
Interpreting numerical measurements in fixed topological sectors

Wolfgang Bietenholz,1 Christopher Czaban,2 Arthur Dromard,2 Urs Gerber,1,3 Christoph P. Hofmann,4

Héctor Mejía-Díaz,1 and Marc Wagner2
1Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México,

A.P. 70-543, C.P. 04510 Ciudad de México, Mexico
2Institut für Theoretische Physik, Goethe-Universität Frankfurt am Main,

Max-von-Laue-Straße 1, D-60438 Frankfurt am Main, Germany
3Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo,

Edificio C-3, Apdo. Postal 2-82, C.P. 58040, Morelia, Michoacán, Mexico
4Facultad de Ciencias, Universidad de Colima, Bernal Díaz del Castillo 340, Colima C.P. 28045, Mexico

(Received 27 April 2016; published 28 June 2016)

For quantum field theories with topological sectors, Monte Carlo simulations on fine lattices tend to be
obstructed by an extremely long autocorrelation time with respect to the topological charge. Then reliable
numerical measurements are feasible only within individual sectors. The challenge is to assemble such
restricted measurements in a way that leads to a substantiated approximation to the fully fledged result,
which corresponds to the correct sampling over the entire set of configurations. We test an approach for
such a topological summation, which was suggested by Brower, Chandrasekharan, Negele and Wiese.
Under suitable conditions, energy levels and susceptibilities can be obtained to a good accuracy, as we
demonstrate for OðNÞ models, SU(2) Yang-Mills theory, and for the Schwinger model.
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I. MOTIVATION

We consider quantum field theories with topological
sectors, in Euclidean spacetime. These sectors are charac-
terized by a topological charge Q ∈ Z, which is a func-
tional of the field configuration. In infinite volume, the
configurations with finite action are divided into these
disjoint sectors. The same property holds in finite volume
with periodic boundary conditions.
Examples are OðNÞ models in d ¼ N − 1 dimensions,

all two-dimensional CPðN − 1Þ models, four-dimensional
SUðNÞ Yang-Mills gauge theories (N ≥ 2), as well as
QCD, and two-dimensional U(1) gauge theory, as well
as the Schwinger model. In all these models, a continuous
deformation of a given configuration (at finite action) can
only lead to configurations within the same topological
sector, i.e., the deformation cannot alter the topological
charge Q.
In light of this definition, lattice regularized models have

in general no topological sectors—strictly speaking.
Nevertheless, it is often useful to divide the set of lattice
field configurations into sectors, which turn into the
topological sectors in the continuum limit. The definition
of a topological charge on the lattice is somewhat arbitrary.
In the presence of chiral fermions (where the lattice Dirac
operator obeys the Ginsparg-Wilson relation), the fermion
index provides a sound formulation [1]. For the OðNÞ
models the geometric definition [2] is optimal, since it
guarantees integer topological charges on periodic lattices
(for all configurations except for a subset of measure 0). In
gauge theory, field theoretic definitions are often applied,
usually combined with smearing or cooling techniques;

see, e.g., Ref. [3]. These techniques are computationally
cheap and provide, on fine lattices or at fixed topology,
results which agree well with the computationally demand-
ing fermion index [4–6].
As we proceed to finer and finer lattices, the formulation

becomes more continuumlike, and changing a (suitably
defined) topological sector of the lattice field gets more and
more tedious—for this purpose, continuous deformations
have to pass through a statistically suppressed domain of
high Euclidean action. To a large extent, this property
persists for finite but small deformations, as they are carried
out in the Markov chain of a Monte Carlo simulation which
performs small update steps.
In QCD simulations with dynamical quarks, the gauge

configurations are usually generated with a Hybrid
Monte Carlo (HMC) algorithm, with small updates, on
lattices of a spacing a in the range 0.05 fm≲ a≲ 0.15 fm.
The artifacts due to the finite lattice spacing tend to be the
main source of systematic errors. Therefore, the lattice
community tries to suppress them further by proceeding to
even finer lattices, a < 0.05 fm.
This provides continuumlike features, which are highly

welcome in general, but as a drawback it will become
harder to change the topological sector. A HMC simulation
may well be trapped in a single sector over a tremendously
long trajectory; in particular, this is the experience in QCD
simulations with dynamical overlap quarks [7]. In this case,
Ref. [8] suggested a method to estimate the ratio between
topologically constrained partition functions, and tested
this method by determining the topological susceptibility
from fixed topology overlap quark simulations.
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In some circumstances it is even motivated to suppress
topological transitions on purpose, in particular, when
dealing with dynamical chiral fermions. In that context,
configurations in a transition region cause technical prob-
lems, like a bad condition number of an overlap or domain
wall Dirac operator. This can be avoided by the use of
unconventional lattice gauge actions, known as “topology
conserving gauge actions” [4,9] (see also Ref. [10] for a
very similar formulation).
A further option is the use of a “mixed action,” where one

implements chiral symmetry only for the valence quarks,
which requires just a moderate computational effort. In
particular, overlap valence quarks have been combined with
Wilson sea quarks. However, in this setup the continuum
limit is not on safe ground, because (approximate) valence
quark zero modes are not compensated by the sea quark
spectrum [11]. This problem might be avoided by fixing the
topological sector particularly to Q ¼ 0.
In such settings, there are obvious questions about the

(effective) ergodicity of the algorithm, since the simulation
does not sample properly the entire space of all configu-
rations. Even if we ignore this conceptual question, in
practice the measurement of an observable may well be
distorted. This is the issue to be addressed in this work.
Section II describes the Brower-Chandrasekharan-

Negele-Wiese (BCNW) approach, and Secs. III and IV
probe it in the one-dimensional O(2) and the two-
dimensional O(3) nonlinear σ model. It is explored further
in four-dimensional SU(2) Yang-Mills theory in Sec. V, and
in the Schwinger model in Sec. VI. The field theoretic
models discussed in Secs. IV–VI share fundamental fea-
tures with QCD. Section VII is devoted to our conclusions.

II. THE BCNW METHOD

As a remedy against the topological freezing of
Monte Carlo histories, Lüscher suggested the use of open
boundary conditions, such that the topological charge can
change continuously [12]. This overcomes the problem, but
it breaks translational invariance1 and one gives up integer
topological charges Q. However, Q ∈ Z provides a valu-
able link to aspects, which are analytically known or
conjectured in the continuum, for instance, regarding the
ϵ regime of QCD, or properties based on an instanton
picture. Therefore it is still motivated to explore alternative
approaches.
In this work we maintain periodic boundary conditions

(in some volume V) for the bosonic fields involved, so the
topological charges Q are integers. Moreover we consider
models with parity invariance. This implies hQi ¼ 0, and
the topological susceptibility is given by

χt ¼
1

V
hQ2i: ð2:1Þ

In this framework, we are going to test the BCNW
approximation [14]. It can be written in the form of an
expansion in inverse powers of Vχt,

hOiQ ≃ hOi þ 1

Vχt
cþ 1

ðVχtÞ2
ðc̄ − cQ2Þ − 2

ðVχtÞ3
c̄Q2:

ð2:2Þ

The left-hand side refers to the expectation value of some
observable O (Refs. [14] inserted specifically the pion
mass) within the sectors of topological charges �Q. It is
accessible even in simulations which are confined to one—
or a few—topological sectors.
All the unknown terms on the right-hand side, i.e., the

expectation value hOi, χt and the coefficients c and c̄, are
quantities that asymptotically stabilize in large volume.
Hence this form enables the use of results for hOiQ,
measured in several volumes and for distinct jQj, to
determine these unknown terms. In particular we are
interested in hOi and χt. The coefficients are determined
as well; for instance c can be expressed by derivatives with
respect to the vacuum angle θ of the extended Euclidean
action Sþ iθQ,

c ¼ 1

2
hOi00ðθÞjθ¼0; ð2:3Þ

but we are not going to discuss any conceivable interpre-
tation of these coefficients.
Actually the third order in approximation (2.2) is

incomplete, but the additional term in this order brings
along another free parameter. These terms are identified
and discussed in detail in Refs. [15–17]. Here we mostly
focus on the simplest form which captures the Q depend-
ence of hOiQ, and which involves only three parameters
(though an incomplete second order),

hOiQ ≈ hOi þ c
Vχt

�
1 −

Q2

Vχt

�
: ð2:4Þ

In the following, we refer to this approximation as the
BCNW formula. Obviously we cannot determine the
quantities hOi, χt and cwithin a single volume; for instance

hOiQ1
− hOiQ2

≈
c

ðVχtÞ2
ðQ2

2 −Q2
1Þ ð2:5Þ

only determines the ratio c=χ2t . If we include different
volumes V1 and V2, however, we could use, e.g.,
hOi0ðV1Þ − hOi0ðV2Þ ≈ c

χt
ð1=V1 − 1=V2Þ to fix c=χt, and

we obtain—along with relation (2.5)—all three quantities,
hOi, χt and c (we repeat that only the former two are of

1A recent work [13] suggests the use of P-periodic (instead of
open) boundary conditions in Euclidean time, i.e., a parity flip,
which also implies Q ∈ R, but translation symmetry breaking
effects are exponentially suppressed.
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interest). In practice one would rather involve several
volumes and topological sectors, and perform a three-
parameter fit to the (overdetermined) system.
We distinguish three regimes for the volume V:
(i) Small volume: There are significant finite size

effects of the ordinary type, not related to topology
fixing, in particular, in hOi and χt.

