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In this work, we calculate meson-baryon scattering phase shifts in four channels using lattice QCD
methods. From a set of calculations at four volumes, corresponding to spatial sizes of 2, 2.5, 3, and 4 fm,
and a pion mass of mπ ∼ 390 MeV, we determine the scattering lengths and effective ranges for these
systems at the corresponding quark masses. We also perform the calculation at a lighter quark mass,
mπ ∼ 230 MeV, on the largest volume. Using these determinations, along with those in previous work, we
perform a chiral extrapolation of the scattering lengths to the physical point after correcting for the effective
range contributions using the multivolume calculations performed at mπ ∼ 390 MeV.
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I. INTRODUCTION

The study of hadronic interactions from first principles is
one of the most exciting enterprises made possible by
lattice QCD (LQCD) methods. In recent years, advances in
algorithms and machines have allowed for high-precision
calculation of meson-meson scattering phase shifts by
several groups, including coupled channels and channels
containing a resonance [1–18]. Progress for interactions
between nucleons ([19–29]) has been much slower, due in
part to the asymptotically exponential degradation of
signal-to-noise for LQCD calculations involving nucleons
[30]. An important additional hindrance is the potentially
poor convergence of chiral perturbation theory (χPT) in the
nucleonic sector, which is necessary for extrapolating
current LQCD calculations, which are performed at
unphysical quark masses, to the physical point.
In this work, we study scattering of a single baryon and a

meson. Using these systems, we can explore some ques-
tions of the convergence of χPT in a simpler setting without
confronting excessive difficulties with statistical noise.
While the scattering parameters for two baryon systems
are constrained somewhat by chiral symmetry, having at
least one meson in an initial or final state greatly simplifies
the form of the expansion. Furthermore, the fine-tuning of
interactions that exists in the nucleon-nucleon sector,
leading to anomalously large scattering lengths and the
need for nonperturbative treatment of the effective field
theory [31–34], is not expected to exist for the meson-
baryon systems that we investigate.
Meson-baryon scattering is also of intrinsic interest for

several reasons. Pion-nucleon and kaon-nucleon inter-
actions are important in the determination of the equation
of state of dense matter, particularly at densities relevant for

neutron stars. Furthermore, meson-baryon interactions may
be of interest for indirect reasons, such as understanding the
final state interactions of various decays of interest for
Standard Model phenomenology, disentangling single par-
ticle excited baryon states from meson-baryon states in
LQCD calculations, or for understanding thermal contri-
butions to nucleonic correlators in LQCD [35–37].
Experimental input exists for pion-nucleon scattering

[38,39], as well as model-dependent extractions for kaon-
nucleon scattering [40]. There is no direct experimental
data for meson-baryon scattering processes involving
hyperons. For an extensive discussion of experimental
input to the relevant χPT analyses see [41–44].
Additionally, there have been recent analyses of pion-
nucleon scattering using Roy-Steiner equations [45,46].
Two quenched LQCD calculations of meson-nucleon
scattering processes have been performed [47,48], as well
as dynamical two-flavor calculations of pion-nucleon
scattering in the negative parity channel [49,50]. Finally,
a dynamical three-flavor, mixed-action result has been
produced by the NPLQCD collaboration for the systems
studied in this work [51]. These results were calculated at
several values of the quark masses, and an extrapolation of
the scattering lengths to the physical point was performed.
However, these calculations made use of a single, relatively
small volume, ð2.5 fmÞ3, so that it is possible that they
contain sizeable effective range corrections. Another
LQCD calculation of the energies of many mesons and
a single baryon using a larger volume, ð4 fmÞ3, was
performed in [52], and scattering lengths for the meson-
baryon systems were also extracted from this data. These
scattering lengths were found to differ significantly from
the previous results on the smaller volume, suggesting that
range corrections may indeed be large.
In this work, we have calculated the low-energy scatter-

ing phase shifts of the four meson-baryon systems pre-
sented in Table I. These systems are chosen to avoid the
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calculation of annihilation diagrams, which involve at least
one qq̄ same-flavor pair at source or sink, and which are
computationally prohibitive at present. We perform calcu-
lations at a pion mass of mπ ∼ 400 MeV at four volumes,
ð2 fmÞ3, ð2.5 fmÞ3, ð3 fmÞ3, and ð4 fmÞ3, and extract
scattering lengths and effective ranges from this data.
We find that the effective range contributions to the phase
shifts on the smaller volumes are significantly larger than
naively expected. We also perform these calculations at
mπ ∼ 230 MeV on the largest volume. We then use the
data, combined with the data from Ref. [51], to perform
a chiral extrapolation of the scattering lengths to the
physical point, taking into account effective range contri-
butions that are determined by the multivolume study
at mπ ∼ 390 MeV.
This paper is organized as follows: in Sec. II, we

