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A lattice QCD study of the strong decay width and coupling constant of decuplet baryons to an octet
baryon-pion state is presented. The transfer matrix method is used to obtain the overlap of lattice states with
decuplet baryon quantum numbers on the one hand and octet baryon-pion quantum numbers on the other as
an approximation of the matrix element of the corresponding transition. By making use of leading-order
effective field theory, the coupling constants as well as the widths for the various decay channels are
determined. The transitions studied are Δ → πN, Σ� → Λπ, Σ� → Σπ and Ξ� → Ξπ. We obtain results for
two ensembles ofNf ¼ 2þ 1 dynamical fermion configurations: one using domain wall valence quarks on
a staggered sea at a pion mass of 350 MeVand a box size of 3.4 fm and a second one using domain wall sea
and valence quarks at pion mass 180 MeV and box size 4.5 fm.
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I. INTRODUCTION

The study of resonances from first principles using
lattice quantum chromodynamics (QCD) has progressed
significantly. Most of these studies are based on the
Lüscher approach [1,2] and extensions thereof [3–7] that
extract scattering lengths and phase shifts from discrete
energy levels in a finite volume. The approach has been
generalized to the case of coupled channels [8–17] and
three identical boson scattering [18], and a growing number
of studies is being carried out in the meson sector. A
pioneering study of meson-baryon and baryon-baryon
scattering lengths was already conducted 20 years ago
[19], and more recent studies include those by members of
the NPLQCD [20,21] and HALQCD [22] Collaborations
and other groups [23]. Despite this progress, the application
of the Lüscher approach to baryon resonances has been
limited since the method requires very precise data for
multiple spatial volumes or various reference frames of
different total linear momentum, making it computationally
very demanding.
Another method to study hadronic resonant decays from

lattice QCD was proposed in Refs. [24,25] and successfully
applied in the study of meson decays [26,27]. A first
application of this transfer matrix method to baryons was
carried out in Refs. [28,29]. The transfer matrix method as
applied here allows us to extract the width of a resonant
hadronic decay, if the resonance width is small as compared
to the resonant energy and well isolated from other decay
channels. In such a situation, the method allows us to
extract the width from one kinematic point and it thus

provides currently a computationally feasible calculation
of the width in the baryon sector. This calculation can be
seen as a first attempt to compute the width of an unstable
baryon that allows us to learn about two-particle interpolat-
ing fields in the baryon sector and the associated technical-
ities and gauge noise.
In this approach, one considers a purely hadronic

decay of a baryon B� to a two-particle state. In the cases
considered in this work, the two-particle state will be a
meson M and a baryon B, as illustrated diagrammatically
in Fig. 1.
We associate a vertex with the tree-level transition graph

in Fig. 1 and the strength of the interaction at the vertex is
measured in terms of an effective coupling constant gB

�
MB.

We define this coupling to coincide with the coupling that
appears in the leading-order continuum effective field
theory for the interaction term of the hadronic fields M,
B and B� in the effective Lagrangian. This will be made
more explicit later on in connection with Eq. (10).
In order to study a decay B� → MB in the Euclidean

quantum field theory, we need to formulate it in terms of
energies or hadronic matrix elements. In lattice QCD, we
use interpolating fields to create states with the quantum
of the decuplet baryon B� and the octet baryon B and the
meson M. We restrict our consideration to the two lowest-
lying states with the desired quantum numbers, which we
label by jB�i and jMBi. If B� does not decay then its
overlap with jMBi is zero and it is an asymptotic state of
the theory. These states can then be thought off as the
eigenstates of a noninteracting lattice transfer matrix T̂0
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defined by a Hamiltonian Ĥ0 ¼ jB�ihB�j þ jMBihMBj.
Our approach here is to study the overlap of the
states created by the interpolating fields B� and MB for
the case where the energy levels of these states are
near-degenerate. The interaction Hamiltonian to leading
order in the perturbation will then be given by
Ĥ ¼ Ĥ0 þ jB�ihMBj þ jMBihB�j.
The off-diagonal elements of the Hamiltonian will be

the overlap hB�jĤjMBi. Thus our assumption is that a
state jB�i created initially at time ti propagates in
Euclidean time on the lattice to final time tf, makes
one transition to jMBi at any intermediate time step
t → tþ a on the lattice. If the (real valued) lattice
transition amplitude is small in terms of the inverse
propagation time ðtf − tiÞ−1 and if the energy gap
between the states jB�i and jMBi is sufficiently small
then one can evaluate the overlap and relate it to the
coupling constant and then to the decay width [25]. We
stress that the propagator of the state B� is fully dressed
and so is the propagator of the MB state including
interactions between the two particles. A tree-level
effective interaction Lagrangian can be written in terms
of the fields B�; B andM [30] with coupling constant gB

�
MB,

which is related to the overlap hB�jĤjMBi as will be
discussed in Sec. II.
In order to compute the overlap of these states, we

need to choose ensembles for which the energy gap δ ¼
EB� − EMB is small in units of the inverse propagation time
from initial to final state δ ≪ 1=ðtf − tiÞ. Since, on a finite
lattice, the allowed momenta are discretized the energies
will not in general match. Thus, this condition will be
only approximately satisfied for the ensembles we have at
our disposal. A second condition that is required is that the
propagation time tf − ti is sufficiently large compared to
the energy difference between the ground state energy of B�
and its first excited state as well as between the lowest
energy of the BM system and its excited state with the same
quantum numbers so that only the two lowest-lying states
of interest dominate in the transition matrix element.
The extraction of the overlap from lattice measurements
is detailed in Sec. II. The transition matrix element
MðB� → MBÞ ∝ hB�jHjMBi for the situation in which
the energy levels of the two states are degenerate. Using
Fermi’s golden rule one, can relate this decay matrix
element to the decay width

ΓB�
MB ¼ 2πjMðB� → MBÞj2ρ; ð1Þ

where ρ is the density of states at the transition energy. As
already mentioned, in this study we work to lowest order
considering only a single transition amplitude and allowing
for large enough time separation tf − ti so only the lowest
states in the initial and final states give the dominating
contribution. To this order we also neglect further elastic
rescattering of MB in the final MB state.
In our first study [28], we successfully applied this

approach to study the Δ resonance using a hybrid action
with domain wall valence quarks on a staggered sea. Here
we extend our study to include the decuplet baryons Σ� and
Ξ�. In addition, we investigate the applicability of all-mode
averaging (AMA) [31] in improving the statistical accuracy
using the Δ resonance as test case. In this work, we also
analyze an ensemble of domain wall fermions (DWF)
corresponding to a pion mass of 180 MeV[32] for which
the energy matching, in particular for the Δ, is very well
satisfied. The results based on this ensemble of Nf ¼ 2þ 1

DWF for the widths of the Δ, the Σ� and the Ξ� as well as
the results using the hybrid ensemble for the Σ� and Ξ�
constitute the first determination of the decay widths of
these resonances using lattice QCD.
The paper is organized as follows: In Sec. II, we present

the method and give the technical details. In Sec. III, we
show our lattice QCD results, in Sec. IV we discuss these
results and their relation to the decay widths, and in Sec. V
we present our conclusions.