(ii) Moderate volume: Ordinary finite size effects are
negligible (they tend to be exponentially sup-
pressed), but hOiQ still depends significantly on
jQj and V.

(iii) Large volume: There are hardly any finite size
effects left; even the correction terms in approx-
imations (2.2) and (2.4) are negligible.

In small volumes, the formulas (2.2) and (2.4) cannot be
applied, because results from various volumes cannot be
used for the same fit.2 In large volumes, we obtain the
correct value for hOi anyhow, without worrying about
frozen topology, as we see from the expansions (2.2) and
(2.4). However, such large volumes may be inaccessible in
realistic simulations, due to limitations of the computa-
tional resources. Hence we are interested in moderate
volumes, where the determination of hOi is difficult, but
possibly feasible by means of the BCNW approximation.
Moreover, that regime provides an estimate for χt, which is
particularly hard to measure directly.
The derivation of formula (2.2) involves approximations,

which assume the following:3

(i) hQ2i ¼ Vχt is large. As we mentioned before,
Eq. (2.2) takes the form of an expansion in
1=hQ2i. Once χt is stable, this can also be viewed
as a large volume expansion.

(ii) jQj=hQ2i is small, so we should work in the sectors
with a small absolute value jQj. This is less obvious
from the formulas (2.2) and (2.4) (although the terms
∝ Q2 are related to this condition), but it is required
for a step in its derivation, which relies on a
stationary phase approximation.

Here we employ numerical data to explore how large
hQ2i has to be for this approximation to be sensible, and up
to which absolute value jQj the data are useful in this
context. In practice it is rather easy to work at small jQj, but
the former condition could be a serious obstacle.
So far there have been only a few attempts to apply

this approximation to simulation data. This was done
for the two-flavor Schwinger model with dynamical over-
lap fermions [19,20] with respect to the pseudoscalar
mass Mπ and the chiral condensate Σ. Tests for a quantum

rotor—more precisely a scalar particle on a circle with a
potential—are reported in Refs. [15,16].
Another approach was derived—similarly to the BCNW

approximation—in Ref. [21]. It refers to the long-distance
correlation of the topological charge density qðxÞ,
Q ¼ R

ddxqðxÞ. The applicability of that method has been
tested in a set of models [22], and variants have been
studied [23]. Further approaches to extract physics from
topologically frozen Markov chains include Refs. [24–26].
Preliminary results of this work have been anticipated in
some proceeding contributions [15,17,18,27].

III. TESTS FOR THE QUANTUM ROTOR

As a simple but precise test, we first consider a toy
model from quantum mechanics (i.e., one-dimensional
quantum field theory), namely the quantum rotor, or one-
dimensional XY model, or one-dimensional O(2) model. It
describes a free quantum mechanical particle moving on a
circle, with a periodicity condition in Euclidean time. A
theoretical discussion of this system, in the continuum and
for different lattice actions, is given in Ref. [28].4 Below we
write down the continuum action, and on the lattice the
standard action and the Manton action [30] (in lattice units),

Scont½φ� ¼
βcont
2

Z
Lcont

0

dt _φðtÞ2;

Sstandard½φ� ¼ β
XL
t¼1

ð1 − cosðΔφtÞÞ;

SManton½φ� ¼
β

2

XL
t¼1

ðΔφtÞ2: ð3:1Þ

Lcont and L are the extent of the periodic Euclidean time
interval in the continuum and on the lattice, respectively;φðtÞ
and φt are time dependent angles, with φðLcont þ tÞ ¼ φðtÞ,
φLþt ¼ φt. βcont and β can be interpreted as an inverse
temperature, or in this case also as the moment of inertia. In
the terms for the lattice actions we define

Δφt ¼ ðφtþ1 − φtÞ mod 2π ∈ ð−π; π�; ð3:2Þ

i.e., the modulo function is implemented such that it mini-
mizes jΔφtj. Thus Δφt also defines the lattice topological
charge density qt (geometric definition) and the charge Q,

qt ¼
1

2π
Δφt; Q½φ� ¼

XL
t¼1

qt ∈ Z: ð3:3Þ
2An extension of the BCNW approximation (2.4) including

ordinary finite size effects has been derived in Refs. [18]. This
extension can be used for fits to data obtained from small
volumes. It involves, however, additional fitting parameters.

3For convenience, this formula has been rederived in Sec. 5.2
of Ref. [19] in a way which highlights the role of these two
assumptions.

4For the analytic treatment, Ref. [28] uses the Hamiltonian
formalism. A discussion in terms of path integrals is given in
Ref. [29].
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In the continuum and infinite size Lcont, the correlation
length and its product with the topological susceptibility
amount to

ξcont ¼ 2βcont; χtξcont ¼
1

2π2
: ð3:4Þ

Analytic expressions for the corresponding quantities on
the lattice, with the standard action and the Manton action,
are given in Ref. [28].
Our simulations were carried out with the Wolff cluster

algorithm [31], which performs nonlocal update steps.
This algorithm is highly efficient and provided a statistics
of 5 × 109 measurements for each setting. Since it
changes the topological sector frequently, in this case
the observables could also be measured directly to high
precision, which allows for a detailed test of the BCNW
method. In most quantum field theoretic models no
efficient cluster algorithm is known, in particular, in
the presence of gauge fields. Then one has to resort to
local update algorithms, which motivates this project, as
we pointed out in Sec. I.
For our tests we set β ¼ 4 and consider six lattice sizes in

the range L ¼ 150…400. This is large compared to the
correlation length, which was measured at L ¼ 400 as

ξstandard ¼ 6.81495ð4Þ; ξManton ¼ 7.9989ð1Þ; ð3:5Þ

very close to the analytic values at L ¼ ∞. This demon-
strates that ordinary finite size effects are very small, but—
as we are going to see—there are significant fixed topology
finite size effects. Hence we are in the regime of moderate
volumes, as desired. Moreover, this regime is sensible also
because lattice artifacts are quite well suppressed.
The BCNW formula consists of leading terms in an

expansion in 1=hQ2i, cf. Sec. I. In the range L ¼ 150…400
we obtain

hQ2istandard ¼ 1.13…3.02; hQ2iManton ¼ 0.95…2.53:

ð3:6Þ

This suggests that we are in the transition regime to the
validity of this method, which is interesting to explore.

A. Action density

We first consider the action density

s ¼ hSi=V: ð3:7Þ

This quantity is not directly physical, but it is suitable for
testing the BCNW method, based on topologically
restricted expectation values sjQj ¼ hSijQj=V. Moreover,
the corresponding fits provide a value for χt, which is
physical.
Figure 1 shows the action density for both lattice actions

under consideration, measured at fixed jQj ¼ 0…4, and by
including all sectors (the way the simulation samples them).
The latter is constant to high accuracy for L ¼ 150…400,
which confirms that ordinary finite size effects are negli-
gible. On the other hand, at fixed jQj we see deviations far
beyond the statistical errors, depending on L and jQj, so
this setting is appropriate for the application of the BCNW
method.
Table I presents our results obtained by least-square

fits to the BCNW approximation (2.4): we use data for
sjQj in all six volumes, and in the topological sectors
jQj ¼ 0…jQjmax, where jQjmax varies from 1 to 4. Similar
results are obtained when we only involve the larger
volumes, such as L ¼ 250…400 or 300…400.
Regarding the value of s, the method works perfectly (to

the given precision) for the standard action, and up to a
deviation of about 0.006% for the Manton action. For the
standard action the fits yield values for χt, which are again
compatible with the correct value, with uncertainties
around 0.05%. In the case of the Manton action a
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FIG. 1. The action density in the one-dimensional O(2) model at β ¼ 4 on lattices of size L ¼ 150…400, with the standard action
(left) and the Manton action (right). We show s measured in all sectors (which is practically constant in this range of L), as well as the
values of sjQj in the sectors jQj ¼ 0…4, which strongly depend on jQj and V.
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systematic discrepancy of 3% is observed, as a conse-
quence of the approximations in formula (2.4).
In summary, this first numerical experiment can be

considered a success of the BCNW method. The good
results for s are highly nontrivial in view of the sizable
differences in the individual sectors (shown in Fig. 1), and
exactly these differences give rise to quite good estimates
for χt. As a generic property, it is easy to measure sjQj
accurately (in gauge theories it is given by the mean
plaquette value), so it is motivated to estimate χt in this
way also in higher dimensional models.

