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The correlations between the modulus of the Polyakov loop, its phase θ, and the Landau gauge gluon
propagator at finite temperature are investigated in connection with the center symmetry for pure Yang-
Mills SU(3) theory. In the deconfined phase, where the center symmetry is spontaneously broken, the phase
of the Polyakov loop per configuration is close to θ ¼ 0, �2π=3. We find that the gluon propagator form
factors associated with θ ≈ 0 differ quantitatively and qualitatively from those associated to θ ≈�2π=3.
This difference between the form factors is a property of the deconfined phase and a sign of the
spontaneous breaking of the center symmetry. Furthermore, given that this difference vanishes in the
confined phase, it can be used as an order parameter associated to the deconfinement transition. For
simulations near the critical temperature Tc, the difference between the propagators associated to θ ≈ 0 and
θ ≈�2π=3 allows one to classify the configurations as belonging to the confined or deconfined phase. This
establishes a selection procedure which has a measurable impact on the gluon form factors. Our results also
show that the absence of the selection procedure can be erroneously interpreted as lattice artifacts.
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I. INTRODUCTION

The investigation of how the dynamics of QCD is
modified by temperature and density has been under
intensive study, motivated mainly by the experimental
heavy-ion programs running at CERN [1] and RHIC [2].
From the theoretical side, the understanding of the phase
diagram of QCD requires the extension of the usual
theoretical toolkit to address the properties of strong
interacting matter.
The simulations of QCD on a spacetime lattice provides

ab initio first principles results on the nonperturbative
regime of hadronic phenomena. Lattice QCD simulations
are routinely used to investigate the zero-temperature and
zero-density properties of hadronic matter, to tackle the
temperature dependence of the thermodynamic properties
of hadrons, and to access the thermodynamics of hadronic
matter at small densities; see, for example, Refs. [3,4] and
references therein.
For pure SU(3) Yang-Mills theory and at zero density,

lattice QCD simulations have shown the existence of a first-
order transition with the gluons becoming deconfined
above the critical temperature Tc ≈ 270 MeV [5–7]. For
temperatures above Tc the gauge bosons behave as massive
quasiparticles and it is possible to define a gluon mass.
Lattice simulations show that the gluon mass has a value of
about 0.5 GeV for temperatures around Tc and its value
increases linearly with T [8]. On the other hand, for T < Tc
gluons are confined within color-singlet states. If for pure

gauge theory the singlet color states are glueballs, in the full
theory other gauge-invariant states are possible as, e.g.,
mesons or baryons. If one takes into account the quark
degrees of freedom, the picture just described is essentially
unchanged. However, in such a case we have a crossover
[9,10] instead of a first-order transition to the deconfined
phase, and the critical temperature is lowered to Tc ≈
150 MeV [11,12].
In what concerns the deconfinement phase transition,

its order parameter is the Polyakov loop defined, in the
continuum and in the Euclidean space, as

Lð~xÞ ¼ 1

N
Tr

�
P exp

�
ig
Z

1=T

0

dx4A4ðxÞ
��

; ð1Þ

where P stands for path ordering, T is the temperature, and
N ¼ 3 is the number of colors. Its space-averaged value

L ¼ hLð~xÞi ∝ e−Fq=T ð2Þ

is a measure of the free energy of a static quark Fq [13]. In
the confined phase, i.e., for T < Tc, L ¼ 0 and the quark
free energy is infinite, suggesting that quarks are confined
within hadrons. On the other hand, above Tc the Polyakov
loop is equal to one, which means that Fq vanishes and
quarks behave essentially as free particles; see, for exam-
ple, Ref. [14] and references therein.
The Polyakov loop depends directly only on the glue

content of the theory, but it distinguishes if quarks are
confined or behave as quasi-free particles. In what concerns
the glue content of QCD, there is not such an analogous
operator. To the best of our knowledge, there is not an
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operator from which one can read about the nature of the
gluons, i.e., if they are confined or behave as quasi-free
particles. As observed in Refs. [8,15], the properties of the
propagator change dramatically when T crosses the critical
temperature, and at least the so-called gluon electric form
factor can be mapped into a free-particle propagator over a
limited range of momenta for temperatures above Tc. On
the other hand, the gluon magnetic form factor is clearly not
compatible with the usual free-particle propagator.
The lattice definition of the Polyakov loop reads

Lð~xÞ ¼
YNt

t¼0

U4ð~x; tÞ; ð3Þ

where U4 is the time-oriented link, and L has the same
definition as in the continuum formulation.
In QCD, like in any gauge theory, the gauge fields

belong to the algebra of the gauge group and the fields
related by a gauge transformation

