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We present a determination of the P-wave ππ → πγ⋆ transition amplitude from lattice quantum
chromodynamics. Matrix elements of the vector current in a finite volume are extracted from three-point
correlation functions, and from these we determine the infinite-volume amplitude using a generalization of
the Lellouch-Lüscher formalism. We determine the amplitude for a range of discrete values of the ππ
energy and virtuality of the photon and observe the expected dynamical enhancement due to the ρ
resonance. Describing the energy dependence of the amplitude, we are able to analytically continue into the
complex energy plane and from the residue at the ρ pole extract the ρ → πγ⋆ transition form factor. This
calculation, at mπ ≈ 400 MeV, is the first to determine the form factor of an unstable hadron within a first
principles approach to QCD.
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I. INTRODUCTION

The study of hadron resonances is entering a new era:
For the first time since the identification of quantum
chromodynamics (QCD) as the fundamental theory of
the strong interactions, one can realistically study reso-
nances and their properties directly from QCD by taking
advantage of numerical computations of the theory within
the framework of lattice QCD.
Hadron resonances emerge as pole singularities in the

scattering matrix, or S-matrix, at complex values of the
scattering energy. On the other hand, lattice QCD calcu-
lations being performed in a finite Euclidean volume results
in a discrete real-valued spectrum, and this observation
might lead one to conclude that resonances cannot be
directly studied using lattice QCD. The way around this is
to recognize that the spectrum of states in a finite volume is
determined by the infinite-volume S-matrix elements in a
way that is known [1–13], so that knowledge of the discrete
spectrum can lead to a determination of the S-matrix at real
values of the energy. From this the extension to complex
values of the energy can proceed, as in the experimental
case, using parametrizations of the energy dependence
analytically continued into the complex plane. The resonant
structure follows from the pole singularities of the S-matrix.
This methodology has been applied in order to determine
the masses and widths of resonances that couple to
two-body elastic [14–23] and inelastic systems [24–27].

Hadron resonances can also appear in processes featur-
ing electroweak currents, and recently the formalism
required to study these in a finite volume has been
presented both for transitions [28–31] and elastic form
factors [32,33]. These ideas generalize the existing frame-
work for the study of K → ππ decays, which was first
proposed in the seminal work by Lellouch and Lüscher
[34], and whose numerical implementations have reached
an impressive level of maturity [35–40]. In this study we
follow the procedure presented in Refs. [28–30] to obtain
the electromagnetic form factor of a hadronic resonance for
the first time in QCD.
The quantity we determine is the πγ⋆ → ππ amplitude,

Hμ
ππ;πγ⋆ . To first order in QED interactions, this can

be defined in terms of the electromagnetic current,
J μ ¼ 2

3
ūγμu − 1

3
d̄γμd, where u and d denote the annihila-

tion up and down quark fields,1 as

Hμ
ππ;πγ⋆ ¼ hπ; PπjJ μð0Þjππ; Pππ;l ¼ 1i; ð1Þ

where jππ; Pππ;l ¼ 1i is an incoming P-wave ππ state
with four-momentum Pππ and hπ; Pπj is an outgoing π state
with four-momentum Pπ . We obtain this amplitude from
corresponding finite-volume matrix elements computed
using lattice QCD applying the nonperturbative mapping
prescribed in Ref. [29]. The amplitude is determined at a

*rbriceno@jlab.org

1The position space current is denoted as J μðt; xÞ, and its
Fourier transform is labeled as ~J μðt;QÞ.
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number of ππ energies and photon virtualities. Using these
to constrain parametrizations of the Eππ and Q2 depend-
ence, we analytically continue to the pole in the complex
energy plane corresponding to the ρ resonance and obtain
the residue of the amplitude, which contains the ρ → πγ⋆
transition form factor.
In addition to serving as a stepping stone towards the

study of more complicated and computationally taxing
resonant processes, πγ⋆ → ππ plays a significant role in the
determination of various phenomenologically interesting
observables. These include the anomalous magnetic
moment of the muon [41,42] and the Wess-Zumino-
Witten anomaly [43,44] among others.
This first exploratory study is performed using a single

value of degenerate u, d quark masses, corresponding to
mπ ≈ 400 MeV. In this paper we expand upon the details of
the calculation that appeared in summary form in Ref. [45].
We make use of the technology laid out in Ref. [46] for the
computation of three-point correlation functions and the
results for the ππ elastic scattering phase shift determined
from the lattice QCD spectrum in Ref. [14].
This work is presented as follows. In Sec. II we review

the setup of the lattice calculation and the extraction of
finite-volume matrix elements from correlation functions.
We review the formalism needed to obtain the infinite-
volume transition amplitude from the finite-volume matrix
elements in Sec. III. Section IV discusses the procedure
used in fitting the transition amplitude and contains the
main results of this work, the ππ → πγ⋆ transition ampli-
tude and the ρ → πγ⋆ form factor extracted at the ρ pole.
We present the πγ → ππ cross section in Sec. V and then
summarize the findings and implications of this work
in Sec. VI.

II. THREE-POINT FUNCTIONS
AND MATRIX ELEMENTS

The results presented in this calculation used an ensem-
ble of gauge configurations with a Symanzik-improved
gauge action and a Clover fermion action with Nf ¼ 2þ 1

dynamical fermions. The quark masses are chosen so that
mπ ≈ 400 MeV [47,48]. We use a space-time volume of
ðL=asÞ3 × ðT=atÞ ¼ 203 × 128, where the spatial lattice
spacing is as ≈ 0.12 fm, and the temporal lattice spacing,
at, is smaller with an anisotropy ξ ¼ as=at ≈ 3.5. We set
the lattice scale using a procedure where at ¼ atmΩ

mphys
Ω
, using

the Ω baryon mass determined on this lattice (see Table I)
and the physical Ω baryon mass. The spatial and temporal
extents, mπL ≈ 4.7 and mπT ≈ 8.8, are such that finite-
volume and finite-temperature effects for single-hadron
observables lie well below the percent level of precision
and can be safely ignored, as demonstrated in Ref. [49].
This also ensures that all finite-volume corrections asso-
ciated with the ππ → πγ⋆ matrix elements are those
addressed in Refs. [28,29] which are corrected

nonperturbatively. We use the “distillation” technique
[50] in the construction of both two-point and three-point
correlation functions. Some details of the calculation and
the size of the distillation basis, along with the masses of
some low-lying hadrons, are summarized in Table I.
We can extract the desired matrix elements from three-

point correlation functions of the form

Cð3Þ
ππ;μ;πðPπ;Pππ;Δt; tÞ
¼ h0jO½Λπ �

π ðΔt;PπÞ ~J μðt;Pπ − PππÞO½Λππ �†
ππ ð0;PππÞj0i;

ð2Þ

where ~J μðt;Pπ − PππÞ is the Fourier transform of the
position space current appearing in Eq. (1). In this

expression O½Λπ �
π ðΔt;PπÞ is a composite QCD operator

having the quantum numbers of a pion with three-momen-
tum, Pπ , evaluated at Euclidean time, Δt. The relevant
irreducible representations, Λπ , of the appropriate sym-
metry group are Aþ

1 for a pion at rest and A2 for a pion with
any of the nonzero momenta we consider [51]. The operator

O½Λππ �
ππ ð0;PππÞ is constructed to have the quantum numbers

of two pions with isospin ¼ 1 and total three-momentum
Pππ in irreducible presentation (irrep) Λππ containing a
subduction of the l ¼ 1 partial wave; these irreps are listed
in Table II. The vector current, ~J μðt;Pπ − PππÞ, is inserted
at all times, t, between 0 and Δt.
Time-evolving the operators and inserting complete sets

of discrete finite-volume eigenstates of QCD leads to a
spectral representation of the form

X
n;m

e−ðΔt−tÞEπ;me−tEππ;nh0jOπjπ; m;Li

× hπ; m;Lj ~J μjππ; n;Lihππ; n;LjO†
ππj0i; ð3Þ

which features contributions from transitions between all
eigenstates with the correct quantum numbers. The finite-
volume energy eigenstates which are featured in this

TABLE I. (a) The volume ððL=asÞ3 × ðT=atÞÞ, number of
gauge configuration (Ncfgs), number of sources (Ntsrcs ) and
distillation vectors (Nvecs) used in this calculation. (b) Some
previously determined low-lying hadron masses.