B. Magnetic susceptibility

In this model, the correlation function in a fixed sector of
topological charge Q has a peculiar form. For a continuous
time variable t it reads [16]

h~eð0Þ · ~eðtÞiQ ¼ 1

2
exp

�
−
tðLcont − tÞ
2βcontLcont

�
cos

�
2πQt
Lcont

�
;

with ~eðtÞ ¼
�
cosφðtÞ
sinφðtÞ

�
: ð3:8Þ

The unusual last factor in Eq. (3.8) obstructs the determi-
nation of a correlation length ξQ≠0, and we recall that the
BCNW method does not apply to results, which are
obtained in various volumes, but always at Q ¼ 0.
By integrating over the time shift t, however, we obtain a

quantity, which is suitable for testing this method, namely
the magnetic susceptibility

χm ¼ h ~M2i − h ~Mi2
Lcont

¼
Z

Lcont

0

dt h~eð0Þ · ~eðtÞi − 1

Lcont

��Z
Lcont

0

dt ~eðtÞ
��

2

;

ð3:9Þ

where ~M ¼ R Lcont
0 dt ~eðtÞ is the magnetization. The sub-

tracted term vanishes in our case due to the global O(2)

invariance, h ~Mi ¼ ~0. The magnetic susceptibility is physi-
cal in the framework of statistical mechanics; we can
interpret a configuration ½~e� as a spin chain. Based on
Eq. (3.8) we obtain for its topologically restricted counter-
part

χm;jQj ¼ 2

Z
Lcont=2

0

dt exp

�
−

t
2βcont

þ t2

2βcontLcont

�

× cos

�
2πQt
Lcont

�
: ð3:10Þ

In each sector, the limit Lcont → ∞ leads to χm ¼ χm;jQj ¼
4βcont. If we insert the large volume expansions of
expðt2=ð2βcontLcontÞÞ and cosð2πQt=LcontÞ up to
Oð1=L3

contÞ, and perform the integral, we arrive at

χm;Q ¼ χm þ 4βcont
π2Lcontχt

�
1þ 3=π2 −Q2

Lcontχt

�

þ 12βcont
π4ðLcontχtÞ3

�
5

π2
− 2Q2

�
þO

�
1

ðLcontχtÞ4
�
;

ð3:11Þ

where we substituted the infinite volume value χt ¼
1=ð4π2βcontÞ [28], cf. Eq. (3.4).5 This is exactly the form
of the BCNW approximation (2.2), with

c ¼ 4βcont
π2

; c̄ ¼ 12βcont
π4

; ð3:12Þ

and in this case the third order is complete. If we only
consider the second order and neglect its c̄ term, we are left
with the BCNWapproximation (2.4). A detailed derivation
of the expansion (3.11) is given in the Appendix.
Therefore the magnetic susceptibility is fully appropriate

for numerical tests of the validity of this approximation,
where we use the corresponding lattice terms, like
~M ¼ P

L
t¼1 ~et. The sources of systematic errors (errors in

the BCNWapproximation) are subleading finite size effects
and lattice artifacts.
In analogy to Sec. III A, Fig. 2 gives an overview of the

values of χm;jQj up to jQj ¼ 3, at different L. Again we see
that the value measured in all sectors is stable in L, whereas
the topologically restricted results strongly depend on L
and jQj. Hence the setting is suitable for the BCNW
method also with respect to the magnetic susceptibility.
We proceed to the fits to search the optimal values—

according to formula (2.4)—for the (overdetermined)
susceptibilities χm and χt. Table II shows the results in
the fitting ranges L ¼ Lmin…400, Lmin ¼ 150, 250, 300,
and jQj ¼ 0…jQjmax, with jQjmax ¼ 2 or 3.

TABLE I. Results based on fits to the formula (2.4), with input
data for the action density in the range L ¼ 150…400 and
jQj ≤ jQjmax. The last line displays s measured in all sectors at
L ¼ 400, and the analytic value of χt at L ¼ ∞.

Standard action Manton action

jQjmax s χt s χt

1 0.545910(1) 0.007552(4) 0.500073(3) 0.006135(9)
2 0.545910(1) 0.007555(3) 0.500072(2) 0.006132(8)
3 0.545912(2) 0.007559(5) 0.500072(2) 0.006132(8)
4 0.545912(2) 0.007559(5) 0.500072(2) 0.006131(7)
All 0.545910(1) 0.007554 0.500041(1) 0.006333

5The finite size effects in χt, and those due to the upper bound
of the integral in Eq. (3.10), are exponentially suppressed.
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The fitting results for both susceptibilities are compatible
with the correct values, albeit the uncertainty of χt is rather
large. Without knowing the exact value one could combine
the results of separate fits, which reduces the uncertainty,
but it leads to a χt value which is somewhat too small. On
the other hand, for χm the values are far more precise, and
the relative uncertainty is on the percent level (or below) in
each case. Here a combination which reduces the uncer-
tainty is welcome, although it has to be done with care
since the partial results are not independent of each other.
We add that the fitting results for the coefficient c are
consistent with Eq. (3.12), c≃ 1.6, within (considerable)
uncertainties.
The observed precisions for χm and χt can be understood

if we consider the impact of the subleading contributions,
which are missing in the BCNW formula (2.4): taking into
account the additional terms up to the incomplete third
order modifies the fitting results for χm only on the permille
level, but those for χt in Oð10Þ%, both with somewhat
enhanced errors. Also a variety of further fitting variants,
with the terms of a complete second or complete third order
of approximation (3.11), with fixed or free additional terms,

leads to consistent results for χm and χt, but with enlarged
errors. In summary, there seems to be no fitting strategy
which improves the results compared to the simple three-
parameter fit based on the BCNW approximation (2.4).

IV. APPLICATIONS TO THE TWO-DIMENSIONAL
HEISENBERG MODEL

Our study of the two-dimensional Heisenberg model, or
two-dimensional O(3) model, uses quadratic lattices of unit
spacing and square-shaped volumes V ¼ L × L. On each
lattice site x there is a classical spin ~ex ∈ S2, and we
implement periodic boundary conditions in both directions.
We consider the standard lattice action as well as the
constraint action [32],

S½~e�standard ¼ β
X
x;μ

ð1 − ~ex · ~exþμ̂Þ;

S½~e�constraint ¼
�
0 ~ex · ~exþμ̂ ≥ cos δ ∀ x; μ ¼ 1; 2

þ∞ otherwise;

ð4:1Þ

where δ is the constraint angle, and μ̂ is the unit vector in μ
direction.
Our simulations were performed at β ¼ 1.5 and

δ ¼ 0.55π, respectively, with the correlation lengths

standard actionðL ¼ 84Þ ∶ ξ ¼ 9.42ð2Þ;
constraint actionðL ¼ 96Þ ∶ ξ ¼ 3.58ð5Þ: ð4:2Þ

The cluster algorithm allowed us to perform Oð107Þ
measurements at each lattice size shown in Figs. 3 and 4.
For the topological charge we use again a geometric

definition [2]. To this end, each plaquette is split into two
triangles, in alternating orientation. We consider the ori-
ented solid angle of the spins at the corners of a triangle: the
sum of the two angles (divided by 4π) within a plaquette
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FIG. 2. The magnetic susceptibility in the one-dimensional O(2) model at β ¼ 4 on lattices of size L ¼ 150…400, with the standard
action (left) and the Manton action (right). We show χm measured in all sectors (practically constant in this range of L), as well as χm;jQj
in the sectors jQj ¼ 0…3 (well distinct).

TABLE II. Results based on fits to formula (2.4), with input
data for the magnetic susceptibility in the range L ¼ Lmin…400
and jQj ≤ jQjmax. The last line displays χm measured in all
sectors at L ¼ 400, and χt at L ¼ ∞.

Standard action Manton action

Lmin jQjmax χm χt χm χt

150 2 13.64(16) 0.0072(13) 16.11(35) 0.0054(18)
150 3 13.67(22) 0.0070(22) 16.14(41) 0.0050(26)
250 2 13.64(5) 0.0071(5) 16.00(14) 0.0060(8)
250 3 13.65(13) 0.0074(15) 15.99(28) 0.0064(20)
300 2 13.64(5) 0.0071(5) 16.02(12) 0.0058(8)
300 3 13.66(13) 0.0073(17) 16.02(29) 0.0061(23)

All 13.6545(4) 0.007554 16.0187(5) 0.006333
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(associated with the site x) amounts to its topological
charge density qx. Due to the periodic boundary conditions,
their sum must be an integer, Q ¼ P

xqx ∈ Z. Details and
explicit formulas are given in Refs. [22,32].