A0
μðxÞ ¼ GðxÞAμðxÞG†ðxÞ − i

g
∂μGðxÞG†ðxÞ ð4Þ

[where GðxÞ ∈ SUð3Þ and g is the coupling constant] are
physically indistinguishable. The set of gauge related fields
is called a gauge orbit. Choosing a gauge requires picking a
given configuration from each gauge orbit. The choice of
the gauge configurations on each gauge orbit is a delicate
issue that has not been completely resolved in gauge
theories; see, e.g., Refs. [16,17] and references therein.
It is known that this choice of the gauge configuration can
change the infrared properties of the theory [18–22].
For the group SU(3) one defines its center group

Z3 ¼ f1; ei2π=3; e−i2π=3g;

whose elements are such that they commute with all
elements of the SU(3) group. The elements of Z3, asso-
ciated with global gauge transformations, divide the group
SU(3) into equivalent classes. The gauge group associated
with the pure Yang-Mills theory is SUð3Þ=Z3 and not
SU(3). In full QCD, the theory is not invariant under the
replacement of qðxÞ → zqðxÞ, where z ∈ Z3 and, therefore,
the gauge group associated with full QCD is SU(3).
The difference in the gauge group associated to the

pure SU(3) Yang-Mills theory and full QCD implies, for
example, that monopole solutions of the classical equations
of motion exist only in the pure gauge theory; see, for
example, Ref. [23] for further details.
For pure Yang-Mills theory the global gauge trans-

formations associated with Z3 leave unchanged the
Green’s function generating functional. This invariance
occurs both for the continuum and the lattice formulation of
QCD. From the elements of Z3, it is possible to build gauge

transformations which leave the generating functional
invariant, but not the Polyakov loops.
Let us consider the lattice formulation of the pure SU(3)

gauge theory. The Wilson action and the measure are
invariant under a center transformation where the links on a
given hyperplane x4 ¼ const are multiplied by some
z ∈ Z3. This type of transformation can be viewed as a
singular gauge transformation. On the other hand, the
Polyakov loop changes according to Lð~xÞ → zLð~xÞ. In
the confined phase where L ¼ 0, the space-averaged
Polyakov loop is invariant under such center transforma-
tions. However, above the critical temperature, L ≠ 0 and L
acquires a phase under the center transformation. Above the
critical temperature L is no longer invariant under a center
transformation and the center symmetry is said to be
spontaneously broken. Indeed, the simulations performed
in Refs. [24–27] show that (i) the phase of L takes values
which match essentially those of the Z3 elements, (ii) below
Tc the various phases of L are equally populated, (iii) above
Tc the various phases of L are not similarly populated,
(iv) above Tc one can identify center domains on the lattice,
where the phases of Lð~xÞ are close to a given Z3 element,
and (v) above Tc these center domains define large clusters
of L that percolate the lattice volume. In Ref. [28] it was
argued that, above Tc, the formation of the center domains
can explain certain features of the quark-gluon plasma
observed experimentally.
From the above considerations it follows that, on the

lattice, for temperatures higher than Tc one can label a
given configuration by the phase of L. Furthermore, given a
particular gauge configuration, the center symmetry allows
one to generate a second configuration which—from the
point of view of the sampling—is equally as probable as
the original configuration. Indeed, although L acquires a
different phase, the action is exactly the same for both
configurations.
If for T > Tc the gauge configurations can be labeled by

the phases of L, how different are the physical properties
that can be associated with such equally probable configu-
rations? Can we distinguish the various center domains? If,
for example, the thermodynamics associated with the
various Z3 related configurations differ, do they lead to
the formation of metastable states? The possibility of
having new metastable states (depending on the mean
lifetime of these states) has the potential to change our view
of, for example, the history of the Universe.
The relevance of the pure Yang-Mills Euclidean meta-

stable states mentioned in the previous paragraph to the
physics as defined in Minkowski space is not clear. Indeed,
according to some authors [29,30] these states are relevant
only to the computation of the Green’s function generating
functional in Euclidean space but do not lead to physical
domains in Minkowski space. In what concerns the role of
the above-mentioned metastable states, a definitive answer
requires a proper understanding of the analytical
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continuation of quantum field theory from Minkowski to
Euclidean space and vice versa beyond perturbation theory.
Early studies of the correlation between chiral symmetry

breaking and the phase of the Polyakov loop can be found
in Refs. [31–33]. According to Ref. [33], in the deconfined
phase, the breaking of chiral symmetry is correlated with
the phase of L. If chiral symmetry breaking is sensitive to
the phase of the Polyakov loop, are there other properties of
QCD which are also correlated with the phase of the
Polyakov loop?
In the present work we try to identify similar effects in

pure gauge theory. In particular, we try to correlate the
gluon propagator, computed using lattice QCD simulations,
with the phase of the Polyakov loop. Our results show that,
for temperatures above Tc, the gluon propagator is quanti-
tatively and qualitatively different for the various Z3 related
configurations. Furthermore, we find that the propagator
associated with the e�i2π=3 phases for the Polyakov loop are
indistinguishable, within our statistical precision. We also
observe that the values of the phase of the Polyakov loop
are correlated with the infrared behavior of the longitudinal
gluon propagator, in particular with its value at zero
momentum. Moreover, these correlations can be used to
identify the deconfinement phase transition relying only on
the gluon propagator. Preliminary results of our work can
be found in Ref. [34].
In the literature there are several studies of the lattice

