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QCD and related gauge theories have a sign problem when a θ term is included; this complicates the
extraction of physical information from Euclidean-space calculations as one would do in lattice studies.
The sign problem arises in this system because the partition function for configurations with fixed
topological charge Q, ZQ, are summed weighted by expðiQθÞ to obtain the partition function for fixed θ,
ZðθÞ. The sign problem gets exponentially worse numerically as the space-time volume is increased.
Here it is shown that, apart from the practical numerical issues associated with large volumes, there
are some interesting issues of principle. A key quantity is the energy density as a function of θ,
εðθÞ ¼ − log ðZðθÞÞ=V. This is expected to be well defined in the large four-volume limit. Similarly, one
expects the energy density for a fixed topological density ~εðQ=VÞ ¼ − logðZQÞ=V to be well defined in the
limit of large four volumes. Intuitively, one might expect that if one had the infinite volume expression for
~εðQ=VÞ to arbitrary accuracy, then one could reconstruct εðθÞ by directly summing over the topological
sectors of the partition function. We show here that there are circumstances where this is not the case.
In particular, this occurs in regions where the curvature of εðθÞ is negative.
DOI: 10.1103/PhysRevD.93.114510

I. INTRODUCTION

A. θ dependence

Due its nonpertubative structure, the vacuum of quantum
chromodynamics (QCD) and other non-Abelian gauge
theories is complicated. Accordingly, it is important to
understand this vacuum structure by studying how the
vacuum responds when conditions are altered. This paper
focuses on the effects of changing the so-called θ term.
The QCD Lagrangian density has the form

L ¼ ψ̄ðiγμDμ −mÞψ − 1

4
GμνGμν − g2

32π2
θϵαβμνGαβGμν;

ð1Þ

where Gμν is the field strength tensor; the last term is often
omitted. It is the so-called θ term; the θ parameter is
sometimes referred to as the vacuum angle. In Euclidean
space, it is associated with a winding number Q, called the
topological charge, which is given by

Q ¼
Z
V

g2

32π2
ϵαβμνGαβGμν: ð2Þ

The integer Q equals the difference in the number of
right-handed and left-handed zero modes of the Dirac
operator according to the Atiyah-Singer index theorem
[1]. The θ term violates CP, so the parameter θ measures
the amount of CP violation in QCD and QCD-like theories.
Since Q is quantized for any configuration, the θ depend-
ence of any physical observable is periodic in 2π; thus, it is
useful to restrict our attention to θ between −π and π. The
case of θ ¼ π is particularly interesting since formally it is
CP conserving—under CP transformations θ → −θ but π
and −π are 2π apart and by periodicity are equivalent.
The θ term is of both theoretical and experimental

interest for many reasons, not the least of which because
it breaks both P and CP. On the theoretical side, the study
of θ dependance is important as it gives an important
indication of how the theory responds to a P and CP
violating probe. It is interesting to know, for example,
whether CP is spontaneously broken in a particular theory
at θ ¼ π. There are limiting cases where there are good
reasons to believe that Dashen’s phenomenon, the sponta-
neous breaking of CP symmetry at θ ¼ π [2], can occur.
This is believed to happen for example in pure Yang-Mills
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in the large Nc limit [3,4], or in QCD with Nf ¼ 2

degenerate light flavors with a mass small enough so that
the leading term in chiral perturbation theory dominates [5].
A critical issue for standard model physics is that, while

CP violation has been observed in the electroweak sector,
no CP violating effects have been observed in strong
interactions. Precise measurements of the electric dipole
moment of the neutron have put the upper bound of the
theta term at about 10−9 away from the CP conserving
point [6–8]. The problem addressing why θ is so tiny so that
CP violation is not observed is known as the strong CP
problem [9]. Attempts to solve the strong CP problem by
invoking physics beyond the standard model remains a
central problem in contemporary physics; however, it is
beyond the scope of this paper.
However, from the perspective of QCD itself, there is a

related issue. While CP violation is known to be small in
QCD, one still cannot rigorously rule out the possibility
that θ ≈ π rather than θ ≈ 0. The upper bound of jθj < 10−9
is fixed since the value of θ is proportional to CP violation,
which, in turn, fixes the neutron electric dipole moment
experiment. The electric dipole moment is experimentally
bounded. However, we know θ ¼ π is also formally CP
invariant, so jθ − πj < 10−9 may also not be in conflict
with the experimental results. This seems quite unlikely
since lattice calculations done with θ ¼ 0 appear to
describe the world quite well. However, in the absence
of lattice studies at θ ¼ π, as a logical matter one cannot
rule out the possibility that the θ ¼ π results for most
observables are close enough to the θ ¼ 0 results that θ ¼ π
is not excluded.
One could easily rule out θ ¼ π if CP is spontaneously

broken at θ ¼ π [2]. Thus, it would be very useful to know
whether QCD (and other gauge theories) spontaneously
breaks CP at θ ¼ π. If CP is spontaneously broken, then
the energy density as a function of θ, εðθÞ will have a
discontinuity in its slope at θ ¼ π, or, to be more precise, it
will develop such a discontinuity in the limit that the
infinite volume limit is taken. As noted above, there are
regimes where spontaneous CP violation is expected to
occur at θ ¼ π, such as a regime of infinite Nc or a
sufficiently small quark mass with two or more flavors.
We note, however, that while both of these cases act to
suggest that QCD with three colors and physical quark
masses spontaneously breaks CP at θ ¼ π, they are by no
means definitive.
For example, Witten points out that in the large Nc limit,

εðθÞ is parabolic as higher terms in the curvature are
suppressed by factors of 1=Nc, and the periodicity con-
dition forces the function to be defined piecewise as
min

P
kðθ − 2πkÞ2 [3,4]. This leads to a discontinuity at

θ ¼ π. However, one could imagine the following scenario:
at very large but finite volumes, the curve is very nearly a
perfect parabola, except in a region of a size which goes to
zero as Nc goes to infinity, where the curve rapidly turns

over. In such a scenario, the infinite Nc theory has a
discontinuity and spontaneously breaks CP while for any
finite Nc CP is unbroken. Similarly, near the chiral limit—
where the first nontrivial term in the chiral expansion
dominates—it has been shown that the energy density,
periodic in 2π, is proportional to ð1−cos θ

Nf
Þ in θ ∈ ½−π; π�,

where Nf is identical to the number of degenerate light
quark flavors [5]. This automatically yields Dashen’s
phenomenon, a discontinuity at θ ¼ π, when Nf ≥ 2.
This may seem to be compelling since, in the real world,
mq is small. However, one might worry that although small,
mq may not be negligibly small. This worry stems in part
from the fact that the behaviors at largeNc and smallmq are
qualitatively different, implying that the large Nc limit
and the small mq limits do not commute. This is hardly
surprising, as there are many places in QCDwhere the large
Nc and chiral limits do not commute [10]. The key point
here is the fact that an Nc of 3 might be sufficiently large to
push the system out of the small mq regime as far as the
behavior at θ ¼ π is concerned.
To illustrate the issue, consider Fig. 1. In this figure the

form of εðθÞ is given for the infinite Nc limit and for
the leading nontrivial term in the chiral expansion. To
simplify the comparison (and all comparisons in this paper)
we give εðθÞ divided by the topological susceptibility,