ðL=asÞ3 × ðT=atÞ Ncfgs Ntsrcs Nvecs

203 × 128 603 4 128

atmπ 0.06906(13)
atmK 0.09698(9)
atmη 0.10406(56)
atmω 0.15678(41)
atmΩ 0.2951(22)
ξ 3.444(6)
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expression are defined with a normalization
hππ; n;Ljππ; n;Li ¼ 1 and obvious orthogonalities
between different momenta and irreps (see Appendix A).
For an arbitrary choice of operators, Oπ , Oππ , this leads to
pollution from excited states when trying to determine the
ground-state transition, and it proves to be the case that
excited states are not determined well by fitting their
subleading time dependence. A solution to this problem
comes by using operators which optimally interpolate
particular states in the spectrum, with minimal amplitude
to produce any other state. Such operators can be con-
structed as linear superpositions in a basis of operators by
“diagonalizing” a matrix of two-point correlation functions,

Cð2Þ
ab ðtÞ ¼ h0jOaðtÞO†

bð0Þj0i: ð4Þ
Solving the generalized eigenvalue problem, CðtÞvn ¼
λnðtÞCðt0Þvn, the operator which optimally produces state
n can be constructed as

Ω†
n ¼ e−

1
2
Ent0

X
a

ðvnÞaO†
a: ð5Þ

These operators can be used in the construction of the
relevant three-point functions to isolate the contributions of
particular states. This technique was previously explored in

Ref. [46] for the case of transitions between stable single-
meson states with pseudoscalar and vector quantum
numbers, where it was found to reduce excited state
contributions to the ground-state transitions and to allow
access to excited state transitions.
A basis of operators appropriate to form an optimized

operator for a single pion can be constructed from quark

bilinears with gauge-covariant derivatives, q̄ΓD
↔
…D

↔
q,

what we refer to as “q̄q-like” operators, as was previously
explored in Refs. [49,51–58]. In the case of operators with
the quantum numbers of two pions, in Refs. [14,24] it was
found that the corresponding discrete spectrum of states can
be efficiently obtained using a basis of operators including
both constructions built from the product of two optimal
pion operators,

P
P̂1;P̂2

CðPππ;P1;P2ÞΩπðt;P1ÞΩπðt;P2Þ,
and “q̄q-like” operators with the appropriate quantum
numbers. The optimized operators in this channel prove
to be superpositions featuring both forms.
Using optimized operators in three-point functions,

Cð3Þ
ππn;μ;πðPπ;Pππ;Δt; tÞ
¼ h0jΩ½Λπ �

π ðΔt;PπÞ ~J μðt;Pπ − PππÞΩ½Λππ;n�†
ππ ð0;PππÞj0i

¼ e−ðEππ;n−EπÞte−EπΔthπ;Lj ~J μjππ; n;Li þ…; ð6Þ

where the ellipsis should feature only modest contributions
from states other than the single pion and the selected nth

ππ state. The optimal operators are constructed as linear
superpositions in the basis outlined in Table II, and further
details can be found in Ref. [14].
Just as the operators, the finite-volume states depend on

the momentum of the system and irrep of the corresponding
symmetry group, but we have suppressed these depend-
encies above. To avoid notational clutter, in the remainder
of the text we highlight the dependencies of the states that
play an important role in the subsequent equations. Given
that we are only interested in the ground state with the
quantum numbers of the π, we have dropped any labels
which indicate so. Similarly, in the following discussion it
is always evident which ππ state is under consideration, and
as a result, we remove the label “n”.
In order to compute these three-point correlation func-

tions it is necessary to combine quark propagators in the
arrangements shown in Fig. 1. While we evaluate the

FIG. 1. Wick contractions that appear in the evaluation of three-point functions, Cð3Þ
ππ;μ;π , defined in Eq. (6). In this work we do not

evaluate types D and E which feature a disconnected current insertion.

TABLE II. The momenta, P (given in units of 2π=L), with
corresponding symmetry groups, LGðPÞ, and irreps, ΛðPÞ, used to
study the π and ππ finite-volume states. For each irrep, the
numbers of “q̄q”-like fermion bilinear and “ππ”-like operators
used to construct optimal operators are shown. In the case of ππ
we consider only those irreps which feature a subduction of
l ¼ 1. Further details appear in Refs. [14,51].

P LGðPÞ State ΛðPÞ Operators

[0,0,0] OD
h

π A−
1 12 “q̄q”

ππ T−
1 2 “ππ”, 26 “q̄q”

[0,0,1] Dic4
π A2 20 “q̄q”
ππ A1 3 “ππ”, 27 “q̄q”
ππ E2 2 “ππ”, 29 “q̄q”

[0,1,1] Dic2
π A2 31 “q̄q”
ππ A1 3 “ππ”, 27 “q̄q”
ππ B1 3 “ππ”, 28 “q̄q”

[1,1,1] Dic3
π A2 21 “q̄q”
ππ A1 3 “ππ”, 21 “q̄q”
ππ E2 2 “2ππ”, 35 “q̄q”
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diagrams of type A, B, and C, we set equal to zero the
contribution of “disconnected current” diagrams of types D
and E. These diagrams, which feature quark propagation to
and from all points on the lattice, are computationally
costly, and in the case we are considering we expect them to
make only a small contribution. At the SUð3ÞF point,
where up, down and strange quarks are mass degenerate,
these contributions exactly cancel [46], and there are
phenomenological reasons to expect that they do not
become large as we reduce the light quark mass down
from this point.
The correlation functions are computed using the spatial

component of the vector current; we use the tree-level
improved Euclidean current to remove OðaÞ discretization
effects on our anisotropic lattice [46],

~J k ¼ Zs
V

�
q̄γkqþ 1

4
ð1 − as=atÞat∂4ðq̄σ4kqÞ

�
; ð7Þ

where γk are the standard Euclidean space gamma-matrices
and σ4k ¼ i½γ4; γk�=2. The vector current renormalization
factor, Zs

V ¼ 0.833ð9Þ, is determined nonperturbatively by
requiring the π form factor, FπðQ2Þ, to be equal to one at
Q2 ¼ 0. Figure 2 shows unrenormalized values of the
inverse of the form factor at four values of Pπ , along with an
appropriate average that leads to our value of Zs

V .
In Ref. [14] it was demonstrated that I ¼ 1 ππ elastic

scattering below the KK̄ threshold is dominated by the
P-wave where the ρ resonance resides, and as a result, it is
expected that the ππ → πγ⋆ process in this energy region
will be dominated by the l ¼ 1 contribution. The infinite-
volume matrix element hπ;PπjJ μð0Þjππ;Pππi with the ππ
system having l ¼ 1 can be Lorentz decomposed in the
following way:

hπ;PπjJ μð0Þjππ;Pππi

¼ ϵμνρσðPπÞνðPππÞρϵσðλππ;PππÞ
2

mπ
Aππ;πγ⋆ðE⋆

ππ; Q2Þ;