discuss the details of our lattice calculation, and the
methods we use to extract finite volume energy levels
from correlation functions. Next, we discuss the calcu-
lation of scattering phase shifts from these energy levels
in Sec. III, and present our results for the phase shifts at
mπ ∼ 390 MeV. In Sec. IV, we explain our method for
removing the effective range contributions to the data at
mπ ∼ 230 MeV and from [51], and perform an extrapo-
lation of the scattering lengths to the physical quark
masses using heavy baryon χPT (HBχPT), including a
discussion about the convergence of the chiral expansion.
Finally, we provide a summary of our results and
additional conclusions in Sec. V.

II. LATTICE DETAILS AND ANALYSIS

A. Gauge field configurations and quark propagators

For this calculation we have used gauge configurations
generated by the Hadron Spectrum Collaboration (for
details, see Ref. [53]) at a spatial lattice spacing of bs ¼
0.1227ð8Þ fm [53]. The gauge fields were created using a
nf ¼ 2þ 1-flavor anisotropic tadpole-improved clover
fermion action [54] with a Symanzik-improved gauge
action [55–58]. We use ensembles at two values of the
quark masses corresponding to pion masses of mπ ∼
390 MeV and mπ ∼ 230 MeV, with a single strange
quark mass corresponding to kaon masses of mK ∼
543 MeV and mK ∼ 465, respectively. The renormalized
anisotropy parameter, ξ ¼ bs=bt ¼ 3.469ð11Þ, was

determined in Ref. [6]. For mπ ∼ 390 MeV we use
several volumes corresponding to (L ¼ 16, 20, 24, 32),
while for mπ ∼ 230 MeV we have a single volume,
L ¼ 32. The largest volume for both pion masses has
a large temporal extent, T ¼ 256, while the smaller
volumes have T ¼ 128. To aid in the determination of
the ground states we have large ensemble sizes, ranging
from about 800–2200 configurations with ∼150 mea-
surements on each configuration. We use the quark
propagators from Ref. [59–62], which were generated
using the same fermion action as was used for gauge
field generation (for more details, see Ref. [59]).

B. Analysis

For each configuration, measurements from approxi-
mately 150 source locations are used that are averaged over
to improve statistics. We also repeat the calculation on each
configuration using the opposite parity source and sink
interpolators, and include these into the ensemble after
performing a time reversal operation. To determine the
energy splitting which arises from interactions,

δEðMBÞ
0 ¼ EðMBÞ

0 − EðBÞ
0 − EðMÞ

0 , where EðMBÞ
0 , EðBÞ

0 , and

EðMÞ
0 are the ground-state energies of the meson-baryon,

baryon, and meson systems, respectively, we form the
following ratio of correlators,

RMBðtÞ ¼
CMBðtÞ

CMðtÞCBðtÞ
⟶
t→∞

Ae−δE
MB
0

t: ð1Þ

The correlators, CMB, CB, and CM are standard two point
functions for the meson-baryon, baryon and meson states
respectively, and are resampled using the bootstrap method
and then used to form an effective mass difference from the
following ratio,

MMBðtÞ ¼ ln

�
RMBðtÞ

RMBðtþ 1Þ
�
; ð2Þ

which approaches δEðMBÞ
0 asymptotically in time. The

bootstrap ensemble is used to determine statistical errors
on this quantity.
The rather short time extent of the three smallest volumes

leads to contamination of the correlation functions from
thermal effects at times for which the excited state con-
taminations are still large. In order to extract ground state
energies, we have utilized two different types of analysis
methods. For the first, we have fit the resampled data
directly to a fit function which includes corrections for
both the first excited state and the lowest energy thermal
state. The leading contribution from thermal effects
results from the baryon propagating forward in time and
the meson propagating backward. Correspondingly, we
have chosen a fit function of the form,

TABLE I. Meson-baryon systems studied in this work, includ-
ing isospin (I) and strangeness (S) content.