II. TECHNICAL DETAILS OF THE METHOD

The method that we consider in this work was first
described in Refs. [24,25,33] where it was applied to the
study of meson decays. The method was extended for the
case of the Δ resonance and first results were obtained
using an ensemble of domain wall valence quarks on an
Nf ¼ 2þ 1 staggered sea, which we will refer to as hybrid
approach [28]. In this section, we explain the technical
steps involved paying particular attention to the description
of the decays of decuplet baryons, which is the focus of
this work.

A. Lattice correlation function and normalization

We consider the following strong decays of a decuplet
baryon to a meson-baryon final state:

Δ → πN

Σ� → πΣ; πΛ

Ξ� → πΞ; ð2Þ

generically denoted by B� → MB. Due to the isospin
symmetry of the lattice action, we can choose any isospin
channel for each case. In this study, we consider the Δþþ,
the Σ�þ and the Ξ�− with interpolating fields given by

FIG. 1. Diagram for the transition B� ↔ MB.
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JμαB� ðt; ~PÞ ¼
X
~x

JμαB�ðt; ~xÞei~P ~x

JμαΔþþðxÞ ¼ ϵabcðuaTðxÞCγμubðxÞÞuαcðxÞ

JμαΣ�þðxÞ ¼ 1ffiffiffi
3

p ϵabc½ðuaTðxÞCγμubðxÞÞsαcðxÞ

þ 2ðsaTðxÞCγμubðxÞÞuαcðxÞ�
JμαΞ�−ðxÞ ¼ ϵabcðsaTðxÞCγμdbðxÞÞsαcðxÞ; ð3Þ

where lower case Latin (Greek) letters denote color (spin)
indices and C ¼ iγ0γ2 is the charge conjugation matrix.
As interpolating fields for the meson-baryon states we

take the product of the interpolating fields of the corre-
sponding meson and baryon:

JαMBðt; ~pM; ~pBÞ ¼
X
~y;~z

JMðt; ~yÞJαBðt; ~zÞeið~pM~yþ~pB~zÞ

JπþðyÞ ¼ d̄ðyÞγ5uðyÞ
JαNðzÞ ¼ ϵabcðuaTðzÞCγ5dbðzÞÞuαcðzÞ

JαΛðzÞ ¼
1ffiffiffi
6

p ϵabc½2ðuaTðzÞCγ5dbðzÞÞsαcðzÞ

þ ðuaTðzÞCγ5sbðzÞÞdαcðzÞ
− ðdaTðzÞCγ5sbðzÞÞuαcðzÞ�

JαΣ0ðzÞ ¼ 1ffiffiffi
2

p ϵabc½ðuaTðzÞCγ5sbðzÞÞdαcðzÞ

þ ðdaTðzÞCγ5sbðzÞÞuαcðzÞ�
JΞ0 ¼ ϵabcðsTaðzÞCγ5ubðzÞÞsαcðzÞ: ð4Þ

Previous studies have shown that the two-hadron interpo-
lating fields given in Eq. (4) will primarily overlap with
two-hadron states [34], while the single-hadron interpolat-
ing fields in Eq. (3) will have a dominant overlap with
single-hadron states.
In the following, we consider kinematics where the total

momentum is zero, so in the first line of Eq. (3) we set
~P ¼ 0 and ~pM ¼ −~pB in Eq. (4). Using these interpolating
fields we build the two-point correlation functions for
CB�−B� , CB�−MB and CMB−MB as follows:

CB�−B� ðtf − tiÞ

¼ Tr

�
1

4
ð1þ γ0ÞP3=2

kl

X
~x

hJlB� ðtf; ~xÞJ̄kB� ðti; ~zÞi
�

ð5Þ

Ck
B�−MBðtf − ti; ~qÞ ¼ Tr

�
1

4
ð1þ γ0ÞP3=2

kl

X
~x;~y

hJlB�ðtf; ~xÞ

× J†Mðti; ~yÞJ̄Bðti; ~zÞi
�
e−i~qð~y−~zÞ ð6Þ

CMB−MBðtf − ti; ~kf; ~kiÞ ¼ Tr

�
1

4
ð1þ γ0Þ

X
~x;~y;~y0

hJBðtf; ~xÞ

× JMðtf; ~yÞJ†Mðti; ~y0ÞJ̄Bðti; ~zÞi
�

× ei~kfð~y−~xÞ−i~kið~y0−~zÞ ð7Þ

with a fixed source location ðti; ~zÞ. All correlators are
defined to include a parity projection 1

4
ð1� γ0Þ. In addition,

CB�−B� and CB�−MB include a projector to spin 3=2, which at
zero total momentum is given by

P3=2
ik ¼ δik1 −

1

3
γiγk; i; k ¼ 1; 2; 3: ð8Þ

To cancel the unknown overlaps of the interpolating
fields with the states we construct the ratio

RB�
MB;kðtf − ti; ~q; ~kf; ~kiÞ

¼ Ck
B�−MBðtf − ti; ~qÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CB�−B� ðtf − tiÞ × CMB−MBðtf − ti; ~kf; ~kiÞ
q : ð9Þ

In this work, we always consider the case ~kf ¼ ~ki and

j~qj ¼ j~kfj. The 2-point functionCMB−MB then only depends

on j~kfj, and the ratio can be characterized by a single vector
~k ¼ ~q as RB�

MB;k ¼ RB�
MB;kðtf − ti; ~kÞ.

1. Alignment and polarization for B� −MB,
momentum averages and angular momentum

Within leading order in effective field theory, a non-
vanishing signal in Ck

B�−MBðt; ~qÞ only arises when the
relative momentum vector is aligned or antialigned with
the spin projection appearing in the correlation function,
i.e. when ~q · ~ek ≠ 0, where ~ek denotes the unit vector in
the k direction. The vertex for the fields B�;M; B in the
effective Lagrangian following our notation is given by

LI ∼ gB
�

MBB̄
�
μ∂μMaTaB ð10Þ

with matrices Ta, which contain the Clebsch-Gordan
coefficients for coupling isospin channels.