ð8Þ

where ϵσðλππ;PππÞ is a polarization vector describing the
l ¼ 1 ππ system with helicity λππ, and Aππ;πγ⋆ðE⋆

ππ; Q2Þ is
a reduced amplitude depending upon the ππ cm-frame
energy and the virtuality of the photon, Q2¼−ðPππ−PπÞ2.
In Appendix D we show that this decomposition of the
transition amplitude is equivalent to another commonly
used form.
Infinite-volume one-hadron states have the standard

relativistic normalization [see Eq. (A1)] and have dimen-
sions of ½MeV�−1. Two-hadron states constructed as prod-
ucts of two one-hadron states have dimensions of ½MeV�−2,
and in position space, the current has units of ½MeV�−3.
Thus, the left-hand side of Eq. (8) and Aππ;πγ⋆ have
dimensions of ½MeV�0 and ½MeV�−1, respectively.
A reasonable extension of the above decomposition to

the L × L × L finite-volume case is

hπ;Pπ;LjJ μð0Þjππ;Pππ;Li

¼ 1

L3
hπ;Pπ;Lj ~J μð0;Pπ − PππÞjππ;Pππ;Li

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4EπEππ

p 1

L3
ϵμνρσðPπÞνðPππÞρϵσðλππ;PππÞ

×
2

mπ

~AðE⋆
ππ; Q2;LÞ; ð9Þ

where we have allowed the reduced amplitude,
~AðE⋆

ππ; Q2;LÞ, to be volume dependent. In Appendix B,
we discuss the implications of neglecting contributions due
to partial waves higher than l ¼ 1.
Performing a similar dimensional analysis as above and

recognizing that one- and two-particle finite-volume states
are unit normalized, one finds that ~A is dimensionless. The
precise relationship between the quantity we can extract
from finite-volume three-point functions, ~AðE⋆

ππ; Q2;LÞ,
and the desired infinite-volume quantity, Aππ;πγ⋆ðE⋆

ππ; Q2Þ,
is described in Sec. III B, where it is shown to depend upon
the elastic ππ scattering amplitude.
Three-point functions were evaluated with two different

time separations between source and sink operators, Δt ¼
24at and 32at. Figure 3 illustrates an example of the matrix

1

0.82

0.86

0.833(9)

2 3 4

FIG. 2. Inverse of the unrenormalized π form factor at Q2 ¼ 0,
extracted using a spatially directed current insertion, as a function
of the momentum of the source and sink pion. This corresponds
to the vector current renormalization factor, Zs

V .

5

0.04

0.05

0.06

10 15 20 5 10 15 20 25 30

FIG. 3. Example of matrix elements determined from three-
point correlators, as described in the text, with source-sink
separations Δt=at ¼ 24 (left) and Δt=at ¼ 32 (right). Correlated
fits to the time dependence give values that are statistically
compatible.
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elements that we obtain on each timeslice after dividing out
the leading exponential time dependence in Eq. (6) and the
kinematic prefactor in Eq. (9). There are clearly plateau
regions for both Δt. We fit the time dependence using a
form aþ be−δE1ðΔt−tÞ þ ce−δE2t that allows for residual
excited state contributions from source and sink, and then
a gives the extracted value of ~AðE⋆

ππ; Q2;LÞ. We find for all
our matrix elements that the results for the two time
separations are statistically compatible, and in what follows
we conservatively choose to use the Δt ¼ 32at results with
their larger statistical uncertainties.
We computed around 500 matrix elements with various

combinations of Pπ , Pππ , irrep rows, and insertion direc-
tion, and from combinations of these we obtain 42
independent nonzero values of ~AðE⋆

ππ; Q2; LÞ correspond-
ing to 8ππ energies and a range of Q2 between −3m2

π and
þ7m2

π . In Fig. 4 we give one example for each ππ irrep to
illustrate the statistical quality of the determined matrix
elements. The bottom right panel of Fig. 4 corresponds to
the first excited state in the B1 irrep with Pππ ¼ ½011�. This
extraction is made possible by the use of an operator
optimized to overlap with the first excited state. In all cases
a more residual excited state contribution is seen to arise
from the ππ source at t ¼ 0 than from the π source at
t ¼ Δt, but both are seen to be modest and can be described
using subleading exponentials in a fit to the time
dependence.

III. RELATING FINITE AND INFINITE
VOLUME QUANTITIES

Having obtained the discrete spectrum of states and
transition matrix elements in a finite volume, our task is to
obtain the corresponding infinite volume scattering and
transition amplitudes. The extraction of the ππP-wave
elastic scattering amplitude, expressed in terms of the
phase shift, δ1ðE⋆

ππÞ, from the spectrum information was
carried out in Ref. [14], and we briefly summarize the
method here.

A. The ππ spectrum and the P-wave
scattering phase shift

For energy levels above the lowest two-particle thresh-
old, but below the lowest relevant three or four-particle
threshold, there exists a relation between the finite-volume
spectrum and the infinite-volume scattering amplitudes,
M, [1–5], that may be written,

det½F−1ðP;LÞ þMðPÞ� ¼ 0; ð10Þ

where F−1ðP;LÞ is a function which in general depends on
the geometry and size of the spatially periodic volume and
the two-particle four-momentum, P. Both F and M are
matrices in the space of partial waves l and of open
scattering channels, and the determinant is evaluated over

this space. The l values are those subduced into the
relevant irrep of the reduced rotational symmetry group.
Having obtained the finite-volume spectrum from lattice
QCD computation, FðP;LÞ is determined, which in turn
allows one to constrain the scattering matrix.
For sufficiently low energies, partial waves above the

lowest one appearing in the relevant irrep are expected to be
kinematically suppressed by the angular momentum barrier
at a threshold which ensures thatMl ¼ 16π

ρðE⋆Þ
1

cot δl−i
∼ q⋆2l,

where the phase space ρðE⋆Þ ¼ 2q⋆=E⋆.
For the isotriplet ππ system below the KK̄ threshold, we

expect the scattering amplitude to be dominated by the
l ¼ 1 channel, where the ρ resonance resides, with con-
tributions to the spectrum from l ≥ 3 partial waves being
negligible (and indeed this was shown explicitly in
Ref. [14]). In this case the determinant condition above
reduces to a simple one-to-one mapping between the
spectrum and the P-wave scattering phase shift, δ1ðE⋆

ππÞ,

cot δ1ðE⋆
ππÞ þ cotϕP;ΛðE⋆

ππÞ ¼ 0; ð11Þ

where the pseudo-phase factor cotϕP;ΛðE⋆
ππÞ is given by

cotϕP;ΛðE⋆
ππÞ≡ cotϕP

00 þ αP20;Λ cotϕ
P
20 þ αP22;Λ cotϕ

P
22;

ð12Þ

and the constants αP2m;Λ are presented in Ref. [29] and
reproduced in Table III. We have introduced the functions
ϕP
lmðE⋆

ππÞ, which can be written in terms of the generalized
Zeta functions (see e.g. [3]),

cotϕP
lm¼−

ð4πÞ3=2
q⋆lþ1
ππ γL3

�
2π

L

�
l−2

ZP
lm½1;ðq⋆ππL=2πÞ2�: ð13Þ

In Fig. 5 we show the phase shifts which result from
application of Eq. (11) to the finite-volume spectra obtained
from 203 and 243 lattices [14].2 A clear resonant behavior is
observed, and two parametrizations of the elastic scattering
amplitude which describe this spectrum well are the
relativistic elastic Breit-Wigner,

tan δ1ðE⋆
ππÞ ¼

E⋆
ππΓBWðE⋆

ππÞ
m2

BW − E⋆2
ππ

;