System Quark Content I S

Ξ0ðπþÞ ussðud̄Þ 3
2

−2
ΣþðπþÞ uusðud̄Þ 1 −1
pðKþÞ uudðus̄Þ 1 1
nðKþÞ uddðus̄Þ 0 1
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fMBðtÞ ¼ ln

�
gMBðtÞ

gMBðtþ 1Þ
�
;

gMBðtÞ ¼ Ae−δE
MB
0

t þ Be−δE
MB
1

t þ Ce−mMðT−2tÞ; ð3Þ

where δEMB
1 corresponds to the first excited state energy

splitting of the meson-baryon system.1 We use the meson
masses extracted from each bootstrap ensemble as input to
the correlated fit, and fit the remaining parameters, δEMB

0 ,
δEMB

1 , as well as two coefficients (one of the coefficients
can be eliminated after inserting gMB into fMB), for a
chosen time range. This process is repeated over a large set

of time ranges, and the extracted values for δEðMBÞ
0 are

plotted to determine a plateau region. The spread of the
fitted δEMB

0 within Δt ¼ �2 of the plateau region is
reported as the fitting systematic error. An example of this
procedure is shown in Fig. 1.
The second analysis method used was the matrix-Prony

method [59]. For this, we use two types of sink for the
quark propagators, local and gauge-invariantly smeared,
while for both cases we use smeared quark sources. This
leads to two sets of correlation functions, labeled smeared-
point (SP) and smeared-smeared (SS). The matrix-Prony
method uses information from multiple time slices and
multiple sources to eliminate excited state contributions to
the correlation function. The method solves the following
generalized eigenvalue problem,

Mq ¼ λVq; ð4Þ

where M, V are 2 × 2 matrices formed using the 2-
component vector y of correlation functions corresponding
to (SS) and (SP), and the eigenvalues λ determine the
energies. A simple solution exists of the form,

M ¼
"XtþtW

τ¼t

yðτ þ tJÞyðτÞT
#−1

; V ¼
"XtþtW

τ¼t

yðτÞyðτÞT
#−1

;

ð5Þ

where tJ and tW may be varied to provide numerical stability,
but must be at least 2 for the matrices to achieve full rank.
The eigenvalues, λ, for each of the individual meson, baryon,
and meson-baryon correlators are determined as a function
of time on each bootstrap sample, and the lowest eigenvalues
are combined to produce an energy shift, then plotted to
determine a plateau region (see Fig. 2). Fitting systematic
uncertainties are obtained by varying this region by
Δt ¼ �2, while statistical uncertainties are determined using
the bootstrap ensemble. The parameters tJ and tW are also
varied within 4 ≤ tJ, tW ≤ 10, and the spread of the resulting
energies is used as a second fitting systematic error, with the
total fitting systematic given by the two errors added in
quadrature. The various sets of data points (overlapping) in
Fig. 2 correspond to the different choices of tJ and tW . While
the Prony method in principle could also be used to account
for thermal effects, as implemented this method leads to
ground-state saturation much earlier in time where thermal
effects are not significant, as seen in the figure.
In most cases the two analysis methods give results for

the energies which are compatible within error bars.
However, in some cases the central values resulting from
the fits to Eq. (3) are systematically lower than those
obtained using the Prony method. For this reason, we report
the results for the energies using each fitting method in
Table II, and perform simultaneous fits to both sets of
energies to determine the scattering lengths and effective

FIG. 1. Left: Effective mass plot for the kaon-proton system for the L ¼ 20 ensemble. The gray band is the best fit to a single thermal
state plus a single excited state [Eq. (3)]. Right: Fit results for the ground state energy difference from Eq. (3) as a function of the time
corresponding to the beginning of the fit range, with different colors representing different fit ranges. The band shows the final result for
the energy difference, including the uncertainty from the choice of fitting range.

1Note that the leading effect of including thermal contributions
to the pion correlator in the denominator of RMBðtÞ would be to
multiply the entire function gMBðtÞ by ð1þ e−mπðT−2tÞÞ, and is
therefore exponentially suppressed overall. The fact that we find
distinct plateau regions without including this effect is evidence
that we may neglect it.
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FIG. 2. Eigenvalues, λ, given by the Prony method [Eq. (4)] for the kaon-proton system for the L ¼ 20 ensemble as a function of time.
Different colors represent different choices of tW , tJ. Clockwise from upper left: Energy difference, kaon-proton energy, proton energy,
kaon energy. The band shows a fit result for the energy difference to the plateau at late times.

TABLE II. Masses, energy shifts, and phase shifts calculated on each of the four volumes. All quantities are given in lattice units, and
errors correspond to statistical and systematic, respectively. For quantities containing two rows of values, the upper row corresponds to
the result using a fit function including a thermal plus one excited state [Eq. (3)], and the lower row corresponds to the result from a fit
using the Prony method [Eq. (4)].

