion of this
subtraction for the case of the insertion of a vector current
is given in Ref. [13]. In that case the parity-odd inter-
mediate states jπþi and j3πi will lead to exponentially
growing contamination which needs to be removed. For the
axial-vector current insertion, the parity-even state j2πiwill
produce an exponentially growing contamination that also
must be removed. Since we are only interested inKþ decay,
the intermediate vacuum state does not contribute and the
contribution of the j2πlþνi (Kl4) state is suppressed by
phase space.

IV. RENORMALIZATION AND SHORT-DISTANCE
CORRECTION

In this section we discuss the renormalization of the
ultraviolet divergences which appear in the calculation of
the matrix elements of the bilocal operators introduced in
Sec. III. This includes the standard renormalization of
local composite operators which is discussed in the brief
Sec. IVA. Less standard is the presence of additional SD
divergences which appear when the two local components
of the bilocal operator approach each other. These addi-
tional ultraviolet divergences and their subtraction is
discussed in detail in Sec. IV B which unsurprisingly
makes up most of the section.

FIG. 3. Samples of contractions contributing to Z-exchange diagrams. There are three different contraction structures: connected, self-
loop and disconnected diagrams. For each case we show one example. A complete set of contractions can be found in our previous
publication [13].
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A. Local operator renormalization

To produce the correct matrix element in the continuum
limit, it is necessary (but not sufficient) for the lattice
operators fOΔS¼1

ql ; OΔS¼0
ql g for W-W diagrams and

fOW
q ;OZ

lg for Z-exchange diagrams to be renormalized.
We start by considering OΔS¼1

ql , OΔS¼0
ql and OZ

l which are
two-quark-two-lepton operators. The leptonic current does
not require renormalization and so we only need to deal
with the hadronic component which consists of vector and
axial-vector currents. In the massless quark limit, if the
conserved vector and axial-vector currents (in case of chiral
lattice fermions, i.e. domain wall or overlap fermions) are
used, the Ward-Takahashi identity implies that the renorm-
alization constants ZV and ZA are equal to 1. If instead,
local currents are used then one needs to evaluate ZV and
ZA. The renormalization of the operators Q1;q and Q2;q (as
well as OW

q ) has been discussed in our previous work [13].
A more detailed description of the renormalization pro-
cedure can be found in Refs. [17,36,37].

B. Biocal operator renormalization

In addition to the renormalization of the individual
operators fOΔS¼1

ql ; OΔS¼0
ql g for W-W diagrams and

fOW
q ;OZ

lg for Z-exchange diagrams, we need to consider
possible new divergences which arise as the two operators
approach each other, as shown in Fig. 4. Dimensional
counting would allow for a potential quadratic divergence.
In W-W diagrams, the V − A structure of the weak current
and the GIM mechanism reduce the degree of divergence
from quadratic to logarithmic since the leading divergence
is independent of the quark mass. In Z-exchange diagrams,
we imagine that JZμ carries momentum p ¼ p1 − p2 ¼
p4 − p3 (see Fig. 4) and recall that it contains both a vector
and an axial-vector component. For the vector current
insertion, if a conserved current is used, then the loop
diagram is convergent and no lattice to continuum match-
ing is required. This is explained in Ref. [14] and in our
previous paper [13]. The situation is different for the
insertion of the axial-vector current because the quark
masses mu and mc break the chiral symmetry explicitly. As
a result, in addition to terms proportional to the tensors
p2δμν and pμpν, there are now terms proportional tom2

qδμν.

In all of these terms the degree of divergence is reduced by
2, but now the remaining logarithmic divergence is not
removed by the GIM mechanism since it contains terms
proportional to m2

q. Therefore, even if a conserved axial-
vector current is used, the loop diagram shown in Fig. 4 is
still logarithmically divergent. This is the case for chiral
lattice fermions for which the chiral symmetry is protected.
For Wilson fermions instead, where the chiral symmetry is
violated by the Wilson term, then the GIM cancellation
would lead to a linear divergence. We therefore propose
to perform a lattice calculation of the Kþ → πþνν̄ decay
amplitude using domain wall fermions. As discussed
above, whether a conserved or local axial-vector current
is used, we will need to deal with the logarithmic
divergence remaining after the GIM cancellation from
the SD region where OZ

l and OW
q approach each other.

In the following subsections we present our proposed
treatment of this additional SD divergence and the intro-
duction of the counterterm necessary to subtract it. We start
however, with a description of the conventional approach,
based on the perturbative evolution of the operators in the
effective Hamiltonian to momentum scales below the mass
of the charm quark and the nonperturbative evaluation of
the matrix element of the remaining local operator(s).
In this subsection we also explain why this is not the
procedure which we propose to employ to determine the
amplitudes for rare kaon decays.

1. Perturbation theory calculations in the MS scheme

We start by briefly reviewing perturbation theory calcu-
lations of the charm quark contribution to Kþ → πþνν̄
decays [27–29]. This is illustrated schematically by the
diagram in Fig. 5. These considerations apply to each of the
bilocal operators BWW and BZ given in Eqs. (19) and (20).
We will adopt a slightly generalized notation to allow us to
discuss both cases at the same time. Since the issues of
operator renormalization and scale dependence are impor-
tant, we also wish to explicitly show the Wilson coef-
ficients, including their renormalization scale and scheme.
Thus, we will use the Wilson coefficient operator product
CAQA to represent either the operatorOΔS¼1

ql (W-W case) or
OW

q (Z-exchange case). As is shown in Eq. (13), for this
second case we should actually write the sum of the product
of two Wilson coefficients multiplying two operators. In
order to simplify our discussion we will ignore this familiar
2 × 2 operator mixing complication (which is not difficult
to treat) and use a single ðcoefficientÞ × ðoperatorÞ product
in both cases. Similarly we will use the product CBQB to
represent either the operator OΔS¼0

ql (W-W case) or
OZ

l (Z-exchange case). Here A and B are generic labels
for the four-fermion operators as indicated. The label A
should not be confused with the axial current. In both cases
the local counterterm that must be introduced involves the
same operatorQ0. Thus we represent this local counterterm

FIG. 4. Left: SD divergent loop in W-W diagrams. Right: SD
divergent loop in Z-exchange diagrams.
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by the product C0Q0, where we should keep in mind that
the Wilson coefficient C0 will be different in the W-W and
Z-exchange cases. We now describe each of the four steps
in turn.
Step 1.—The heavyW andZ bosons are integrated out and

the second-orderweak interaction iswritten in a combination

of a bilocal operator
R
d4xT½QAðxÞQBð0Þ�MSðμÞ and a local

operator QMS
0 ðμÞ. Here QA;B are local, four-fermion oper-

ators renormalized in the MS scheme. By setting up
matching conditions at μ ¼ OðMWÞ and requiring the
amplitude in the effective field theory to be the same as
that in the full theory, one determines the coefficients

CMS
A ðμÞ, CMS

B ðμÞ and CMS
0 ðμÞ at μ ¼ OðMWÞ. The local

operatorQMS
0 ðμÞ [and its Wilson coefficientCMS

0 ðμÞ] can be
thought of as serving two closely related purposes. The first
and most familiar is to represent phenomena, such as those
that involve the top quark, which appear local below the
scale ofMW . The second purpose is to act as a counterterm
removing the ultraviolet divergence from the SD region
x ≈ 0, where QAðxÞ and QBð0Þ approach each other.
Step 2.—As the next step the renormalization group

equations are used to evolve theWilson coefficientsCMS
A ðμÞ,

CMS
B ðμÞ andCMS

0 ðμÞ from the scale μ ¼ MW to lower scales.
The evolution includes a mixing of the singular part of the

bilocal operator
R
d4xT½QAðxÞQBð0Þ�MSðμÞ into the local

operatorQMS
0 ðμÞ. The corresponding renormalization group

equations are an extension of those which govern the
evolution of a set of local operators and are discussed in
detail in Ref. [35]. The specific application to the rare kaon
decays being studied here are described in Sec. XI. B
of [35].
Step 3.—At the scale μ ¼ OðmcÞ we can perform a

second operator product expansion (OPE) and integrate
out the active charm quark field. This can be done by
evaluating the matrix element of the bilocal operator

T½QAðxÞQBð0Þ�MSðμÞ and relating it to the matrix element

of the local operator hQMS
0 ðμÞi,

Z
d4xhT½QAðxÞQBð0Þ�MSðμÞi

¼ rMS
AB ðμÞhQMS

0 ðx ¼ 0; μÞi: ð33Þ

Following Refs. [35,41], we use the term “matrix element”
to mean “amputated Green’s functions of renormalized
operators.” Note that the corresponding LD contribution
from the up quarks is suppressed by factors of m2

u=m2
c

(or Λ2
QCD=m

2
c from nonperturbative effects) relative to the

terms that we are examining here at the energy scale
OðmcÞ. Of course, we must neglect such Λ2

QCD=m
2
c terms if

Eq. (33) is to reflect an underlying operator identity and the
coefficient rAB to be independent of the amputated Green’s
functions of renormalized operators used to determine it.
Step 4.—Finally, after integrating out the charm quark

fields, the only remaining operator in the effective

Hamiltonian is CMSðμÞQMS
0 ðμÞ, where the Wilson coeffi-

cient is given by

CMSðμÞ ¼ CMS
A ðμÞCMS

B ðμÞrMS
AB ðμÞ þ CMS

0 ðμÞ: ð34Þ
At this stage the conventional approach is to calculate the

Kþ → πþνν̄ matrix element of the local operator QMS
0 ðμÞ.