ðTaÞik¼hIB� ¼3=2;I3B� ¼ ijIB¼1=2;I3B¼k;IM¼1;I3M¼ai;
i∈f−3=2;−1=2;þ1=2;þ3=2g; k∈f−1=2;þ1=2g;
a∈f−1;0;1g:

We perform our calculations with one unit of relative
momentum, j~qj ¼ 2π=L, such that ~q ¼ ð�1; 0; 0Þ2π=L or a
permutation thereof and thus look at the six combinations
Ck
B�−MBðt;�2π=L~ekÞ, k ¼ 1; 2; 3.
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The B� −MB correlator is projected to its spin-3=2
component with P3=2. Moreover, the average over positive
and negative momentum effectively means that for the MB
state we use the interpolating field in its center-of-mass
frame

JiMBðt; ~P ¼ 0; k ¼ 2π=LÞ

¼ 1

2

X
i0¼1;2;3

P3=2
ii0 ½JMBðt; ~P ¼ 0; k~ei0 Þ

− JMBðt; ~P ¼ 0;−k~ei0 Þ�: ð11Þ

In a partial wave expansion, we find that the dominant state
excited by the interpolating field given in Eq. (11) will have
orbital angular l ¼ 1. The coupling of the l ¼ 1 to the
nucleon state with spin 1=2 are projected to the component
with total angular momentum 3=2. Thus the operators in
Eq. (11) and the projected operators in Eq. (3) transform
under the spin-3=2 representation of the Lorentz group in
the continuum, which is subduced into irreducible repre-
sentation ΛP ¼ Hþ (positive parity) of the double cover
OD of the octahedral group on the lattice (Table III in
Ref. [35]). The irreducible representation H contains an
overlap with higher partial waves. What simplifies the
calculation at hand, is that we only consider the ground
state at large Euclidean time, in which all channels but
the desired one with l ¼ 1; JP ¼ 3=2þ are exponentially
suppressed.
All the standard spin-3=2 interpolating fields JB� involve

the spin structure ðqTCγkqÞq and the parity operation in the
center-of-mass frame acts as

P∶ JkB� ðt; ~P ¼ 0Þ → γ0JkB� ðt; ~P ¼ 0Þ: ð12Þ

The spin-3=2 projector, P3=2, and the projector to the
component with definite parity commute, such that we have
the trivial action

P∶
1

4
ð1þ γ0ÞP3=2

kk0 J
k0
B�ðt; ~P ¼ 0Þ

→
1

4
ð1þ γ0ÞP3=2

kk0 J
k0
B� ðt; ~P ¼ 0Þ: ð13Þ

On the other hand, for the MB state with the pseudoscalar
meson field, we have in the center-of-mass frame and with

relative momentum ~k,

P∶
1

4
ð1þ γ0ÞJMBðt; ~P ¼ 0; ~kÞ

→ −
1

4
ð1þ γ0ÞJMBðt; ~P ¼ 0;−~kÞ: ð14Þ

Since parity is a symmetry of the lattice action and the
B� − B� andMB −MB two-point functions are even under
parity, we expect the following relation to hold for the ratio

RB�
MBðtt − ti; ~kÞ ¼ −RB�

MBðtt − ti;−~kÞ: ð15Þ

2. Quark-connected and disconnected diagrams

The Wick contractions for the correlation function
CMB−MB can be represented by two types of diagrams,
as shown in Fig. 2: quark-disconnected (D, upper right) and
quark-connected (lower diagrams C1;2;3).

FIG. 2. Diagrams representing different types of Wick contractions for CB�−MB (diagram T) and CMB−MB (upper right: quark-
disconnected D, lower: quark-connected C1;2;3).
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We make two simplifications: (i) We neglect the quark-
connected diagrams C1, C2 and C3 and (ii) approximate the
quark-disconnected diagram by the product of expectation
values of the individual meson and baryon propagators.
This results in a significant reduction in the computational

cost. The contractions for diagrams T and D, as performed
in this work, require one quark propagator and one
sequential propagator through the source time slice ti. In
contrast, the full contractions for the quark-connected
diagrams require all-to-all propagators. We, thus, set

CMB−MBðtf − ti; ~kf; ~kiÞ → CMB−MBðtf − ti; ~kM; ~kBÞ ¼ hCM−Mðtf − ti; ~kMÞiTr
�
1

4
ð1þ γ0ÞhCB−Bðtf − ti; ~kBÞi

�
; ð16Þ

where the meson and baryon propagators are Fourier transformed with independent momenta ~kM and ~kB, respectively. In

this form, the M − B two-point function depends only on the squared momenta ~k2M and ~k2B, and for CMB−MB we only use

combinations with equal modulus such that we can simply replace the dependence on the pair ð~kM; ~kBÞ by a single vector ~k.
Thus, in the asymptotic region of large time separation ðtf − tiÞ=a ≫ 1, we can express this approximation as

CMB−MBðtf − ti; ~kf; ~kiÞ ∝
ðtf−tiÞ=a≫1

ZMBð~kf; ~kiÞe−EMBð~kf;~kiÞðtf−tiÞuMBð~kfÞūMBð~kiÞ þ � � �
≈ ZMð~k2Þe−EMð~k2Þðtf−tiÞZBð~k2Þe−EBðtf−tiÞuBð~kfÞūBð~kiÞ þ � � � : ð17Þ

B. Extraction of coupling and the matrix element

For all baryons B� to MB, we restrict the lattice Hilbert
space to two states jB�i and jMBi as the dominant baryon
and baryon-meson states, respectively [28]. In terms of
this two-dimensional subspace, the transfer matrix is para-
metrized as

T̂ ¼ e−aĒ
�
e−aδ=2 ax

ax eþaδ=2

�
: ð18Þ

In accordance with the assumption of a small energy gap,
we take Ē ¼ ðEB� þ EMBÞ=2 as the mean of the energies of
the states and δ ¼ EMB − EB� as their difference. Fixing an
initial and final lattice time slice ti and tf and summing over
all possibilities for a single transition from B� toMB, which
can occur at any intermediate time slices between ti and tf,
it follows that

hB�; tfjMB; tii ¼ hB�je−Hðtf−tiÞjMBi ¼ hB�jT̂nfi jMBi

¼
Xnfi−1
n¼0

e−ðĒ−δ=2ÞtnhB�jT̂jMBi

× e−ðĒþδ=2ÞðΔtfi−tn−aÞ þ � � �

¼ ax
sinhðδΔtfi=2Þ
sinhðaδ=2Þ e−ĒΔtfi þ � � � ; ð19Þ

with Δtfi ¼ tf − ti ¼ anfi. In Eq. (19), the ellipsis denotes
contributions of higher orders in the matrix elements
hB�jT̂jMBi and hMBjT̂jB�i, which are at least quadratic
in the time separationΔtfi. As a consequence, by extracting
the term linear in Δtfi, we get the transfer matrix element:

ax ¼ hB�jTjMBi⟶a⟶0 − ahB�jHjMBi: ð20Þ

Given the time dependence of the overlap in Eq. (20), we
use two different fit Ansätze given by

f1ðtÞ ¼ c0 þ c1 sinh ðc2t=ð2aÞÞ=ðc2=2Þ; ð21Þ

f2ðtÞ ¼ c0 þ c1
t
a
þ c2

�
t
a

�
3

þ � � � : ð22Þ

In both cases, we are primarily interested in the parameter
c1. Although in principle we could take into account the
next terms denoted by the ellipsis in Eq. (22), in practice
we will not need to go beyond c2 to obtain a good fit to the
available lattice data with their present accuracy. The
parameter c0 allows for an offset at t ¼ 0, which can
originate from lattice artifacts or contributions from excited
states giving an overlap at zero time, i.e. with no insertion
of the transfer matrix. Given that Eq. (19) contains a lattice
version of the energy Dirac-δ function for the finite
temporal lattice extent, Eq. (21) allows for fitting the data,
taking into account a nonzero energy gap. Besides taking
into account a finite energy gap, which will be the only
contribution to it if the transition happens once in the path
integral, the c2 term may also effectively be including next-
to-leading-order contributions arising from overlaps from
other intermediate states.
The value of the parameter c2 extracted from fitting f1

and the one extracted from fitting f2 can be related at order
t3 after expanding f1. We indeed find that these two values
of the c2 parameter show a strong correlation, as expected.
Yet in some cases a different value is extracted and hence it
is appropriate to use both Ansätze to study the systematic
uncertainties in the fitting of the lattice QCD data.
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As alluded to in Eq. (17), the interpretation of the overlap
of lattice states and interpolating fields acting on the
vacuum state involves the spinors uB� and uB as follows