A. Action density

A study of the BCNW formula with respect to the action
density (3.7) can only be performed with the standard
action (in the case of the constraint action all contributing
configurations have action Sconstraint ¼ 0). Figure 3 shows
the values of s and sjQj, jQj ≤ 2 in the range L ¼ 32…84.
The total expectation value s is stable within 0.0003 for
L ≥ 56, while the topologically constrained results differ
by Oð10−3Þ even at L ¼ 84. Therefore L ¼ 56…84 is a
regime of moderate volumes, which is suitable for testing
the BCNW formula.
The fitting results, for jQj ≤ 2 and various ranges of L

are listed in Table III. The fits do not match the BCNW
formula perfectly, as expected, since the latter is an
approximation, and the input data have very small stat-
istical errors of Oð10−5Þ.6 Nevertheless, the value of s is
obtained correctly up to a high precision of 0.2 permille. On
the other hand, the determination of the topological
susceptibility is less successful; only the fit with L ¼ 76
and 84 yields a result, which is correct within the errors.

B. Magnetic susceptibility and correlation length

We proceed to the constraint action (4.1) where our
choice of δ yields a shorter correlation length, which favors
the stabilization of observables (measured in all sectors) at

smaller L. This can be seen in Fig. 4, which shows the
magnetic susceptibility χm, analogous to Eq. (3.9) (again the
disconnected part vanishes due to rotational symmetry), and
the correlation length ξ. Stabilization within the errors is
attained for χm at L ≥ 48 (with errors around 0.2 permille),
and for ξ already at L ≥ 16 [with errors of Oð1Þ%]. On the
other hand, for L ¼ 128 the χm;jQj values are not distin-
guished anymore from χm beyond the errors, and the same
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FIG. 3. The action density in the two-dimensional O(3) model,
on L × L lattices with the standard lattice action, in the sectors
with topological charge jQj ¼ 0, 1, 2, and summed over all
sectors (i.e., all configurations used for the numerical measure-
ments). The latter stabilizes to 0.3 permille for L ≥ 56.
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FIG. 4. Results for the magnetic susceptibility (above) and for
the correlation length (below) in the two-dimensional O(3)
model, with the constraint action at δ ¼ 0.55π. The windows,
which are suitable for applications of the BCNW formula, are
given by L ¼ 48…96 for χm, and by L ¼ 32…64 for ξ.

TABLE III. Fitting results for the action density s and the
topological susceptibility χt in the two-dimensional O(3) model.
The input data in fixed topological sectors are plotted in Fig. 3.

Fitting range in L s χt
χ2=degree of

freedom

56–64 1.1955(2) 0.0035(5) 2.66
56–76 1.19538(6) 0.0031(3) 2.66
56–84 1.19536(5) 0.0030(3) 2.63
64–76 1.19532(7) 0.0031(3) 2.65
64–84 1.19531(5) 0.0031(3) 2.58
76–84 1.1953(1) 0.0026(3) 2.60
L ¼ 84, all sectors 1.195089(5) 0.002323(3)

6Of course, the ratio χ2=d:o:f: could be reduced by adding
more terms to the 1=V expansion. However, in Table IV we
demonstrate that this does not improve the results for the
observable and for χt, in qualitative agreement with Sec. III.
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happens for ξjQj already at L ¼ 96. Finally, we have to
exclude L ¼ 16, because here we only obtain hQ2i≃ 0.63;
hence its inverse is not suitable as an expansion parameter.
This singles out the regime of moderate volumes, where the
BCNW formula is appropriate, to the range L ¼ 48…96 for
χm, and L ¼ 32…64 for ξ.
Our fitting results are given in Table IV. In the case of χm

we probe the BCNW formula (2.4) [with its incomplete
second order, Oð1=V2Þ], as well as its extensions to the
second order plus an incomplete third order as given in
formula (2.2). For the latter option, the approximation is
more precise, but an additional free parameter c̄ hampers
the fits.
For both fitting versions, the results for χm and χt are

compatible with the directly measured values. We observe,
however, that the inclusion of terms beyond the BCNW
formula enhances the uncertainty (due to the additional
fitting parameter). The uncertainty is on the permille level
for χm, but large for χt, in particular, with extra terms.
(Without these terms it is around 8%.) It turns out to be
nonprofitable to extend the approximation beyond the
BCNW formula.
The simple BCNWapproximation is also superior for the

fits with respect to ξ, where the additional terms drastically
increase the uncertainty. The results in Table IVare correct,
within percent level for ξ, but again with a large uncertainty
of the χt value.
We add that we also tried fits to the complete second

order approximation, without the third order term that
appears in formula (2.2). However, this scenario (which
also involves the fitting parameter c̄) is clearly unfavorable:
in this case, it often happens that the least-square fit even
fails to converge to values in the correct magnitude.
To conclude, this study suggests that the simple BCNW

formula, with only three free parameters, is in fact optimal
for extracting values for the considered observable, and for
χt. Moreover, we confirm that the method works best for
the determination of the observable; it is less successful
with respect to the determination of χt.

V. RESULTS IN FOUR-DIMENSIONAL SU(2)
YANG-MILLS THEORY

The topological tunneling rate has been investigated in
four-dimensional Yang-Mills theories with the heat bath
[33] and the HMC algorithm [34]. In both cases the
autocorrelation time with respect to Q was found to
increase drastically for decreasing lattice spacing, which
further substantiates the motivation of our study.

A. Simulation setup

We consider four-dimensional SU(2) Yang-Mills theory,
which has the continuum action

Scont½A� ¼ βcont

Z
d4x Fa

μνðxÞFa
μνðxÞ; ð5:1Þ

and the topological charge

Q½A� ¼ 1

16π2

Z
d4x ϵμνρσFa

μνðxÞFa
ρσðxÞ: ð5:2Þ

On the lattice we simulate Wilson’s standard plaquette
action. For the topological charge of a lattice gauge
configuration [U], we use an improved field theoretic
definition [3],

Q½U� ¼ 1

16π2
X
x

ϵμνρσ
X

□¼1;2;3

c□
□

4
Fð□×□Þ
x;μν ½U�Fð□×□Þ

x;ρσ ½U�;

ð5:3Þ

where Fð□×□Þ
x;μν ½U� denotes the lattice field strength tensor,

clover averaged over square-shaped loops of size □ ×□,
and ðc1; c2; c3Þ ¼ ð1.5;−0.6; 0.1Þ. Before applying
Eq. (5.3), we perform a number of cooling sweeps with
the intention of removing local fluctuations in the gauge
configurations, while preserving the topological structure.
A cooling sweep amounts to a local minimization of the

action, i.e., a minimization with respect to each gauge link
within a short range. For this minimization we use again an
improved lattice Yang-Mills action,

S½U� ¼ β

16

X
x

X
μν

X
□¼1;2;3

c□
□4

Trð1 −Wð□×□Þ
x;μν ½U�Þ; ð5:4Þ

where Wð□×□Þ
x;μν ½U� is a clover averaged loop of size □ ×□

with the coefficients c□ given above [for comparison, the
standard plaquette action corresponds to ðc1; c2; c3Þ ¼
ð1; 0; 0Þ]. Choosing an appropriate number of cooling
sweeps is a subtle and somewhat ambiguous task, which
is carried out for each gauge configuration one by one.
After every cooling sweep we compute Q½U� according to
Eq. (5.3). As soon as Q½U� is stable (it varies by less than
10% and is close to an integer for at least 50 cooling

TABLE IV. Fitting results based on data for χm and for ξ in the
two-dimensional O(3) model, in fitting ranges Lmin–Lmax, and
sectors with jQj ≤ 2. In the case of χm, with the optimal range, we
show results for the BCNW approximation (2.4), as well as its
extension to the complete second order plus one term of
Oð1=V3Þ, according to formula (2.2).

Fitting range
BCNW
formula

Incomplete
third order

All sectors
at Lmax

χm 48–64 36.56(4) 36.64(11) 36.590(9)
χt 0.0026(2) 0.0031(6) 0.0027935(14)
χm 48–96 36.58(3) 36.64(7) 36.616(9)
χt 0.0026(2) 0.0032(6) 0.0027942(11)
ξ

32–64 3.56(2) 3.58(4) 3.59(2)
χt 0.0027(3) 0.0034(14) 0.0027935(14)
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sweeps), the corresponding close integer is the topological
charge that we assign to the gauge configuration [U].
Figure 5 shows examples for typical cooling histories of
gauge configurations with Q ¼ 0, 1 and 2. (Details of this
procedure, and a comparison to other definitions of the
topological charge, are discussed in Ref. [6].)
Our simulations were performed with a heat bath

algorithm; see, e.g., Ref. [35]. We set β ¼ 2.5, which
corresponds to a lattice spacing a ≈ 0.073 fm, if the scale is
set with the QCD Sommer parameter r0 ¼ 0.46 fm [36].
This value is in the range of lattice spacings 0.05 fm ≲
a≲ 0.15 fm typically used in contemporary QCD simu-
lations. We generated gauge configurations in lattice
volumes V ¼ L4, with L ¼ 12, 14, 15, 16, 18.7 In each
volume, observables were measured on 4000 configura-
tions, separated by 100 heat bath sweeps. This guarantees
their statistical independence; in particular, even the auto-
correlation time with respect to the topological charge Q is
below 20 heat bath sweeps.