χ0 ¼ ∂2εðθÞ
∂θ2 jθ¼0; we also set εð0Þ to zero. It is clear that both

curves have discontinuities in the slope at θ ¼ π and thus
both break CP spontaneously. However, it is also clear that
the two curves are quite different in the regime near θ ¼ π.
Thus, in the regime where mq is small and Nc is simulta-
neously large, one expects QCD to interpolate between
these two in some manner that depends on how close the
system is to the two limits. Now, while it is clear that each
of these limits has a discontinuity in the slope at θ ¼ π, it is

FIG. 1. εðθÞ in units of the topological susceptibility and with
εð0Þ subtracted off. The dashed line is at the largeNc limit and the
solid line is at leading nontrivial order in a chiral expansion for
two degenerate light flavors.
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not clear a priori that the interpolating function also does.
It is easy to envision a scenario in which all of the
interpolating curves are smooth everywhere with no dis-
continuity in the slope at θ ¼ π but which have a curvature
at π that increases as the limiting cases are approached and
diverge at the limits, yielding the sharp forms seen.
Given the importance of understanding the energy

dependence of the vacuum as a function of θ, it is natural
to explore the prospects of calculating it directly from
QCD using lattice methods. As is well known, there is no
practical way to do this due to the so-called sign problem.
This is generally considered as a practical problem asso-
ciated with the natural algorithms to compute the energy
density. In this paper, we note that there is in an interesting
theoretical issue connected to the sign problem.

B. A sign problem

Before outlining the key issues, it is useful to define the
quantities of interest. We do so in Euclidean space, the
natural setup for lattice studies and for simplicity of
discussion work in the continuum limit here. We note in
passing that there are subtleties associated with topology
when considering the continuum limit of a discrete lattice
[11–14]. However, these are unrelated to the issues dis-
cussed in this paper. The energy density of the QCD θ
vacuum can be given in terms of the QCD partition function
in Euclidean space Zðθ; VÞ as

εðθÞ ¼ − lim
V→∞

1

V
logZðθ; VÞ: ð3Þ

The Euclidean-space QCD partition function is given as a
functional integral,

Zðθ;VÞ¼
Z

½dA�det½iD½A�−M�expð−SYMþ iθQÞ; ð4Þ

where SYM and Q are functionals of the gluon field
configurations on a space-time region of volume V.
We consider the Euclidean-space theory confined to a

box of four-dimensional space-time volume V¼LxLyLzLt.
Ultimately we are interested in infinite volumes. However,
for practical calculations on a lattice one must use a finite V
and then take it to be large enough to reduce the effect of
finite volume effects and estimate, with some accuracy,
their size. The boundary conditions imposed on the lattice
are often taken to be periodic for boson fields and
antiperiodic for fermions.
It is well known that Zðθ; VÞ can be written as a Fourier

series over the partition function ZQðVÞ with fixed topo-
logical charge Q:

Zðθ; VÞ ¼
X
Q∈Z

ZQðVÞeiθQ

¼
X
Q∈Z

ZQðVÞ cosðθQÞ; ð5Þ

ZQðVÞ ¼
1

π

Z
π

0

ZðθÞe−iθQdθ

¼ 1

π

Z
π

0

ZðθÞ cosðθQÞdθ; ð6Þ

where we use the fact that ZðθÞ is even and periodic in θ
[15]. The fixed-topology partition function used here is [5]

ZQðVÞ ¼
Z

½dA�Q det½iD½A� −M� expð−SYMÞ; ð7Þ

where the integration is performed over all field configu-
rations on a lattice with a given topological charge Q.
The quantity ZQðVÞ allows us to define a new energy

density distribution function:

~εðq; VÞ ¼ − 1

V
logðZðqVÞðVÞÞ; ð8Þ

where we define topological charge density q≡ Q
V with it

being understood that qV is an integer, so εðθÞ and ~εðq; VÞ
are related by

εðθÞ ¼ − lim
V→∞

1

V
log

� X∞
Q¼−∞

e−~εðQV;VÞVeiθQ
�
: ð9Þ

One expects that the energy density should be an
intensive property that depends on the intensive quantity
q ¼ Q

V. Thus, one expects a well-defined infinite volume
limit, so that we can define

~εðqÞ≡ lim
V→∞

~εðq; VÞ with qVa positive integer

¼ − lim
V→∞

1

V
log

�
1

π

Z
π

0

e−εðθÞVe−iθqVdθ
�
: ð10Þ

Clearly, we would like to be able to compute εðθÞ
directly from QCD. If we could, we could potentially rule
out, definitively, the possibility that θ ¼ π by showing
explicitly that CP is spontaneously broken at θ ¼ π.
Ideally, we could answer the question of whether this
happens by doing lattice studies at a nonzero θ. However,
lattice studies at a θ away from zero are not practical and as
a result εðθÞ of real QCD remains unknown. The reason
they are not is because of a so-called sign problem.
The core of the problem is the oscillatory nature of the

functional integrand in Eq. (4) or equivalently the terms in
the sum in Eq. (5). Such integrals or sums involve large
cancellations which lead to the loss of a considerable
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amount of accuracy. This problem also makes the standard
Monte Carlo methods impractical: functional integrals with
an oscillatory integrand suffer from an integration weight
which is not necessarily positive, and in this case normal
sampling methods are not practical. Indeed, for this
problem the sign problem implies that the computation
cost is exponentially large as a function of V.
It is worth recalling why the sign problem implies an

exponential expense in terms of computer resources. For
simplicity we consider the difference between εðπÞ and
εð0Þ. It is instructive to separate the Q ¼ 0 term from the
rest and rewrite Eq. (9) as

εðπÞ − εð0Þ ¼ − lim
V→∞

1

V
log

�
AðVÞ − BðVÞ

AðVÞ
�

with AðVÞ≡ ZQ¼0ðVÞ
Zðθ ¼ 0; VÞ

and BðVÞ≡− 2
P∞

Q¼1ð−1ÞQZQðVÞ
Zðθ ¼ 0; VÞ ; ð11Þ

where the factor of 2 and the sum over a positive Q in the
definition of BðVÞ reflect the fact that CP invariance
implies that ~εð−QV ; VÞ ¼ ~εðQV ; VÞ. In deriving Eq. (11),
we used the well-known fact [16] that

lim
V→∞

ZQ¼0ðVÞ ¼ lim
V→∞

Zðθ ¼ 0; VÞ: ð12Þ

Equation (12) implies that AðVÞ is a subexponential
function of V. This in turn implies that in order to capture
the difference between εðπÞ and εð0Þ, BðVÞ must cancel
AðVÞ to one part in exp ðVðεðθÞ − εð0ÞÞÞ. If one assumes
that these differences in ε are of the order unity, one sees
that to extract the energy dependence via a direct summa-
tion of the Fourier series requires cancellations due to the
fluctuating sign that scale exponentially in the volume.
This, in turn, implies that to get a meaningful result one
would need to compute both A and B with an accuracy
that also scales exponentially in the volume. But, in a
Monte Carlo algorithm the accuracy scales as the square
root of the resources, so to get sufficient accuracy in eachQ
sector and summing over sectors requires resources that
scale exponentially with the volume.
This exponentially serious sign problem implies that, as

a practical matter, simply using Eq. (9) to get εðθÞ is not
practical except for very small systems that are well away
from describing the infinite volume result in 3þ 1 dimen-
sions. A similar exponentially serious sign problem also
occurs in QCD with a nonzero chemical potential. Some
possible solutions have been proposed to evade these sign
problems [17–26]. Among all of these proposals, using an
imaginary chemical potential has generated significant
attention [27,28]. Similarly, calculating an imaginary θ
first and then analytically continuing it to a real θ in order
to avoid a sign problem have been used to calculate