L ¼ 16 L ¼ 20 L ¼ 24 L ¼ 32 L ¼ 32 ð230 MeVÞ
mπ 0.06946(15)(5) 0.06916(11)(2) 0.069077(65)(8) 0.069051(13)(17) 0.039026(80)(12)
mK 0.097211(31)(33) 0.097015(22)(10) 0.096951(15)(40) 0.096926(9)(13) 0.083092(34)(5)
mp 0.21029(55)(18) 0.20765(32)(30) 0.20511(18)(31) 0.20473(22)(13) 0.16888(48)(43)
mΣ 0.23016(24)(62) 0.22792(22)(15) 0.22775(18)(5) 0.22796(14)(96) 0.20251(25)(25)
mΞ 0.24372(22)(78) 0.24115(36)(2) 0.24042(14)(9) 0.23980(18)(21) 0.22017(29)(32)

δEðπΣÞ
0

0.00943(33)(6) 0.00570(34)(7) 0.00264(4)(30) 0.00201(12)(11) 0.00228(24)(8)
0.00836(27)(21) 0.00469(16)(19) 0.00232(15)(46) 0.00196(40)(25) 0.00233(30)(49)

δEðKpÞ
0

0.00682(6)(12) 0.00427(25)(28) 0.00274(6)(70) 0.00241(12)(10) 0.00265(46)(10)
0.00636(40)(20) 0.00385(19)(12) 0.00230(68)(72) 0.00226(19)(22) 0.00233(74)(52)

δEðπΞÞ
0

0.00252(14)(19) 0.00132(27)(7) 0.00084(13)(3) 0.00058(11)(7) 0.00158(18)(1)
0.00222(31)(37) 0.00126(13)(16) 0.00061(9)(25) 0.00065(14)(21) 0.00163(29)(52)

δEðKnÞ
0

0.00192(14)(7) 0.00130(15)(12) 0.00097(6)(17) 0.000717(90)(28) 0.00144(27)(1)
0.00157(28)(52) 0.00112(6)(16) 0.00074(11)(26) 0.00069(16)(12) 0.00112(60)(34)

p cot δðπΣÞ −0.3883ð56Þð83Þ −0.3267ð83Þð53Þ −0.358ð27Þð8Þ −0.2256ð94Þð89Þ −0.286ð21Þð7Þ
−0.423ð38Þð10Þ −0.376ð42Þð6Þ −0.41ð11Þð2Þ −0.233ð57Þð11Þ −0.299ð21Þð55Þ

p cot δðKpÞ −0.426ð12Þð17Þ −0.348ð42Þð3Þ −0.307ð16Þð2Þ −0.1690ð51Þð58Þ −0.178ð19Þð10Þ
−0.448ð24Þð6Þ −0.374ð17Þð3Þ −0.35ð13Þð2Þ −0.177ð18Þð7Þ −0.194ð25Þð29Þ

p cot δðπΞÞ −1.082ð71Þð88Þ −1.03ð39Þð7Þ −0.93ð17Þð4Þ −0.58ð11Þð3Þ −0.377ð35Þð2Þ
−1.20ð16Þð16Þ −1.07ð22Þð3Þ −1.30ð50Þð41Þ −0.53ð22Þð2Þ −0.37ð10Þð11Þ

p cot δðKnÞ −1.16ð88Þð11Þ −0.883ð96Þð11Þ −0.690ð48Þð60Þ −0.414ð58Þð18Þ −0.326ð50Þð34Þ
−1.37ð29Þð26Þ −0.99ð14Þð2Þ −0.87ð25Þð23Þ −0.43ð17Þð2Þ −0.333ð69Þð72Þ
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range parameters, as described in the next section. We find
reasonable agreement for L ¼ 20 with previous results
from Ref. [51] using a different action and slightly different
quark mass. This suggests that discretization effects are
not large.

III. PHASE SHIFTS AT mπ ∼ 390 MEV

We follow Lüscher’s method for determining scattering
phase shifts using the ground state energies of two particles
in a periodic box [63–67]. For s-wave scattering, we use the
relation [68]

p cot δðpÞ ¼ 1

πL
S

��
pL
2π

�
2
�
; ð6Þ

where δðpÞ is the elastic scattering phase shift, and

SðηÞ ¼ lim
Λ→∞

"Xjjj<Λ
j

1

jjj2 − η2
− 4πΛ

#
: ð7Þ

The scattering momenta p of the zero total

momentum systems, which are the solution to δEðMBÞ
0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
M

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

B

p
−mM −mB, are used as

input.2 We fit the resulting phase shifts as a function of
p to an effective range expansion (ERE) cut off at NLO,

FIG. 3. Phase shifts for meson-baryon systems as a function of the scattering momentum. Red points (appearing as curves due to their
large overlap) were extracted on each bootstrap sample using the Prony method [Eq. (4)] for various tJ , tW , while blue points resulted
from thermal plus excited state fits [Eq. (3)] on each bootstrap sample. The relative sizes of the points denote the quality of the fits used
to generate them, and therefore, their relative contributions to the fit to an effective range expansion, cut off at Oðk2Þ (gray band).