ΓBWðE⋆
ππÞ ¼

g2BW
6π

q⋆3ππ
E2
ππ
; ð14Þ

2For the current study the relevant two-point correlation
functions were analyzed independently with respect to Ref. [14],
and in some cases changes in choice of operator basis, choice of
t0, etc., led to a spectrum that is not identical to that presented in
Ref. [14]. However, all determined levels agree up to shifts at the
level of statistical fluctuations.
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0.0335(36)

0.0424(59)

0.0533(15)
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0.1286(37)

0.0608(15)

0.06
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0.06

0.08

0.08

0.07

0.05

0.05

0.11

0.13

0.15

0.04

0.04

0.03

0.02

0.02

0.050

0.12

0.16

0.20

0.24

0.05

0.025

0.035

0.045

0.055

0

0.10

0.15

0.065

0.055

0.060

FIG. 4. Each panel shows the extracted matrix element as a function of time from a particular level in a ππ irrep. The red circles show
the points used in the fit of time dependence described in the text, while the blue points are not used. The red band is the time-dependent
fit, the orange line and band show the central value of ~A extracted from the fit and one standard deviation on either side. The label for
each panel indicates, from left to right, the momentum and irrep of the ππ operator, the current insertion (subduced into an irrep, see
[46]) and the π operator.
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with parameters mBW=mπ ¼ 2.1780ð29Þ, gBW ¼ 5.82ð8Þ
and parameter correlation þ0.7, and a single-channel
Chew-Mandelstam K-matrix pole form,

tan δ1ðE⋆
ππÞ ¼

E⋆
ππΓKMðE⋆

ππÞ
m2

KM − E⋆2
ππ þ g2KMδIðE⋆

ππÞ
;

ΓKMðE⋆
ππÞ ¼ 8g2KM

q⋆3ππ
E2
ππ
;

δIðE⋆
ππÞ ¼

ρðE⋆
ππÞ
π

log

�
ρðE⋆

ππÞ þ 1

ρðE⋆
ππÞ − 1

�

−
ρðmKMÞ

π
log

�
ρðmKMÞ þ 1

ρðmKMÞ − 1

�
; ð15Þ

with parameters mKM=mπ ¼ 2.1790ð39Þ, gKM ¼ 0.465ð8Þ
and parameter correlation −0.04.

B. Transition amplitude

The process we are considering, ππ → πγ⋆ is an example
of a “2 → 1” transition induced by the vector current. The
relationship between a finite-volume 2 → 1 matrix element
and an infinite-volume transition amplitude was first given
by Lellouch and Lüscher [34] for the case of K → ππ
decays induced by the weak current, where only the ππS-
wave could contribute. In our case, ππ → πγ⋆, the infinite-
volume transition amplitude exists for many partial waves,
with ππ having I ¼ 1, all odd values of l exist.
As was the case for the spectrum, the reduced rotational

symmetry of the cubic volume leads to infinitely many
partial waves featuring in the relation between finite-
volume matrix elements and infinite-volume transition
amplitudes. This was first pointed out by Meyer in the
context of bound state photodisintegration [59] and later
revisited for generic 2 → 1 transitions in Refs. [28,29],
where it was shown that one can write a relation between a
generic finite-volume matrix element, h1;LjJ μð0Þj2;Li,
and the corresponding infinite-volume transition ampli-
tude,Hμ

2;1 ¼ h1jJ μð0Þj2i. This relationship can be written3

jh1;LjJ μð0Þj2;Lij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðHμ

1;2ÞRðHμ
2;1Þ

q
L3

ffiffiffiffiffiffiffiffi
2E1

p ; ð16Þ

where R is the finite-volume residue of the fully dressed
two-hadron propagator defined as

RðE2;PÞ≡ lim
P0→E2

� ðP0 − E2Þ
F−1ðP; LÞ þMðPÞ

�
; ð17Þ

where F and M are the same objects appearing in the
quantization condition above, Eq. (10). Here,R is a matrix
in the space of partial waves and open channels, and it can
be constrained using the calculated finite-volume spectrum.
Similarly, ðHμ

2;1Þ and ðHμ
1;2Þ are column and row vectors,

respectively, in this same space.
This relationship exactly accounts, in a relativistic and

model-independent way, for the strong interactions
between hadrons in QCD up to corrections which scale
like Oðe−mπLÞ. The use of a single insertion of the vector
current is accurate to first order of perturbation theory
in QED.
Similarly to the quantization condition, Eq. (10), this

relation reduces to a simple form when the lowest subduced
partial wave is dominant. In Ref. [14] it was demonstrated

 0
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 180
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1.57
1.62
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K-Matrix

FIG. 5. Phase-shift values determined with Eq. (11) using
energy levels from 203 and 243 lattices [14]. Parametrized
descriptions using Breit-Wigner [Eq. (14)] and K-matrix
[Eq. (15)] forms are depicted by the overlaid blue and red bands,
respectively. The lower panels show the corresponding descrip-
tion of the finite-volume energy levels (black points) predicted
using Breit-Wigner (blue) and K-matrix (red) parametrizations of
the scattering phase shift.

TABLE III. Nonzero values of αP20;Λ and αP22;Λ, featuring in the
expression for the pseudo-phase, Eq. (12).

α½00n�20;A1
¼ 2ffiffi

5
p α½nn0�20;A1

¼ − 1ffiffi
5

p α½nnn�22;A1
¼ −2i

ffiffi
6
5

q
α½00n�20;E2

¼ − 1ffiffi
5

p α½nn0�22;A1
¼ −i

ffiffi
6
5

q
α½nnn�22;E2

¼ i
ffiffi
6
5

q
α½nn0�20;B1

¼ − 1ffiffi
5

p

α½nn0�22;B1
¼ i

ffiffi
6
5

q
α½nn0�20;B2

¼ 2ffiffi
5

p

3A factor of L3 difference between what appears here and what
is presented in Ref. [29] is due to the fact that we are defining here
the vector current in position space, rather than in momentum
space, as was done there.
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that the ππ → ππ scattering amplitudes with l ≥ 3 are
negligibly small in the elastic scattering region. It does not
necessarily follow from this that the transition amplitudes
ðHμ

ππ;πÞl≥3 are negligibly small, as illustrated in Fig. 6,
there is a term due to the “production” amplitude which
remains even in the case of no ππ rescattering. It can be
argued though that we expect such production amplitudes
for l ≥ 3 to be kinematically suppressed at low energy by a
threshold barrier ∼q⋆l and to be suppressed relative to the
l ¼ 1 amplitude which is dynamically enhanced by the
resonant ρ. We proceed assuming that only the l ¼ 1
transition plays a significant role; see Appendix B for a
discussion of the role a non-negligible l ¼ 3 amplitude
might play.
Under the assumption of dominance of the l ¼ 1

amplitude, we have

jHμ
ππ;πj ¼ L3

ffiffiffiffiffiffiffiffi
2Eπ

R

r
jhπ;Λπ;LjJ μð0Þjππ;Λππ;Lij; ð18Þ

where R is now a scalar given by

2Eπ

R
¼ 32π

EπEππ

q⋆ππ
cos2δ1

×
∂

∂P⋆
0;ππ

ðtan δ1 þ tanϕPππ ;Λππ ÞjP⋆
0;ππ¼E⋆

ππ

¼ 32π
EπEππ

q⋆ππ
ðδ10 þ rϕ0Þ; ð19Þ

where ϕPππ ;Λππ was defined in Eq. (12) and

r≡ cos2δ1=cos2ϕPππ ;Λππ ;

δ1
0 ≡ ∂δ1=∂P⋆

0;ππjP⋆
0;ππ¼E⋆

ππ
;