X
~x

1

4
ð1þ γ0Þh0jJμαB� ðt; ~xÞei~P0~xjB�; ~P; s ¼ 3=2; s3i

¼ ZB�ð~P2ÞVδ~P~P0uμαB�ð~P; s3Þ ð23Þ
X
~y

1

4
ð1þ γ0Þh0jJMðt; ~yÞJαBðt;~zÞei~k

0ð~y−~zÞjMB;~k;s¼ 1=2; s3i

¼ ZMð~k2ÞZBð~k2ÞVδ~k~k0uαBð−~k;s3Þ: ð24Þ

We denote by s the spin quantum number of the baryon
fields, sB� ¼ 3=2 and sB ¼ 1=2 (having sM ¼ 0 fixed for
the pseudoscalar meson) and by s3 its projection to a
specific axis. The definition in Eq. (24) assumes that
the total linear momentum of the meson-baryon state
is zero.
While the ratio RB�

MB is constructed such that the
numerical factors ZB�=M=B cancel, the spinors remain in
the fraction and are combined to spin sums ΣB�

MB in the
numerator and ΣB� and ΣB in the denominator via
summation over the third spin component. To that end,
we parametrize the slope c1 ¼ ax in Eq. (21), (22) as
follows,

c1 ¼
X
σ3;τ3

Mð~P ¼ 0; j~kj; σ3; τ3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NB�NMB

p V
~ΣB�
MBð~P ¼ 0; ~k; σ3:τ3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣB�ð~P ¼ 0ÞΣBðj~kjÞ

q

~ΣB�
MBð~P ¼ 0; j~kj; σ3Þ ¼

1

6

X
j¼�1;�2;�3

signðjÞ 1
4
ð1þ γ0ÞαβujβB�ð~P ¼ 0; σ3ÞūαBðj~kj~ej; τ3Þ; ð25Þ

where we use the notation ~e−j ¼ −~ej for j ¼ 1; 2; 3 for brevity. The volume factor V stems from the lattice Kronecker δ in
momentum space for the total linear momentum ~P. We note that by our construction of the correlators, which are not
summed over the source locations, but fulfill momentum conservation, we effectively have to insert this factor by hand for
correct normalization of the ratio. NB� and NMB denote the normalization of the states, and we use the standard
continuumlike normalization of on-shell states

hB�; ~P; s3jB�; ~P0; s03i ¼
EB� ð~P2Þ
mB�

Vδ~P~P0δs3s03

hMB; ~kM; ~kB; s3jMB; ~k0M; ~k
0
B; s03i ¼ 2EMð~k2MÞVδ~kM~k0M

×
EBð~k2BÞ
mB

Vδ~kB~kB 0δs3s03

NB� ¼ V; NMB ¼ 2V2
EMð~k2ÞEBð~k2Þ

mB
: ð26Þ

In the last line of Eq. (26), we specialized to the case at

hand with ~P ¼ 0 and ~kM ¼ −~kB ¼ ~k.
To sum the spinors in the numerator we likewise para-

metrize the matrix element according to leading-order
effective field theory,

Mð~PB� ; ~kM; ~kB; σ3; τ3Þ

¼ CCG
gB

�
MB

2mB
ūμαB� ð~PB� ; σ3ÞkMμuαBð~kB; τ3Þ: ð27Þ

CCG ¼ CCGðIB� ; I3B� j0; 0; IB; I3BÞ is the Clebsch-Gordan
coefficient for the coupling of the isospin of M and B to
match that of B�.
With Eq. (27) we can then use the standard spin sums for

spin-1=2 fermions and the Rarita-Schwinger field [36,37]

ΣBðj~kjÞ¼
EBð~k2ÞþmB

2mB

ΣB�ð~P¼0Þ¼2

3

ΣB�
MBð~P¼0; j~kjÞ¼ΣBðj~kjÞ×ΣB� ð~P¼0Þ¼1

3

EBð~k2ÞþmB

mB
:

ð28Þ

We, thus, write the coupling as

gB
�

MB ¼ c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NB�NMB

p
VCCG

2mB

j~kj

�
1

3

EBð~k2Þ þmB

mB

�−1=2

: ð29Þ

With this expression, we can go back and rewrite the matrix
element in terms of the extracted slope c1,
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jMð~P ¼ 0; j~kj2Þj2 ¼ C2
CG

�
gB

�
MB

2mB

�
2 2

3
~k2

EBð~k2Þ þmB

mB

¼ c21
2NB�NMB

V2
: ð30Þ

We note that the expression in Eq. (30) gives the squared
matrix element for the transition between a certain isospin
state of B� and a certain product of isospin states forM and
B, such that

CCG ¼ hIB� ; I3B� jIM; I3M; IB; I3Bi: ð31Þ

In Table I, we give the isospin values for the decuplet
resonances and their decay channel.

C. Density of states

To apply Fermi’s golden rule, we need to estimate the
density of states at the transition energy. For a free pion
(pseudoscalarM) and a free baryon B in the center-of-mass

frame with k ¼ j~kj, the total energy is

EfðkÞ ¼ EMðkÞ þ EBðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mM þ k2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mB þ k2

q
:

Furthermore, we assume an isotropic density in the volume
L3, with the unit cell in momentum space being of size
2π=L. Up to momentum k, we thus countΩðkÞ=ð2π=LÞ3 ¼
4πk3=3=ð2π=LÞ3 states. Varying k, we then have a density
of states given by

ρðEfÞ ¼
dΩ
dEf

L3

8π3
¼ L3

2π2
k2

dk
dEf

¼ L3

8π2
k
E4
f − ðm2

M −m2
BÞ2

E3
f

:

ð32Þ

D. Decay width to leading order

Having the overlap x from the lattice correlator functions
and using the density of states we can connect, to leading
order in the effective theory, the decay width in the
continuum to that on the lattice by suitable normalization.

To that end we observe, that to leading order in the
continuum effective field theory, we have

Γ ¼ 1

2sB� þ 1

mB�

EB�

X
sB� ;sB

jMðsB� ; sBÞj2

×
Z

dEf
mB

EB2EM

�
kðEfÞ2
2π2

dkðEfÞ
dEf

�
2πδðEf − EiÞ:

ð33Þ

Evaluating the δ functional in the center-of-mass frame
with Ei ¼ mB� ¼ EB� , we obtain

Γ ¼ 2π

�
1

2sB� þ 1

X
sB� ;sB

jMðsB� ; sBÞj2
�

V3

NMBNB�

1

V
ρðEiÞ

¼ 2π

�
2c21

2sB� þ 1

�
ρðEiÞ

¼ 2πhjMj2iρðEiÞ: ð34Þ

We note that the expression of Eq. (34) contains the sum
over all final states (in particular all spin configurations
of the field B) and the average over all initial spin states of
the spin-3=2 baryon B�. In Eq. (34), the width calculated is
independent of the normalization of states chosen at
intermediate stages, as one would expect. The coupling
in Eq. (29), on the other hand, carries an explicit depend-
ence on the normalization of states shown by the appear-
ance of the factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NB�NMB

p
.