deconfinement temperature, electric dipole moment, and
so forth [29–34]. In practice, analytic continuation from an
imaginary θ to a real θ can be done for a real θ fairly near 0.
This is because when θ is very small, using any reasonable
expansion form of energy density, we can neglect higher
order terms in the expansion and only take the several
lowest order terms as an approximate analytical form in
which to extrapolate to a real θ. However, because we lack
knowledge of the exact form for energy density εðθÞ in real
QCD, it is not practical to analytically continue an
imaginary θ to an arbitrary real θ ∼ π, where we have
no reason to expect high order terms to be negligible.
The sign problem is generally thought of as a practical

difficulty that prevents practical calculations of εðθÞ.
However, there is also an underappreciated theoretical
question associated with the sign problem that is the focus
of this paper. The issue is the following: suppose that one is
able to determine ~εðqÞ with arbitrary accuracy. Does this
give us enough information, in principle, to reconstruct
εðθÞ by summing over the topological sectors? Intuitively,
it may seem obvious at first blush that the answer is yes.
After all, both quantities are thought to be intensive and
thus to be well defined in the infinite volume limit. Thus, it
seems highly plausible that while the two intensive quan-
tities depend on each other, neither should depend on finite
volume corrections. However, as will be shown here, things
are a bit more subtle than this.
To pose this issue mathematically let us define the

quantity

εðθÞ ¼ − lim
V→∞

1

V
log

�X
Q

e−~εðQVÞVeiθQ
�

¼ − lim
V→∞

lim
~V→∞

1

V
log

�X
Q

e−~εðQV; ~VÞVeiθQ
�
: ð13Þ

The new notation εðθÞ is used to distinguish it from the εðθÞ
defined in Eq. (9). The definitions of εðθÞ and εðθÞ differ
only in an ordering of limits. In εðθÞ, ~V is taken to infinity
prior to taking V to infinity, while in εðθÞ the limits are
taken simultaneously. The question, then, amounts to
whether or not εðθÞ ¼ εðθÞ.
As noted above, it seems rather plausible that εðθÞ ¼

εðθÞ since it relates one intensive quantity to another. It
turns out that, in principle, one can fully reconstruct εðθÞ,
from ~εðqÞ via directly summing over topological sectors for
cases in which ε curves upward [i.e. ε00ðθÞ > 0] everywhere
in the region −π < θ < π. Such cases are interesting since
they must spontaneously break CP at θ ¼ π due to a
discontinuity in the slope (as in the examples in Fig. 1).
However, it turns out that if εðθÞ has regions for which
ε00ðθÞ < 0, then, as a result of the severe sign problem, even
perfect knowledge of ~εðqÞ is insufficient to reconstruct
those regions. Remarkably, in these cases, in order to fully
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reconstruct the infinite volume behavior for εðθÞ one needs
to understand the finite volume effects for ~εðq; VÞ.
This paper is organized as follows. In the following

section we demonstrate the phenomenon in the context of a
simple “toy” problem that, while not being QCD, illustrates
the issues. The toy problem is one for which a dilute
instanton gas is a valid approximation. It is found that in the
region where ε00ðθÞ > 0, εðθÞ ¼ εðθÞ. The key analysis in
understanding this behavior is analyzed in the subsequent
section. The central point is that the relevant sums can be
approximated as integrals that can be analyzed in terms of a
saddle point approximation. The argument is generalized in
the next section; it is shown that the phenomenon can be
expected to occurs when ε00ðθÞ ≤ 0 with no restriction to
the dynamics of the toy problem. The paper concludes with
a discussion of these results.

II. A TOY PROBLEM: THE DILUTE
INSTANTON GAS

A. εðθÞ versus εðθÞ
It is well known that neither Yang-Mills nor QCD can be

approximated well by a dilute instanton gas [35].
Nevertheless, we are going to first consider a dilute
instanton gas with instantons of fixed action and fixed
size as a toy model to illustrate the underlying issues. We
envision such a model as arising from some unspecified
theory (not necessarily in 3þ 1 dimensions), which has
instanton and anti-instanton classical solutions and an
analog of the θ term and, in some parametric limit, the
theory becomes semiclassical and is dominated by widely
spaced instantons of a fixed size.
In suchmodels, it is well known thatZQðVÞ is obtained by

summing over the effects of instantons and anti-instantons

ZQðVÞ¼Z0

X∞
n¼0

ð1
2
ce−S0VÞjQjþ2n

n!ðnþjQjÞ! ¼Z0IQðce−S0VÞ; ð14Þ

where Z0 is a prefactor that sums up effects other than
instantons, S0 is the action of a single instanton,V is the space

time volume, and c is a constants with dimension 4 that
includes the effects of fluctuations. The sum yields the
modified Bessel function IQðce−S0VÞ.
From this it is simple to identify εðθÞ. For an integer Q,

IQðzÞ ¼
1

2π

Z
π

−π
ez cos θ cosðQθÞdθ; ð15Þ

which from Eq. (5) implies that

ZðθÞ ¼ Z0 exp ðce−S0V cosðθÞÞ; ð16Þ

from which the standard dilute instanton gas expression
[36] for εðθÞ follows:

εðθÞ ¼ ε0 þ χ0ð1 − cosðθÞÞ
with χ0 ≡ ce−S0 ; and

ε0 ≡− logðZ0Þ
V

− ce−S0 : ð17Þ

Next let us consider ~ε, the energy density associated with
the fixed topological sectors. Previously it was argued that
this should be an intensive quantity which depends only on
q ¼ Q=V. Let us verify that this is true for the dilute
instanton gas model. Start with the ZQ given in Eq. (14)
and exploit the series expansion of the modified Bessel
function IνðνzÞ around the uniform limit ν → ∞ through
positive real values,

IνðνzÞ ∼
eνη

ð2πνÞ12ð1þ z2Þ14
X∞
k¼0

UkðpÞ
νk

with

η ¼ ð1þ z2Þ12 þ log

�
z

1þ ð1þ z2Þ12
�
; and

p ¼ ð1þ z2Þ−1
2; ð18Þ

where UkðpÞ s are polynomials in p of degree 3k with
U0ðpÞ equal to unity [37]. This yields

~εðq; VÞ ¼ ε0 þ χ0 þ q log

�
qþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

χ20 þ q2
p
χ0

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ20 þ q2

q
þ
log ðð2πÞ2V2ðq2 þ χ20ÞÞ − 4 log

0
@P

k

Uk

�
qffiffiffiffiffiffiffiffi
q2þχ2

0

p
�

ðqVÞk

1
A

4V
: ð19Þ

Thus, in the limit V → ∞ with a fixed q,

~εðqÞ ¼ lim
V→∞

~εðq; VÞ ¼ ε0 þ χ0 þ q log

�
qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ20 þ q2

p
χ0

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ20 þ q2

q
¼ ε0 þ χ0 þ qsinh−1

�
q
χ0

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ20 þ q2

q
:

ð20Þ
As advertised, ~ε is an intensive quantity only dependent on q, a result previously derived in [16] for the analogous case of