This can be done by starting with a lattice computation of
the matrix element of OlatðaÞ and then calculating the

renormalization constant ZMS
O ðaμÞ to obtain the matrix

element of OMSðμÞ. The renormalization constant ZMS
O ðaμÞ

can either be calculated directly in perturbation theory or, as
is now standard and generally more precise, to use non-
perturbative renormalization to obtain the operator in a
scheme for which the renormalization conditions can be
applied in a lattice calculation [36,42,43] and then perform-
ing a continuum, perturbative matching calculation to
obtain the operator in the MS scheme.
In this paper we propose an alternative approach in

which steps 3 and 4 described above are not performed. The
motivation for this is twofold. First, we avoid using QCD
perturbation theory at the charm quark scale where studies

FIG. 5. Schematic illustration of the steps in the treatment of the SD effects in perturbation theory.
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of the KL − KS mass difference suggest poor convergence
[22]. Second, we avoid relying on an effective theory in
which the charm quark has been integrated out, which has
further difficulties. Once the charm quark has been inte-
grated out, the higher-order corrections in the OPE are
typically suppressed by powers of μ2=m2

c. At this stage we
are squeezed. On the one hand we would like to evolve to
lower values of μ so that these omitted higher-order
corrections are negligible and do not contribute large
systematic uncertainties; on the other hand we cannot
evolve the scale μ down to much lower values, e.g.
μ ¼ OðΛQCDÞ, because perturbation theory surely fails at
such low momentum scales. We propose instead, not to
perform the second OPE (i.e. not to integrate out the charm
quark) but to calculate directly the matrix elements of the

bilocal operator
R
d4xT½QAðxÞQBð0Þ�MSðμÞ and the local

operator QMS
0 ðμÞ and combine them together to obtain the

physical amplitude.
This is the same approach that we have proposed to

compute the LD contribution to the indirect CP violation
parameter ϵK [17,19]. In contrast to the KL − KS mass
difference, for both ϵK and Kþ → πþνν̄ the second-order
effective theory appropriate at the lattice scale of a few GeV
contains logarithmic, ultraviolet divergences, requiring
regulator-dependent counterterms. In the case where a
lattice regulator is to be used, extra steps are needed to
determine these counterterms from those that are conven-
tionally defined in the MS scheme. In the following
subsections, we will give a detailed description of our
method in the current context.

2. The bilocal operator in the RI/SMOM scheme

To determine the matrix elements of bilocal and local
operators renormalized in the MS scheme, we need first to
adopt an intermediate scheme, which can be used in both
nonperturbative lattice QCD calculations as well as in
continuum perturbation theory. Here we choose to use the
RI/SMOM scheme. We consider the off-shell Green’s
functions with the four external legs carrying momenta:
s̄ðp1Þ, dðp2Þ, ν̄ðp3Þ and νðp4Þ, as shown by Fig. 4. Since
this Green’s function is not a gauge-invariant observable,
the quark fields must be fixed in a particular gauge, e.g. the
Landau gauge. The “nonexceptional” external momenta
p1;2 are chosen to satisfy the condition p2

1 ¼ p2
2 ¼

ðp1 − p2Þ2 ≫ Λ2
QCD, which substantially suppresses the

infrared contamination in the computation of the Green’s
function and hence improves the reliability of perturbation
theory. A simple choice of fp1; p2g is p1 ¼ ðξ; ξ; 0; 0Þ and
p2 ¼ ðξ; 0; ξ; 0Þ. We define the RI/SMOM renormalization
scale μ0 by μ20 ≡ p2

1;2 ¼ 2ξ2. We emphasize that we have
now introduced two distinct renormalization scales: the
RI/SMOM renormalization scale μ0 and the MS scale μ.
While we could choose μ0 ¼ μ, for generality and clarity of
presentation we distinguish them here and below.

Although the choice of neutrino momenta p3 and p4 is
irrelevant for the suppression of infrared effects since no
gluons connect to the neutrino lines, it does affect the
momentum ploop flowing into the internal loop (see Fig. 4):

ploop ¼
�
p1þp3 ¼ p2þp4; for theW-W diagram;

p1 −p2 ¼ p4 −p3; for theZ-exchangediagram:

ð35Þ
For the Z-exchange diagram p2

loop ¼ μ20. For the W-W
diagram we can choose p3 ¼ ð0;−ξ; 0;−ξÞ and p4 ¼
ð0; 0;−ξ;−ξÞ which also leads to p2

loop ¼ μ20. Other choices
of fp3; p4g are also possible. For example if we inter-
change the definitions of p3 and p4, then p2

loop ¼ 2μ20. What
is required is that the neutrino momenta p3 and p4 are
chosen such that ploop is of the order of (or larger than) the
renormalization scale μ0 (p2

loop ≳ μ20) so that the contribu-
tions to the momentum integrals

R
d4p from regions of low

momenta (p2 ≲ Λ2
QCD) are suppressed by one or more

powers of Λ2
QCD=p

2
loop. In this way, we ensure SD domi-

nance of the off-shell Green’s function.
Given the choice of external momenta fpig described

above, we can impose the RI/SMOM renormalization
condition for the local operators QA, QB and Q0. Here
we use the operator QA to illustrate the procedure:

hQRI
A ðμ0Þip2

i¼μ2
0
¼ ½ZRI

q ðμ0Þ�−n
2½Zlat→RI

OA
ðaμ0Þ�hQlat

A ðaÞip2
i¼μ2

0

¼ hQAið0Þp2
i¼μ2

0

; ð36Þ

where hQRI
A i is the amputated Green’s function of the

renormalized operator QRI
A ðμ0Þ, hQlat

A i is the amputated
Green’s function of the bare lattice operator Qlat

A ðaÞ and
hQAið0Þ is the tree-level amputated Green’s function. The
subscripts p2

i ¼ μ20 in Eq. (36) indicate that the Green’s
functions are evaluated with the choice of momenta
described above, i.e. with p2

1 ¼ p2
2 ¼ ðp1 − p2Þ2 ¼ μ20.