We would like to note that, in a realistic setup, the
lattice Hilbert space is of high dimension and the lattice
transfer matrix correspondingly large. The restriction to a
two-dimensional subspace may still be justified, if the first
excited states in the B� and MB channels are sufficiently
higher in energy. As usual, this would lead to an expo-
nential suppression of contributions from such states as
assumed in the ellipsis in Eq. (19). However, in this case,
the overlap is proportional to the time separation, receiving
contributions from single transitions from initial to final
state anywhere along the time axis.

III. NUMERICAL RESULTS

We analyze two ensembles: one for a hybrid action with
domain wall valence quarks on a Nf ¼ 2þ 1 staggered sea
[38] and mπ ¼ 350 MeV and one for a unitary action with
Nf ¼ 2þ 1 domain wall quarks [32] and mπ ¼ 180 MeV.
Subsequently we will use the labels “hybrid” and “unitary”
to distinguish results obtained using these two sets of gauge
configurations. Results for the Δ resonance for the hybrid
calculation have been reported in Refs. [28,29] and thus we
do not discuss them in detail here.

TABLE I. We give the isospin quantum numbers of the
decuplet (first column) and the two-particle decay channel
consisting of a meson with quantum number given in the second
column and a spin-1=2 baryon with quantum numbers given in
the third column. In the last column, we give the absolute value of
the isospin factor CCG.

B� IB� ; I3B� M IM; I3M B IB; I3B jCCGj
Δþþ 3=2;þ3=2 πþ 1;þ1 Nþ 1=2;þ1=2 1
Σ�þ 1;þ1 πþ 1;þ1 Λ 0,0 1
Σ�þ 1;þ1 πþ 1;þ1 Σ0 1,0

ffiffiffiffiffiffiffiffi
1=2

p
Ξ�− 1=2;−1=2 π− 1;−1 Ξ0 1=2;þ1=2

ffiffiffiffiffiffiffiffi
2=3

p
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A. Simulation details

For the hybrid setup we use an ensemble of Nf ¼ 2þ 1

staggered fermion configurations with the light quark mass
corresponding to a pion mass of 350 MeV and the strange
quark mass fixed to its physical value. This MILC
ensemble is labeled as MILC_2864_m010m050 [39]. As
valence quarks, we consider domain wall fermions with the
light bare quark mass adjusted to reproduce the lightest
pion mass obtained using Nf ¼ 2þ 1 staggered quarks
[40]. The valence strange-quark mass was set using the
Nf ¼ 3 ensemble by requiring the valence pseudoscalar
mass to be equal to the mass of the Goldstone boson
constructed using staggered quarks [41,42]. For the unitary
setup we use an ensemble of gauge configurations gen-
erated by the RBC-UKQCD Collaborations with Nf ¼
2þ 1 domain-wall fermions and the Iwasaki gauge-action
labeled as RBC_b1p75_L32T64_m045m001 [32]. The
simulation parameters for both cases are given in
Table II. For the hybrid ensemble we perform four
independent measurements on 210 gauge configurations.
The source locations for these measurements are separated
by T=4 in time direction and the spatial coordinates are
randomly chosen across the spatial volume. In the case of
the unitary ensemble, we use four independent propagators,
which are inserted coherently into a single sequential
source. Upon subsequent inversion of the Dirac operator
the latter gives rise to a superposition of four sequential
propagators at distance T=4 in time direction and thus four
coherent sets of contractions.
We use source- and sink-smearing on all interpolating

fields to improve the overlap of our interpolating fields with
the ground state. The forward and sequential propagators
are smeared using Gaussian smearing with the APE
smeared gauge links entering in the hopping matrix of
the Gaussian smearing function. The smearing parameters
for both lattices are given in Table II.
Inversions of the Dirac operator have been performed

using the packages QUDA [43,44] for the hybrid calcu-
lation and Qlua [45] using Moebius-accelerated domain
wall fermions for the unitary action [46].
In Fig. 3, we show the energies of the states that are

relevant for our calculation. The energies for zero and
one unit of momentum j~qj ¼ 2π=L are shown. We use a
notation analogous to Ref. [25] giving the one-particle
interpolating fields a subscript labeling their momentum,

i.e. π0 denotes the pion-state with zero momentum, π1 with
one unit of momentum etc. Likewise π1N1 is the pion-
nucleon state, where each interpolating field is constructed
with one unit of momentum, while keeping zero total
momentum. With the label πB, where B ¼ N;Λ;Σ;Ξ we
denote the sum of the individual energies of the pion and
the octet baryon B. The individual energies are determined
from the two-point correlators of each particle.
For the unitary ensemble we observe a near degeneracy

of energy levels for theΔ and the πN scattering state as well
as for the Σ� and the πΛ scattering state. On the other hand,
a significant energy gap exists between the Σ� and the πΣ
scattering state, and the Ξ� and the πΞ scattering state. The
situation is qualitatively different for the hybrid calculation,
for which the relevant spectrum is shown in Fig. 4. We
observe a larger energy gap for all transitions under
consideration, which is roughly the same in all cases.
This qualitative difference arises from the larger values

ofmπ . In our approximation EMB ¼ EM þ EB, so the gap is
δ ¼ EB� − EMB ¼ EB� − EM − EB. Considering Fig. 4 for
the case Δ − πN one observes that at q ¼ 0, EN þ Eπ is
significantly greater than EΔ so δ is negative and far from
threshold. Taking into account that EN þ Eπ increases with
q, and so does jδj, the gap gets even bigger as compared to
jδj at zero q. The same thing happens for Σ� and for Ξ�. In
contrast, in Fig. 3 for the ensemble at 180 MeV pion mass,
we see that the Δ is unstable and there is a chance δ will
pass through zero at the relevant q for the transition. Indeed,

TABLE II. Simulation parameters. The second, third, fourth and fifth columns give the lattice size, pion mass, lattice spacing and size
of the fifth-dimension for the two ensembles considered in this work. The sixth and seventh columns give the number of configurations
used for the analysis and the number of source positions per configuration. The last two columns give the parameters for the APE and the
Gaussian smearing used in the construction of the interpolating fields.

Action L3 × T mPS=MeV a=fm L5 Nconf Nsrc αAPE=NAPE κGaussian=NGaussian

Hybrid 283 × 64 350 0.124 16 210 4 indep. 2.0=20 4.0=50
Unitary 323 × 64 180 0.143 32 254 4 coh. 2.5=25 0.5625=70

FIG. 3. Energies of the states entering the study of the decays
for the mπ ¼ 180 MeV unitary ensemble. The black arrows mark
the transitions we consider in this work [cf. Eq. (2)].
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we see that δ is small and slightly positive. Similarly, for Σ�,
δ is small and slightly negative.