TABLE III. Fit results for the scattering lengths and effective
ranges of the meson-baryon systems, as well as the correlation
coefficient between the two quantities. Both statistical and
systematic uncertainties are included in the quoted error bar.

πþΣþ Kþp πþΞ0 Kþn
1
aμ

−1.39ð31Þ −0.73ð25Þ −2.8ð13Þ 0.7(12)
m2

π
μ r0 −10.1ð73Þ −13.9ð54Þ −220ð100Þ −296ð88Þ
ρ

1
aμ;

m2
π
μ r0

−0.85 −0.91 −0.83 −0.93

2For calculations performed on anisotropic lattices, the
energy-momentum relation is modified, so that δEðMBÞ

0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2=ξ2M þm2

M

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2=ξ2B þm2

B

p
−mM −mB, where ξM;B is

the anisotropy factor for the associated meson (baryon), and
energies and masses are given in temporal lattice units, while
momenta are given in spatial lattice units. In this work, we use
ξM ¼ ξB ¼ ξ, where ξ has been determined using the pion
dispersion relation. We find no significant differences in the
results using the anisotropy associated with the baryons.
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p cot δðpÞ ≈ 1

a
þ 1

2
r0p2: ð8Þ

All scattering momenta in these calculations are below the
t-channel cuts of the respective channels, the lowest of
which is at p2 ¼ m2

π=4, and so the effective range expan-
sion should be a valid representation.
Using the two methods outlined in Sec. II B, we

extract two values for the ground state energy for a
given system at each volume. Bootstrap ensembles of the

energies are used to calculate the corresponding p2,
which we label ηL;f;i and p cot δ, which we label
δL;f;i, corresponding to bootstrap ensemble i, volume
L, and fitting method f. In certain cases one analysis
method is clearly more successful than the other, as
evidenced by the associated q-value of the fit and large
systematic errors. For this reason, a fit is performed to all
of the data, including correlation between the two
analysis methods, by minimizing the following corre-
lated, weighted χ2,

FIG. 4. Error ellipses for the scattering lengths and effective ranges of the meson-baryon systems in units corresponding to the
intercepts and slopes of Fig. 3. The inner and outer bands represent 68% and 95% confidences, respectively.
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χ2i ∝
X2

ff;gg¼1

X4
L¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QL;fQL;g

p �
δL;f;i −

�
1=aþ 1

2
r0ηL;f;i

��

× ½C−1ðLÞ�f;g
�
δL;g;i −

�
−1=aþ 1

2
r0ηL;g;i

��
; ð9Þ

where ½CðLÞ�fg ¼ hðδL;f − hδL;fiÞðδL;g − hδL;giÞi, with

angle brackets denoting an average over the bootstrap
ensemble, is the covariance matrix encoding correlations
between different analysis methods for the same volume,
L, and QL;f is the q-value for fit f on volume L and acts
as a weight. Each ERE fit is performed using the energy
results from the thermal fit and a given Prony fit. An
ensemble of such ERE fits using different Prony results
and different time windows is used to calculate the
systematic uncertainty.
Results for the fits to the effective range expansion are

shown in Fig. 3, with numerical values given in Table III.
The bands that are shown include both statistical and fitting
systematic uncertainties, added in quadrature. In Fig. 4, we
plot error ellipses for the extracted scattering lengths and
effective ranges. Note that the effective ranges are given in

units of mπ. Thus we find that the effective ranges are
significantly larger than the naive expectation, r0 ∼ 1=mπ ,
particularly for Kþn and πþΞ0. Therefore, the effective
range contributions, especially for the smaller volumes that
correspond to the largest scattering momenta, should not be
neglected for an accurate determination of the scattering
lengths. The large values of the effective range parameters
may also call into question the validity of the Lüscher
analysis, as we will discuss below. Note that the πþΞ0

(πþΣþ) channel is related to the Kþn (Kþp) channel by
isospin. This near-symmetry is reflected in the scattering
lengths and effective ranges, thus, once an anomalously
large effective range is found in the πþΞ0, it is not
surprising that the Kþn channel also displays a large
effective range.
The large effective ranges that we find may lead to

concern that the volumes used are not sufficiently large for
this calculation. However, the effective range, like the
scattering length, is simply a parameter in an ERE
expansion, and needs not be smaller than the box size in
order for the Lüscher method to be valid [68]. Leading
corrections to the Lüscher relation due to the finite range of
the interaction scale as e−L=rint , and are of order 10−4–10−7