QCD with one light flavor which also has a cosinusoidal dependance of εðθÞ.
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Before proceeding, it will be useful to note that the form
of ~εðqÞ as a mapping of real numbers to real numbers is
unique. However, if we continue to the complex q plane, as
we will have cause to do later, the functional form is
multibranched with branch points at �iχ0 and branch cuts
extending along the imaginary axis to infinity. The imagi-
nary axis is free of a branch cut only for −χ0 < iq < χ0.
The form of ~εðqÞ used here corresponds to the principal
branch.
With knowledge of ~ε, we are in a position to investigate

whether it is sufficient to determine ~ε. To do so we must
calculate εðθÞ, defined in Eq. (13), and ask whether it
agrees with εðθÞ. The calculation of εðθÞ involves evalu-
ating

P
Qe

−~εðQVÞVeiθQ. Unfortunately, we know of no way to
do this analytically, so the calculation of εðθÞ was done
numerically with the large V limit approximated by V being
taken as large enough that Vχ0 ≫ 1 (the results were quite
stable except in the immediate vicinity of θ ¼ π=2 by
Vχ0 ¼ 30). In Fig. 2, εðθÞ and the numerically calculated
εðθÞ are plotted in units of the topological susceptibility.
There are several things to notice about Fig. 2. The first

is that for 0 < θ < π=2 one sees that up to the quality
of the numerics, εðθÞ ¼ εðθÞ. However, for π=2 < θ < π,
εðθÞ ≠ εðθÞ. This demonstrates quite clearly that the
answer to the question of whether knowledge of ~εðqÞ is
sufficient to reconstruct εðθÞ via direct summation over
topological sectors is, it depends. The focus of the reminder
of this paper is on what it depends upon. Before attacking
this question, a couple of other observations are in order.
The first is that to numerical accuracy, it appears that εðθÞ is
linear in the region π > θ > π

2
. Beyond that, θ ¼ π is linear

with the opposite slope, yielding a discontinuous slope.
The point that separates the region for which εðθÞ ¼ εðθÞ

from the region for which εðθÞ ≠ εðθÞ appears from the
numerics to be θ ¼ π=2—or something very close to it.

Assuming that the point really is exactly at θ ¼ π=2 gives
rise to the issue of what makes that point special. An
obvious conjecture is that θ ¼ π=2 is a point of inflection.
As will be seen in the course of this paper, there is very
strong evidence that this conjecture is correct.

B. The severity of the sign problem

One thing illustrated quite clearly by the different energy
densities in Fig. 2 for our toy problem, the dilute instanton
gas, is just how serious the sign problem can be. As one
approaches the infinite volume limit the fractional differ-
ence between ~εðqÞ and ~εðq; VÞ clearly goes to zero in the
infinite volume limit. However, even as this difference
becomes vanishingly small at large volumes, their asso-
ciated energy functions of θ, εðθÞ, and εðθÞ respectively
become very different for θ > π

2
. Before turning to more

realistic situations it is worth exploring why this is so for
the toy problem.
To understand how this vanishingly small difference in

the dilute instanton gas results in order unity differences
between εðθÞ and εðθÞ, it is important to first recognize that
the key quantities in the calculations are not the energy
densities but the generating functions, Z ∼ expð−VεÞ.
Note, that the correction term of the order 1=V in the
expansion of ~εðq; VÞ in Eq. (20) leads to an order unity shift
in ZQ. One might be tempted to ascribe the order unity
differences between εðθÞ and εðθÞ to these differences.
However, the underlying cause is more subtle than this.
To see this, it is instructive to compute the θ dependence

using various approximations to ~εðq; VÞ including various
orders of correction in 1=V and truncating beyond it. We
define ~εnðq; VÞ as an approximation to ~εðq; VÞ that includes
all terms up to OðV−nÞ and truncates the rest. Thus,

~ε0ðq; VÞ ¼ ~εðqÞ

~ε1ðq; VÞ ¼ ~εðqÞ þ log ðð2πÞ2V2ðq2 þ χ20ÞÞ
4V

~ε2ðq; VÞ ¼ ~ε1ðq; VÞ −
U1

�
qffiffiffiffiffiffiffiffiffi
q2þχ2

0

p
�

qV2
…: ð21Þ

This allows us to define εnðθÞ as

εnðθÞ ¼ − lim
V→∞

1

V
log

� X∞
Q¼−∞

e−~εnðQV;VÞVeiθQ
�
; ð22Þ

that is, it is the standard definition except that it replaces
~εðQV ; VÞ by ~εnðQV ; VÞ and thereby includes some fixed level
of 1=V corrections. The εnðθÞ can be computed numeri-
cally using a large but finite value for the volume.
If the explanation for the difference between εðθÞ and

εðθÞwere due to the order unity difference in the generating
functions arising from the 1=V corrections in ~εðq; VÞ, one
would find that up to numerical accuracy εnðθÞ would be

FIG. 2. εðθÞ and εðθÞ in units of χ0 for a dilute instanton gas
model. The two functional forms are clearly different for θ > π

2
,

indicating that in this region knowledge of ~εðqÞ is insufficient to
reproduce εðθÞ by direct summation even though they are both
intensive quantities of interest. The numerical evaluation of εðθÞ
was done with a large, but finite, four-dimensional volume.
Vχ0 ¼ 350 in the calculations.
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equal to εðθÞ for all cases where n ≥ 1. However, this is not
the case. In Fig. 3, εðθÞ, ε2ðθÞ, and εðθÞ are plotted. It is
immediately apparent that ε2ðθÞ ≠ εðθÞ differs substan-
tially from εðθÞ, coinciding only in the region 0 < θ < π=2;
indeed it coincides with εðθÞ. Why, then, does εðθÞ differ
from εðθÞ?.
Ultimately the answer resides in the discussion associ-

ated with Eq. (11). Note that to obtain εðθÞ accurately, one
requires cancellations which are exponentially sensitive
with respect to the volume. Thus, it is not that surprising
that inclusion of any given level of power law correction in
the volume might be insufficient. However, if this is the
case, then why does εðθÞ equal εðθÞ in the regime where
jθj < π=2? The next section is aimed at answering that
question in the context of this toy model.

III. SADDLE POINT APPROXIMATION FOR
THE INSTANTON GAS MODEL

A. A useful identity

To proceed, we will exploit a powerful identity relating
the limit of integrals and sums which holds for a wide class
of functions fðxÞ that goes to positive infinity as x → �∞
along the real axis:

lim
λ→0

R
∞−∞ dx exp ð−λfðxλÞÞ expðiθxÞP∞
n¼−∞ exp ð−λfðnλÞÞ expðiθnÞ

¼ 1; ð23Þ

which holds for a large class of functions, f, for−π<θ<π.
The importance of this identity to our problem is that at

large V the sum
P

Qe
−~εðQVÞVeiθQ can be replaced by an

integral over Q, which is far easier to study analytically.
The identity is not trivial. Of course, one expects that a sum
will converge to an integral in situations where the limit of
the sum yields Reimann’s construction for integrals.
However, that does not happen here. Note that the cases
of interest to us here are ones in which the first term in the
sum is exponentially larger than the total, even as the limit
is approached.