B. Δ → πN

We first discuss the case of theΔ resonance. As shown in
Fig. 3, the lattice kinematics produce a scattering πN state
that is approximately degenerate with the Δ mass, thus
satisfying one of the conditions for the validity of the
method. For the hybrid action, used in our study, the
energies have a sizeable gap as shown in Fig. 4. In Fig. 5,
we show the ratio RΔ

πN for both the unitary and the hybrid
action.

For the unitary case we compare two different ways to
combine the available lattice data. In the first one, all
individual factors of the two-point correlators entering the
ratio are averaged before the ratio is built using the maximal
set of lattice symmetries for the individual correlators. This
way of combining data will benefit from possible cancel-
lation of additive lattice artifacts in individual correlation
functions. We refer to it as maximal averaging. In the
second approach, we build the ratio for each data set given
by the tuple (momentum/direction, forward and backward
propagators, source location) and in the final step combine
the individual estimates for the ratio. Since the correlator
data within one and the same tuple are maximally corre-
lated, such an average would benefit error cancellations due
to statistical correlation.
We note, that due to the coherent source method used with

the unitary action, we must keep the source-sink time
separation sufficiently smaller than the distance between
the source insertions, i.e. tf − ti ≪ T=4. The ratio RΔ

πN
shown in Fig. 5 exhibits a time dependence that is consistent
with the expected linear behavior for both hybrid and unitary
action, as well as for both types of averages. An overall
comparison of the two approaches used for constructing the
ratio with the unitary action does not reveal any significant
difference in the mean value or the statistical uncertainty of
the data points where they are both defined. However, on
closer examination, the maximally averaged approach pro-
duces data for larger time slices. This is due to the fact that the
Δ and nucleon correlators are more accurately determined
having thus a lower probability of becoming nonpositive in
the sampling part of the error estimate. We shall, thus, use
maximal averaging to combine data in what follows.
In Fig. 6, we show the results from fitting RΔ

πN using the
two-fit Ansätze given in Eqs. (21), (22) for the unitary
action. We observe that the linear fit Ansatz labeled as
type 2, which uses a correlated fit with the function f2ðtÞ
and two free parameters c0, c1, already leads to fits with a
value for χ2=d.o.f below one (bottom panel). The fit value
for the slope determined by c1 does not show significant
variation when scanning the fit ranges from [2, 5] to [6, 9].
As shown in Fig. 5, the statistical uncertainty of the fit
parameters increases with increasing the lower fit range to
larger values as expected from the dependence of the
statistical uncertainty on the fitted data. Moreover, using
as a fit function f1ðtÞ we do not observe a significant
change for c1. Neither do we observe any significant
dependence of the central value of c1 on the number of
parameters. In fact, c2 is statistically consistent with zero
for both Ansätze f1 and f2 as shown in the center panel of
Fig. 6. We point out that we include different labels on the
left and right y axes to show the values extracted using the
fitting functions f1 and f2, respectively, because the order
of magnitude of c2 differs.
As indicated in Fig. 6, we perform a large number of fits

with different fit types using the fit Ansätze f1;2ðtÞ and

FIG. 4. Energies of the states entering the study of the decays
for the mπ ¼ 350 MeV hybrid ensemble. The black arrows mark
the transitions we consider in this work [cf. Eq. (2)].

FIG. 5. Ratio RΔ
πN for the unitary and hybrid calculation; the

detail plot shows the evolution of the statistical uncertainty with
t=a. The errors are computed using the Γ-method [47]. The red
crosses are obtained using maximal averaging to construct the
ratio for the unitary action, while the blue triangles exploit
maximal correlation. The black triangles show the ratio obtained
with the hybrid action using maximal correlation combination of
data. Data points for different curves have been displaced
horizontally.
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different time ranges for the estimate of the slope and the
energies, for zero and one unit of momentum that enter the
calculation. We note that with the Δ at rest, its mass does
not enter the calculation of the coupling constant or the
width. This result relies on energy conservation and
generalizes to all decays studied here.
Since many fits yield an acceptable value for χ2=d.o.f,

we combine the different analyses with an appropriate
weight to extract a mean value and meaningful estimates for
the statistical and systematic uncertainty to account for the
varying goodness of the fits and precision of the estimates
from them. We consider the distribution of the results from
each individual fit and associate a weight to it as follows:

wðg;ΓÞ ¼
Y
A

wðAÞ

wðAÞ ¼ ð1 − 2j0.5 − pAjÞ2 × varðAÞ−1: ð35Þ

Here, pA denotes the p-value for the fit of quantity A,

pA ¼
Z

∞

χ2A

fχ2;d.o.fðXÞdX;

where χ2A is the observed value of χ
2 for the fit of quantity A

and fχ2;d.o.f the density function for the χ2 distribution for
d.o.f. degrees of freedom. A runs over all the quantities that
have been derived from a fit and enter the calculation of g
(or Γ), i.e. the slope parameter c1, the meson mass mM and
baryon massesmB. The definition in Eq. (35) gives a higher
weight to fits with a p value close to 0.5, such that there is
equal probability of finding results above and below the

observed fit value, and to those fits with smaller variance of
the fit result. We then take a weighted average from the
distribution as the mean value,

ḡ ¼
X
i

giwðgiÞ ×
�X

i

wðgiÞ
�−1

;

where the sum runs over all fits labeled by index i. The
statistical uncertainty is calculated from the variance of the
bootstrap samples for the weighted mean,

δgstat ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
varðḡÞ

p
:

Finally, the systematic uncertainty is estimated from the
variance of the weighted distribution of the set fgig: we
form a histogram, where each gi gives a count proportional
to wðgiÞ to the corresponding bin. The square root of the
variance derived from this distribution gives the systematic
error δgsys. We then quote our results as

g ¼ ḡðδgstatÞðδgsysÞ:

We proceed in the same way for the evaluation of the
width Γ. Following this procedure, we arrive at the values
given in Eqs. (36) and (37).

gΔπNðunitaryÞ ¼ 23.7ð0.7Þð1.1Þ ð36Þ

aΓΔ
πNðunitaryÞ ¼ 0.0868ð57Þð32Þ ð37Þ

C. Σ� → πΛ

For the decay of the Σ�, we follow the same approach as
in the case of the Δ decay. In Fig. 7, we show the ratio RΣ�þ

πΛ
for both the unitary and hybrid cases, and Figs. 8 and 9
display the behavior of the three different fits when varying

FIG. 6. We show the values of the parameters c1 (upper panel),
c2 (central panel) and χ2=d.o.f for the fit (lower panel) using three
different Ansätze to fit RΔ

πN . The symbols represent from left to
right: type 1 fits using f1ðtÞ with 3 fit parameters (red squares),
type 2 using f2ðtÞ with 2 fit parameters (blue circles) and type 3
using f2 with 3 fit parameters (black diamonds). The x label gives
the fit interval as a column tmin atop tmax in lattice units; in the
case of c2 we show results using type 1 with the labels to the left y
axis and type 2 with respect to right y axis.