Landau gauge gluon propagator at finite temperature
[8,15,35–47], both for SU(2) and SU(3) gauge theories.
However, to the best of our knowledge, no one has
investigated the correlations of the propagator with the
phase of the Polyakov loop. Continuous methods have also
been applied to the study of the temperature dependence of
the Landau gauge gluon propagator (see Refs. [48–52] and
references therein), but again the correlation with the phase
of the Polyakov loop was not taken into account.
This paper is organized as follows. In Sec. II the lattice

setup, and the computation of the gluon field and the gluon
propagator are discussed. Furthermore, in this section the
Z3 sectors are introduced and the dependence of the gluon
propagator with the phase of the Polyakov loop is reported
at a temperature well above the critical temperature. In
Sec. III we discuss the simulations close to the critical
temperature and identify a criterion to determine the phase
(confined or deconfined) of a given configuration in a
Monte Carlo simulation. In Sec. IV the behavior of the
gluon propagator near Tc is investigated, together with a
brief discussion of the continuum limit. Finally, in Sec. V
we resume and conclude.

II. LATTICE SETUP, GLUON PROPAGATOR,
CENTER SYMMETRY, AND Z3 SECTORS

In the present work one considers various lattice sim-
ulations using the Wilson gauge action for the gauge group
SU(3) and for different lattice spacings, i.e., β values. The

physical scale used to convert into physical units was taken
from the string tension, following the procedure described
in Ref. [8].
The simulations were performed on several asymmetric

lattices L3
s × Lt with a physical spatial volume ∼ð6.5 fmÞ3

and Lt ¼ 6, 8. We take the inverse of the lattice time
extension T ¼ 1=Lt in physical units as the definition for
temperature.
In order to illustrate the behavior of the various propa-

gators at temperatures above Tc, we first report the results
obtained on 643 × 6 for β ¼ 6.0 (T ¼ 324 MeV).
Furthermore, we will also investigate the results of simu-
lations using two sets of lattices close to the critical
temperature (see Table I): (i) a set of coarser lattices with
a lattice spacing a ∼ 0.12 fm and β ∼ 5.9, and (ii) a second
set of finer lattices with lattice spacing a ∼ 0.09 fm and
β ∼ 6.0. Although the simulations with the coarser and finer
lattices do not cover exactly the same range of temper-
atures, they will allow us to estimate the effect due to the
use of a finite lattice spacing. Given the relatively large
physical volumes ð6.49–6.68 fmÞ3, we hope that the finite-
volume effects are small. Indeed, the studies of the gluon
propagator at zero temperature [53] suggest that, for
sufficiently large volumes, finite-volume effects do not
significantly change the propagator. In the present work,
due to finite computing resources, no attempts are made to
look at Gribov copies effects; see, e.g., Refs. [18,21,22] and
references therein for results at zero temperature.

TABLE I. The lattice setup. The physical scale was defined
from the string tension. The values of β were adjusted such that
Lsa≃ 6.5–6.6 fm.

Temp. (MeV) L3
s × Lt β a (fm) Lsa (fm)

265.9 543 × 6 5.890 0.1237 6.68
266.4 543 × 6 5.891 0.1235 6.67
266.9 543 × 6 5.892 0.1232 6.65
267.4 543 × 6 5.893 0.1230 6.64
268.0 543 × 6 5.8941 0.1227 6.63
268.5 543 × 6 5.895 0.1225 6.62
269.0 543 × 6 5.896 0.1223 6.60
269.5 543 × 6 5.897 0.1220 6.59
270.0 543 × 6 5.898 0.1218 6.58
271.0 543 × 6 5.900 0.1213 6.55
272.1 543 × 6 5.902 0.1209 6.53
273.1 543 × 6 5.904 0.1204 6.50
269.2 723 × 8 6.056 0.09163 6.60
270.1 723 × 8 6.058 0.09132 6.58
271.0 723 × 8 6.060 0.09101 6.55
271.5 723 × 8 6.061 0.09086 6.54
271.9 723 × 8 6.062 0.09071 6.53
272.4 723 × 8 6.063 0.09055 6.52
272.9 723 × 8 6.064 0.09040 6.51
273.3 723 × 8 6.065 0.09025 6.50
273.8 723 × 8 6.066 0.09010 6.49
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The gauge configurations were generated with the
Chroma library [54]. For the gauge fixing we use the
Fourier accelerated steepest descent method described in
Ref. [55], which was implemented using the Chroma and
PFFT [56] libraries. For each gauge configuration, the
lattice equivalent of the average value of ð∂μAa

μÞ2 per site
and color index (see Ref. [8] for details) was stopped when
it reached a value smaller than 10−15.
For each of the ensembles reported in Table I, the gluon

propagator was computed using 100 gauge configurations.
For the generation of the links a combined Monte Carlo
sweep of four Cabibbo-Marinari heat bath and seven over-
relaxation sweeps was used; the measurements were
performed every 100 combined sweeps after discarding
the first 500 combined sweeps in the Markov chain for
thermalization.