B. Computation of observables

The observable we focus on is the static quark-antiquark
potential Vqq̄ðrÞ for separations r ¼ 1; 2…6. This quantity
can be interpreted as the mass of a static-static meson. To
determine Vqq̄ðrÞ, we consider temporal correlation func-
tions of operators

Oqq̄ðrÞ¼ q̄ð~r1ÞUAPEð~r1;~r2Þqð~r2Þ; r¼j~r1−~r2j; ð5:5Þ

where q̄, q represent spinless static quarks, while
UAPEð~r1; ~r2Þ denotes a product of APE smeared spatial
links [37] along a straight line connecting the lattice sites ~r1
and ~r2 on a given time slice. For the quarks we use the
HYP2 static action [38], which is designed to reduce UV
fluctuations and, therefore, to improve the signal-to-noise

ratio. These temporal correlation functions can be simpli-
fied analytically resulting in Wilson loop averages
hWðr; tÞi with APE smeared spatial and HYP2 smeared
temporal lines of length r and t, respectively. Thus we
arrive at the vacuum expectation value,

hΩjO†
q̄qðtÞOq̄qð0ÞjΩi ∝ hWðr; tÞi: ð5:6Þ

We chose the APE smearing parameters as NAPE ¼ 15 and
αAPE ¼ 0.5, which (roughly) optimizes the overlap of
Oq̄qjΩi with the ground state of the static potential (for
details of the smearing procedure we refer to Ref. [39],
where a similar setup had been used).

C. Numerical results

1. The static potential

Figure 6 shows results for the static potential measured in
all topological sectors, i.e., for each r and t the Wilson loop
average is computed on all configurations, which are
available in some volume.8 The volumes 144, 154, 164

and 184 yield identical results within statistical errors, but
the static potential in the 124 volume differs by several σ
for quark-antiquark separations r ≥ 3. We conclude that
V ¼ 124 entails sizable ordinary finite volume effects (not
associated with topology fixing), whereas for volumes
V ≥ 144 such ordinary finite volume effects are negligible.
Consequently, we do not use the 124 lattice in the following
fixed topology studies.9

For V ¼ 154, Fig. 7 demonstrates that static potentials
obtained at fixed topology from different sectors jQj ¼
0…5 (by averaging only over configurations of a fixed
charge jQj), Vqq̄;jQj, differ significantly.10 For example,
Vqq̄;0ðr ¼ 6Þ and Vqq̄;4ðr ¼ 6Þ differ by more than 6σ. They
are also well distinct from the corresponding result in all
sectors, Vqq̄;jQj≤1ð6Þ < Vqq̄ð6Þ < Vqq̄;jQj≥2ð6Þ. These obser-
vations show that V ¼ 144…184 is in the regime that we
denoted as moderate volumes (cf. Sec. II), where the
BCNW method is appropriate to extract observables from
fixed topology measurements. Similar results for the static
potential in SU(3) Yang-Mills theory have been reported
in Ref. [4].
To extract the physical static potential from Wilson loop

averages, separately computed in distinct topological sec-
tors jQj ≤ 7 and some volume V, hWVðr; tÞijQj, we follow
the procedure discussed in Ref. [15].

FIG. 5. Cooling and assignment of the topological charge for
three typical gauge configurations, at β ¼ 2.5, in a lattice
volume V ¼ 184.

7Unless stated otherwise, we continue using lattice units.

8As usual,we determinedVqq̄ðrÞ by searching for a plateau value
of the effective mass meffðr; tÞ ¼ logðhWðr; tþ 1Þi=hWðr; tÞiÞ.

9We repeat that the BCNW formula can be extended by
incorporating ordinary finite volume effects [18].

10Again we determined Vqq̄ðrÞ by fitting constants to effective
mass plateaus. Even though topology has been fixed, the effective
masses exhibit a constant behavior (within statistical errors) at
large t.
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(i) We perform χ2 minimizing fits of either the 1=V
expansion of the correlation function [14],

CQ;VðtÞ ¼ hWVðr; tÞijQj

≈ αðrÞ exp
�
−
�
Vqq̄ðrÞ

þ 1

2
V 00
qq̄ðrÞ

1

Vχt

�
1 −

Q2

Vχt

��
t

	
ð5:7Þ

[cf. formula (2.4)], or of the improved approxima-
tion [16],

CQ;VðtÞ≃ αðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ V 00

qq̄ðrÞt=ðχtVÞ
q
× exp

�
−Vqq̄ðrÞt

−
1

χtV

�
1

1þ V 00
qq̄ðrÞt=ðχtVÞ

− 1

�
1

2
Q2

�

ð5:8Þ

with respect to the parameters Vqq̄ðrÞ, V 00
qq̄ðrÞ ¼

∂2
θVqq̄ðr; θÞjθ¼0, αðrÞ (r ¼ 1…6) and χt to the

numerical results for hWVðr; tÞijQj in the range
tmin ≤ t ≤ tmax, where tmin and tmax are displayed
in Table V.11 When fitting formula (5.8), we also
study the scenario where χt is fixed to χt ¼ 7 × 10−5,
which was obtained in Ref. [3] by means of a direct
measurement, in agreement with the fixed topology
study in Ref. [22]. Moreover, we checked that the
resulting fit parameters are stable within errors when
we vary tmin and tmax by �1.

(ii) The results for hWVðr; tÞijQj entering the fit are
restricted to those jQj and V values for which
1=ðχtVÞ; jQj=ðχtVÞ < 1 or < 0.5; we recall that
the approximations (5.7) and (5.8) are only valid
for sufficiently large χtV ¼ hQ2i, and small jQj. To
implement this selection we insert χt ¼ 7 × 10−5

[3]; Table V gives an overview.
(iii) We either perform a single combined fit to all

considered separations r ¼ 1…6, or six separate
fits, one for each r. In the latter case we obtain six
results for χt, which agree within the errors in most
cases, cf. Sec. V C 2.

Table VI collects the results for Vqq̄ðrÞ from fixed
topology computations (using four volumes, V ¼ 144,
154, 164, 184), and computed in all sectors at V ¼ 184.
There is agreement between most of these results within
about 2σ. Only for r ¼ 1, and the relaxed constraint
1=ðχtVÞ; jQj=ðχtVÞ < 1, there are a few cases with dis-
crepancies beyond 3σ, in particular, for the expansion
(5.7) (the corresponding data in Table VI are displayed in
italics).
The extent of the errors of the fitting results is fairly

independent of the choice of the expansion [(5.7), (5.8),
or (5.8) with χt ¼ 7 × 10−5 fixed]. The errors increase,

FIG. 6. The static potential Vqq̄ðrÞ in a variety of lattice
volumes V ¼ 124…184.

FIG. 7. The static potential at separation r ¼ 6, Vqq̄ð6Þ, for
fixed topological sectors jQj ≤ 5, and without topology fixing, in
the volume V ¼ 154.

TABLE V. Temporal fitting ranges tmin…tmax, and maximum
topological charges jQj, for the lattice volumes V under consid-
eration.

V tmin tmax

Maximum jQj
fulfilling

Maximum jQj
fulfilling

1=ðχtVÞ;
jQj=ðχtVÞ < 1

1=ðχtVÞ;
jQj=ðχtVÞ < 0.5

144 5 7 2 1
154 5 7 3 1
164 5 8 4 2
184 5 8 7 3

11Again, θ is the vacuum angle that we referred to before in
Eq. (2.3).
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however, by factors up to ≈2, when we implement the
stringent constraint 1=ðχtVÞ; jQj=ðχtVÞ < 0.5, which is
expected, since less input data are involved; see Table V.
All fits of the expansions (5.7) and (5.8) capture well the
fixed topology results.
For the extraction of the potential it seems essentially

irrelevant whether a single combined fit or six separate fits
are performed. Both the mean values and the statistical
errors of Vqq̄ðrÞ are in most cases very similar. A single
combined fit, however, seems somewhat advantageous
regarding the determination of χt; see Sec. V C 2.
Figure 8 compares the static potential obtained from

fixed topology Wilson loops, and computed without top-
ology fixing at V ¼ 184. As reflected by Table VI there is
excellent agreement within the errors.
The expansion (5.7) of fixed topology Wilson loop

averages hWVðr; tÞijQj is a decaying exponential in t.
This suggests defining a static potential at fixed topological
charge jQj and volume V,

Vqq̄;jQj;VðrÞ ¼ −
d
dt

ln
�D

WVðr; tÞ
E
jQj

�
; ð5:9Þ

for some value of t, where formula (5.7) is a rather
precise approximation. Within statistical errors
Vqq̄;jQj;VðrÞ is independent of t for tmin ≤ t ≤ tmax.
Therefore, we determine Vqq̄;jQj;VðrÞ by a χ2 minimizing
fit of a constant to the right-hand side of Eq. (5.9), with the
derivative replaced by a finite difference (this is the
common definition of an effective mass) in the interval
tmin ≤ t ≤ tmax. For jQj ¼ 0…4 and V ¼ 144, 154, 164,
184, the values for Vqq̄;jQj;Vðr ¼ 6Þ are plotted in Fig. 9.