The derivation of the identity is straightforward but is
worth sketching here as it illustrates some key features of
the problem that we will exploit later. The first step is to
notice that

P∞
n¼−∞ δðx − nÞ ¼ P∞

k¼−∞ exp ði2πkxÞ, from
which it follows that

X∞
n¼−∞

exp
�
−λf

�
n
λ

��
expðiθnÞ

¼
X∞
k¼−∞

Z
∞

−∞
dx exp

�
−λf

�
x
λ

��
expðiθxÞ expði2πkxÞ

¼
X∞
k¼−∞

λ

Z
∞

−∞
dy exp ð−λðfðyÞ − iðθ þ 2πkÞyÞÞ; ð24Þ

assuming that the various integrals and sums all converge.
The last form of Eq. (24) is instructive. Integrals of this
form in the limit of large λ are typically accurately
approximated via the saddle point approximation assuming
appropriate analyticity properties [38]. Up to power law
factors in λ, the kth integral is given by

Z
∞

−∞
dyexpð−λðfðyÞ−iðθþ2πkÞyÞÞ∼maxkexpð−λgkÞ

wheregk¼minjðgjkÞ with gjk¼ðfðyjkÞ−iðθþ2πkÞyjkÞ;
ð25Þ

where yjk is the jth saddle point for the function ðfðyÞ −
iðθ þ 2πkÞyÞ and thus satisfies

dðfðyðtÞÞ − iðθ þ 2πkÞyðtÞÞ
dt

����
t¼tjk

¼ 0; ð26Þ

where yðtÞ is a contour in the complex plane and
yjk ≡ yðtjkÞ. Note that the derivative of both the real and
imaginary parts of fðyðtÞÞ − iðθ þ 2πkÞyðtÞ have to vanish
at the saddle point. The key point is that each integral is
exponentially dominated by its minimum saddle point in
the complex plane as λ becomes large.
Thus, for a wide class of functions, one expects that, at

large λ, the sum over k to be exponentially dominated by
the term with the smallest value of gk. For many typical
cases one expects this to be the k ¼ 0 term for −π < θ < π.
In these cases, as θ goes beyond π, one expects the k ¼ −1
term to take over as the dominant term, as θ exceeds 3π for
the k ¼ −2 term to take over, and so forth. If one focuses on
the region −π < θ < π for these typical cases, the sum at
large λ is exponentially well approximated by the k ¼ 0
term. However, from the middle line of Eq. (24), the k ¼ 0
term is precisely the integral in the numerator of Eq. (23)
which establishes Eq. (23) for this class of function.
There is an important subtlety. The saddle point approxi-

mation is obtained by distorting the path of the integral
from along the real line to some other path with the same

FIG. 3. A comparison of εðθÞ, ε2ðθÞ, and εðθÞ.
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end points in the complex plane. The integrals will coincide
provided the integrand is analytic everywhere in the region
enclosed by the two paths. Distorting the path through saddle
points along the paths with the steepest decent allows one to
show that the region near the saddle point dominates the
integral exponentially—at least locally—and thereby justi-
fies the approximation. Saddle points are not the only points
that can exponentially dominate the integrals. Suppose the
function, f, is not analytic everywhere, but has a branch cut
singularity. In that case, the branch point can act in a manner
quite analogous to a saddle point and the argument given
above goes through with minor changes. In particular, it is
easy to see that circumstances can arise such that integration
paths that are distorted to go around a branch point in f and
are arbitrarily close to the branch cut on each side can be
exponentially dominated at large λ by the contribution in the
immediate vicinity of the branch point. When this happens
the branch point plays the same basic role as a saddle point in
that the value of the function at the branch point can
determine the value of the integral up to subexponential
factors. Note that there may be more than one branch point
and the relevant branch point may be determined by the need
to close contours at infinity.
Assuming that Eq. (23) holds, it can be exploited in

computing εðθÞ. We can replace the sum over Q by an
integral in computing since we are taking the infinite
volume limit. Thus,

εðθÞ ¼ − lim
V→∞

1

V
log

�X
Q

e−~εðQVÞVeiθQ
�

¼ − lim
V→∞

1

V
log

�Z
dQe−~εðQVÞVeiθQ

�

¼ − lim
V→∞

1

V
log

�
V
Z

dqe−Vð~εðqÞ−iθqÞ
�

¼ ~εðqspθ Þ − iθqspθ ; ð27Þ

where the saddle point approximation is invoked in the last
equality where qspθ is the dominant saddle point associated
with ~εðqÞ − iθq.
On physical grounds one expects dominant saddle points

to be on the imaginary axis in q: in Euclidean space,
1
V
∂ log ðZðθÞÞ

∂θ ¼ iq, which means that a real θ is associated
with an imaginary q. Note, moreover, that ~εðqÞ is an even
function. This means that wherever ~εðqÞ is analytic along
the imaginary axis ð~εðqÞ − iθqÞ will be real along the
imaginary axis—i.e. have a constant phase of zero. Thus,
the condition for a saddle point at q ¼ iq0 is

∂ð~εðixÞ − iθ · ixÞ
∂x

����
x¼q0

¼ 0: ð28Þ

The upshot of this, plus the last equality in Eq. (27), is that
in the infinite volume limit, one expects ~ε to be related to ε

by an analog of a Legendre transformation—but with a
critical factor of i:

~εðqðθÞÞ ¼ εðθÞ þ iθqðθÞ with qðθÞ ¼ i
∂εðθÞ
∂θ

εðθðqÞÞ ¼ ~εðqÞ − iθðqÞq with θðqÞ ¼ −i ∂ ~εðqÞ∂q :

ð29Þ

Equation (29) is central to the analysis. One key point is
that, by its structure, Eq. (29) requires εðθÞ and ~εðqÞ to be
continued into the complex plane. It is also important to
recall the limitations of Eq. (29). Its validity requires (i) that
~εðqÞ is analytic for at least some region along the imaginary
axis, (ii) that the k ¼ 0 integral in Eq. (24) is dominated by
a saddle point along the imaginary axis, and (iii) that the
identity in Eq. (23) holds for ~εðqÞ − iθq, which follows if
the sum on k in Eq. (24) is exponentially dominated by the
k ¼ 0 term at large V.

B. The saddle point approximation for the dilute
instanton gas for jθj < π=2

Let us return to the dilute instanton gas and focus on
what the saddle point approximation tells us about the
relationship of εðθÞ to εðθÞ for the regime jθj < π=2. We
will start by assuming that the conditions justifying
Eq. (29) hold and see what that implies. Subsequently,
we will argue that these conditions should hold.
Let us test the hypothesis that in the regime jθj < π=2,

εðθÞ ¼ εðθÞ, which for the dilute instanton approximation
is given by εðθÞ ¼ ε0 þ χ0ð1 − cosðθÞÞ. If this hypothesis
is correct, then ∂ε

∂θ ¼ χ0 sinðθÞ, and the first form of Eq. (29)
becomes

~εðiχ0 sinðθÞÞ ¼ ε0 þ χ0ð1 − cosðθÞÞ − χ0 sinðθÞθ: ð30Þ

Note that we have shown previously that for the dilute
instanton gas, ~εðqÞ ¼ ε0 þ χ0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ20 þ q2

p
þ q sinh−1ð qχ0Þ.