FIG. 7. Ratio RΣ�þ
πþΛ for the unitary and hybrid calculations. The

notation is the same as that in Fig. 5.
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the fit ranges. For the unitary action, the energy levels for
Σ� and πΛ are still close and we find acceptable linear fits
already starting at tmin=a ¼ 2. For the hybrid case we find,
that starting with tmin=a ¼ 7 we find a time-independent
value for the slope even for the linear fit. The estimates for
the slope from the cubic and hyperbolic sine fit are
mutually consistent even before that. However, the
χ2=d.o.f for all fit versions is acceptable starting as early
as tmin=a ¼ 5. A qualitative difference between the unitary
and the hybrid ensembles becomes apparent when exam-
ining the ratio RΣ�þ

πΛ . When attempting a linear fit to extract
the slope, with the hybrid action, the central value for c1
rises systematically, when the lower end of the fit window
is moved towards larger time slices. This would be
expected for a significant energy gap between the state
excited by the Σ� and the πΣ interpolating fields. The
upward curvature then shows that EπΛ > EΣ� .

D. Σ� → πΣ
For the transition Σ� → πΣ we show the results for the

ratio RΣ�
πΣ in Fig. 10 and the results for the parameters c1 and

c2 from a variety of our fits in Figs. 11 for the unitary
and 12 for the hybrid calculation.

E. Ξ� → πΞ
Finally we present the results for the transition Ξ� → πΞ

in an analogous manner in Figs. 13,14 and 15.
We gather our results for the coupling and widths in

Tables V and VI below. To allow for an easy comparison,
we convert the decay widths to physical units using the
values for the lattice spacing given in Table II.
The results for the process Δ ↔ πN with the hybrid

action differ slightly from our previous investigation
[28,29], since we updated them using the weighted average
for the distribution of fits.
Utilizing the expressions of Eqs. (29) and (30) we

estimate the coupling, which is independent of the isospin
combination of in and out state, while the width is for
specific combinations of in and out states. For this reason,

FIG. 8. Fit range dependence of the fit parameters c1, c2 for
three different fits of ratio RΣ�þ

πþΛ for the unitary action. The
notation is the same as that of Fig. 6.

FIG. 9. Same as Fig. 8, but for the hybrid action.

FIG. 10. Ratio RΣ�þ
πþΣ0 for the unitary and hybrid calculations.

The notation is the same at that in Fig. 5.

FIG. 11. Fit range dependence of c1, c2 for three different fits of
ratio RΣ�þ

πþΣ0 for the unitary action. The notation is the same as that
in Fig. 6.
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FIG. 12. Same as Fig. 11, but for the hybrid action.

FIG. 13. Ratio RΞ�−
π−Ξ0 for the unitary and hybrid calcula-

tions.The notation is the same as that in the Fig. 5.

FIG. 14. Fit range dependence of c1 and c2 from the fits of ratio
RΞ�−
π−Ξ0 for the unitary calculation. The notation is the same as that

in the Fig. 6.

FIG. 15. Same as Fig. 14, but for the hybrid calculation.

FIG. 16. Comparison of results on the ratio RΔ
πN with (red

squares) and without using all-mode-averaging (blue circles and
magenta triangles).

FIG. 17. Comparison of the statistical uncertainties of RΔ
πN with

and without using all-mode-averaging; the detail plot shows the
ratio of the uncertainty obtained by using AMA over the that from
the original run with 254 configurations and four source time
slices per configuration; the horizontal line marks the ratio of
uncertainties expected for ideal error scaling.
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in the table we distinguish explicitly the isospin depend-
ence of the width by giving the electromagnetic charges of
the interpolating fields as superscripts.

F. Improved precision with AMA for RΔ
πN

In order to assess the potential of using all mode
averaging to improve the accuracy of our computations,
we apply all mode averaging [31] on a subset of 89 (out of
254) configurations and specifically look at the case of
Δ → πN. In addition to the correlation functions, which
had been obtained at high solver precision during the
production of quark propagators, a corresponding data set
at low solver precision was produced with 16 random shifts
of the original spatial source position two-point correlation
functions CΔ−Δ, Cπ−π and CN−N for each of the four preset
source time slices independently. The measurements for
CΔ−πN are done coherently with a single inversion after
inserting sequential sources at the four time slices.
We show a comparison of the estimates for the ratio RΔ

πN
and its statistical uncertainty in Figs. 16 and 17. We find
full consistency of the data for the ratio from both the AMA
simulation and the original production run. Moreover, the
uncertainty is reduced by a factor around two across the
relevant time slices 1 ≤ t=a ≤ 10. From an ideal scaling of
the error we expect reduction of the statistical uncertainty
by a factor of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið89 × 64Þ=ð254 × 4Þp
≈ 2.4 and the

observed behavior is consistent with this expectation.
We determine the coupling and width based on the AMA

data set in the way previously outlined and give the results
for comparison in Table III. The statistical errors show the
expected improvement by a factor of approximately 2.4.

IV. DISCUSSION

In order to make a direct comparison with the exper-
imental values, we provide in Table IV the data taken from
the Particle Data Group [48] for the relevant baryon and

meson masses, the full widths, branching ratios and relative
momentum k of the asymptotic final meson and baryon
state from the decay in the center-of-mass frame. The
coupling constant is then derived according to the tree-level
decay process using the expression in Eq. (33) and the
experimental value of the width as an input.
We compare these values for the coupling constants to

the results of our calculation in Table V. The analogous
comparison for the decay widths in physical units is shown
in Table VI. We would like to stress that, although we show
the results for the hybrid and unitary calculation side by
side in the tables, one should be careful in drawing strong
conclusions since the conditions for the applicability of the
transfer matrix method are fulfilled to different degree in
the two cases. In particular, the energy matching is very
different in the two cases and for a direct comparison one
would need to have kinematics where the energy gap is
similar.
We find that our lattice QCD values for the couplings are

in good agreement with the PDG-derived values for all
decays for both the unitary and the hybrid action with a
tendency of higher values for the latter case. This observed
level of agreement is remarkable, given that with the
unitary and hybrid action we simulate at pion mass
180 MeVand 350 MeV, respectively, and on coarse lattices.
For the width itself, on the other hand, we only find

agreement for ΓΔ
πN with the unitary action. This may be

expected since it is only for this case that the energies of the
states B� andMB are degenerate and, therefore, this case is
the closest to the threshold situation where the conditions of

TABLE III. The results on the Δ − πN coupling constant and
width using AMA are shown in the first row, while results
extracted without AMA are included in the second row.

gΔπN aΓΔ
πN

AMA 24.2 (0.3) (1.0) 0.0846 (23) (22)
HP, full 23.7 (0.7) (1.1) 0.0868 (57) (45)

TABLE IV. The physical values of masses mB� , mB and mM, full widths Γfull, branching ratios ΓB�
MB and relative momentum p for the

2-hadron state for the resonances studied in this work as given by the Particle Data Group [48].