FIG. 5. Phase shifts for meson-baryon systems as a function of the scattering momentum, with data points and gray band as described
in Fig. 3. Purple band shows the results from performing a set of fits to an effective range expansion, cut off atOðk2Þ. The set includes all
possible fits performed after removing the data corresponding to a single volume, for each volume.
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for the volumes considered in this work. Thus, it is unlikely
that the Lüscher method breaks down for these
calculations.
An inspection of Fig. 3 could also raise a concern that the

values extracted for the effective ranges hinge dispropor-
tionately on the fit results for a single volume. For example,
the smallest volume, corresponding to L ¼ 16, gives the
largest leverage in k2, and would be the most affected by
potential contributions from exponential finite volume
effects. On the other hand, the largest volume, L ¼ 32,
in some cases appears to provide significant leverage
toward large effective ranges, and is the most precise
and least subject to exponential volume effects. As an
additional test to determine whether the results from any
single volume exert a disproportionate influence over the
extracted effective ranges, we have performed all possible
fits in which the data from a single volume has been

removed. The resulting error bands are overlaid in purple in
Fig. 5. While the error bars on the scattering lengths and
effective ranges become slightly larger because of the lower
number of degrees of freedom for each fit, the results do not
change significantly (we do not include this test in our
quoted errors bars on the effective range parameters).
Therefore, we conclude that the large effective ranges that
we find are likely not due to finite volume effects from the
smallest volume, or to anomalously large k2 values for the
L ¼ 32 fits.

IV. EXTRAPOLATION TO THE PHYSICAL
PION MASS

Using SU(3) HBχPT to next-to-next-to-leading order,
the scattering lengths of the pion-baryon systems have been
determined in Refs. [41,42] to be,

aπþΣþ ¼ 1

4π

mΣ

mπ þmΣ

�
−
2mπ

f2π
þ 2m2

π

f2π
C1 þ YπþΣþðμÞ þ 8h123ðμÞ

m3
π

f2π

�
;

aπþΞ0 ¼ 1

4π

mΞ

mπ þmΞ

�
−
mπ

f2π
þm2

π

f2π
C01 þ YπþΞ0ðμÞ þ 8h1ðμÞ

m3
π

f2π

�
; ð10Þ

where C01 ≡ C0 þ C1 and h123 ≡ h1 − h2 þ h3, and C0, C1, h1, h2, and h3 are low-energy constants (LECs) of the HBχPT.
The scattering length formulas for the kaon-baryon systems are produced by making the replacements
faπþΣþ ; mπ; fπ; mΣ;YπþΣþg ↔ faKþp;mK; fK;mp;YKþpg and faπþΞþ ; mπ; fπ; mΞ;YπþΞþg ↔ faKþn; mK; fK;mn;YKþng.
The loop functions are defined by

YπþΣþðμÞ ¼ m2
π

2π2f4π

�
−mπ

�
3

2
− 2 ln

mπ

μ
− ln

mK

μ

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K −m2
π

q
cos−1

mπ

mK

þ π

2

�
3F2mπ −

1

3
D2mη

��
;

YπþΞ0ðμÞ ¼ m2
π

4π2f4π

�
−mπ

�
3

2
− 2 ln

mπ

μ
− ln

mK

μ

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K −m2
π

q �
π þ cos−1

mπ

mK

�

þ π

4

�
3ðD − FÞ2mπ −

1

3
ðDþ 3FÞ2mη

��
;

YKþpðμÞ ¼
m2

K

4π2f4K

�
mK

�
−3þ 2 ln

mπ

μ
þ ln

mK

μ
þ 3 ln

mη

μ

�
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K −m2
π

q
ln
mK þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K −m2
π

p
mπ

− 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

η −m2
K

q
cos−1

mK

mη
−
π

6
ðD − 3FÞ

�
2ðDþ FÞ m2

π

mη þmπ
þ ðDþ 5FÞmη

��

YKþnðμÞ ¼
YKþp

2
þ 3m2

K

8π2f4K

�
mK

�
ln
mπ

μ
− ln

mK

μ

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K −m2
π

q
ln
mK þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K −m2
π

p
mπ

þ π

3
ðD − 3FÞ

�
ðDþ FÞ m2

π

mη þmπ
þ 1

6
ð7Dþ 3FÞmη

��
: ð11Þ

The pion and kaon decay constants are taken from Ref. [69,70].
Due to the poor convergence for the scattering lengths using SUð3Þ HBχPT noted in Ref. [51], we also investigate the

SUð2Þ scattering formulas for the pion-baryon systems,
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aSUð2Þ
πþΣþ ¼ 1