Inserting qðθÞ ¼ i ∂ε∂θ ¼ iχ0 sinðθÞ in this yields

~εðiχ0 sinðθÞÞ
¼ ε0 þ χ0

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sinðθÞ2

q
− χ0 sinðθÞsin−1ðsinðθÞ

�

¼ ε0 þ χ0ð1 − cosðθÞÞ − χ0 sinðθÞθ; ð31Þ

where the second equality holds for jθj < π=2, where
sin−1 ðsinðθÞÞ ¼ θ and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sinðθÞ2

p
¼ cosðθÞ. Thus, in

the domain jθj < π=2, the left-hand side of Eq. (30) is
indeed equal to the right and the hypothesis that εðθÞ ¼
εðθÞ is consistent—providing the assumptions underlying
Eq. (29) hold.
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This demonstration of consistency in hardly surprising: it
justifies the empirical observation in Sec. II based on the
numerical results of direct summation with large volumes
that εðθÞ ¼ εðθÞ in the regime jθj < π=2. Of course, the
demonstration here depends on the assumption that the
three conditions justifying Eq. (29) hold. Condition (i),
the existence of a region along the imaginary axis where
~εðqÞ is analytic, clearly holds for the form derived for the
dilute instanton gas: ~εðqÞ is analytic from −iχ0 to iχ0. It is
also highly plausible the condition (ii) holds. There is a
saddle point at q ¼ iχ0 sinðθÞ.
Condition (iii), that the k ¼ 0 integral dominates the

sum over k in Eq. (24), requires a bit of care. It is easy to
see that there are no saddle points along the imaginary
axis for any of the integrals associated with k ≠ 0. If
saddle points exist for k ≠ 0, then the second form of
Eq. (29) with the substitution θ → θ þ 2πk would deter-
mine them. Thus,

θ þ 2πk ¼ −i ∂ ~εðqÞ∂q
����
q¼qsp

: ð32Þ

Using ~εðqÞ ¼ ε0 þ χ0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ20 þ q2

p
þ qsinh−1ð qχ0Þ, this

means that

θ þ 2πk ¼ −sin−1
�
i
qsp

χ0

�
: ð33Þ

Recall that we are considering qsp on the imaginary axis
so that iqsp is real and that ~εðqÞ corresponds to the
principal branch of the function, which forces the derived
sin−1 to also correspond to the principal branch and thus
to take the value from − π

2
to π

2
. This in turn means that for

−π < θ < π there are only saddle points on the imaginary
axis for k ¼ 0 and − π

2
< θ < π

2
.

Since physically one expects any dominant saddle point
to be on the imaginary axis and there are no saddle points
for k ≠ 0 along the imaginary axis, it is highly plausible
that the integrals k ≠ 0 are dominated by regions near
branch points. Thus for these cases

εkðθÞ≡− lim
V→∞

1

V
log

�
V
Z

dqe−Vð~εðqÞ−iðθþ2πkÞqÞ
�

¼ ~εðqbpÞ − ðθ þ 2πkÞðiqbpÞ; ð34Þ

where qbp is the branch point and for convenience we have
introduced the symbol εkðθÞ. For the dilute instanton gas at
qbp ¼ �iχ0. The relevant branch point is determined by the
sign of θ þ 2πk, since one wants to close contours at
infinity. Thus, for k ≠ 0 with the dilute instanton gas,

εkðθÞ ¼ ε0 þ χ0 þ χ0

�
jθ þ 2πkj − π

2

�
: ð35Þ

Note that in the domain jθj < π
2
, εkðθÞ for k ≠ 0 is always

greater than εðθÞ ¼ ε0 þ χ0ð1 − cosðθÞ (which was deter-
mined from the saddle point of the k ¼ 0 integral). This
means the k ≠ 0 integrals are exponentially suppressed at
large volumes compared to the k ¼ 0 ones and can be
neglected, which establishes condition (iii).
To summarize, for jθj < π

2
it has been shown self-

consistently that at large volumes for the dilute instanton
gas, the sum over Q can be replaced with an integral, this
integral is dominated by a saddle point on the imaginary
axis and that saddle point approximation to the integral
yields εðθÞ ¼ εðθÞ. This is consistent with what was
observed empirically by direct numerical summation. It
also agrees with the naive intuition that εðθÞ ought to be
directly obtainable from ~εðqÞ via direct summation over
topological sectors given that both functions are intensive
and independent of the volume.

C. The saddle point approximation for the dilute
instanton gas for π=2 < jθj < π

Let us consider what happens when we try to extend the
analysis based on the saddle point approximation to the
k ¼ 0 integral for the dilute instanton gas in the regime
π=2 < jθj < π. It should be clear that the approximation
breaks down. The easiest way to see this is to repeat the
analysis at the beginning of Sec. III B. That is, one can
assume that εðθÞ does equal εðθÞ. As in the jθj < π=2 case,
one obtains Eq. (30) and the first equality of Eq. (31).
However, the second equality in Eq. (31) fails for
π=2 < jθj < π since sin−1 ðsinðθÞÞ ¼ �ðπ − θÞ (where �
is chosen to be the same as the sign of θ) rather than θ

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sinðθÞ2

p
¼ − cosðθÞ rather than cosðθÞ. Thus it

implies that

~εðiχ0 sinðθÞÞ ¼ ε0 þ χ0ð1þ cosðθÞÞ � χ0 sinðθÞðπ − θÞ
≠ ε0 þ χ0ð1 − cosðθÞÞ − χ0 sinðθÞθ; ð36Þ

where the second form is ~εðiχ0 sinðθÞÞ as given in Eq. (30).
This is a clear inconsistency and implies the starting
assumption that εðθÞ ¼ εðθÞ does not hold in this regime.
This analysis shows why in the regime π=2 < jθj < π, the
intuitive notion that εðθÞ obtained from direct summation
~εðqÞ in the infinite volume limit should be equal to εðθÞ
fails due to an extremely severe sign problem.
There is an equivalent way to see this by working

directly from Eq. (33) which holds for k ¼ 0 as well as
k ≠ 0. By the same logic that the k ≠ 0 integrals were
shown not to have saddle points in the regime jθj < π=2,
we can see that there are no saddle points for k ¼ 0 when
π=2 < jθj < π. Equation (33) tells us that we are at saddle
point on the imaginary axis for the k ¼ 0 integral for
the dilute instanton gas when θ ¼ − sin−1ði qspχ0 Þ and the sine
inverse is in its principle branch. Since the principal branch
of the inverse sign has a range from −π=2 to π=2, this can
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never be satisfied when jθj > π=2. Thus, there are no
saddle points on the imaginary axis in this regime.
In the absence of saddle points one expects the integrals

to be dominated by the appropriate branch points. The
analysis of these is the same as for the k ≠ 0 integrals in the
previous subsection in the discussion accompanying
Eqs. (34) and (35). As in that case, the branch points
occur at qbp ¼ �iχ0 and the appropriate branch point is
fixed by the need to close contours at infinity. The result in
this regime is as given in Eq. (35), namely that
εðθÞ ¼ ε0 þ χ0 þ χ0jθj − π

2
. This confirms that εðθÞ ≠

εðθÞ in this regime and is also consistent with what was
observed numerically: ε is a linear function of θ in this
regime. It is easy to see, by the same type of analysis as
done in Sec. III B, that in this regime εkðθÞ for k ≠ 0 is
always greater than εðθÞ and thus that the k ¼ 0 integral is
exponentially dominant at large V.
To summarize, for π=2 < jθj < π it has been shown that

there are no saddle points on the imaginary axis and the
dominant k ¼ 0 integral is dominated by a branch point.
This yields a linear relationship: εðθÞ ¼ ε0 þ χ0 þ χ0jθj−
π
2
≠ εðθÞ. This result is consistent with what was observed

empirically by direct numerical summation. Moreover, it
shows why the naive intuition that εðθÞ ought to be directly
obtainable from ~εðqÞ via direct summation over topological
sectors given that both functions are intensive and inde-
pendent of the volume fails.