ϕ0 ≡ ∂ϕPππ ;Λππ=∂P⋆
0;ππjP⋆

0;ππ¼E⋆
ππ
: ð20Þ

The quantization condition, Eq. (11), implies that r ¼ 1,
but we retain the form above when propagating statistical
uncertainties on the spectrum energies though the calcu-
lation. These equations assume the hadrons in the “2” state
are distinguishable, as is appropriate for the process
πþπ0 → πþγ⋆; we discuss this further in Appendix C.
These expressions, which depend only on the kinematics

and dynamics of the ππ state, effectively leading to a
proportionality between the finite and infinite-volume
states, closely resemble the result for the S-wave derived
by Lellouch and Lüscher in their pioneering work, and as
such we refer to the inverse of R as the “LL-factor.” As is
evident, the LL-factor only depends on the nature of the
finite-volume ππ state and is not particular to this pro-
duction process. As a result, the LL-factor appearing here
is the same as would appear in, for example, γ⋆ →
ππ [28,31].4

Since ðHμ
ππ;πÞl¼1 has the Lorentz decomposition given in

Eq. (8), using Eq. (18) we can relate the finite-volume
amplitude, ~A, in Eq. (9), to the infinite-volume amplitude,
Aππ;πγ⋆ , by

jAππ;πγ⋆ðE⋆
ππ; Q2Þj ¼

~AðE⋆
ππ; Q2;LÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2Eππ

p : ð21Þ

We could determine the infinite-volume amplitude using
this relation directly, but it proves to be more convenient in
this case, which features a narrow ρ resonance and its
corresponding rapid E⋆

ππ behavior, to proceed through an
intermediate step where we write

Aππ;πγ⋆ðE⋆
ππ; Q2Þ ¼ FðE⋆

ππ; Q2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E⋆

ππKππðE⋆
ππÞ

p eiδ1ðE⋆
ππÞ: ð22Þ

In this expression we have made an, at this stage, arbitrary
division of the E⋆

ππ behavior into two real functions,
FðE⋆

ππ; Q2Þ and KππðE⋆
ππÞ, and although only the magni-

tude appears in Eq. (21) we have included for completeness
the phase factor required to satisfy Watson’s theorem.
We choose to parametrize KππðE⋆

ππÞ in a way which
accounts for the sharply peaked resonance structure of the
ρ, and in doing so we would expect FðE⋆

ππ; Q2Þ to have
only a modest residual E⋆

ππ dependence in the region of the
ρ resonance. We may write [28],

FIG. 6. The top line shows a diagrammatic representation [29]
of Aππ;πγ⋆ . Intermediate ππ propagators between the Bethe-
Salpeter kernels (gray circles) are fully dressed, and the crossed
circle is the fully interacting vertex coupling π to ππ in the
presence of the external current. The vertex and the Bethe-
Salpeter kernels are defined in the second and third lines,
respectively. The rescattering series in the top line results in
Aππ;πγ⋆ , which depends on the ππ scattering phase shift, and we
see that, even for zero ππ rescattering, the amplitude need not be
zero due to the initial production amplitude.

4We point the reader to Refs. [60,61] for recent numerical
studies of this reaction.
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1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E⋆

ππKππðE⋆
ππÞ

p ¼ sin δ1ðE⋆
ππÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π

q⋆ππΓðE⋆
ππÞ

s
; ð23Þ

and we presented earlier two parametrizations, a Breit-
Wigner form, Eq. (14) and a K-matrix form, Eq. (15), that
can each describe the P-wave phase shift in the elastic
scattering region. It follows that

FðE⋆
ππ; Q2Þ ¼ ~AðE⋆

ππ; Q2;LÞ
ffiffiffiffiffiffiffiffi
Kππ

R

r
; ð24Þ

and we find that whileKππ andR each change rapidly with
E⋆
ππ in the ρ resonance region, their ratio shows only modest

dependence on E⋆
ππ , and the strong correlation between

their statistical fluctuations is reduced. This is illustrated in
Figs. 7 and 8.
The decomposition in Eq. (23) is such that in the limit

that E⋆
ππ approaches the ρ pole, F may be associated with

the πρ transition form factor. Using Eq. (23), we may
rewrite Eq. (22) in a manner that makes this evident,

Aππ;πγ⋆ðE⋆
ππ; Q2Þ ¼

�
FðE⋆

ππ; Q2Þ
cot δ1ðE⋆

ππÞ − i

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π

q⋆ππΓðE⋆
ππÞ

s
:

ð25Þ
One observes that Aππ;πγ⋆ has the same energy-dependent
denominator as the elastic ππ scattering amplitude and will
have the same pole corresponding to the ρ. At the resonance
pole, the residue of the ππ → πγ⋆ amplitude factorizes into
a product of couplings, ππ → ρ and ρ → πγ⋆, the latter, in
general, being proportional to F defined here. For larger
quark masses, the ρ becomes a stable hadron and the ρ pole
resides on the real E⋆

ππ axis below ππ threshold. In this limit
the divergences in R and Kππ cancel exactly [28,30]. This
is the scenario considered in, for example, Ref. [46]. For
quark masses where the ρ is unstable, the pole is complex,
and F is still proportional to the residue of the ππ → πγ⋆
amplitude.
Two of our ππ states, ðPππ ¼ ½011�; B1; n ¼ 0Þ, and

ðPππ ¼ ½111�; E2; n ¼ 0Þ, are at energies where the phase
shift is very close to 90°, where R shows a large statistical
uncertainty, leading to a disproportionately large uncer-
tainty in Kππ

R (see, for example, the third panel of Fig. 8).
Given that this ratio must be equal to 1 at the resonance
mass, up to corrections of OðΓρ=mρÞ ∼Oð10−2Þ [28], we
set Kππ

R ¼ 1 here, while propagating uncertainties associated
with the determination of the parameters appearing in
Eqs. (14) and (15). This is only a necessary approximation,
applied for this pair of levels, because the ρ is barely
unstable at this quark mass. As the quark masses approach
the physical point, the ρ will become broader [24], and this
subtlety will disappear. For all other states we evaluate the
LL-factor numerically and propagate its statistical and
systematic uncertainties into the determination of the
infinite-volume form factor and transition amplitude.

IV. DETERMINATION OF THE INFINITE-
VOLUME TRANSITION AMPLITUDE

With ~AðE⋆
ππ; Q2; LÞ extracted from finite-volume three-

point correlations functions and the Lellouch-Lüscher
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Breit-Wigner
K-matrix

FIG. 7. Top panel showsmπ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E⋆

ππKππ

p
as a function of the ππ

energy, as defined in Eq. (22). The two parametrizations of the
phase shift given in Eqs. (14) and (15) are consistent and feature
the expected enhancement of the transition amplitude in the
vicinity of the ρ. Lower panel shows the ππ scattering phase shift
for comparison.
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FIG. 8. Shown are examples of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kππ=R

p
for three ππ irreps. For the left and middle panels a Breit-Wigner parametrization, Eq. (14),

of the scattering amplitude has been used, while for the right panel the K-matrix parametrization, Eq. (15), has been used. The bands
indicate the value of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kππ=R

p
as a function of the cm energy where the uncertainty is only due to that of the fit parameters in the phase

shift analysis. The darker regions indicate the position of the discrete finite-volume energies. Lower panels show the phase shift with the
discrete values obtained for the corresponding irrep.
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factors evaluated using parameterizations of δ1ðE⋆
ππÞ which

describe the finite-volume spectra, we may obtain the
infinite volume ππ → πγ⋆ reduced amplitude, Aππ;πγ⋆ . In
Fig. 9 we give some examples of Aππ;πγ⋆ , plotted as a
function of Q2 for three values of E⋆