Zq is the quark’s wave function renormalization constant;
see Ref. [43] for the detailed definitions to be used in the
RI-SMOM schemes and n is the number of external quark
lines. For the rare kaon decays being studied here n ¼ 2
and below we shall simply replace n by 2. The renorm-
alization constant Zlat→RI

QA
ðaμ0Þ relates the renormalized

operator QRI
A ðμ0Þ and the bare operator Qlat

A ðaÞ through
the relation QRI

A ðμ0Þ ¼ Zlat→RI
QA

ðaμ0ÞQlat
A ðaÞ. It can be deter-

mined nonperturbatively by evaluating hQlat
A i with the

given external momentum fpig and imposing the condition
in Eq. (36).
As the next step, one can calculate the conversion

factor ZRI→MS
QA

ðμ=μ0Þ perturbatively, relating the renormal-

ized operators in the RI/SMOM and MS schemes

through QMS
A ðμÞ ¼ ZRI→MS

QA
ðμ=μ0ÞQRI

A ðμ0Þ. Using the
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conversion factor ZRI→MS
QA

ðμ=μ0Þ and the renormalization

constant Zlat→RI
QA

ðaμ0Þ, the MS operator can be related

to the bare lattice operator through QMS
A ðμÞ ¼

ZRI→MS
QA

ðμ=μ0ÞZlat→RI
QA

ðaμ0ÞQlat
A ðaÞ≡ ZMS

QA
ðaμÞQlat

A ðaÞ.
Next we extend the RI/SMOM scheme to provide a

regularization-independent definition of the bilocal product
of QA and QB. Here will we use the notation

fQS
AQ

S
BgS0 ðyÞ ¼

Z
d4xTfQS

AðxÞQS
BðyÞgS0 ; ð37Þ

where S indicates the scheme used to define the local
operators OA and OB while S0 labels the method used to
define the singularity when x ¼ y. Here the labels S and S0

can be a combination of the three choices MS, lat or RI. For
simplicity we will usually choose y ¼ 0 and not show this
argument explicitly. While the choices S0 ¼ MS and lat are
defined by standard conventions, the case S0 ¼ RI is
defined by imposing the condition

hfQS
AQ

S
BgRIμ0 ip2

i¼μ2
0
¼ 0; ð38Þ

where the subscript p2
i ¼ μ20 indicates the amputated, four-

Fermi Green’s function evaluated for the nonexceptional
external momenta described above. The subscript μ0 added
to the bilocal operator itself indicates the scale dependence
that this RI operator has acquired because of the condition
used to define it.
To relate the bilocal operators fQRI

A QRI
B gRIμ0 and

fQRI
A QRI

B glata , we can write

fQRI
A QRI

B gRIμ0 ¼ fQRI
A ðμ0ÞQRI

B ðμ0Þglata
− XABðμ0; aÞQRI

0 ðμ0Þ; ð39Þ

where the last term on the right-hand side is introduced to
compensate for the different treatment of the singularity in
the product QAðxÞQBð0Þ as x → 0 in the two different
schemes. Although each of the renormalized local oper-
ators QRI

A , QRI
B and QRI

0 individually are independent of the
ultraviolet cutoff a, the additional SD divergence in
fQRI

A QRI
B glat is regulated using the lattice cutoff. The

coefficient XABðμ0; aÞ therefore has a dependence on a
and is defined by the subtraction condition in Eq. (38):

hfQRI
A QRI

B gRIμ0 ip2
i¼μ2

0
¼ hfQRI

A QRI
B glata ip2

i¼μ2
0

− XABðμ0; aÞhQRI
0 ðμ0Þip2

i¼μ2
0
¼ 0:

ð40Þ

These Green’s functions are calculated by computing
the corresponding Green’s functions for the bare lattice
operators and multiplying by the Zlat→RI renormalization
constant for each of the local operators. Using the

renormalization condition (40) we can determine the
coefficient XABðμ0; aÞ nonperturbatively and hence can
define the RI/SMOM bilocal operator fQAQBgRIμ0 through
Eq. (40) with no ambiguity and no dependence on a.
Finally we can express the MS bilocal operator in terms

of the RI/SMOM bilocal and an additional local operator by
using the analogous equation to Eq. (39),

fQMS
A QMS

B gMS
μ ¼ ZRI→MS

QA
ðμ=μ0ÞZRI→MS

QB
ðμ=μ0ÞfQRI

A QRI
B gRIμ0

þ YABðμ; μ0ÞQRI
0 ðμ0Þ: ð41Þ

Green’s functions of the bilocal operator fQMS
A QMS

B gMS
μ are

evaluated using dimensional regularization of all the ultra-
violet divergences and their subtraction following the
standard procedure to define the MS scheme. The μ-
dependence of such Green’s functions has contributions
not only from the anomalous dimensions of QA and QB
[and reproduced by the first term on the left-hand side of
Eq. (41)] but also from the SD region and contained in the
coefficient YABðμ; μ0Þ. To determine YABðμ; μ0Þ we calcu-
late the amputated Green’s functions for both sides of
Eq. (41) at p2

i ¼ μ20 and impose the renormalization
condition Eq. (38) so that

hfQMS
A QMS

B gMS
μ ip2

i¼μ2
0

¼ZRI
q ðμ0Þ

ZMS
q ðμÞ

½ZRI→MS
QA

ðμ=μ0ÞZRI→MS
QB

ðμ=μ0ÞhfQRI
A QRI

B gRI
μ2
0

ip2
i¼μ2

0

þYABðμ;μ0ÞhQRI
0 ip2

i¼μ2
0
�

¼ZRI
q ðμ0Þ

ZMS
q ðμÞ

YABðμ;μ0ÞhQ0ið0Þp2
i¼μ2

0

; ð42Þ

where the superscript (0) denotes tree-level, and reminds
us that the RI/SMOM renormalization condition is

hQRI
0 ip2

i¼μ2
0
¼ hQ0ið0Þp2

i¼μ2
0

. In this way we can determine

the coefficient YABðμ; μ0Þ and hence, using Eq. (41),

express the bilocal operator fQAQBgMSðμÞ in terms of
operators that are defined in lattice QCD.

3. Numerical strategy for bilocal
operator renormalization

As reviewed in Sec. IV B 1, electroweak and QCD
perturbation theory can be used to determine a combination
of bilocal and local operators, defined in the MS scheme at
a scale μ, whose matrix element between Kþ and πþνν̄
states will accurately determine the rare Kþ → πþνν̄ decay
amplitude, provided the scale μ is sufficiently large that
QCD perturbation is accurate. Following Eq. (21) we can
write this second-order weak operator, before the final
integral over space time, as the combination
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BMS
WWðyÞ þ BMS

Z ðyÞ þ CMS
0 QMS

0 ðyÞ: ð43Þ

When the MS scale μ is below the bottom quark mass, one
expects that the largest contribution come from the second,

CMS
0 QMS

0 term in this operator since it contains a

lnðMW=mbÞ factor which the bilocal operators BMS
WWðyÞ

and BMS
Z ðyÞ do not. The contribution of this local term to

the Kþ → πþνν̄ decay rate can be accurately computed and
the achieved accuracy of this computation underlies the
experimental and theoretical interest in this process.
In this paper we wish to augment this capability with a

first-principles calculation of the matrix elements of the
bilocal operators in Eq. (43). To the extent that this term is
relatively small, our methods do not need to be as precise as
those used to determine the matrix element of the local
operator. For example, we may be able to obtain a useful

result if we employ only leading-order formulas for the
perturbative coefficients Yðμ; μ0Þ which relate the MS-
normalized bilocal operators appearing in Eq. (43) and the
RI-normalized bilocal operators which can be evaluated
nonperturbatively using lattice methods. As we increase the
scale μ appearing in Eq. (43), the use of QCD perturbation
theory to determine the Wilson coefficients appearing in
that equation will become more reliable. However, this will
also cause the contribution of the bilocal operator to
increase, requiring a higher precision from the lattice
calculation if the overall error is to decrease.
We will make the preceding discussion concrete by

writing out an explicit example expressing the perturba-

tively determined operator BMS
Z ðyÞ in terms of operators

and coefficients that can be determined directly from a
lattice QCD calculation:

BMS
Z;A ¼ fðC1ðμÞMSQMS

1;u þ C2ðμÞMSQMS
2;u ÞðJAμ ν̄γμð1 − γ5ÞνÞ − fu → cggMS

μ

¼
�� X

i;j¼1;2

CiðμÞMSZRI→MS
ij QRI

j;u

�
ðJAμ ν̄γμð1 − γ5ÞνÞ − fu → cg

�
RI

μ0

þ
X
i¼1;2

CMS
i ðμÞYQi;JAðμ; μ0ÞQRI

0 ðμ0Þ; ð44Þ

where we have considered the case of the operator OW
q

defined in Eq. (13) and included the required operator
mixing but examined only the hadronic axial current
component of the current JZμ given in Eq. (17).