A. The gluon propagator

The computation of the gluon propagator requires a
definition of the Aμ from the links. In the current work we
take the usual expression

ag0Aμ

�
xþ a

2
êμ

�
¼ 1

2i
½UμðxÞ − U†

μðxÞ�traceless; ð5Þ

where êμ is the unit vector along the lattice direction μ and
g0 is the bare coupling constant. The above definition
assumes that the link and the gluon field are related by

UμðxÞ ¼ exp

�
iag0Aμ

�
xþ a

2
êμ

��

≈ 1þ iag0Aμ

�
xþ a

2
êμ

�
: ð6Þ

The above relations are certainly valid when one considers
fluctuations around the trivial configuration, as in, e.g.,
perturbation theory. Given that we will look at configura-
tions whose Polyakov loop is of the type jLjeiθ with
θ ≈ 0;�2π=3, one might ask whether the above definition
is still valid when θ ¼ �2π=3.
In Fig. 1 we show the lattice average values of Aa

μðxÞ for
a ¼ 0;…; N2

c − 1, μ ¼ 0…Nd − 1 for a 643 × 6 configu-
ration. In all cases, hAa

μi is compatible with zero within one
or two standard deviations for all color and Lorentz indices.
Furthermore, apart from a scaling factor, there is no clear
difference between the configurations associated to the
different phases of the Polyakov loop. We take this result as
an indication that the gluon field given by Eq. (5) can be
applied to all configurations—including all possible values
of the Polyakov loop—considered here.
A generalized connection between the link and the gluon

field given by

UμðxÞ ≈ u0

�
1þ iag0

�
Aμ

�
xþ a

2
êμ

�
þ aμ

��
ð7Þ

(where u0 is a real number and aμ are constant fields) could
be used. However, the replacement of Eq. (6) by Eq. (7)
gives the same bare gluon field up to a multiplicative
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FIG. 1. Average values of Aa
μðxÞ for a 643 × 6, β ¼ 6.0 (T ¼ 324 MeV) configuration.
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constant and a different zero-momentum gluon field. In
what concerns u0, the use of a MOM scheme to renormalize
the propagator removes any dependence on u0. It follows
that the differences of using Eq. (6) or Eq. (7) to compute
the gluon propagator can only appear for the zero-
momentum propagator, which leaves the main conclusions
of the current work unchanged.
In the Landau gauge and at finite temperature, the gluon

propagator reads

hAa
μðpÞAb

νðqÞi ¼ Vδabδðpþ qÞDab
μνðpÞ; ð8Þ

where

Dab
μνðpÞ ¼ δabfPT

μνDTðp4; ~pÞ þ PL
μνDLðp4; ~pÞg; ð9Þ

and the transverse and longitudinal projectors are given by

PT
μν ¼ ð1 − δμ4Þð1 − δν4Þ

�
δμν −

pμpν

~p2

�
; ð10Þ

PL
μν ¼

�
δμν −

pμpν

p2

�
− PT

μν: ð11Þ

In the above expressions, latin letters stand for color indices
and greek letters for spacetime indices.
The results shown here are for renormalized longitudinal

and transverse propagators. For the renormalization we
follow the procedure devised in Ref. [8], taking
μ ¼ 4 GeV for the renormalization scale and setting
DL;Tðμ2Þ ¼ ZRDLat

L;Tðμ2Þ ¼ 1=μ2. The longitudinal and
transverse form factors were renormalized independently
within each possible phase value of the associated
Polyakov loop. It turns out that, in our simulations, the
renormalization constants for the longitudinal and trans-
verse form factors agree within one standard deviation for
all possible values of the phase.