ππ . We observe that this
quantity has a strong dependence on E⋆

ππ as expected, with
a significant increase in the transition amplitude observed at
energies corresponding to the ρ resonance. In the approach
that we have taken, this resonant enhancement is present in
the function KππðE⋆

ππÞ, with the Q2 dependence residing in
the form factor, FðE⋆

ππ; Q2Þ, which shows only a mild
dependence on E⋆

ππ . The form factor values, extracted when
the K-matrix parametrization of δ1 is used, are presented in
Fig. 10, the values extracted when the Breit-Wigner para-
metrization are equivalent within one standard deviation.
We can combine the kinematic points presented in

Fig. 10 by performing a global fit of FðE⋆
ππ; Q2Þ. We

explore a flexible functional form,

h½fα;βg�ðE⋆
ππ;Q2Þ ¼ α1

1þα2Q2þ β1ðE⋆2
ππ −m2

0Þ
þα3Q2

þα4Q4þα5 exp½−α6Q2− β2ðE⋆2
ππ −m2

0Þ�
þ β3ðE⋆2

ππ −m2
0Þþ β4ðE⋆4

ππ −m4
0Þ;

ð26Þ

where the α’s and β’s are real-valued fit parameters, andm0

is an arbitrary mass scale, which we set to 2.1762ð28Þmπ to
coincide with real part of the ρ resonance mass determined
earlier.
We consider a large number of fits in which we fix

various α’s and/or β’s to be zero. When all β’s are set to zero
there is no E⋆

ππ behavior. The first term in Eq. (26) allows
for the possibility of a pole in Q2 and the form is flexible
enough to allow that pole’s position to vary with E⋆

ππ . We
do not mean to imply any fundamental meaning to the form
of this function, only that it is simple, flexible, and suitable
to interpolate the data in Q2 and E⋆

ππ .

In performing fits, we define the data covariance matrix
as Ctot ¼ Cstat þ Csys, where Cstat accounts for the statis-
tical fluctuations over the ensemble of configurations in this
calculation, while Csys accounts for the uncertainty in the fit
parameters used to describe δ1ðE⋆

ππÞ.
The green bands in Fig. 10 show the result of global fits,

restricting to fits that provide a good description of the data
(χ2=dof ≤ 1.5). All successful fits are found to require
some E⋆

ππ dependence in FðE⋆
ππ; Q2Þ. In Fig. 11 we present

examples of the results of three different types of fits: Types
A, B and C. Type A fits correspond to using the full set of
data points, and restricting the Q2 pole in Eq. (26) to be
independent of E⋆

ππ (β1 ¼ 0). Type B fits include all data
points and do allow for a pole inQ2 to depend on E⋆

ππ . Type
C fits are those in which we prune the data set by excluding
time-like (Q2 < 0) points. We conclude that we have
insufficient time-like data points to strongly constrain
the position of any possible pole in Q2. The green bands
in Fig. 10 conservatively encompass the range of behaviors
given by all successful fits of type A, B and C, and it is clear
that this assessment leads to only a moderate overall
uncertainty in the space-like region where the form factor
is rather well constrained.
This procedure is repeated for the Breit-Wigner para-

metrization of the phase shift leading to very similar results;
in what follows we account for the small difference
between the two parametrizations in our systematic
uncertainty.
Figure 12 illustrates, for two values of Q2, the mild E⋆

ππ

behavior found for FðE⋆
ππ; Q2). This suggests that this

function has a very mild dependence on E⋆
ππ for a large

kinematic region. We have determined this function for
seven energies below E⋆

ππ ¼ 2.3mπ and another one at
E⋆
ππ ¼ 2.8mπ . Therefore, it is possible that our interpolation

does not reliably describe this function in the region
between E⋆

ππ ¼ 2.3mπ and 2.8mπ, although there is no
reason to expect stronger energy dependence.
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FIG. 9. Shown are three examples of the determined ππ → πγ⋆ transition amplitude, plotted in units ofm−1
π . The momentum, irrep and

eigenstate number n are those of the ππ state. These three panels show the dynamical increase of the amplitude as E⋆
ππ moves through the

resonant ρ. The inner and outer error bars account for the statistical uncertainty on the three-point correlation functions and the
uncertainties in the ππ phase shift parametrization parameters, respectively. Lower panels show the phase shift with the discrete values
obtained for the corresponding irrep.
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FIG. 10. The FðE⋆
ππ; Q2Þ (red circles) for eight discrete E⋆

ππ , extracted from ~AðE⋆
ππ ; Q2;LÞ using the K-matrix parametrization,

Eq. (15), in
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kππ=R

p
. Also, ~AðEππ; Q2;LÞ is shown (gray squares, displaced in Q2 for visibility) for comparison. The green band

indicates the result of global fits to all FðE⋆
ππ; Q2Þ values as described in the text.
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A rigorous way to define the electromagnetic transition
form factor for ρ → πγ⋆ is to take the amplitude
Aππ;πγ⋆ðE⋆

ππ; Q2Þ, constrained at real values of E⋆
ππ , and

analytically continue it to the pole in the complex plane at
E⋆
ππ ¼ Eρ ¼ ð2.1762ð28Þ − i0.0150ð7ÞÞmπ . As made evi-

dent by Eq. (25), the residue of Aππ;πγ⋆ at the pole can be
factorized into a product of couplings of the ρ to ππ and to
πγ⋆ where the second of these will be proportional to
FðEρ; Q2Þ. In Fig. 13 we show this quantity, where the
orange band encompasses all satisfactory fits described

previously using both parametrizations of the ππ phase
shift. The smallness of the imaginary part is due to the ρ
pole at this quark mass being rather close to the real energy
axis and the energy dependence of FðE⋆

ππ; Q2Þ being rather
mild. Figure 13 also shows (in green) the form factor of the
ρ computed with a heavier light quark mass such that the
pion has mass ∼700 MeV, and the ρ is a stable hadron [46].
We also compare to experimental estimates of the real part
of the ρπ photocoupling [62,63]. In Eq. (E6) we give the
relation between this definition of the form factor and the
radiative decay width of ρþ → πþγ.
In performing the analytic continuation of Aππ;πγ⋆ as a

function of E⋆
ππ , we have kept the masses of all external

hadrons fixed at their on-shell values. Furthermore, we
have explored only real virtualities for the photon. Such an
approach mirrors existing determinations [64–66] of pion
photoproduction residues from experimental measurements
of Nγ → N⋆ → πN. We believe this is a natural choice for
general virtualities if one identifies Q2 ¼ −m2

γ . An alter-
native extrapolation procedure was presented in Ref. [30],
where the authors suggest determining Aππ;πγ⋆ for a range
of values of E⋆

ππ while fixing jQj in the c.m. frame of the
πγ⋆ state. One can then extrapolate E⋆

ππ to the ρ pole while
keeping jQj fixed. The advantage of this procedure is that
one does not need to perform a global fit of the amplitude in
terms of the variable Q2. However, this procedure has not
been described for the most useful means of accessing a
large number of energy levels in a finite volume, utilized in
this paper, namely boosting of the ππ system to nonzero
total momentum.
With a determination of FðE⋆

ππ; Q2Þ in hand we may
construct the P-wave reduced amplitude, Aππ;πγ⋆ðE⋆

ππ; Q2Þ,
using Eqs. (22) and (23). Since the phase of the amplitude
is fixed by Watson’s theorem to match the ππ phase, we
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FIG. 12. FðE⋆
ππ; Q2Þ as a function of the ππ c.m. energy for two

values of a2t Q2 ¼ 0, 0.025.
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FIG. 11. Shown is a comparison of the fits of type A, B, and C
(shades of green/blue), described in the text, that give a
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FIG. 13. The real and imaginary parts of the form factor
determined in this work evaluated at the ρ pole (orange). For
comparison we show the form factor obtained in Ref. [46]
for a heavier quark mass, where the ρ is stable (green). Also
shown is the experimentally determined value for the ρπ
photocoupling [62,63].
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only report its magnitude, which we choose to present in
units of m−1

π . In Fig. 14, we show the result for the
transition amplitude as a function of E⋆

ππ for two values
of Q2 along with the elastic ππ scattering amplitude,
Ml¼1

ππ . The bands shown encompass all the 1σ fluctuations
obtained using various different parametrizations and hence
can be considered to include both statistical and systematic
error estimates. Figure 15 makes clear that our determi-
nation of the amplitude has been constrained by points
which sample well the entire relevant region of E⋆

ππ andQ2.