As already shown in Fig. 7, there is a strong dependence on
the topological sector, which becomes increasingly promi-
nent for smaller volumes. From expansion (5.7) the fixed
topology static potential is expected to behave as

Vqq̄;jQj;VðrÞ ≈ Vqq̄ðrÞ þ
1

2
V 00
qq̄ðrÞ

1

Vχt

�
1 −

Q2

Vχt

�
: ð5:10Þ

The corresponding curves for jQj ¼ 0…4, with parameters
Vqq̄ðr ¼ 6Þ, V 00

qq̄ðr ¼ 6Þ and χt determined by the

TABLE VI. Results for the static potential Vqq̄ðrÞ for separations r ¼ 1…6measured with and without topology fixing. In the column
Method the equation number of the expansion is listed, c denotes a single combined fit for all separations r ¼ 1…6, s denotes a separate
fit for each separation, and χt indicates that the topological susceptibility is not a fit parameter, but fixed to χt ¼ 7 × 10−5. Fixed
topology results, which differ by more than 3σ from the directly computed value, are written in italics.

Method Vqq̄ð1Þ Vqq̄ð2Þ Vqq̄ð3Þ Vqq̄ð4Þ Vqq̄ð5Þ Vqq̄ð6Þ
All sectors, V ¼ 184

0.04229(1) 0.09329(2) 0.1646(1) 0.2190(1) 0.2664(2) 0.3101(3)

Fixed topology, V ∈ f144; 154; 164; 184g, 1=ðχtVÞ; jQj=ðχtVÞ < 1
(5.7)c 0.04240(3) 0.09343(8) 0.1646(2) 0.2189(3) 0.2662(4) 0.3097(5)
(5.7)s 0.04241(3) 0.09342(9) 0.1646(2) 0.2189(3) 0.2662(4) 0.3097(6)
(5.8)c 0.04230(3) 0.09324(8) 0.1644(2) 0.2187(3) 0.2661(4) 0.3098(6)
(5.8)s 0.04240(3) 0.09338(9) 0.1645(2) 0.2188(3) 0.2661(4) 0.3098(6)
(5.8)cχt 0.04225(3) 0.09326(8) 0.1643(2) 0.2186(3) 0.2660(4) 0.3097(6)
(5.8)sχt 0.04225(3) 0.09326(8) 0.1643(2) 0.2186(3) 0.2660(4) 0.3097(6)

Fixed topology, V ∈ f144; 154; 164; 184g, 1=ðχtVÞ; jQj=ðχtVÞ < 0.5
(5.7)c 0.04227(4) 0.09326(14) 0.1645(3) 0.2190(5) 0.2665(7) 0.3103(10)
(5.7)s 0.04226(4) 0.09322(13) 0.1644(3) 0.2189(5) 0.2666(8) 0.3105(11)
(5.8)c 0.04227(4) 0.09326(14) 0.1645(4) 0.2190(5) 0.2665(7) 0.3104(10)
(5.8)s 0.04226(4) 0.09323(13) 0.1645(3) 0.2189(5) 0.2665(8) 0.3104(10)
(5.8)cχt 0.04225(4) 0.09317(12) 0.1643(3) 0.2186(4) 0.2660(6) 0.3096(8)
(5.8)sχt 0.04225(3) 0.09317(12) 0.1643(3) 0.2186(4) 0.2660(6) 0.3096(8)

FIG. 8. Comparison of static potential obtained from fixed
topology Wilson loops, in the volumes V ¼ 144, 154, 164, 184,
with 1=ðχtVÞ; jQj=ðχtVÞ < 1, using expansion (5.8) with one
combined fit, and directly measured at V ¼ 184. (Since unfixed
and fixed topology results coincide within the errors, they are
shifted horizontally for better visibility.)

INTERPRETING NUMERICAL MEASUREMENTS IN FIXED … PHYSICAL REVIEW D 93, 114516 (2016)

114516-11



previously discussed fits [V ¼ 144…184, 1=ðχtVÞ; jQj=
ðχtVÞ < 1, expansion (5.7) and a single combined fit],
are also shown in Fig. 9. One clearly sees that approxi-
mation (5.10) nicely describes the numerical results
for Vqq̄;jQj;Vðr ¼ 6Þ.
We conclude that one can obtain a correct and accurate

physical static potential from Wilson loops separately
computed in different topological sectors. The errors
are larger by factors ≈2…5 (cf. Table VI) for a fixed
topology computation using four ensembles, compared
to a corresponding direct computation using a single
ensemble (V ¼ 184).

2. The topological susceptibility

In Table VII we present results for the topological
susceptibility extracted from fixed topology Wilson loops
hWVðr; tÞijQj. Again we use the 1=V expansion (5.7) or
(5.8), the constraints 1=ðχtVÞ; jQj=ðχtVÞ < 1 or < 0.5, and
either a single combined fit to all considered separations

r ¼ 1…6 or six separate fits, one for each r. The latter
yields six different results for χt.
Not all of the extracted χt values perfectly agree with

each other or with the result χt ¼ ð7.0� 0.9Þ × 10−5 from
Ref. [3], which we take as a reference. Using the weak
constraint 1=ðχtVÞ; jQj=ðχtVÞ < 1 there seems to be a
slight tension in the form of ≈2σ discrepancies, when
performing fits with formula (5.7). The extended expansion
(5.8) gives somewhat better results: no tension shows up,
and most results agree with the reference value within σ.
One might hope for further improvement by using the

stronger constraint 1=ðχtVÞ; jQj=ðχtVÞ < 0.5, since then
formulas (5.7) and (5.8) are more accurate. Indeed this
leads to consistency with the reference value, but in most
cases the errors are very large, of the order of 100% or even
more. For this strong constraint the available Vqq̄;jQj data
are not sufficient to extract a useful result for χt. Note that
here the error for one combined fit is significantly smaller
than those for the separate fits.
We conclude that—in principle—one can extract the

topological susceptibility in Yang-Mills theory from the
static potential at fixed topology using formulas like (5.7)
or (5.8). In practice, however, one needs precise data in
several large volumes. Only when a variation of the input
data [e.g., by using different bounds with respect to
1=ðχtVÞ; jQj=ðχtVÞ] leads to precise and stable χt values
should one consider the result trustworthy. The data used in
this work are not sufficient to achieve this standard. As we
mentioned before, more promising methods to determine χt
from simulations at fixed topology using the same lattice
setup have recently been explored [22–24,26].

VI. RESULTS IN THE SCHWINGER MODEL

A. Simulation setup

We proceed to the Schwinger model—or two-dimensional
quantum electrodynamics—as a test model with dynamical
fermions. This model has the continuum Lagrangian

FIG. 9. The fixed topology static potential Vqq̄;Q;Vðr ¼ 6Þ for
jQj ¼ 0…4, as a function of 1=V, and the curves corresponding
to approximation (5.10).

TABLE VII. Results for the topological susceptibility χt × 105 from fixed topology computations of the static potential Vqq̄ðrÞ for
various separations r ¼ 1…6. In the column Method the equation number of the expansion is listed, c denotes a single combined fit for
all separations r ¼ 1…6, and s denotes a separate fit for each separation. The reference value from a direct computation is χt × 105 ¼
ð7.0� 0.9Þ [3].
Method Vqq̄ð1Þ Vqq̄ð2Þ Vqq̄ð3Þ Vqq̄ð4Þ Vqq̄ð5Þ Vqq̄ð6Þ

Fixed topology, V ∈ f144; 154; 164; 184g, 1=ðχtVÞ; jQj=ðχtVÞ < 1

(5.7)c 8.8(0.5)
(5.7)s 8.8(0.5) 8.7(0.6) 8.6(0.7) 8.6(0.9) 8.8(1.0) 8.9(1.2)
(5.8)c 7.1(0.6)
(5.8)s 8.6(0.5) 8.2(0.7) 7.7(0.8) 7.3(0.9) 7.0(1.0) 6.7(1.1)

Fixed topology, V ∈ f144; 154; 164; 184g, 1=ðχtVÞ; jQj=ðχtVÞ < 0.5
(5.7)c 11.8(5.9)
(5.7)s 10.0(14.0) 20.7(44.3) 11.1(8.2) 11.8(16.0) 12.8(8.7) 15.4(52.1)
(5.8)c 11.9(5.4)
(5.8)s 10.2(21.8) 10.7(12.5) 11.3(8.7) 11.8(5.8) 13.0(9.7) 14.6(12.2)
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Lcontðψ ; ψ̄ ; AÞ ¼
XNf

f¼1

ψ̄ ðfÞ
�
γμð∂μ þ igcontAμÞ þmðfÞ

�
ψ ðfÞ

þ 1

4
FμνFμν; ð6:1Þ

where Nf is the number of fermion flavors. It is a widely
used toy model, which shares important features with
QCD. In particular, the U(1) gauge theory in two (space-
time) dimensions allows for topologically nontrivial gauge
configurations, similar to instantons in four-dimensional
Yang-Mills theories and in QCD. The topological charge
is given by