4π

mΣ

mπ þmΣ

�
−
2mπ

f2π
þ 2m2

π

f2π
CπþΣþ þ m3

π

π2f4π
ln
mπ

μ
þ 2m3

π

f2π
hπþΣþðμÞ

�
;

aSUð2Þ
πþΞ0 ¼ 1

4π

mΞ

mπ þmΞ

�
−
mπ

f2π
þm2

π

f2π
CπþΞ0 þ m3

π

2π2f4π
ln
mπ

μ
þm3

π

f2π
hπþΞ0ðμÞ

�
: ð12Þ

Following [51], we form the following quantities,

ΓπΣ
NLO ≡ −

2πaπΣf2π
mπ

�
1þ mπ

mΣ

�
¼ 1 − C1mπ

ΓπΣ
NNLO ≡ −

2πaπΣf2π
mπ

�
1þ mπ

mΣ

�
þ fπ
2mπ

YπΣðμÞ ¼ 1 − C1mπ − 4h123ðμÞm2
π

ΓπΞ
NLO ≡ −

4πaπΞf2π
mπ

�
1þ mπ

mΞ

�
¼ 1 − C01mπ

ΓπΞ
NNLO ≡ −

4πaπΞf2π
mπ

�
1þ mπ

mΞ

�
þ fπ
mπ

YπΞðμÞ ¼ 1 − C01mπ − 8h1ðμÞm2
π ð13Þ

ΓKp and ΓKn may be found by replacing fmπ;fπ;mΣ;
mΞ;aπΣ;aπΞ;YπΣ;YπΞg↔ fmK;fK;mp;mn;aKp;aKn;YKp;
YKng. The SUð2Þ equivalents of the NNLO quantities,

ΓSUð2Þ
NNLO, may be formed in an analogous way.

In addition to the phase shift points calculated in
this work, we also include results from Ref. [51] in
the chiral fits. These were performed at four values
of the pion mass at a single volume corresponding
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FIG. 6. 1=ΓNLO, 1=ΓNNLO, and 1=Γ
SUð2Þ
NNLO [Eq. (13)] for the πþΣþ system as a function of the pion mass, for a representative value of the

NNLO scale, μ. Red points were calculated in this work, while blue are the data from [51], shifted to take into account the effective range
correction. The gray band represents the fit to the data using the right-hand side (rhs) of Eq. (13), with all statistical and systematic errors
included.
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approximately to L ¼ 20 in the current study. Due to the
large effective range contributions to the phase shifts
that we have found at this volume, we choose to
account for this by adding a correction to the results
of Ref. [51],

1

aðmπÞ
¼ 1

aLðmπÞ
−
1

2
r0ðmπÞp2; ð14Þ

where aLðmπÞ is the result quoted for the scattering
length in Ref. [51]. To determine the effective range for
a given pion mass, we use the ansatz,

r0ðmπÞ ¼ Cr=mπ; ð15Þ

where Cr is a constant to be determined, and which
follows from the expected behavior of the effective
range in the chiral limit.3 Because the scattering length

and effective range for a given fit are highly correlated,
to determine the error on r0 we generate fake data for
δEðMBÞ from a Gaussian distribution according to the
results reported in Ref. [51]. From this, we calculate a
(non-Gaussian) distribution for aL. We then form the
correlation matrix between aL and 1=r0 using the data
from mπ ∼ 390 MeV. Because both aL and 1=r0 are
proportional to mπ to leading order in χPT, the
correlation matrix should have minimal dependence
on mπ . Finally, using the distribution for 1=aL and
the correlation matrix, we generate fake data for
r0ðmπÞ. Using these ensembles we determine the error
on aðmπÞ.
We also perform the same shift for our

mπ ∼ 230 MeV, L ¼ 32 data. Because L ¼ 32 for mπ ∼
390 MeV appears to be a sufficiently large volume for
obtaining threshold, and because the data is systemati-
cally higher than the fit result at the same volume, we
use both the shifted and unshifted mπ ∼ 230 MeV data,
and include the difference between them in our estimate
of the systematic error for these points.
The results, including the shifted data, are shown in

Figs. 6–8. We choose to investigate 1=Γ rather than Γ
because the effective range shift is large and of opposite
sign to the inverse scattering length, thus, Γ becomes an
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FIG. 7. 1=ΓNLO, 1=ΓNNLO, and 1=Γ
SUð2Þ
NNLO [Eq. (13)] for the πþΞ0 system as a function of the pion mass, for a representative value of the

NNLO scale, μ. Red points were calculated in this work, while blue are the data from [51], shifted to take into account the effective range
correction. The gray band represents the fit to the data using the rhs of Eq. (13), with all statistical and systematic errors included.