V. πþγ → πþπ0 CROSS SECTION

Having obtained the transition amplitude, we can pro-
ceed to determine the dominant P-wave contribution to the
πþγ → πþπ0 cross section, which can readily be compared
with phenomenological studies [67,68]. For simplicity, we
restrict our attention to the process where the incoming

photon is on-shell, Q2 ¼ 0, but all results generalize to
describe the dominant one-photon exchange contribution to
the πþe− → πþπ0e− cross section.
In Appendix E we show that

σl¼1ðπþγ → πþπ0Þ ¼ α
q⋆fq⋆i
m2

π
jAππ;πγ⋆ðE⋆

ππ; 0Þj2; ð27Þ

where q⋆i and q⋆f are the c.m. frame momenta in the initial
and final states, respectively. Similarly, the ππ elastic
scattering cross section due to the P-wave is given by

σl¼1ðπþπ0 → πþπ0Þ ¼ 12π

q⋆2
sin2 δ1; ð28Þ

where q⋆ is the c.m. frame momentum.
In Fig. 16 we plot both cross sections for comparison.

We observe both the elastic scattering and the radiative
transition cross sections are dynamically enhanced in the
same region of energy due to the presence of the ρ
resonance, and we see the reduction in magnitude expected
for the electromagnetic process relative to the strong
process.
Comparing σl¼1ðπþγ → πþπ0Þ to the phenomenological

cross section [67,68], we find that the peak cross section in
our calculation with mπ ≈ 400 MeV is nearly 1 order of
magnitude larger than those in Refs. [67,68]. This apparent
discrepancy can be understood by investigating the depend-
ence of the peak cross section on the width of the resonance
[see Eq. (E5)],

lim
E⋆
ππ→mρ

σl¼1ðπþγ → πþπ0Þ ∝ q⋆i F2
πρðmρ; 0Þ

m2
πΓPðmρÞ

: ð29Þ

From Fig. 13, we find that q⋆i F2
πρðmρ; 0Þ=m2

π is approx-
imately 60% of the experimental value. With the two quark
mass points at our disposal, we can speculate that the quark
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FIG. 15. Mean value of mπjAππ;πγ⋆ j plotted as contours along
with the locations of the points ðE⋆

ππ=mπ; Q2Þ where the finite-
volume matrix elements were determined. A total of 42 different
kinematic points were used, and six of these appear outside the
range plotted here.
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FIG. 16. The πþγ → πþπ0 cross section as a function of the ππ
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mass dependence of this quantity is relatively mild.
Meanwhile, the ρ width is known to depend strongly on
the quark mass, and for the quark masses used here it is
around 12 MeV [14], making it an order of magnitude
smaller than experiment [69]. It reasonable to expect that
for calculations performed with decreasing values of the
quark masses, the ρ resonance will become broader (see
Ref. [24] for a concrete example at mπ ≈ 230 MeV), and
the πþγ → πþπ0 cross section will decrease significantly.

VI. CONCLUSION AND OUTLOOK

In this paper we have described the first calculation of the
radiative decay of a resonance within a first principles
approach to QCD. By computing three-point correlation
functions using lattice QCD we determine ππ → πγ⋆ matrix
elements in a finite volume over a range of discrete kinematic
points. These are related to the corresponding infinite-
volume transition amplitude using a procedure which
features the ππ elastic scattering amplitude determined from
the discrete spectrum of states on the same lattice configu-
rations. The P-wave amplitude for ππ → πγ⋆ is found to
feature a dynamical enhancement corresponding to the ρ
resonance, and the residue of the amplitude at the ρ pole can
be used to determine the ρ → πγ⋆ transition form factor.
In the present calculation we made a small number of

approximations which will be addressed in subsequent
studies. We used only a single lattice volume, but the
formalism should give compatible results for any volume
large enough that exponentially suppressed corrections of
the form e−mπL can be neglected. For the ππ spectrum these
corrections have been studied analytically [70,71] and
demonstrated to be small, but they have not been explored
for transition amplitudes. Future calculations using multi-
ple volumes will address this.
A recent determination of the P-wave ππ elastic scatter-

ing amplitude at a lighter pion mass, mπ ≈ 230 MeV [24],
shows the expected decrease in ρ mass and increase in
decay width, and an application of the methods outlined in
this paper to the same ensemble of lattice configurations is
now warranted.
A possible step once the transition amplitudes are

evaluated at a few quark masses is to consider a chiral
extrapolation of these quantities, in order to make more
direct contact with experimental observables, in advance of
an eventual calculation at the physical pion mass.
Currently, it is not completely clear how such an extrapo-
lation could be performed. The necessary formalism that
accommodates resonances and that incorporates quark
mass dependence in a transition process featuring an
external current is missing, unlike the case of elastic and
inelastic meson-meson scattering amplitudes [72–76]
(recently implemented in the analysis of ππ elastic scatter-
ing [23]). One possible method which potentially may
reduce the systematic uncertainty associated with describ-
ing the ðEππ

⋆; Q2Þ dependence of the amplitude and could

allow a constrained chiral extrapolation is to make use of
amplitudes obtained using dispersive techniques [68].
Beyond being a physically interesting process in its own

right, ππ → πγ⋆ serves as the first example of a wide class
of phenomenologically important processes that can be
studied with the techniques applied for the first time in this
paper. The calculation presented here makes it clear that
matrix elements featuring resonating hadronic systems can
be rigorously studied using lattice QCD. Obvious exten-
sions include nucleon resonances like the Δ in γ⋆N →
Δ → Nπ [77–79] and heavy flavor decays which feature
resonances like B → ππlν [80]. Moving to higher mass
resonances, the extension into the coupled channel case,
accommodated by the formalism laid down in
Refs. [28,29,32], will eventually allow calculations of
radiative transitions featuring the exotic hybrid mesons
that it is hoped will be photoproduced in the GlueX
experiment [81,82].
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APPENDIX A: NOTATIONAL CONVENTIONS
AND NORMALIZATIONS

Quantities associated with a given channel carry a
subscript labeling the channel, for instance, the four-
momentum of the “ππ” state is Pππ. Similarly, the total
energy of the “π” state is Eπ. Quantities evaluated in the
c.m. frame carry a superscript star, e.g. E⋆

ππ .
While infinite-volume single-hadron states with continu-

ous three-momentum are normalized using the standard
relativistic prescription, namely,
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hπ; Pπjπ; P0
πi ¼ 2Eπδ

3ðPπ − P0
πÞ; ðA1Þ

finite-volume states with discrete three-momentum are
normalized to unity,

hπ; Pπ;Ljπ; P0
π;Li ¼ δPπ ;P0

π
: ðA2Þ

The expansion in partial waves of infinite-volume two-
pion states follows that of Refs. [28,29],

jPππ; q̂⋆
ππi ¼

X
l;ml

ffiffiffiffiffiffi
4π

p
Ylml

ðq̂⋆
ππÞjPππ;l; mli; ðA3Þ

and this is the definition used in defining the transition
amplitude given in Eq. (1).