B. Center symmetry

For pure Yang-Mills theory formulated on the lattice, the
Wilson action and the path-integral measure are invariant
under the SU(3) group center, i.e., under transformations of
the type

U4ð~x; t ¼ 0Þ → U 0
4ð~x; t ¼ 0Þ ¼ zU4ð~x; t ¼ 0Þ ð12Þ

for all z ∈ Z3. For temperatures below Tc the center
symmetry is preserved and the various phases of L are
similarly sampled, which implies hLi ∼ 0. Above the
critical temperature, the center symmetry is spontaneously
broken and the average value of L over the lattice no longer
vanishes.
As described in Refs. [24,25,27], for T > Tc it is

possible to identify center domains where the phase of
the Polyakov loop is ≈0;�2π=3, i.e., it coincides with the

phase of the elements of Z3. The dimensions of the center
domains are temperature dependent and, at the critical
temperature, these clusters percolate the lattice. In this
sense, the gauge configurations can be classified according
to the associated phase of the Polyakov loop,

L ¼ hLi ¼ jLjeiθ: ð13Þ

FIG. 2. The definition of the Z3 sectors.
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FIG. 3. Gluon propagators for the different sectors at
T ¼ 324 MeV.
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Center transformations map configurations in different
equivalent classes, i.e., with different θ. We have performed
a number of simulations using various volumes (results not
shown here) and they suggest that, in the Markov chain, the
probability for the transition between the equivalent classes
decreases when the physical volume of the spatial lattice
increases. This suggests that, in the limit of infinite
volume, the sampling is confined to configurations whose
Polyakov loop is such that θ takes one and only one value
in f0;�2π=3g.

C. Z3 sectors

Our goal is to try to understand if the dynamics of the
gluon field changes with the phase of the Polyakov loop.
The transformations of the type (12) map configurations
with the same action which, from the point of view of the
sampling, belong to classes with exactly the same proba-
bility. In principle, one could include these transformations
in the definition of the Markov process and, in this way,
sample all the possible phases of the Polyakov loop equally.
However, in this work the gauge configurations are
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generated in the usual way and, before gauge fixing, one
applies transformations of the type (12) for all z ∈ Z3 to
each configuration. Then, each of these configurations is
rotated to the (minimal) Landau gauge and classified
according to the phase of the corresponding average value
of the Polyakov loop hLi ¼ jLjeiθ as

θ ¼

8>><
>>:

−π < θ ≤ − π
3
; Sector − 1;

− π
3
< θ ≤ π

3
; Sector 0;

π
3
< θ ≤ π; Sector 1:

ð14Þ

This classification of the configurations is shown in Fig. 2.
We recall that, for each gauge configuration, although the
Polyakov loop’s main contribution comes from center
domains belonging to a given Z3 sector, the other sectors
are also present in smaller center domains.
In order to illustrate what happens to the gluon propa-

gator in each of the Z3 sectors, in Fig. 3 we show the
electric and magnetic components of the propagator per Z3

sector for T ¼ 324 MeV computed on a 643 × 6 lattice
for β ¼ 6.0. Figure 3 shows the typical behavior of the
propagators for T > Tc. For temperatures close to Tc a
careful analysis is required (see the discussion below), but
the pattern observed in Fig. 3 still applies if we approach
the critical temperature from above.
If the electric form factor for the 0 sector is suppressed

relative to the �1 sectors, for the magnetic form factor the

situation is reversed with the sector 0 being enhanced
relative to the�1 sectors. One can translate this result into a
mass scale defined by the inverse of the square root of the
propagator at zero momentum. The mass scale associated
with the electric sector is much larger for the 0 sector,
in comparison with the �1 sectors. On the other hand,
the mass associated with the magnetic sector is smaller
for the 0 sector, in comparison with the �1 sectors. From
Fig. 3 one can identify the following mass hierarchy:
mLð�1Þ < mLð0Þ < mMð0Þ < mMð�1Þ, where mL (mM)
stands for electric (magnetic) mass and the corresponding
sectors are in parentheses.

III. SIMULATIONS NEAR THE
PHASE TRANSITION

The differences observed in the gluon propagator form
factors and reported in Fig. 3 seem to be a feature of the
deconfined phase and happen for T > Tc. For the pure glue
theory, the deconfinement phase transition is of first order.
Near the critical temperature, Monte Carlo simulations
access configurations in the confined and deconfined
phases. The simulations we have performed for T ≈ Tc ≈
270 MeV also show that the probability transition between
the confined and deconfined phases in the Markov chain
decreases when we increase the physical volume used to
simulate the theory. In order to properly describe any of the
two phases near Tc, one needs to define a way to separate
the configurations belonging to either phase.
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FIG. 5. Histograms of jLj for various T before (red) and after the selection procedure (blue) for all independent configurations
obtained during the sampling. See text for details.
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In Fig. 4 we report the Markov chain history for
simulations performed with a temperature close to Tc
and for the coarser and finer lattices. The figure includes
the corresponding values of the modulus of the bare
Polyakov loop, its phase, and the longitudinal (electric)
gluon form factor. For the simulations reported, the
modulus of the bare Polyakov loop seems to take a
continuous range of values. When it takes higher values,
one observes thatDLð0Þ computed for configurations in the
�1 sectors differs substantially from the propagator in the
zero sector. On the other hand, when jLj takes smaller