3Note that though the large effective ranges found for these
systems seem to indicate fine-tuning of the potential arising from
meson-exchange and contact diagrams, as the pion mass is
decreased toward the chiral limit the long-range meson exchange
contributions will dominate, leading to the pion mass dependence
of Eq. (15).
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inverse of the difference between two noisy quantities
which nearly cancel, causing the uncertainty on Γ to
become arbitrarily large. We expand the rhs of 1=Γ from
Eq. (13) to a given order in mπ for the NLO and NNLO
fits, also shown in these figures.
As noted in Ref. [51], at μ ∼ Λχ the NNLO shift to

the data can be large (and is of opposite sign to NLO).
This creates another noisy cancelation in 1=Γ. We
choose to scan the NNLO results over a wide range
of μ and determine aNNLO from a fit to this set of data.
This is demonstrated in Fig. 9. Note that the physical
results become quickly μ-independent as we raise μ, and
remains independent of the renormalization scale over a
large range. This may be some indication that the next
order in chiral perturbation theory is small.
In Fig. 10, we present our results for the extrapo-

lated scattering lengths to a given order in χPT, along
with the unshifted results from Ref. [51]. As in
Ref. [51] we define NLO� to be the resulting NLO
value using the LECs from the NNLO fit to πþΣþ,
πþΞ0. Contrary to what was found in Ref. [51] for the
unshifted data, the SU(3) fits for the LECs appear to be
fairly stable against the chiral corrections at the next
order. This may be seen in Fig. 11. We are unable to

determine the NNLO result for the kaon systems due to
noise. For the pion systems, the difference between the
NNLO and NLO fits is somewhat large, particularly for
πþΞ0, although the correction is within the uncertainty
of the results and is not significant. The NNLO results
agree for the SU(2) and SU(3) extrapolations.
Numerical values for the extrapolated scattering lengths
and LECs are given in Table IV. From the SU(2)
extrapolation we find,

aðπΣÞSUð2ÞðfmÞ ¼ −0.299ð29Þ; aðπΞÞSUð2ÞðfmÞ ¼ −0.242ð43Þ:
ð16Þ

Given the stability of the LECs, the limited μ-
dependence (within errors), and the agreement between
the SU(2) and SU(3) extrapolations, our results seem to
indicate that χPT may be reliable for these quantities at
the pion masses studied. However, because the uncer-
tainties for the shifted data are much larger than the
uncertainties from this work, all fits are generally
dominated by these two points. Therefore, our statement
about the stability of χPT is most likely limited
to mπ ≲ 400 MeV.
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FIG. 8. 1=ΓNLO and 1=ΓNNLO [Eq. (13)] for the Kþp (upper plots) and Kþn (lower plots) systems as a function of the kaon mass, for a
representative value of the NNLO scale, μ. Red points were calculated in this work, while blue are the data from [51], shifted to take into
account the effective range correction. The gray band represents the fit to the data using the rhs of Eq. (13), with all statistical and
systematic errors included.
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FIG. 9. μ-dependence of the scattering lengths at physical pion mass resulting from fits to the NNLO expressions [Eq. (13)]. The gray
bands represent fits to the constant regions.
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V. CONCLUSIONS

We have calculated the low-energy scattering phase
shifts for four meson-baryon systems at a pion mass of
mπ ∼ 390 MeV, and determined the scattering lengths
and effective ranges from this data. We find significant
effective range contributions for scattering momenta
corresponding to the three smallest volumes. These
large effective ranges do not indicate a breakdown of
the Lüscher finite volume method, for which the
relevant scale is the range of the interaction, rint. The
effective ranges are, however, much larger than expected
for a naturally tuned potential, where the range of the
interaction and the effective range correspond to approx-
imately the same scale. The leading long-range contri-
bution to meson-baryon scattering comes from the
exchange of two pions, so that rint ∼ 1=ð2mπÞ. While
large effective ranges are indicative of fine-tuning of the
potential, it is, however, fairly simple to tune a Yukawa
potential, whose interaction range is set by the pion
mass, to have arbitrarily large r0=a by varying the

strength of the interaction within an order of magnitude
of its “natural” scale.
Given the large effective ranges, we use these results

to correct for range contributions in previous results,
and combine these with our calculations at mπ ∼ 390
and mπ ∼ 230 MeV to perform a chiral extrapolation of
the scattering lengths to physical pion mass. These
differ significantly from the previous results [51],
which may be due to the effective range contributions
and/or the poor convergence of HBχPT at heavier pion
masses as noted in that work. For the lower pion
masses used in this work, we find relative stability of
the SU(3) HBχPT expansion, and agreement at NNLO
with SU(2) HBχPT.
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TABLE IV. Scattering lengths extrapolated to the physical pion mass using SU(3) χPT at NLO and NNLO, as well as the NLO result
using the NNLO coefficients C1 and C01 from the πþΣþ and πþΞ0 systems (NLO�). Also included are the LECs, C1 and C01, that we
have determined at NLO and NNLO.
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NLO NLO� NNLO NLO NLO� NNLO
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