Q½A� ¼ 1

π

Z
d2x ϵμνFμν: ð6:2Þ

Moreover, for Nf ¼ 2 the low lying energy eigenstates
contain a light iso-triplet composed of quasi-Nambu-
Goldstone bosons, which we denote as pions. This model
also exhibits fermion confinement.
We simulated the Schwinger model on periodic lattices

of volume V ¼ L × L (as before we use lattice units), with
Nf ¼ 2 mass degenerate flavors. They are represented by
Wilson fermions, and we use the standard plaquette gauge
action (see, e.g., Ref. [40]).
One can approach the continuum limit by increasing L,

while keeping the terms gL and MπL fixed, where Mπ

denotes the pion mass.12 This requires decreasing both g
andMπ proportional to 1=L (for the latter the fermion mass
has to be adjusted). It is also common to refer to β ¼ 1=g2,
in analogy to the previous sections.
As in Secs. III and IV, we employ a geometric definition

of the topological charge on the lattice [41],

Q½U� ¼ 1

2π

X
P

ϕðPÞ; ð6:3Þ

where
P

P denotes the sum over all plaquettes P ¼ eiϕðPÞ,
−π < ϕðPÞ ≤ π. With this definition, Q ∈ Z holds for any
stochastic gauge configuration.
We performed simulations at various values of β, m and

L using the HMC algorithm of Ref. [42], with multiple time
scale integration and mass preconditioning [43]. We started
with rather short simulations (≈50000…100000 HMC
trajectories) on small lattices (L ¼ 8…28), to investigate
the transition probability between topological sectors per
HMC trajectory. This probability is plotted in Fig. 10, as a
function of g ¼ 1=

ffiffiffi
β

p
and m=g, while gL ¼ 24=

ffiffiffi
5

p
is kept

constant. (The ratiom=g is proportional to the bare fermion
mass in physical units.) As expected, topological

transitions are frequent at large couplings g (coarse latti-
ces), whereas at weak coupling (fine lattices) topology
freezing is observed. Such a freezing is also observed in
QCD, which is the main motivation of this work. We see
that the dependence of the transition probability on the ratio
m=g, and therefore on the dimensional bare fermion mass,
is rather weak.
Similarly to the previous two sections we now explore

the possibility of extracting physical energy levels (the
“hadron”masses in the Schwinger model) from simulations
at fixed topology. To obtain such results with small
statistical errors, we focus on a single coupling and a
single quark mass,

β ¼ 4; m ¼ 0.1; ð6:4Þ

and we perform long simulations (≈500000 HMC trajec-
tories) for volumes V ¼ L × L, with L ¼ 40, 44, 48, 52,
56, 60.

B. Computation of observables

We determine the topological charge Q½U� for each
gauge configuration U according to definition (6.3). (To
measure observables at fixed topological charge ν, we only
use the configurations with Q½U� ¼ ν.)
The hadron masses that we investigate are the static

potential V q̄qðrÞ, which has been discussed before in Yang-
Mills theory (Sec. V B), and the pion mass Mπ . A suitable
pion creation operator reads
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FIG. 10. The transition probability to a different topological
sector per HMC trajectory as a function of g ¼ 1=

ffiffiffi
β

p
(varying the

lattice spacing in physical units, a ∝ g) andm=g (varying the bare
fermion mass in physical units) at gL ¼ 24=

ffiffiffi
5

p
(fixed dimen-

sional volume and coupling constant).

12In physical units, g has the dimension of a mass, so these
products are both dimensionless. This also introduces a dimen-
sional lattice spacing a ∝ g.
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Oπ ¼
X
x

ψ̄ ðuÞ
x γ3ψ

ðdÞ
x ; ð6:5Þ

where u and d label the two (degenerate) fermion flavors.13

For the static potential we use again

Oqq̄ ¼ q̄ðr1ÞUðr1; r2Þqðr2Þ; r ¼ jr1 − r2j: ð6:6Þ

Also here q̄ and q represent spinless static fermions and
Uðr1; r2Þ denotes the product of spatial links connecting
the lattice sites r1 and r2 on a given time slice. Since there is
only one spatial dimension, we do not apply any gauge link
smearing.

C. Numerical results

1. The pion mass and the static potential

Similar to Eq. (5.9) one can define a pion mass at fixed
topological charge jQj and volume V by

Mπ;jQj;V ¼ −
d
dt

ln
�D

O†
πðtÞOπð0Þ

E�
ð6:7Þ

for some value of t, where approximation (5.7) is quite
precise. Within statistical errors, Mπ;jQj;V is independent of
t for large t. Therefore, we determine Mπ;jQj;V by a χ2

minimizing fit of a constant to the right-hand side of
Eq. (6.7) (with the derivative replaced by a finite
difference).
Figure 11 shows that pion masses obtained at fixed

topology in different topological sectors, Mπ;jQj, differ
significantly at V ¼ 402. For example, Mπ;0 and Mπ;3

differ by more than 6σ. The physically meaningful value
measured in all sectors, Mπ , also deviates, e.g., from Mπ;0

by more than 7σ. Figure 11 demonstrates also here the
necessity to analytically assemble fixed topology results,

when the Monte Carlo algorithm is unable to generate
frequent changes in Q.
To determine the pion mass and the static potential from

correlation functions evaluated in single topological sec-
tors, Mπ;jQj and Vqq̄;jQj, we follow the lines of Sec. V. We
perform least-square fits using expansion (5.7) or (5.8) of
the correlation functions. We choose a suitable fitting range
tmin…tmax, which typically leads to χ2=d:o:f:≲ 1. The
stability of the resultingMπ;jQj and Vqq̄;jQj has been checked
by varying tmin and tmax by �1. The t ranges used for the
determination of the pion mass are listed in Table VIII.
We perform fits in three different ways: (c) a single

combined fit to all five observables [Mπ , Vqq̄ðr ¼ 1Þ,
Vqq̄ðr ¼ 2Þ, Vqq̄ðr ¼ 3Þ, Vqq̄ðr ¼ 4Þ]; (cV) a single com-
bined fit to the four static potential observables; and (s) five
separate fits, one to each of the five observables. The results
are collected in Table IX, along with reference values
obtained in all sectors at V ¼ 602.14

The conclusions are essentially the same as for Yang-
Mills theory discussed in Sec. V. Results extracted indi-
rectly, from simulations at fixed topology, are in agreement
with those obtained directly. The magnitude of the errors is
the same for the two expansions (5.7) and (5.8), and for the
fitting methods c, cV and s. They are, however, larger by
factors of ≈2 when we use the stringent constraint
1=ðχtVÞ; jQj=ðχtVÞ < 0.5, since less input data are
involved compared to 1=ðχtVÞ; jQj=ðχtVÞ < 1. The fits
all yield uncorrelated χ2=d:o:f: ≲ 1, indicating that the
fixed topology results are well described by both formu-
las (5.7) and (5.8).
For jQj ¼ 0…4 and V ¼ 402…602, the Mπ;jQj;V values

are plotted in Fig. 12. Again we observe a strong depend-
ence on the topological sector, in particular, in small
volumes. From the expansion (5.7), Mπ;jQj;V is expected
to behave as approximation (2.4),

FIG. 11. The pion masses Mπ;jQj in distinct topological sectors
jQj ¼ 0…4, andMπ obtained in all sectors, in the volumeV ¼ 402.

TABLE VIII. Temporal fitting ranges tmin…tmax and maximum
topological charges jQj for the volumes V under consideration.

V tmin tmax

Maximum jQj
for 1=ðχtVÞ,
jQj=ðχtVÞ < 1

Maximum jQj
for 1=ðχtVÞ,

jQj=ðχtVÞ < 0.5

402 12 16 7 3
442 12 18 9 4
482 12 20 11 5
522 12 22 13 6
562 12 24 15 7
602 12 24 17 8

13For an introduction about the construction of hadron creation
operators, see, e.g., Ref. [44].

14In the continuum two-flavor Schwinger model, the pion mass
is predicted as [45]Mπ;cont ¼ 2.008… × ðm2

contgcontÞ1=3. Remark-
ably, there is almost perfect agreement with our result for Mπ, if
we insert the bare fermion mass and β given in Eq. (6.4), which
yields Mπ ≃ 0.343.
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Mπ;Q;V ¼ Mπ þ
c
Vχt

�
1 −

Q2

Vχt

�
;

c ¼ 1

2
M00

πðθÞπjθ¼0: ð6:8Þ

The corresponding curves for jQj ¼ 0…4 with parameters
Mπ , M00

π and χt, determined by the previously discussed fit
(5.7)s, are also shown in Fig. 12. One can clearly see that
approximation (6.8) nicely captures the lattice results
for Mπ;jQj;V.
We conclude, similar to our study in Yang-Mills theory,

that it is possible to extract correct and accurate values for
the pion mass and the static potential from correlation
functions computed in a number of fixed topological
sectors and volumes. The errors are somewhat larger than

for direct computation, in our case by factors of ≈2…7.
This is partly due to the smaller amount of gauge
configurations of the fixed Q ensembles at different V,
and partly due to the extrapolation to infinite volume.