V. FINITE-VOLUME EFFECTS

When second-order weak amplitudes that involve multi-
particle intermediate states are computed in finite volume,
potentially significant finite-volume corrections can appear.
References [15,44,45] give detailed formulas which deter-
mine the finite-volume (FV) correction for the case of the
two-pion intermediate state that appears in a calculation of
theKL-KS mass difference. The same approach can be used
to determine FV effects in rare kaon decay amplitudes.
The finite volume effects discussed in this section and in the
above references are those which fall as powers of the
lattice size and arise from the degeneracy between possible
intermediate states and the initial and final states in the
process being considered. Here we do not address the
presumably smaller FV effects which fall exponentially as
the volume increases.
As is well known, power-law, FV corrections are related

to the on-shell amplitudes AðK → fngÞ, where fng repre-
sents an intermediate state made up of n particles. As more
particles are included in fng, we expect that the FV
correction will be increasingly suppressed by the resulting
reduced phase space. In Table I we list the relevant
branching ratios of K → fng from the Particle Data
Group [46]. Since the Ke2 decay is helicity suppressed,

we can compare the other entries in Table I with that forKμ2

to estimate the effect of this phase-space suppression. As
the number of daughter particles increases, the branching
ratios are significantly suppressed. The only exception is
seen in the comparison between the decay modes Kþ →
πþπ0 and Kþ → 3π, where the branching ratio is only 3
times smaller in Kþ → 3π decay. However, this is because
only the I ¼ 2 pion-pion state contributes to the Kþ →
πþπ0 mode and the corresponding decay amplitude is

TABLE I. Branching ratios and decay widths for K → fng
decays. The third column gives the relevant diagrams to which the
K → fng amplitudes contribute. As n increases, a large sup-
pression can be observed in the Kþ → fng branching ratio. The
only exceptions to this trend (Kþ → πþπ0 and Kþ → 3π decays)
can be explained by the ΔI ¼ 1=2 rule. In the neutral kaon decay,
we show the suppression of the decay width from KS → 2π to
KL → 3π decay. Here the decay width is given in units of eV.

K → fng Branching ratio Relevant diagrams

Kþ → μþνμ 6.355ð11Þ × 10−1
W-W diagram

Kþ → 2πμþνμ 4.254ð32Þ × 10−5

Kþ → π0eþνe 3.353ð34Þ × 10−2
W-W diagram

Kþ → 3πeþνe <3.5 × 10−6

Kþ → πþπ0 2.066ð8Þ × 10−1 Z-exchange diagram, JZ;Aμ

Kþ → 3π 7.35ð5Þ × 10−2 Z-exchange diagram, JZ;Vμ

K → fng Decay width [eV] Relevant diagrams
KS → 2π 7.343ð13Þ × 10−6 Z-exchange diagram, JZ;Aμ

KL → 3π 4.125ð30Þ × 10−9 Z-exchange diagram, JZ;Vμ
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highly suppressed because of the ΔI ¼ 1=2 rule as
explained in Ref. [47]. If we consider instead the neutral
kaon decays, to which the I ¼ 0 pion-pion state also
contributes, and compare the decay width between
KS → 2π and KL → 3π, a large phase-space suppression
can be observed in Table I.
From Table I, we conclude that for the W-W diagrams,

we may neglect the FV effects associated with on-shell
Kþ → 2πlþνl and Kþ → 3πlþνl amplitudes, which are
highly phase-space suppressed. We need to consider only
the FV corrections related to Kþ→lþνl and Kþ→π0lþνl
amplitudes. Here, the four-momentum of the intermediate
neutrino is completely determined by the hπþνν̄j final state.
Therefore, no power-law, FV effects exist for the jlþνli
intermediate state. For the state jπ0lþνli, the correspond-
ing FV correction, TFV

WW ¼ TWWðLÞ − TWWð∞Þ, can be
expressed as

TFV
WW ¼

�
1

L3

X
~k

Z
dk0
2π

−P
Z

d4k
ð2πÞ4

�

×

�
AKþ→π0
α ðpK;kÞ

1

k2þm2
π
Aπ0→πþ
β ðk;pπÞ

�

×

�
ūðpνÞγαð1− γ5Þ

iðP−kÞþml̄

ðP−kÞ2þm2
l̄

γβð1− γ5Þvðpν̄Þ
�
;

ð45Þ

where k is the momentum carried by the intermediate π0

and P ¼ pK − pν is the total momentum flowing into the
π0 − lþ loop. The second line of Eq. (45) corresponds to
the sequence of hadronic transitions Kþ → π0 → πþ. The
Kþ → π0 and π0 → πþ transition amplitudes are given by

AKþ→π0
α ðpK; kÞ ¼ ZVhπ0ðkÞjs̄γαuð0ÞjKþðpKÞi;
Aπ0→πþ
β ðk; pπÞ ¼ ZVhπþðpπÞjūγβdð0Þjπ0ðkÞi: ð46Þ

Though the intermediate π0 can carry an off-shell momen-
tum, only the on-shell Kþ → π0 and π0 → πþ amplitudes
can contribute to TFV

WW . Therefore in Eq. (46) we simply
define AKþ→π0

α ðpK; kÞ and Aπ0→πþ
β ðk; pπÞ using the on-shell

pion state jπ0i. To estimate the FV correction, we need to
evaluate these transition amplitudes in our lattice calcu-
lation. Once available, these amplitudes can also be used to
remove the exponentially growing contamination since the
jπ0lþνi state possibly has a lower energy than the initial
kaon. The third line of Eq. (45) gives the leptonic
contribution which involves a lepton propagator.
Although the expression in Eq. (45) is complicated, we

can write it in a simpler but more general form as

IFV ¼ IðLÞ − Ið∞Þ

¼
�
1

L3

X
~k

Z
dk0
2π

− P
Z

d4k
ð2πÞ4

�

×
fðk0; ~kÞ

ðk2 þm2
1ÞððP − kÞ2 þm2

2Þ
: ð47Þ

For the case ~P ¼ 0, this expression can be evaluated using
formulas given in Ref. [45], simplified by the vanishing of
the π0-lþ scattering phase shift, since we are not including
electromagnetic effects. However, for ~P ≠ 0 this discussion
must be generalized following the treatment given by Kim,
Sachrajda and Sharpe in Ref. [48] for the case m1 ¼ m2,
boosting the system into the center-of-mass frame. For
m1 ≠ m2, a similar result is given in Ref [49]. We conclude
that if the hadronic transition amplitudes AKþ→π0

α ðpK; kÞ
and Aπ0→πþ

β ðk; pπÞ have been determined, one can evaluate
the FV correction TFV

WW using known methods.
For the Z-exchange diagrams, the FV effect resulting

from the transition Kþ → 3π is significantly suppressed by
a phase-space factor, and that related to Kþ → πþπ0 is
suppressed by ΔI ¼ 1=2 rule. Therefore, we can choose to
neglect both of these sources of finite volume error in a
near-term lattice calculation. If we wish to have a more
accurate understanding of how small these FV corrections
may be, we can evaluate the larger FV piece coming from
the πþπ0 intermediate state. Since the momenta for three
noninteracting particles in the hπþνν̄j final state are
assigned explicitly, no power-law, FV effect of the sort
identified by Lellouch and Lüscher [50] is present for this
rare kaon decay. We can then treat hπþνν̄j as a single-
particle state h ~πþj and again extend the FV correction
formula derived for the case of the KL − KS mass differ-
ence [45] to the rare kaon decay. In this way, we obtain the
FV correction,

X
n

h ~πþjOZ
l jniFVFVhnjOW

q jKþi
mK − En

− P
Z

∞

2mπ

dE
X
α

h ~πþjOZ
l jα; Ei∞∞hα; EjOW

q jKþi
mK − E

¼ cotðϕðEÞ þ δðEÞÞ dðϕðEÞ þ δðEÞÞ
dE

				
E¼mK

× h ~πþjOZ
l jπþπ0; mKiFVFVhπþπ0; mKjOW

q jKþi: ð48Þ

Here we use the notation of Ref. [45]. Making the
replacement h ~πþjOZ

l → hπþjJZμ in Eq. (48), we obtain
the FV correction formula for TZ

μ.