D. Analytic considerations

Note that the sign problem at large volume can be viewed
as an issue in analytic continuation. In the region jθj < π=2
where we can reconstruct εðθÞ from ~εðqÞ via direct
summation, the calculation of εðθÞ amounts to analytically
continuing ~εðqÞ to the imaginary axis and identifying
the saddle points. In this context, the sign problem can
be viewed as thought of as the difficulty in doing this
analytical continuation numerically based entirely on
exponentially sensitive numerical knowledge ~εðqÞ on the
real axis.
Issues associated with analyticity are also at the heart of

an apparent puzzle. Note that the analysis of the previous
subsection and the numerical studies of the previous section
both indicate that knowledge of ~εðqÞ—even if perfect—is
insufficient to fully reconstruct εðθÞ in the regime π=2 <
θ < π via direct summation over topological sectors for the
dilute instanton gas. Despite this, the question of whether
the exact knowledge of ~εðqÞ is sufficient to reconstruct the
full function εðθÞ for all θ’s is somewhat subtle. Recall that
the numerical evidence and the analysis based on the saddle
point approximation indicate that for jθj < π=2, the knowl-
edge of ~εðqÞ is sufficient to reconstruct εðθÞ. If we are able
to fully reconstruct εðθÞ for jθj < π=2 from ~εðqÞ, one could
in principle use the functional form obtained for εðθÞ in the
regime jθj < π=2 to analytically continue into the region
jθj > π=2. Moreover, for the dilute instanton gas, the

function is known to be analytic along the real axis and
there is no obstruction to analytically continuing from εðθÞ
into the regime π=2 < jθj < π. Thus it seems as though the
information contained in ~εðqÞ should be sufficient to
reconstruct the full function εðθÞ.

How can one reconcile the inability to reconstruct εðθÞ
from ~εðqÞ via direct summation with the fact that ~εðqÞ
contains enough information to reconstruct it? The answer
lies in the analytic structure of ~εðqÞ in the complex plane.
Recall that the functional form of ~εðqÞ given in Eq. (20),
while a uniquely defined function if viewed as a mapping
from reals to reals, is multibranched as a function from
complex q to complex ~ε. Indeed, the branch points of this
function played in a key role in the study of the regime
π=2 < jθj < π. The form we found, ~εðqÞ, by studying it
along the real axis corresponds to the principal branch of
this function. However, the functional form ~εðqÞ “knows”
about all of its branches since one can analytically continue
from one branch to the next.
Consider what happens to the function ~εðqÞ if one

follows it from a point on the real axis along a path
through the complex plane around the branch point at
q ¼ iχ0, a single time and back to the same point on the real
axis evolving the function along the path via the Cauchy-
Riemann equations. One will not obtain the same value for
the function—its value on the principal branch—but rather
the value of the function along a different branch. More
generally, as soon as the path crosses the branch cut, one
moves onto a new branch. We will denote the functional
form for the branch we obtain in this process as ~~εðqÞ; it is
given by

~~εðqÞ ¼ ε0 þ χ0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ20 þ q2

q
þ q

�
iπ − sinh−1

�
q
χ0

��
;

ð37Þ

where the inverse hyperbolic sine is taken in its principal
branch; the shift to a new branch of the inverse hyperbolic
sine is reflected by a flipped sign and the presence of the
factor of iπ. It is worth noting that while ~εðqÞ was obtained
by studying the behavior along the real q axis and produced
a real function, this new branch is not real for a real q. Thus,
it cannot be obtained directly by taking the large V limit of
~εðq; VÞ with q being real (as it will be in lattice studies); it
requires an analytic continuation.
It is easy to verify that if one uses this branch instead of

the principal branch ~εðqÞ when computing the stationary
phase integral for the regime π=2 < θ < π, then the results
are indeed self-consistent and one reconstructs εðθÞ ¼
ε0 þ χ0ð1 − cosðθÞÞ. One can similarly verify numerically
that directly summing over topological sectors using ~~εðqÞ at
large volume also reproduces εðθÞ ¼ ε0 þ χ0ð1 − cosðθÞÞ
with high accuracy. This indicates the sense in which the
functional form ~εðqÞ contains the information to fully
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reconstruct εðθÞ. It is clear that fully reconstructing it for
some region of θ depends on using a particular branch of
the function. To reconstruct the full function one needs to
use multiple branches—matching the appropriate branch to
a given region of θ. On the other hand, the only way we
know how to extract these branches is via analytic
continuation. The bottom line, then, is that while ~εðqÞ
contains information to fully reconstruct this information, it
is in a form that is inaccessible when doing a direct sum
over topological sectors.

IV. THE GENERAL CASE

Up to this point, we have focused on a toy model—the
dilute instanton gas. We have done so since it was solvable
and hence it is possible to verify one’s analytic conclusions
against direct numerical evaluations at large volume. The
real importance of the toy model is that the analysis of it can
serve as a paradigm for how to study cases which are not
solvable in closed form.
The key point is that the analysis given in the preceding

section holds far more generally than for the dilute
instanton gas. It was shown there that when there exists
a saddle point along the imaginary q axis for ~εðqÞ − iqθ,
then εðθÞ ¼ εðθÞ—i.e. the direct summation over topologi-
cal sectors using the infinite volume extrapolation for the
energy density as a function of winding number density—
gives the correct infinite volume extrapolation of the energy
density as a function of θ. This will hold generally:

εðθÞ ¼ − lim
V→∞

X∞
k¼−∞

1

V
log

�
V
Z

dqe−Vð~εðqÞ−iðθþ2πkÞqÞ
�
;

ð38Þ

εðθÞ ¼ − lim
V→∞

X∞
k¼−∞

1

V
log

�
V
Z

dqe−Vð~εðq;VÞ−iðθþ2πkÞqÞ
�
:

ð39Þ

When the integral in Eq. (38) has a saddle point
qsp for a particular range of θ, according to Eq. (29),
one should have εðθðqspÞÞ¼ ~εðqspÞ− iθðqspÞqsp and

θðqspÞ ¼ −i ∂ ~εðqspÞ∂qsp . Since ~εðqÞ ¼ limV→∞ ~εðq; VÞ,
θðqspÞ ¼ −ilimV→∞

∂ ~εðqsp;VÞ
∂qsp is also true, which in turns

means Eq. (39) also has a saddle point at the same value of
q as Eq. (38) at the infinite volume limit. Then εðθðqspÞÞ¼
limV→∞ ~εðqsp;VÞ− iθðqspÞqsp¼ εðθðqspÞÞ, so that εðθÞ ¼
εðθÞ is true in this general case if one assumes there is a
saddle point for the integral in Eq. (38).
When there is no saddle point for the integral in Eq. (38),

we know the branch point will play a similar role as the
saddle point, but for Eq. (39), the previous argument cannot
be used here because there is no branch point.

The Legendre-like relations of Eqs. (29) will, in general,
hold if a saddle point exists, regardless of the other details
of the system. This means that for a general θ dependence
we can use Eq. (29) to probe the conditions for which a
saddle point exists and hence determine conditions for
which ~εðqÞ can be used to reconstruct εðθÞ via direct
summation over topological sectors.
The principal result is that for cases where εðθÞ is

analytic for a real θ between −π and π, one generically has

εðθÞ ¼ εðθÞ if jθj < θmax; ð40Þ

where θmax is the smallest positive value of θ satisfying
either of the following conditions:

(1) d2εðθÞ
dθ2 jθ¼θmax

¼ 0.