values, it follows that the propagators computed using
configurations in any of the Z3 sectors are indistinguish-
able. We associated the first type of configurations with the
deconfined phase, while the latest family of configurations
has been identified with the confined phase. Recall that in
the results reported in Fig. 3, for temperatures well above
the critical temperature, it was observed that DLð0Þ for the
�1 sectors is enhanced relative to the zero sector.
Furthermore, the time evolution of θ also shows that for
lower values of jLj, the phase of the Polyakov loop
fluctuates freely, suggesting a jLj ∼ 0 as expected in the
confined phase.
The observed correlations in the time evolution of jLj, θ,

and the differences in DLð0Þ associated to the various Z3

sectors suggests that this difference between the propaga-
tors can be used as a criterion to identify the phase
(confined or deconfined) of a given configuration. In this
spirit, the simulations performed on the coarser lattices with
β ≤ 5.895 (T ≤ 268.5 MeV) or on finer lattices with β ≤
6.061 (T ≤ 271.5 MeV) provide, in general, configurations
in the confined phase. On the other hand, simulations with
higher values of β are mainly in the deconfined phase.
One can use the criterion discussed above to separate

the configurations belonging to each phase (confined or
deconfined) in a given simulation. In Fig. 4 we provide
various examples of using our criteria. The color code used
is such that the configurations belonging to the confined
phase are plotted against a white background for simu-
lations on coarser lattices with β ≤ 5.895 and finer lattices
with β ≤ 6.061. The remaining configurations, i.e., those
belonging to deconfined phase or not clearly in any of the
phases, are plotted against a colored background. On
the other hand, for those simulations with a higher β
and T the white background identifies configurations in the
deconfined phase, while the colored background refers to
all the others. In this way, the configurations associated to
the dominant phase in a given simulation are plotted against
a white background. There is an exception to this rule: the
color code used for the coarser lattice with β ¼ 5.8941
(T ¼ 268 MeV). According to Ref. [7] the infinite-volume

TABLE II. The same as Table I. The number of configurations
refers to the configurations which, according to our selection
procedure, will be used to compute the propagator. See text for
details.

Temp. (MeV) L3
s × Lt β No. Configs

265.9 543 × 6 5.890 90
266.4 543 × 6 5.891 91
266.9 543 × 6 5.892 65
267.4 543 × 6 5.893 76
268.0 543 × 6 5.8941 16
268.5 543 × 6 5.895 63
269.0 543 × 6 5.896 100
269.5 543 × 6 5.897 80
270.0 543 × 6 5.898 100
271.0 543 × 6 5.900 95
272.1 543 × 6 5.902 100
273.1 543 × 6 5.904 100
269.2 723 × 8 6.056 63
270.1 723 × 8 6.058 59
271.0 723 × 8 6.060 52
271.5 723 × 8 6.061 51
271.9 723 × 8 6.062 82
272.4 723 × 8 6.063 70
272.9 723 × 8 6.064 100
273.3 723 × 8 6.065 71
273.8 723 × 8 6.066 100
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FIG. 6. Example of how the selection procedure changes the gluon electric form factor for the finer lattice and T ¼ 273.3 MeV.

P. J. SILVA and O. OLIVEIRA PHYSICAL REVIEW D 93, 114509 (2016)

114509-8



extrapolation of the critical value for β is 5.8941(12). Using
the separation of DLð0Þ as a criterion to identify the
dominant phase in a given simulation, it turns out that
for β ¼ 5.8941 the majority of the configurations
belong to the deconfined phase. Furthermore, for β ¼
5.895 (T ¼ 268.5 MeV) the configurations are either on
the confined phase or do not clearly belong to any of the
phases. Further, for β ¼ 5.896 (T ¼ 269 MeV) all the
configurations belong to the deconfined phase. This is
an indication that the infinite-volume limit was not
achieved, although we expect the finite-volume effects to
be small. If one wants to report a continuous and smooth

behavior, we have to take for β ¼ 5.8941 only those
configurations which belong to the confined phase.
Therefore, in Fig. 4 the color code for β ¼ 5.8941 is
reversed.
The use of the separation of DLð0Þ to identify confined

and deconfined configurations in the Monte Carlo time
history allows an estimate of Tc. The simulations point
towards a Tc in the range 269–272 MeV, in good
accordance with the literature.
In order to illustrate the effects of the selection procedure

just described, in Fig. 5 we show the histograms of the
modulus of the Polyakov loop before (red lines) and after
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(blue lines) removing the configurations that, according to
our criterion, will not be used to compute the propagators.
If one considers all the configurations generated by the
sampling, the histograms are spread over much larger
values of jLj and often show several maxima. On the other
hand, our selection of configurations gives rise to a
histogram where the distribution of the values of the
Polyakov loop clearly have a single maximum. To illustrate
the effects on the gluon propagator, in Fig. 6 we report an
example where the longitudinal gluon form factor is shown,
before and after performing our selection of configurations.
As can be seen, the effect of our selection can be well
beyond one standard deviation.