VI. CONCLUSION

With the development of new methods [15–18,44,45], it
is now possible to calculate the long-distance contributions
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to second-order weak amplitudes, such as the KL − KS
mass difference ΔMK and ϵK , directly using lattice QCD.
These methods have now been extended in Ref. [13] to
address the long-distance contributions to the rare kaon
decay K → πlþl−. The present paper is a companion to
Ref. [13], focusing here on developing lattice methods that
can be used to compute the long-distance corrections to the
rare kaon decay K → πνν̄. In each of these treatments,
those contributions which are identified as long distance
and targeted by the proposed lattice methods include all
energy scales at or below an energy that is conservatively
chosen to exceed the charm quark mass. Thus, these
methods will allow calculations in which QCD perturbation
theory is used only at energy scales which lie above the
charm quark mass.
Since the NA62 experiment at CERN is now collecting

data for Kþ → πþνν̄ and the KOTO experiment at J-PARC
in Japan is designed to search for the KL → π0νν̄ decay,
these two rare kaon decays become important parts of the
search for an understanding of physics beyond the SM. In
both channels the decay amplitudes are dominated by SD
contributions. For KL decay, the LD contribution can be
safely neglected. For Kþ decay, the LD effects are expected
to be of a few percent, assuming that QCD perturbation
theory is accurate at the charm scale. Although possibly
small, this long-distance correction is now the dominate
source of theoretical uncertainty in the SM prediction for
the Kþ → πþνν̄ branching ratio. It is therefore timely for
lattice QCD to provide the LD contribution to Kþ → πþνν̄
with controlled uncertainty.
In this paperwepresent amethod inwhich latticeQCDcan

be used to compute the LD contribution to the K → πνν̄
decay amplitude. As explained in the body of this paper, the
calculation requires the computation of nonstandard corre-
lation functions, the control of SD singularities, the sub-
traction of unphysical, exponentially growing contributions
as the range of the integration over the time separation of the
twoweak operators is increased and control of finite-volume
effects. The principal aim of this paper is to demonstrate that
all these challenges can be overcome. The computation of the
W-W and Z-exchange diagrams is discussed in Sec. III.
Because of the nonlocal neutrino structure in the W-W
diagrams, we must include the neutrino and antineutrino
explicitly in the final state. In addition, we also need to
include a lepton propagator in the lattice calculation. In
Sec. III B and Appendix C, we show in some detail how to
deal with the complicated, nonlocal neutrino structure. The
procedure needed to remove the exponentially growing
contamination that accompanies the proposed Euclidean-
space lattice methods, from the W-W diagrams is discussed
in detail in Appendix D. For both theW-W and Z-exchange
diagrams, the lattice amplitudes will have ultraviolet, loga-
rithmic divergences, which are cut off by the lattice spacing.
We discuss in Sec. IV how to perform the necessary SD

correction using an extension of the Rome-Southampton

method. Power-law, FV corrections are discussed in Sec. V
with an emphasis on their natural phase-space suppression.
For the W-W diagram, to evaluate the FV correction one
needs to compute the Kþ → π0 and π0 → πþ transition
amplitudes. For the Z-exchange diagram, the FVeffects are
suppressed significantly either by limited phase space or by
the ΔI ¼ 1=2 rule. Only after reaching subpercent preci-
sion, might one need to include the FV corrections from the
πþπ0 intermediate state. As we show above, it is straight-
forward to extend the FV correction formula needed for the
KL-KS mass difference [45] to the present case of rare
kaon decay.
Using the methods developed in Ref. [13] and this paper,

it is now possible to undertake exploratory numerical
calculations of the LD contributions to both the K →
πlþl− [51] and K → πνν̄ [52] decay amplitudes. This is
important not only for providing needed LD information to
the SM prediction for these rare kaon decays but also for
extending our ability to compute a wider array of important
physical observables using the methods of lattice QCD.
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APPENDIX A: CONNECTION BETWEEN
EUCLIDEAN AND MINKOWSKI AMPLITUDES

As the methods of lattice QCD are applied to more
complex quantities the issue of the formalism used to
present the results becomes more important. The targets of
a lattice QCD calculation, such as that presented here, are
physical amplitudes which can be compared with other
experimental and theoretical work and would naturally be
presented as Minkowski space quantities in which the
operators involved have a conventional, physical time
dependence and Lorentz symmetry is manifest. However,
a lattice QCD calculation requires the introduction of an
unphysical, Euclidean time and a resulting formalism that
has a Euclidean Oð4Þ symmetry.
Both descriptions of relativistic quantum field theory can

be viewed as based on the same Schrödinger quantum
mechanics, described by the same quantum mechanical
Hilbert space and the same QCD Hamiltonian. This makes
it possible to establish that certain quantities computed
using Euclidean-space lattice methods are identical to those
of physical interest described using Minkowski time
dependence. However, a given physical quantity will often
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be expressed using different conventions depending on
which approach is adopted, creating a dilemma for a paper
such as this. While we would like to present results in a
standard notation immediately accessible to those familiar
with Minkowski field theory, we also wish to present a
record of our calculation without a translation into a second
formalism.
As a compromise we have presented the details of our

method in the Oð4Þ-invariant, Euclidean formalism used
for the calculation but also give important formulas in a
conventional, Minkowski language. In this Appendix we
discuss the relation between these two descriptions so that
the reader can interpret our Euclidean-space formulas in
terms of Minkowski quantities. This Appendix is divided
into two sections. The first, included for completeness,
recalls the standard relationship between time-independent
quantities computed using Euclidean and Minkowski
conventions. In the second section we specialize these
considerations to the quantities computed in this paper
and provide the Minkowski-space definitions of those
quantities.

1. General considerations

Starting with the same Schrödinger operator OS the
Minkowski and Euclidean approaches define two different
time-dependent generalizations:

OMðtÞ ¼ eiHtOSe−iHt ðA1Þ

OEðx0Þ ¼ eHx0OSe−Hx0 ; ðA2Þ

where H is the QCD Hamiltonian, the subscripts M and E
identify Minkowski and Euclidean operators and we use
different variables t and x0 to represent Minkowski and
Euclidean time.
When expressed as a Feynman path integral the time-

ordered product of N time-dependent operators,

h0jTðOX1
ðx1ÞOX2

ðx2Þ…OXN
ðxNÞÞj0i; ðA3Þ

can be written as manifestly Lorentz- or Oð4Þ-invariant
quantities when X ¼ M or E, respectively. While such
Green’s functions can be viewed as a single analytic
function of the space time coordinates fx1; x2;…; xNg,
for numerical work the possibility of performing an
analytic continuation is rarely of direct value. Instead
special constructions are employed for the Euclidean-space
lattice QCD calculation to extract quantities with direct
physical meaning. Masses of low-lying states can be
obtained from the exponential dependence on the time
separation of the operators appearing in the Euclidean time-
ordered product in Eq. (A3) for the case N ¼ 2. Likewise
the matrix element of a Schrödinger operator OS between
physical, energy eigenstates can be obtained from the time-
ordered product in Eq. (A3) for the case N ¼ 3where large

time separations are used to project onto the desired energy
eigenstates. For the more complex, bilocal operators
considered in this paper, more effort must be expended
to extract quantities of physical interest from time integrals
of Euclidean time ordered products of the sort shown in
Eq. (A3) for the case N ¼ 4.
However, we do not conventionally work with the

underlying Schrödinger operators, which typically
contain conjugate field variables πðxÞ and the Dirac
creation operators ψ†ðxÞ. Instead, these noncovariant,
Hamiltonian quantities are replaced by ∂ϕðxÞ=∂x0 or
∂ϕðxÞ=∂t and ψ̄ðxÞ using conventions that differ between
the Minkowski- and Euclidean-space formalisms. While
the treatment of spatial variables should be the same in
these two approaches, our use of a ð1;−1;−1;−1Þ
signature for the Minkowski space metric introduces an
additional minus sign discrepancy with Euclidean quan-
tities which use a metric with the (1,1,1,1) signature. [For
Minkowski space, we follow the conventions of Peskin and
Schroeder [53] and view the combination ðt; x1; x2; x3Þ as a
raised-index, Minkowski-space vector.]
For a scalar operator ϕXð0; ~xÞ at x0 ¼ t ¼ 0 there is no

difference between the Euclidean and Minkowski versions
which implies that ∇iϕMð0; ~xÞ ¼ ∇iϕEð0; ~xÞ, 1 ≤ i ≤ 3.
However, as implied by Eqs. (A1) and (A2), their time
derivatives will differ:

∂ϕMðt; ~xÞ
∂t

				
t¼0

¼ i
∂ϕEðx0; ~xÞ

∂x0
				
x0¼0

: ðA4Þ

For example, if ϕiðxÞ is the ith component of the three-
component, isovector pion field operator we can compare
the Minkowski and Euclidean space expressions:

∂
∂xμM h0jϕM;iðt; ~xÞjπðj; ~pÞi ¼ −i


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ ~p2

q
;−~p

�

× Zπδije−ipM ·xM ðA5Þ

∂
∂xμE h0jϕE;iðx0;~xÞjπðj; ~pÞi¼



−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

πþ ~p2

q
;i~p

�
ZπδijeipE·xE ;