(2) θmax ¼ π.
Moreover, if condition 1 is satisfied, i.e. there is a point
of inflection, in general εðθÞ ≠ εðθÞ for some region of
jθj > θmax (typically extending either to θ ¼ π or the next
point of inflection, while if condition 2 is satisfied, then
εðθÞ is not analytic at θ ¼ π (typically with a discontinuous
first derivative as in Fig. 1). This means that whenever
there is a point of inflection in εðθÞ, the sign problem is so
severe that even exact knowledge of εðθÞ is insufficient to
reconstruct εðθÞ direct summation over the full range
of θ’s.

Note that this behavior is precisely what is seen for the
dilute instanton gas, where εðθÞ equals εðθÞ before the
point of inflection at θ ¼ π=2 and ceases to be equal
beyond the point of inflection.
These conditions can be obtained by requiring self-

consistency. One starts by assuming that εðθÞ ¼ εðθÞ
and then determines where this relation fails. We start
by noting that if εðθÞ ¼ εðθÞ holds for a small jθj, then
we expect that the integral determining εðθÞ is fixed by
a saddle point and not a branch point. Were it a branch
point, then εðθÞ would be linear at small θ but since it
is even would have to be proportional to jθj. This is
inconsistent with the hypothesis that εðθÞ is analytic
from −π to π. Thus, one expects εðθÞ ¼ εðθÞ to
continue to hold so long as the saddle point approxi-
mation remains valid and to fail when the approxima-
tion breaks down.
This breakdown occurs at a branch point beyond which

the saddle point ceases to exist. The branch points are easy
to identify; ~εðqÞ ceases to be analytic along the imaginary
axis at the branch points.
A key identity allows us to identify the branch points and

establish the conditions where εðθÞ ¼ εðθÞ. The identity is
that whenever εðθÞ ¼ εðθÞ and there exists a saddle point of
~εðqÞ − iqθ along the imaginary i axis, then

∂2εðθÞ
∂θ2

∂2 ~εðqÞ
∂q2

����
qspθ

¼ 1; ð41Þ
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which can be derived directly from Eq. (29). When a
saddle point exists the first line of Eq. (29) implies that
dqsp

dθ ¼ i ∂
2εðθÞ
∂θ2 [assuming εðθÞ ¼ εðθÞ]. On the other hand,

1
dqsp

dθ

¼ dθ
dqsp is fixed by the second line of Eq. (29):

dθ
dqsp ¼ −i ∂2 ~εðqÞ∂q2 jq¼qsp . Together they yield Eq. (41).

Equation (41) implies that ∂2 ~εðqÞ
∂q2 jqspθ diverges as one

approaches a point of inflection of εðθÞ from below.
This divergence signals that ~εðqÞ ceases to be analytic at
this point—precisely as one expects if a branch point is
encountered there. Although the branch point represents
nonanalytic behavior in ~ε rather than ε, it is clearly a point
at which εðθÞ becomes nonantalytic since the function
becomes linear beyond the branch point. This necessarily
spoils the equality between εðθÞ and εðθÞ since, by
hypothesis, εðθÞ is analytic between −π and π.
One might worry that, in principle, a branch point could

exist without ∂2 ~εðqÞ
∂q2 jqspθ diverging as the branch point is

approached below. If this happened, one could have a
breakdown of the condition εðθÞ ¼ εðθÞ without an inflec-
tion point in εðθÞ. The concern stems from the possibility
that higher derivative divergences could signal the non-
analyticity even if the second derivative remains finite. One
would expect such behavior, if for example ~εðqÞ had a

contribution proportional to χ3=20 ð1þ q2

χ2
0

Þ5=2; the second

derivative remains finite as q → iχ0 but the third derivative
diverges as do all higher derivatives. However, we can rule
out this possibility if εðθÞ is analytic between −π and π.
It is easy to show from Eq. (41) that ∂

n ~εðqÞ
∂qn jqspθ for n > 2 is

given by

∂n ~εðqÞ
∂qn

����
qspθ

¼
X

k2;k3;���kn
δn;ð2þk2þk3þ���knÞ

ck2;…;kn

Q
j¼2;nð∂

jεðθÞ
∂θj Þkj

ð∂2εðθÞ∂θ2 Þ2n−3
;

ð42Þ

where ck1;k2;…;kn are calculable coefficients and the kj non-
negative integers. The structure in Eq. (42) is significant
since, by hypothesis, the system is in a regime in which

εðθÞ is analytic and thus ∂jεðθÞ
∂θj is finite for all j’s. Therefore,

the only way that ∂
n ~εðqÞ
∂qn jqspθ can diverge is if ∂2εðθÞ

∂θ2 ¼ 0—i.e.
the system is at a point of inflection.
The conclusion of this analysis is that one expects that

when εðθÞ has a point of inflection somewhere in the
domain −π < θ < π, for part of the domain the sign
problem is so severe that one cannot obtain εðθÞ by directly
summing over topological sectors using ~εðqÞ, the finite
volume limit of ~εðq; VÞ. We tested this conclusion numeri-
cally by constructing numerous hypothetical forms εðθÞ
that contained points of inflection for which we could
obtain ~εðqÞ. Using these extracted ~εðqÞ’s we found in all
cases that there were regions of θ beyond the point of

inflection for which we could not reconstruct εðθÞ by
summing over topological sectors.

V. CONCLUSION

This paper explored a subtlety in the relationship
between the infinite volume limit and the sign problem
in the context of theories with a θ term. It was shown that
there exist circumstances for which the sign problem is so
severe that for some values of θ one cannot obtain the
correct infinite volume εðθÞ by summing over topological
sectors using the exact infinite volume form for ~εðqÞ. This
occurs when εðθÞ has a point of inflection between −π
and π. This can be taken as an illustration of just how
serious sign problems can be.
However, it is also worth stressing that there are regions

in θ where ~εðqÞ is sufficient to obtain εðθÞ by direct
summation. In some ways this is quite remarkable. After
all, there are power law differences in the volume between
~εðq; VÞ and ~εðqÞ, which translates into order one errors in
ZQ, while one requires the sum over Q to yield cancella-
tions which are accurate up to exponential accuracy in V
since individual terms ZQ are exponentially larger than
the sum ZðθÞ. Thus, one requires some type of conspiracy
for these order one errors not to spoil the cancellations.
Ultimately, the reason why ~εðqÞ turns out to be sufficient
in these cases is that the sum over topological sectors can
be rewritten as a sum of integrals, which at large V are
exponentially dominated by a single integral which in
turn may be well approximated using the saddle point
method.
One interesting mathematical fact that emerges from the

analysis concerns the analytic structure of the infinite
volume functions εðθÞ, ~εðqÞ: unless both functions are
trivially constant, at least one of these is not analytic over
the entire complex plane. Recall that θ and q have some-
thing of a conjugate relationship with each other up to a key
factor of i. We found that in cases where εðθÞ had a point of
inflection that ~εðqÞ had a place where it was not analytic.
The branch point in ~εðqÞ was approached as the point of
inflection was approached in εðθÞ. Thus, the only way that
~εðqÞ can be analytic everywhere from −π to π is for εðθÞ to
have no inflection points in the entire region; i.e. to have
positive curvature. However, if this is the case, then
periodicity in θ implies discontinuity of the slope at
θ ¼ nπ, which is clearly nonanalytic.
While this paper focused on a theoretical issue, the

analysis may prove of value in extracting information
about εðθÞ from practical lattice calculations. Note that
given the sign problem, current techniques are not suffi-
cient to directly compute εðθÞ. However, one might hope
that the determination of whether or not εðθÞ is in some
qualitative class of functions might be accessible via a study
of ~εðqÞ or equivalently εðiθÞ. This possibility will be
explored in future work.
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