IV. THE GLUON PROPAGATOR
NEAR THE PHASE TRANSITION

As discussed in the last section, the proper computation
of the gluon propagator for temperatures near Tc needs a
selection procedure to separate those configurations which
can be associated to the deconfined or confined phase. This
has been done by looking at the Monte Carlo time evolution
for the Polyakov loop and/or DLð0Þ. Recall that we
considered 100 configurations for each simulation, and
our selection procedure implies that in several cases we will
not use the full set of configurations. In Table II the
information of Table I is repeated, but including the number
of configurations that survive the selection procedure.
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In Figs. 7, 8, 9, and 10 we report on the two gluon form
factors for the temperatures reported in Table I and after
applying the selection procedure to the gauge configura-
tions. As the figures show, it is in the electric sector where
the deconfinement transition has a larger impact. Indeed,
for the zero sector DLðp2;TÞ is strongly suppressed in the
deconfined phase, while the magnetic sector has a much
more modest increase as T crosses Tc. This reproduces the
behavior already observed in various simulations; see, e.g.,
Refs. [8,15] and references therein.
Moreover, forT > Tc the gluon form factors associated to

the variousZ3 sectors are not only different quantitatively but

also qualitatively. This difference is observed only between
the 0 sector and the�1 sectors. The longitudinal propagator
DL associated with the �1 sectors is strongly enhanced if
compared with the zero-sector result. In fact, for the zero
sector, DL defines a larger mass scale, compared to the
corresponding longitudinal propagators associated with the
others sectors. On the other hand, the transverse propagator
DT for the 0 sector seems to take higher values, and therefore
one can associate a smaller mass scale, in comparison with
transverse propagators defined in the �1 sectors.
The separation ofDL andDT associated with the various

Z3 sectors starts around the deconfinement phase transition.
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For the coarser lattice, this separation starts to show up at
T ¼ 267 MeV for DL and it is clearly seen for T ¼
269 MeV and above. For the magnetic form factor DT,
the difference between the sectors sets in at T ¼ 269 MeV.
For the finer lattice, the differences inDL for the various Z3

sectors start at T ¼ 270 MeV, while DT distinguishes the
various sectors for T ¼ 272 MeV and above. From the
separation of the gluon form factors one can identify a
deconfinement phase transition at Tc ¼ 267–272 MeV, in
agreement with the values quoted in the literature for the
pure SU(3) gauge theory.

The observed difference between the propagators for the
various Z3 sectors can be better illustrated by looking at
howDLð0Þ evolves with the temperature. Furthermore, one
can understand the effects of our selection procedure to
distinguish the configurations between the different phases
by studying DLð0Þ as a function of the temperature.
In Fig. 11 the zero-momentum electric form factor is

plotted for the various temperatures for the coarser and finer
lattices. The figure also shows the differences of taking into
account all the configurations (“no cuts”) and of using our
selection procedure. As can be observed, the discontinuity
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FIG. 10. Magnetic gluon form factor DTðp2; TÞ for simulations using the finer 723 × 8 lattices.
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in DLð0Þ at the critical temperature is enhanced when
the separation of phases is performed. On the other hand,
comparing the coarser and finer lattice results, it seems that
the separation of DLð0Þ between the various sectors above
Tc is reduced when approaching the continuum limit.
In order to try to understand if the separation vanishes in

the continuum limit, we have performed an additional
simulation using a 903 × 10 lattice and β ¼ 6.212, which
has a ¼ 0.07135 fm and T ¼ 276.6 MeV. We have
checked that this simulation is in the deconfined phase.
The computed gluon form factors reproduce the pattern
observed and already reported in Figs. 7–9 and 10. In
Table III we compare the results for DLð0Þ and DTð0Þ for
the simulations we have performed just above Tc.
The results suggest that the separation of the electrical
gluon form factors observed between the various Z3

sectors above Tc is not a lattice artifact. From our
simulation closer to the continuum one can claim that
jDLð0; θ ¼ 0Þ −DLð0; θ ¼ �2π=3Þj ≈ 180 MeV−2, where
θ stands for the phase of the Polyakov loop.