ðA6Þ
where the state jπðj; ~pÞi describes a physical pion with
isospin index j and three momentum ~p,mπ is the pion mass
and Zπ is a normalization factor appropriate for the pion
interpolating operator ϕiðxÞ. The Minkowski and Euclidean
four-momentum associated with this on-shell, pion state are
given by

pμ
M ¼


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ ~p2

q
; ~p

�
ðA7Þ

pμ
E ¼



i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ ~p2

q
; ~p

�
: ðA8Þ
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For fermions a similar translation between ψ̄M and ψ̄E is needed. Recall that Dirac’s original notation uses the
Hamiltonian operator

HD ¼
Z

d3xψ†
Sð~xÞð~α · ð−i ~∇Þ þ βmÞψSð~xÞ; ðA9Þ

where the Schrödinger operators ψð~xÞ and its Hermitian conjugate ψ†ð~xÞ are time independent and obey the usual
anticommutation relation, fψ†ð~xÞ;ψð~yÞg ¼ δ3ð~x − ~yÞ while the four, 4 × 4, Hermitian, Dirac matrices ~α and β are
anticommuting and each has a square which is the identity matrix.
If the time evolution operator for the Hamiltonian HD in Eq. (A9) is written as a Grassmann path integral following the

usual textbook derivation [54], one finds

TrfT½e−HDTψðyÞψ‡ðzÞ�g ¼
Z

d½χ̄�d½ψ � exp
�
−
Z

d3x
Z

T

0

dx0χ̄

� ∂
∂x0 þ ~α · ð−i ~∇Þ þ βm

�
ψ

�
ψðyÞχ̄ðzÞ; ðA10Þ

where to be concrete we consider the case of a two-point
function. The fermion field operators ψ and ψ‡1 have been
replaced by the Grassmann integration variables ψðxÞ and
χ̄ðxÞ and the Minkowski case can be obtained by inserting a
factor of i in front of the Hamiltonian on the left- and right-
hand sides of Eq. (A10) and replacing the Euclidean time
variable x0 by t. In each case, we redefine auxiliary
Grassmann field χ̄ to give the mass term its standard form
and introduce γ matrices chosen to make the underlying
Lorentz or Oð4Þ symmetry manifest.

This can be accomplished by the following choices:

ψM ¼ χ̄β; γ0M ¼ β; ~γM ¼ β~α ðA11Þ

ψE ¼ χ̄β; γ0E ¼ β; ~γE ¼ −iβ~α: ðA12Þ

With these conventions Eq. (A10) and its Minkowski
counterpart become

TrfT½e−iHDTψMðyÞψ‡
MðzÞ�g ¼

Z
d½ψ̄M�d½ψM� exp

�
i
Z

d3x
Z

T

0

dx0ψ̄M

�
γμM

∂
∂xμ −m

�
ψM

�
ψMðyÞψ̄MðzÞβ ðA13Þ

TrfT½e−HDTψEðyÞψ‡
EðzÞ�g ¼

Z
d½ψ̄E�d½ψE� exp

�
−
Z

d3x
Z

T

0

dx0ψ̄E

�
γμE

∂
∂xμ þm

�
ψE

�
ψEðyÞψ̄EðzÞβ: ðA14Þ

Thus, the relation between fermionic quantities
expressed in the Euclidean and Minkowski formalisms is
also straightforward. When evaluated at zero time, the
Grassmann spinor variables ψ̄Mð0; ~xÞβ and ψ̄Eð0; ~xÞβ both
correspond to the Schrödinger operator ψ†

Sð~xÞ, the same
relation which connects ψð0; ~xÞM and ψð0; ~xÞE and ψSð~xÞ.
The Euclidean and Minkowski γ matrices are related by

γ0E ¼ γ0M; γiE ¼ −iγiM: ðA15Þ

With these rules we can easily relate operators which are
expressed in these two formalisms as will be done below.

First we examine the isovector current, normalized
so that the integral of the time component generates
isospin transformations. In the case of a scalar field
we have

ð~V0
M; ~V

i
MÞ ¼

1

i

� ∂
∂t ~ϕ × ~ϕ;−

∂
∂xi ~ϕ × ~ϕ

�
ðA16Þ

ð~V0
E; ~V

i
EÞ ¼

� ∂
∂x0

~ϕ × ~ϕ;
∂
∂xi ~ϕ × ~ϕ

�
; ðA17Þ

where the explicit vector arrows represent the isospin
degree freedom. Thus, the Minkowski and Euclidean
current operators are related by

~V0
M ¼ ~V0

E; ~Vi
M ¼ i ~Vi

E: ðA18Þ

1We have used the operator ψ‡ to represent the Euclidean time
evolution of the operator ψ† which must be distinguished from
the Hermitian conjugate of the Euclidean time evolution of the
operator ψ.
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We find the same relation if we consider the vector current
constructed from fermions which are assumed to form an
isodoublet:

~Vμ
X ¼ ψ̄Xγ

μ
X~τψX ðA19Þ

for X ¼ M or E and ~τ is a vector formed from the standard
Pauli matrices τi. That the relation in Eq. (A19) holds in
this case as well can be deduced from the relation between
the Euclidean and Minkowski gamma matrices given in
Eq. (A15). The same relation will connect the Euclidean
and Minkowski axial currents since in both cases we use
the same γ5 Dirac matrix: γ5 ¼ iγ0Mγ

1
Mγ

2
Mγ

3
M.

Finally we consider the relation between the four-
fermion operators expressed in Euclidean or Minkowski
notation. This is particularly simple because these have the
form ψ̄XΓi

XψXψ̄XΓ
j
XψC

ij
X where X ¼ M or E, the ΓX are

combinations of spinor and flavor matrices and the coef-
ficients Cij

X are chosen so that the resulting operator is a
scalar under the proper Lorentz group or Oð4Þ. Such a
quantity is the same for either Minkowski or Euclidean
conventions because the four-vector indices of all internal
gamma matrices must be contracted in pairs of the form
γμX � � � γXμ, a combination which is the same for X ¼ E
or X ¼ M.

2. Minkowski-space definitions

Using the above results we will now discuss some
specific matrix elements and invariant functions used in
this paper and the form in which they appear in both the
Euclidean and Minkowski space formalisms. We use the
usual relativistic normalization for single-particle energy
eigenstates j~pi with mass m carrying momentum ~p:

h~p0j~pi ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

q
ð2πÞ3δ3ð~p0 − ~pÞ: ðA20Þ

For spin-1=2 particles, we will introduce the usual positive
and negative energy spinor eigenstates of the free Dirac
Hamiltonian ~α · ~pþ βm, uð~p; sÞ and vð−~p; sÞ correspond-
ing to particle and antiparticle states with spin s, normal-
ized so that the projection operators P� onto states of both
spins with positive or negative energy take the form

Pþ ¼
X
s¼�1

2

uð~pÞuð~pÞ† ¼ ~α · ~pþ βmþ E

¼ ðγμMpMμ þmÞβ ¼ ð−iγμEpEμ þmÞβ ðA21Þ

P− ¼
X
s¼�1

2

vð~pÞvð~pÞ† ¼ ~α · ~p − βmþ E

¼ ðγμMpMμ −mÞβ ¼ ð−iγμEpEμ −mÞβ; ðA22Þ

where E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

p
. These same two 4 × 4 projection

operators can be used to compute polarization sums from

products of matrix elements that were computed using
either Minkowski or Euclidean conventions. Of course, the
covariant Euclidean and Minkowski expressions in these
equations require that the appropriate on-shell momentum
given in Eqs. (A8) and (A7) be used.
The most familiar matrix element to describe is that

defining the pseudoscalar decay constant fπ for which we
can write both Euclidean- and Minkowski-space expres-
sions as dictated by Eq. (A19):

h0j½d̄γμγ5u�MðxMÞjπþð~pÞi ¼ ipM
μfπe−iðEπ t−~p·~xÞ ðA23Þ

h0j½d̄γμγ5u�EðxEÞjπþð~pÞi ¼ pE
μfπe−Eπx0þi~p·~x: ðA24Þ

A second example is the matrix element of the vector
current between charged kaon and pion states:

hπþð~pπÞjs̄γμMdð0ÞjKþð~pKÞi
¼−ðfþðq2MÞðpKþpπÞμMþf−ðq2MÞðpK −pπÞμMÞ ðA25Þ

hπþð~pπÞjs̄γμEdð0ÞjKþð~pKÞi
¼ iðfþð−q2EÞðpKþpπÞμEþf−ð−q2EÞðpK−pπÞμEÞ: ðA26Þ

Here the minus signs in the arguments of f�ðq2Þ in the
Euclidean expression ensure that precisely the same form
factors enter both expressions, compensating for the differ-
ent signs in the inner product that result when equivalent
momenta are used in our Euclidean and Minkowski
conventions.
Finally we examine the matrix elements of the bilinear

operators which are the primary topic of this paper. In such
four-point correlation functions, the individual four-fermion
operators fO;O0g ¼ fOΔS¼1

ql ; OΔS¼0
ql g for theW-W diagram

and fOW
q ;OZ

lg for the Z-exchange diagram are all scalar
operators and hence the same in both Euclidean and
Minkowski conventions. In Ref. [27], theMinkowski expres-
sion for the bilocal operator product has been defined as