B� MB mB�=MeV mM=MeV mB=MeV Γfull=MeV ΓB�
MB=Γfull p=MeV

Δ πN 1232 (1) 139.57018 (35) 938.272013 (23) 118 (2) 1. 227
Σ� πΛ 1382.80 (35) 1115.683 (6) 36.0 (7) 0.870 (15) 205
Σ� πΣ 1192.642 (24) 0.117 (15) 120
Ξ� πΞ 1535.0 (6) 1314.86 (20) 9.9(1.9) 1. 158

TABLE V. Results for the couplings gB
�

MB. For each decay
process given in the first column, we give the coupling constant
gB

�
MB for the unitary DWF ensemble with mπ ¼ 180 MeV (second
column) and hybrid ensemble with mπ ¼ 350 MeV (third col-
umn). The fourth column shows the value of the coupling at
leading-order effective field theory using input from the PDG.
The uncertainties in brackets are statistical and systematic as
given in subsection III B.

Process Unitary Hybrid PDG

Δþþ ↔ πþNþ 23.7 (0.7) (1.1) 26.7 (0.6) (1.4) 29.4 (0.3)
Σ�þ ↔ πþΛ 18.5 (0.3) (0.5) 23.2 (0.6) (0.8) 20.4 (0.3)
Σ�þ ↔ πþΣ0 16.1 (0.3) (1.9) 19.0 (0.7) (2.9) 17.3 (1.1)
Ξ�− ↔ π−Ξ0 21.0 (0.3) (0.3) 25.6 (0.6) (4.3) 19.4 (1.9)
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our approach are best fulfilled. Table IV shows in the right-
most column the momentum in the center-of-mass frame
for the fields M and B for the individual decays. On the
lattice, this momentum is, of course, fixed to k ¼ 2π=L in
lattice units or kðunitaryÞ ≈ 270 MeV for the unitary action
and kðhybridÞ ≈ 357 MeV for the hybrid one. Thus, in
addition to matching the energies of the resonance and the
decay channel, one has another constraint, namely, a fixed
center-of-mass momentum in these transition processes,
which deviates from the physical situation by a process-
dependent amount. In general, we have that with the hybrid
action, the lattice momentum is 1.5 to 3 times larger than its
value in the continuum infinite volume limit. With the
unitary action the violation is less severe, and the closest to
the physical situation is the one corresponding to decay of
the Δ.
Assuming a finite volume we can check that the density

of states derived from the lattice values of the masses and
the momentum approaches closer to the value of the density
of states derived with their continuum counterparts when
going from πN to πΛ=πΣ to πΞ. This is to be expected,
since the strange quark mass is tuned closer to its physical
value than the light quark mass and Λ=Σ and Ξ are have
strangeness −1 and −2, respectively.
The dependence of the coupling and decay width on the

meson and baryon masses, momentum and the parameters
of the lattice simulation show a large disparity reflected in
the different levels of agreement in Tables V and VI. Partly
this is explained by the additional condition of having to
match the center of mass momentum for extracting the
width in the decay process. One would need to study the
dependence of the momentum further in order to under-
stand the different level of agreement between the case of
the coupling and that of the width.

V. CONCLUSIONS AND OUTLOOK

The coupling constants gΔπN , gΣ
�

πΛ, gΣ
�

πΣ and gΞ
�

πΞ are
evaluated using two ensembles of dynamical fermion gauge
configurations with pion mass 350 MeV and 180 MeV. In
both cases, domain wall valence quarks are used. The
gauge configurations for the ensemble with the heavier

mass were produced using Nf ¼ 2þ 1 staggered sea
quarks and thus our analysis is done with a hybrid action,
while those with the lighter pion mass were produced using
Nf ¼ 2þ 1 domain wall sea quarks so the action is unitary.
The kinematical conditions are best satisfied for the unitary
action for all four decays, with the Δ decay being closest to
the physical situation. Comparing the values of the cou-
pling constants obtained for these two ensembles, we find
that they are about 10% smaller for the ensemble with
180 MeV pions as compared to their values for the
ensemble with 350 MeV pions. Given that the pion mass
is about half as compared to the hybrid ensemble, we
conclude that the pion mass dependence is rather weak and
thus the values obtained using 180 MeV pions should be
close to their values at the physical point, which is indeed
what we observe. In order to extract the width, one needs to
make further assumptions, some of which are not well
satisfied. For example, the energy in the center of mass
frame on the lattice is different from the one in the infinite
volume limit. The case for which these energies best match
is the Δ decay, where indeed we find an agreement with the
experimental value. This demonstrates that the methodol-
ogy works when the physical kinematical conditions are
approximately satisfied on the lattice.
To explore the applicability of AMA on reducing the

statistical uncertainty of the ratio and consecutively of the
extracted slope, we consider the all-mode-averaging tech-
nique for the case of the transitionΔ ↔ πN. Adding further
correlation functions with randomly shifted source posi-
tions at low precision for a subset of the gauge ensemble,
we increase the available statistics by a factor of approx-
imately 5.6. The ideally expected reduction of the statistical
uncertainty is thus by a factor of 2.4. We observe an
improvement of approximately a factor of 2 on our final,
derived quantities, which is satisfactory. The solver pre-
cision for the low-precision inversions of the domain-wall
Dirac operator is tuned to a compromise value that, on the
one hand, yields sufficiently high statistical correlation for
the two-point functions for both high and low precision
inversions to ensure a good scaling of the statistical
uncertainty with the number of low-precision inversions,
and on the other hand, to keep the ratio of cost for a low- to
high-precision propagator as small as possible, which in
our case turns out to be 1∶5.
Fully exploiting the potential of further reduction of the

uncertainty of the slope bears the interesting prospect of
becoming sensitive to contributions from excited states
and next-to-leading-order terms. This would be of particular
importance in a more comprehensive, combined analysis of
several decay channels and vital for an attempt to tackle the
quark-connected diagrams, the calculation of which is
beyond the scope of this work. Notwithstanding these future
prospects, our current analysis shows that, for the time being,
the major source of systematic uncertainty stems from the
lattice kinematical setup rather than statistics.

TABLE VI. Results for the decay widths in MeV. The meaning
of the columns is analogous to Table V with the decay process
(first column), results from the unitary DWF ensemble withmπ ¼
180 MeV (second column), results from the hybrid ensemble
with mπ ¼ 350 MeV (third column) and the PDG value (fourth
column).

Process Unitary Hybrid PDG

Δþþ ↔ πþNþ 119.4 (7.9) (4.5) 238.5 (12.2) (16.2) 118 (2)
Σ�þ ↔ πþΛ 54.5 (2.1) (1.3) 143.9 (7.4) (6.1) 31.3 (8)
Σ�þ ↔ πþΣ0 17.6 (0.8) (2.1) 58.3 (3.4) (6.8) 4.2 (5)
Ξ�− ↔ π−Ξ0 35.1 (1.1) (0.4) 126.0 (5.6) (18.5) 9.9 (1.9)
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Given the good agreement of our lattice QCD results
with the experimental values for the coupling constants and
for the width when the kinematical constraints are satisfied,
we plan to apply the method to study other baryon decays
such as the decay of baryons in the negative parity channel
and decays of baryon of higher spin.
In the future, we are also planning to address some

of the deficiencies of the method connected to the kin-
ematical conditions by considering moving frames. The
decays considered here can be the test bed for these
extensions.
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