V. SUMMARY AND CONCLUSIONS

In this paper, we have investigated the correlations
between the modulus of the Polyakov loop, its phase,
and the Landau gauge gluon propagator at finite temper-
ature for pure Yang-Mills SU(3) theory. In accordance with
the literature, for temperatures above the deconfinement
transition, the simulations show that the center symmetry
is spontaneously broken and the time history of the
Monte Carlo reveals that the phase of the Polyakov loop
is always close to θ ≈ 0;�2π=3. For temperatures below
Tc, the Monte Carlo time history shows that jLj ≈ 0.
We also discussed the computation of the gluon field

and the gluon propagator for lattice configurations such that
the phase of the Polyakov loop is θ ≠ 0. Our analysis shows
that the usual definition given in Eq. (5) provides a valid
way of computing the gluon field from the links and,
therefore, the gluon propagator.
For temperatures above Tc, our simulations show that the

gluon propagator associated to configurations with θ ≈ 0
and θ ≈�2π=3 differs quantitatively and qualitatively. For
T < Tc, this difference is not observed. Therefore, the
difference on the propagators can be used to identify the
phase (confined or deconfined) of a given configuration.
Indeed, this difference behaves as an order parameter for
the confinement-deconfinement transition, vanishing for
T < Tc and taking finite nonzero values for T > Tc.
Although in the current work we have been concerned

with pure Yang-Mills theory, the situation described in the
previous paragraph for the gluon propagator—namely, the
inequivalence between the zero sector, where θ ≈ 0, and�1
sectors, where θ ≈ �2π=3—can also be observed in full
QCD. Indeed, in Ref. [57] the authors relied on full QCD
supplemented by a gluon mass term to investigate the
effective potential as a function of the temperature T, of the
chemical potential μ, and of a purely imaginary chemical
potential iμ. For the latter case of a purely imaginary
chemical potential, it was observed that the effective

TABLE III. Comparison of DLð0Þ and DTð0Þ (in MeV−2) for
various ensembles just above Tc. ΔDLð0Þ (errors added in
quadrature) refers to the modulus of the difference of DLð0Þ
between the sectors 0 and -1.

543 × 6 723 × 8 903 × 10
Sector β ¼ 5.896 β ¼ 6.062 β ¼ 6.212

T ¼ 269 MeV 271.9 MeV 276.6 MeV

−1 4.21� 0.11 4.12� 0.13 3.81� 0.13
DTð0Þ 0 4.72� 0.15 4.20� 0.12 4.51� 0.13

1 4.17� 0.13 4.31� 0.16 4.04� 0.10
−1 233� 11 180.1� 9.0 203� 12

DLð0Þ 0 17.92� 0.84 23.9� 1.4 19.3� 1.0
1 233� 13 179� 11 172.9� 9.3

ΔDLð0Þ 215� 11 156.2� 9.1 184� 12
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potential distinguishes the various possible θ and the Z3

sectors are not related by symmetry transformations.
In what concerns the gluon propagator form factors

above Tc, we observed a huge enhancement of the electric
form factor and a suppression of the magnetic form factor
for configurations where θ ≈�2π=3 relative to those where
θ ≈ 0. Once more, the simulations show that it is in the
electric sector where the dynamics is more sensitive to the
deconfinement transition.
The pure Yang-Mills SU(3) theory has a first-order

transition to the deconfinement phase and the simulations
performed for temperatures near the critical temperature
required a careful analysis. Relying on the difference of the
propagators associated to the various values of the phase of
the Polyakov loop, we showed that it is possible to identify
the phase (confined or deconfined) of a given configura-
tion. Indeed, the criterion seems to be able to separate the
configurations in each phase (see Fig. 4), and this sepa-
ration impacts directly on the computation of the propa-
gator for temperatures near Tc (see Fig. 11). In fact, the
effects of taking into account the configurations in either
phase can be misunderstood as finite-volume/-size effects.
For example, the “systematic effects” reported in a recent
analysis of the SU(2) gluon propagator close to the critical
temperature [47] are possibly due to the mixing between
the different nature of the gauge configurations generated
by the Monte Carlo. Note also that, as discussed in Sec. IV
(see Table III and Fig. 12), the observed difference between
the gluon form factors computed in different sectors seems
to survive in the continuum limit.
The criterion to separate confined and deconfined phases

based on the differences of the gluon propagator associated
with the various θ values also allowed us to estimate the
critical temperature Tc in the range 269–272 MeV, in good
agreement with the literature.
The gluon propagator is not a renormalization-group-

invariant quantity and the difference between the various
sectors observed in the infrared region depends on the

renormalization scale. In the current work, all the data was
renormalized at μ ¼ 4 GeV and the differences are clearly
seen in the infrared region. These differences in the
propagators associated with the various θ are both quanti-
tative and qualitative. In principle, one could choose a
different renormalization scale, e.g., in the infrared region,
and, in this case, the differences in the propagators would
appear in the ultraviolet region and all the considerations
discussed would still apply but for this region of momenta.
In the near future, we plan to extend our simulations to

cover a wide range of temperatures to provide a clear
picture on the behavior of the various DL, DT and
differences between the Z3 sectors in a wide range of
temperatures. Furthermore, we are aware that the real world
contains quark degrees of freedom and the center symmetry
is no longer a valid symmetry of the theory. However, for
full QCD the behavior of the Polyakov loop as a function of
the temperature is similar to the pure Yang-Mills case and,
therefore, it would also be interesting to check how the
scenario discussed here changes when the quark degrees of
freedom are taken into account.
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