BM ¼ i
Z

d4xMT½OMðxMÞO0
Mð0Þ� − fu → cg: ðA27Þ

The physical, Minkowski-space transition amplitude
AM ¼ hfjBMjii with initial state jii and final state jfi
can be written as

AM ¼ i
Z

∞

0

dt
X
n

hfjOMjnihnjO0
MjiieiðEf−EnÞt

þ i
Z

0

−∞
dt
X
k

hfjO0
MjmihmjOMjiieiðEm−EiÞt− fu→ cg

¼−
X
n

hfjOMjnihnjO0
Mjii

Ef −Enþ iε
þ
X
m

hfjO0
MjmihmjOMjii
Em−Ei− iε

− fu→ cg: ðA28Þ
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The corresponding Euclidean expression is given by

BE ¼
Z

d4xET½OEðxEÞO0
Eð0Þ� − fu → cg

¼
Z

Tb

−Ta

dx0

Z
d3xT½OEðxEÞO0

Eð0Þ� − fu → cg: ðA29Þ

The transition amplitude AE ¼ hfjBEjii is then given by

AE ¼ −
X
n

hfjOEjnihnjO0
Ejii

Ef −En
ð1− eðEf−EnÞTbÞ

þ
X
m

hfjO0
EjmihmjOEjii
Em −Ei

ð1− eðEi−EmÞTaÞ− fu→ cg:

ðA30Þ

The equality of the matrix elements hfjOEjni and
hfjOMjni then guarantees that AE is equal to AM once
we have removed the exponentially growing contamination
in AE.

APPENDIX B: MESONIC
AND LEPTONIC STATES

The mesonic states used in this paper are defined as the
lowest energy component of the state that results from
applying the following combinations of quark and anti-
quark operators to the QCD vacuum state. (Here we are
only concerned with the flavor and sign conventions so
detailed questions of the spatial structure of the combina-
tion of quark and antiquark operators are not addressed.)

jπþi ¼ iūγ5dj0i; jπ−i ¼ −id̄γ5uj0i;

jπ0i ¼ iffiffiffi
2

p ðūγ5u − d̄γ5dÞj0i

jKþi ¼ iūγ5sj0i; jK−i ¼ −is̄γ5uj0i;
jK0i ¼ id̄γ5sj0i; jK̄0i ¼ −is̄γ5dj0i: ðB1Þ

In an analogous fashion, leptonic states can be annihilated
by the corresponding leptonic field operators, leaving the
usual Dirac plane-wave spinors

νðxÞjνðpνÞi ¼ uðpνÞeipνxj0i;
ν̄ðxÞjν̄ðpν̄Þi ¼ v̄ðpν̄Þeipν̄xj0i
lðxÞjlðplÞi ¼ uðplÞeiplxj0i;
l̄ðxÞjl̄ðpl̄Þi ¼ v̄ðpl̄Þeipl̄xj0i; ðB2Þ

where the spinors uðpÞ and vðpÞ are the conventional
positive- and negative-energy eigenvectors of the Dirac
Hamiltonian introduced in Appendix A. Note the spinor u
in Eq. (B2) should not be confused with the up quark

operator appearing in Eq. (B1). For simplicity we have not
shown the spin index.

APPENDIX C: EXTRACTION OF THE SCALAR
AMPLITUDE FROM W-W DIAGRAMS

Wewrite the integrand in the bilocal matrix element TWW
defined in Eq. (25) in terms of two factors:

TWW ¼
Z

d4xHαβðxÞ½ūðpνÞΓαβðxÞvðpν̄Þ�: ðC1Þ

The hadronic factor HαβðxÞ and the leptonic factor
ūðpνÞΓαβðxÞvðpν̄Þ are defined by

HαβðxÞ ¼ Z2
VhπþðpπÞjT½s̄γαð1 − γ5ÞuðxÞūγβð1 − γ5Þdð0Þ�j

× KþðpKÞi − fu → cg
ΓαβðxÞ ¼ γαð1 − γ5ÞSlðx; 0Þγβð1 − γ5Þe−ipνx: ðC2Þ

Here Slðx; 0Þ ¼
R d4q

ð2πÞ4
−iqþml
q2þm2

l
eiqx is a free Euclidean lepton

propagator.
The left-handed nature of neutrinos allows us to write

TWW in the form

TWW ¼ TμūðpνÞγμð1 − γ5Þvðpν̄Þ; ðC3Þ

where with three independent momenta pK , pν and pν̄, Tμ

can be written as

Tμ ¼ pKμG1 þ pνμG2 þ pν̄μG3

þ εμαβρpKαpνβpν̄ρG4: ðC4Þ

Neglecting the masses of the neutrinos, the terms propor-
tional to pνμ and pν̄μ vanish because of the Dirac equation
obeyed by the neutrino wave function.
We now consider the term proportional toG4 in Eq. (C4).

Using the identity γαγβγρ¼δαβγρþδβργα−δαργβþεμαβργμγ5
we can write

εμαβρpKαpνβpν̄ργμð1 − γ5Þ
¼ −½pKpνpν̄ − ðpK · pνÞpν̄ − ðpν · pν̄ÞpK

þ ðpK · pν̄Þpν�ð1 − γ5Þ: ðC5Þ

Since the right-hand side of Eq. (C5) is sandwiched
between the neutrino spinors ūðpνÞ and vðpν̄Þ in
Eq. (C3), only the third term in Eq. (C5) survives. Thus,
when Tμ is combined with the product of neutrino spinors
in Eq. (C3), the term proportional to G4 in Eq. (C4) is also
effectively proportional to pKμ

. Therefore, we can write
TWW in terms of a single invariant amplitude FWW :
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Z
d4xHαβðxÞ½ūðpνÞΓαβðxÞvðpν̄Þ�

¼ i · FWWðpK; pν; pν̄Þ½ūðpνÞpKð1 − γ5Þvðpν̄Þ�: ðC6Þ

We now derive an expression for the scalar amplitude
FWWðpK; pν; pν̄Þ. This might be most naturally done by
following the steps that are taken when evaluating the
Kþ → πþνν̄ decay rate. Thus, we multiply both sides of
Eq. (C6) by the 2 × 2 spin matrix v̄pKð1 − γ5Þu and
perform the spin sums in order to project out FWW
obtaining

FWWðpK; pν; pν̄Þ

¼ −i
R
d4xHαβðxÞTr½ΓαβðxÞpν̄pKð1 − γ5Þpν�
Tr½pKð1 − γ5Þpν̄pKð1 − γ5Þpν�

: ðC7Þ

For lattice calculations it is useful to simplify the
expression on the right-hand side of Eq. (C7). The gamma
matrix factor pν̄pKð1 − γ5Þpν, which appears in both the
traces in the numerator and the denominator, can be
rewritten in the form

pν̄pKð1 − γ5Þpν ¼
X
μ

bμγμð1þ γ5Þ; ðC8Þ

where the coefficient bμ is given by

bμ ¼
1

4
Tr½γμpν̄pKð1 − γ5Þpν�

¼ pν̄μðpK · pνÞ þ pνμðpK · pν̄Þ − pKμðpν · pν̄Þ
þ εμαβρpναpν̄βpKρ: ðC9Þ

This allows us to rewrite FWWðpK; pν; pν̄Þ in the form

FWWðpK; pν; pν̄Þ

¼ −i
Z

d4xHαβðxÞ
X
μ

cμTr½ΓαβðxÞγμð1þ γ5Þ�; ðC10Þ

where the four-vector cμ is given by

cμ ¼
1

8

bμ
b · pK

: ðC11Þ

Given the momenta pK , pν and pν̄, the coefficients cμ can
readily be evaluated so we need to compute only the four
integrals

R
d4xHαβðxÞTr½ΓαβðxÞγμð1þ γ5Þ� for μ ¼ 0, 1, 2

and 3.
In a lattice calculation, the hadronic matrix element

HαβðxÞ can be calculated by evaluating a four-point
correlation function. The leptonic propagator Slðx; 0Þ in
ΓαβðxÞ can be implemented using a free-field lattice
fermion formulation, e.g. domain wall or overlap fermion.
Following the steps described above one can determine the
scalar amplitude FWWðpK; pν; pν̄Þ.