2. The topological susceptibility

Table X presents results for the topological susceptibility
extracted from our data forMπ;jQj and Vqq̄;jQj. These values
for χt are obtained from the same fits, which lead to the
results in Table IX. The results for χt and their interpretation
are similar to those obtained in Yang-Mills theory. We
observe a slight tension of ≈2σ for some values, when
using expansion (5.7) and the relaxed constraint (1=ðχtVÞ;
jQj=ðχtVÞ < 1). This tension disappears when we apply the
improved expansion (5.8). When imposing the strict con-
straint (1=χtV; jQj=χtV < 0.5), we encounter the same
problem as in Sec. V C 2: all results are in agreement with
the directly measured χt ¼ hQ2i=V (at V ¼ 602), but the
errors are very large.15

We infer that a reasonably accurate determination of the
topological susceptibility from Mπ;jQj and Vqq̄;jQj requires
extremely precise input data. The fixed topology ensembles
and correlation functions of this work are not sufficient to
extract an accurate and stable value for χt.

TABLE IX. Results for the pion massMπ and the static potential Vqq̄ðrÞ at separations r ¼ 1, 2, 3, 4, with and without topology fixing.
In the column Method the equation number of the expansion is listed, c denotes one combined fit to all five observables, cV means one
combined fit to the four static potential observables, and s indicates separate fits for each of the five observables.

Method Mπ Vqq̄ð1Þ Vqq̄ð2Þ Vqq̄ð3Þ Vqq̄ð4Þ
All sectors, V ¼ 602

0.3474(3) 0.1296(2) 0.2382(5) 0.3288(7) 0.4045(10)

Fixed topology, V ∈ f402; 442; 482; 522; 562; 602g, 1=ðχtVÞ, jQj=ðχtVÞ < 1
(5.7)c 0.3466(16) 0.1293(19) 0.2370(23) 0.3261(29) 0.4022(62)
(5.7)cV 0.1295(10) 0.2372(12) 0.3386(15) 0.4052(16)
(5.7)s 0.3477(8) 0.1285(7) 0.2371(9) 0.3282(12) 0.4050(16)
(5.8)c 0.3467(10) 0.1293(6) 0.2377(9) 0.3321(32) 0.4059(69)
(5.8)cV 0.1295(5) 0.2379(11) 0.3392(14) 0.4049(16)
(5.8)s 0.3477(9) 0.1294(5) 0.2374(6) 0.3288(12) 0.4040(15)

Fixed topology, V ∈ f402; 442; 482; 522; 562; 602g, 1=ðχtVÞ, jQj=ðχtVÞ < 0.5
(5.7)c 0.3454(32) 0.1284(27) 0.2364(28) 0.3311(50) 0.4049(80)
(5.7)cV 0.1282(12) 0.2370(16) 0.3312(35) 0.4175(82)
(5.7)s 0.3478(32) 0.1292(12) 0.2377(21) 0.3275(61) 0.4027(91)
(5.8)c 0.3455(32) 0.1285(16) 0.2365(19) 0.3310(49) 0.4048(78)
(5.8)cV 0.1287(9) 0.2371(23) 0.3312(36) 0.4073(83)
(5.8)s 0.3482(35) 0.1291(11) 0.2376(13) 0.3290(22) 0.4036(55)

FIG. 12. The fixed topology pion massMπ;jQj;V for jQj ¼ 0…4,
as a function of 1=V, and the curves corresponding to
formula (6.8).

15Reference [46] presents results for χt in the two-flavor
Schwinger model with staggered and overlap fermions, with
or without link smearing. The results at β ¼ 4 and m ¼ 0.1 (in
large volume) are in the range χt ≃ 0.044…0.064. This agrees
with our value in Table X, which confirms the mild renormaliza-
tion of our bare fermion mass (cf. footnote 14).
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VII. CONCLUSIONS

We have systematically explored the applicability of the
BCNW method [14] with lattice data in fixed topological
sectors. Our study encompasses the quantum rotor, the
Heisenberg model, four-dimensional SU(2) Yang-Mills
theory and the two-flavor Schwinger model. The originally
suggested application to the pion mass has been extended
to other observables, like the magnetic susceptibility and
the static quark-antiquark potential.
The primary goal of this method is the determination of a

physical observable if only fixed topology results are
available. Our observations show that this can be achieved
to a good precision with input data from various volumes
and topological sectors, which obey the (rather relaxed)
constraint 1=ðχtVÞ; jQj=ðχtVÞ < 1. Hence this method is
promising for application in QCD, where lattice spacings
below a≃ 0.05 fm are expected to confine HMC simu-
lations to a single topological sector over extremely long
trajectories.
As a second goal, this method also enables—in

principle—the determination of the topological susceptibil-
ity χt. In our study we obtained the right magnitude also for
χt, but the results were usually plagued by large uncer-
tainties. For this purpose, i.e., for the measurement of χt
based on fixed topology simulation results, other methods
are more appropriate, based on the topological charge
density correlation [21–23], or on an analysis of χt in
subvolumes [24,26].
Regarding the optimal way to apply this method, it

seems—for lattice data of typical statistical precision—not
really helpful to add additional terms of the 1=ðχtVÞ
expansion, beyond the incomplete second order that was

suggested in Ref. [14]. Higher terms were elaborated in
Ref. [16], and they improve the agreement with the fixed
topology lattice data, but due to the appearance of addi-
tional free parameters they hardly improve the results for
the physical observable and for χt.
A step beyond, which deserves being explored in more

detail, is the inclusion of ordinary finite size effects (not
related to topology fixing) [18], which even allows for the
use of small volumes (in the terminology of Sec. II).
At this point, we recommend the application of the

simple formulas (2.4) and (5.7) or (slightly better) (5.8),
with only three free parameters, for the determination of
hadron masses in QCD on fine lattices, in particular, in the
presence of very light quarks.
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APPENDIX: LOW TEMPERATURE EXPANSION
OF THE MAGNETIC SUSCEPTIBILITY

OF THE QUANTUM ROTOR

Our point of departure is Eq. (3.10) for the magnetic
susceptibility of the quantum rotor at fixed topology,16

χm;Q ¼
Z

L=2

0

dt eðt2=L−tÞ=ð2βÞ½e2πiQt=L þ e−2πiQt=L�: ðA1Þ

By completing the squares in each term, and defining

z0 ¼
ffiffiffiffiffi
L
8β

s �
1þ 4πiQβ

L

�
; ðA2Þ

we obtain

χm;Q ¼
ffiffiffiffiffiffiffiffiffi
2βL

p
e
2π2βQ2

L − L
8βð − 1ÞQ

�Z
−πiQ

ffiffiffiffiffiffiffiffi
2β=L

p

−z0
dt et

2

þ
Z

πiQ
ffiffiffiffiffiffiffiffi
2β=L

p

−z�
0

dt et
2

�

¼
ffiffiffiffiffiffiffiffiffi
πβL
2

r
e
2π2βQ2

L − L
8βð−1ÞQ½erfiðz0Þ þ erfiðz�0Þ�

¼
ffiffiffiffiffiffiffiffiffi
8βL

p
ReDðz0Þ: ðA3Þ

We have used two properties of the imaginary error
function, erfiðzÞ ¼ −erfið−zÞ and erfiðz�Þ ¼ ðerfiðzÞÞ�,
and in the last step we inserted Dawson’s function,

DðzÞ ¼
ffiffiffi
π

p
2

e−z
2

erfiðzÞ ¼ e−z
2

Z
z

0

dt et
2

: ðA4Þ

We are interested in the case L ≫ β where j arg ðiz0Þj ≈
π
2
< 3π

4
, so we can apply the asymptotic expansion [47],

Dðz0Þ ¼
1

2z0

X
n≥0

ð2n − 1Þ!!
ð2z20Þn

¼ 1

2z0

�
1þ 1

2z20
þ 3

4z40
þ 15

8z60
þOðjz0j−8Þ

�
: ðA5Þ

If we expand

χm;Q ≃ 4βRe

�
1

1þ 4πiQβ=L

�
1þ 1

2z20
þ 3

4z40
þ 15

8z60

��

ðA6Þ

toOððβ=LÞ3Þ, and insert the infinite volume limit χm ¼ 4β,
we arrive at

χm;Q ¼ χm þ β

�
16β

L
þ 64β2

L2
ð3 − ðπQÞ2Þ

þ 768β3

L3
ð5 − 2ðπQÞ2Þ þO

��
β

L

�
4
��

: ðA7Þ

By substituting χt ¼ 1
4π2β

(which only has exponentially

suppressed finite size effects [26]), we confirm to each
order given in Eq. (A7) the expansion that we anticipated in
Eq. (3.11); it is not altered by the truncation of the Gauss
integrals.
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