APPENDIX D: LOW-LYING INTERMEDIATE
STATES FOR W-W DIAGRAMS

As indicated in Sec. III B 2, if the energy of a given
intermediate state is smaller than the energy of initial/final
state, then in Euclidean space-time, the nonlocal matrix
element

R
dthπþνν̄jT½OΔS¼1

ul ðtÞOΔS¼0
ul ð0Þ�jKþi will include

an exponentially growing contamination. Here we study
what we expect will be the largest exponentially growing
contamination from the low-lying intermediate states.
For t ≪ 0, the nonlocal matrix element is dominated by

the intermediate ground state jl̄νi. Its time dependence can
be written as

hπþνν̄jOΔS¼0
ul ð0Þjl̄νi 1

2El̄

1

2Eν
hl̄νjOΔS¼1

ul ðtÞjKþi

¼ ZVhπþjūγμð1− γ5Þdð0Þj0iZVh0js̄γνð1− γ5Þuð0ÞjKþi

× ūðpνÞγνð1− γ5Þ
ipl̄þml̄

2El̄
γμð1− γ5Þvðpν̄Þ · eðEl̄þEν−EKÞt

¼−2fKfπūðpνÞpK
ipl̄

2El̄
pπð1− γ5Þvðpν̄Þ · eðEl̄þEν−EKÞt

≡ ct<0 · eðEl̄þEν−EKÞt; ðD1Þ

where fK and fπ are the kaon and pion decay constants.
Here we have used the definition ZVh0js̄γμγ5uð0ÞjKþi ¼
pKμfK and ZVhπþjūγμγ5dð0Þj0i ¼ −pπμfπ. The four-
momenta for initial-, intermediate- and final-state particles
are given by

pi ¼ ðiEi; ~piÞ;
Ei ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ ~p2
i

q
; i ¼ K; π; ν; ν̄; l̄: ðD2Þ

Three-momenta conservation requires ~pl̄ ¼ ~pK − ~pν ¼
~pπ þ ~pν̄. (See Fig. 1.)
For t ≫ 0, due to the exchange of the operators OΔS¼1

ul
andOΔS¼0

ul , the leptonic part of the intermediate state is now
given by lν̄. To guarantee the flavor and charge conserva-
tion, the hadronic part must be a strange state with electric
charge Qe ¼ þ2. In this case, the lowest energy inter-
mediate state is given by jKþπþlν̄i. This four-particle state
has an energy larger than that of the kaon and hence will not
contribute a growing exponential term. Note that for this
intermediate state, only the three-momentum of ν̄ is fixed.
For the purposes of this analytic treatment we will include
the special case in which this intermediate state contains a
Kþ and πþ which do not scatter and carry the same three-
momenta as those of the initial-state kaon and final-state
pion respectively. (Examining this case allows us to show
how the nonscattering part of the Kþπþ intermediate state
contributes to give the usual covariant charged lepton
propagator when the two time orderings are combined.)
Including this component of the intermediate Kþ-πþ,
we have
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hπþνν̄jOΔS¼1
ul ðtÞjKþπþlν̄i 1

2EK

1

2Eπ

1

2El

1

2Eν̄
hKþπþlν̄jOΔS¼0

ul ð0ÞjKþi

¼ ZVh0js̄γμð1 − γ5Þuð0ÞjKþiZVhπþjūγνð1 − γ5Þdð0Þj0iūðpνÞγμð1 − γ5Þ
−ipl þml

2El
γνð1 − γ5Þvðpν̄Þ · eðEν−El−EKÞt

¼ −2fKfπūðpνÞpK
−ipl

2El
pπð1 − γ5Þvðpν̄Þ · eðEν−El−EKÞt

≡ ct>0 · eðEν−El−EKÞt; ðD3Þ

where pl ¼ ðiEl; ~plÞ, ~pl ¼ −ð~pK − ~pνÞ and El ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

l þ ~p2
l

q
.

Combining the contributions given by Eqs. (D1) and (D3) and performing the time integral in a window ½−Ta; Tb�,
we have

Z
0

−Ta

dtct<0 · eðEl̄þEν−EKÞt þ
Z

Tb

0

dtct>0 · eðEν−El−EKÞt

¼ ct<0

El̄ þ Eν − EK
ð1 − e−ðEl̄þEν−EKÞTaÞ − ct>0

Eν − El − EK
ð1 − eðEν−El−EKÞTbÞ ðD4Þ

¼ −2fKfπūðpνÞpK
iq

q2 þm2
l
pπð1 − γ5Þvðpν̄Þ −

ct<0

El̄ þ Eν − EK
e−ðEl̄þEν−EKÞTa

þ ct>0
Eν − El − EK

eðEν−El−EKÞTb ; ðD5Þ

with the four-momentum q ¼ pK − pν. The top term on the
right-hand side of Eq. (D4) corresponds to the simplest
graph contributing to diagrams of type 1, where the process
of kaon leptonic decay and (inverse) pion leptonic decay
are joined by a lepton propagator. (See Fig. 1.) The
expression in this term can be further simplified to

ð−iÞfKfπ
2q2

q2 þm2
l
· ūðpνÞpKð1 − γ5Þvðpν̄Þ: ðD6Þ

The second term in Eq. (D5) gives the exponentially
growing contamination, which can be removed once
we evaluate the coefficient ct<0 defined in Eq. (D1). The
third term in Eq. (D5) vanishes exponentially because
Eν < El þ EK and thus requires no special treatment.
Next, let us look at the second lowest intermediate state.

For t ≪ 0, it is given by jπ0l̄νi and we have

Z
d3 ~pπ0

ð2πÞ3 hπ
þνν̄jOΔS¼0

ul ð0Þjπ0l̄νi 1

2Eπ0

1

2El̄

1

2Eν
hπ0l̄νjOΔS¼1

ul ðtÞjKþi

¼
Z

d3 ~pπ0

ð2πÞ3 ZVhπþjūγμð1 − γ5Þdð0Þjπ0i
1

2Eπ0
ZVhπ0js̄γνð1 − γ5Þuð0ÞjKþi

· ūðpνÞγνð1 − γ5Þ
ipl̄ þml̄

2El̄
γμð1 − γ5Þvðpν̄Þ · eðEl̄þE

π0
þEν−EKÞt; ðD7Þ

where ~pπ0 is the three-momentum of the intermediate
neutral pion. Momentum conservation implies that the
antilepton carries the three-momentum ~pl̄¼ ~pK−~pν−~pπ0 .
Exponentially growing contamination is then associated
with those intermediate states whose energies satisfy
El̄ þ Eπ0 þ Eν < EK . This constraint results in a phase-
space suppression, which substantially reduces the expo-
nential contamination.

In a lattice QCD calculation with a finite volume L3, the
three-momentum integral in Eq. (D7) is replaced by a sum

Z
d3 ~pπ0

ð2πÞ3 →
1

L3

X
~pπ0

: ðD8Þ

The scale of a typical lattice momentum is around
2π=L ∼ 2π=ð4=mπÞ ∼ 220 MeV. Therefore, in the kaon
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rest frame, the energies of only a few jπ0l̄νi states will
lie below the energy EK ¼ mK. For each such state, one
can evaluate the hadronic matrix elements hπþjūγμdð0Þjπ0i
and hπ0js̄γνuð0ÞjKþi. Thus, the exponentially growing
contamination for type 2 diagrams can be removed if
observed.

It is possible that higher energy intermediate states such
as jππl̄νi and j3πl̄νi may have energies below EK.
However, because of an even more suppressed phase space,
the exponentially growing contamination from these states
will be negligibly small. We therefore do not discuss these
states in detail.
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