APPENDIX B: CONTAMINATION FROM l ≥ 3
PARTIAL WAVES

Although in this first calculation we have not explicitly
determined the contribution of l ≥ 3 partial waves,5 we can
give an analytic expression that describes how they appear
in the relation between finite and infinite-volume quan-
tities. As demonstrated in Refs. [28,29,59], due to the
reduction of rotational symmetry in a cubic volume,
transition amplitudes involving different partial waves
appear together in finite-volume irreps, leading to R in
Eq. (17) being a matrix in l space. Expanding the
denominator about E2 we find

RðE2;PÞ ¼ FðP;LÞ adj½M�
tr½adj½M� ∂M∂E2

�MðPÞ−1; ðB1Þ

where

M ¼ MðPÞ−1 þ FðP; LÞ; ðB2Þ

is purely real, and adj½M� is its adjoint (or adjugate). Since
we are simply interested in the mixing due to the lowest-
lying higher partial wave above l ¼ 1, we will restrict our
attention to the scenario where we are dealing with two-
dimensional matrices with l ¼ 1, 3. At low energy we are
justified in neglecting the l ¼ 3 contribution to the elastic
scattering amplitude (see Ref. [14]) so,

M ¼
�
Ml¼1 0

0 Ml¼3

�
≈
�
Ml¼1 0

0 0

�
; ðB3Þ

but the finite-volume function F is generally not diagonal
in angular momentum, so

F ¼
�
F11 F13

F13 F33

�
: ðB4Þ

The adjoint of M is easily evaluated,

adj½M� ¼
�

M22 −M12

−M21 M11

�
; ðB5Þ

and in the limit that the l ¼ 3 elastic scattering amplitude is
zero, the spectrum satisfies M−1

l¼1 ¼ −F11 and we obtain

tr

�
adj½M� ∂M∂E2

�
¼ M−1

l¼3 ×
∂

∂E2

ðM−1
l¼1 þ F11Þ ðB6Þ

and

FðP;LÞadj½M�MðPÞ−1¼
�
F11M−1

l¼1 F13M−1
l¼1

F13M−1
l¼1 −F2

13

�
×M−1

l¼3;

ðB7Þ

and M−1
l¼3 cancels in the ratio in Eq. (B1).

The end result is that allowing a nonzero l ¼ 3 transition
amplitude but with negligible l ¼ 3 elastic scattering
amplitude means that Eq. (16) is given by

jh1;LjJ μð0Þj2;Lij ¼ 1

L3

1ffiffiffiffiffiffiffiffi
2E1

p ðB8Þ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1ðHμ

l¼1Þ2 þ c2H
μ
l¼1H

μ
l¼3 þ c3ðHμ

l¼3Þ2
∂

∂E2
ðM−1

l¼1 þ F11Þ

s
; ðB9Þ

where c1 ¼ F11M−1
l¼1, c2 ¼ F13M−1

l¼1 and c3 ¼ −ðF13Þ2.
Equivalently, using the quantization condition, one can
write these as

c1 ¼ −ðF11Þ2 ∝ −ðcotϕ1 þ iÞ2 ¼ −
ei2ϕ1

sin2ϕ1

; ðB10Þ

c2 ∝ −ðcotϕ1 þ iÞ cotϕ13 ¼ −
eiϕ1 cotϕ13

sinϕ1

; ðB11Þ

c3 ∝ − cot2 ϕ13: ðB12Þ

Note, c1 and c2 are in general complex while c3 is real. This
is consistent with the fact that the term inside of the square
root in Eq. (B8) must be real. According to Watson’s
theorem Hμ

l¼1 ∝ eiδ1 ¼ e−iϕ1 , while Hμ
l¼3 ∝ eiδ3 ¼ 1 in

our approximation of no elastic scattering in l ¼ 3.
As an example, for the T−

1 irrep, one finds [2]

cotϕ1 ¼ cotϕ0
00 ðB13Þ

cotϕ13 ¼
4ffiffiffiffiffi
21

p cotϕ0
40; ðB14Þ

where the pseudophases, ϕP
lm, are those defined in Eq. (13).

5Here, l denotes the orbital angular momentum of the ππ state,
which is equal to the total angular momentum, J, of the πγ⋆ state.
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In order to estimate the contribution due to the l ≥ 3
transition amplitudes, one could perform calculations of
three-point functions using irreps where the ππ state
couples to l ¼ 3 but not to the l ¼ 1 partial wave, for
example the ½001�B1 and ½001�B2 irreps.

APPENDIX C: SYMMETRY FACTOR AND
IDENTICAL PARTICLES

In Eq. (19) we gave the definition of the LL-factor for
distinguishable particles. In general, one should write the
LL-factor as

2Eπ

R
¼ 1

ξ
32π

EπEππ

q⋆ππ
ðδ10 þ rϕ0Þ; ðC1Þ

where ξ is the “symmetry factor”, which is equal to 1=2 if
the particles are indistinguishable and 1 otherwise. For the
system of interest the interpretation of this factor is a subtle
one. Given that the ππ → πγ⋆ transition can only take place
if the initial ππ system is in a parity-odd state, with the
bosonic nature of the π one is lead to believe that the initial
state must be composed of distinguishable particles, e.g.
πþπ0, and consequently this symmetry factor should not
appear. In the limit of perfect isospin symmetry, which we
have in this calculation, the eigenstates of the Hamiltonian
are of definite isospin. Therefore, one has a choice whether
to evaluate matrix elements featuring jπþπ0;l ¼ 1i or
those of definite isospin jππ; I ¼ 1; mI ¼ þ1;l ¼ 1i given
by ðjπþπ0;l ¼ 1i − jπ0πþ;l ¼ 1iÞ= ffiffiffi

2
p

. The presence of
the symmetry factor differs depending on this choice. For
example, for the elastic scattering amplitude and transition
amplitude the choices are related via

Ml¼1;I¼1;mI¼þ1 ¼ 2Ml¼1;πþπ0 ;

Hμ
ππ;πγ⋆;I¼1;mI¼þ1 ¼

ffiffiffi
2

p
Hμ

πþπ0;πγ⋆ : ðC2Þ

The definition of the finite-volume matrix element,
Eq. (16), can be seen to be independent of the symmetry
factor,

jh1;LjJ μð0Þj2;Lij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hμ

1;2RHμ
2;1

q
L3

ffiffiffiffiffiffiffiffi
2E1

p

∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ−1=2ξξ−1=2

q
¼ 1. ðC3Þ

By not introducing the symmetry factor in Eq. (19), we
are determining the amplitudes using the jπþπ0;l ¼ 1i
basis for asymptotic states. Doing so allows us to more
easily compare phenomenological extractions from exper-
imental data where asymptotic states are not constructed in
the isospin basis.

APPENDIX D: LORENTZ COVARIANT
DECOMPOSITIONS OF THE MATRIX

ELEMENTS

In this appendix we show that the decomposition of the
P-wave matrix element in Eq. (8) is equivalent to another
common decomposition. The Lorentz invariant transition
amplitude may be obtained by contracting the matrix
element of the electromagnetic current with the polarization
vector of the photon, ϵμðq; λγÞ, where λγ is the helicity of
the photon,

hππjJ μð0Þjπiϵμðq; λγÞ ¼ Mλγ : ðD1Þ

A common decomposition for the γ⋆ðq; λγÞπðp1Þ →
πðp2Þπðp3Þ amplitude, not projected into any particular
partial wave, is

Mλγ ¼ ϵμνρσϵ
μðq; λγÞpν

1p
ρ
2p

σ
3Tðs; t; Q2Þ ðD2Þ

where the invariant amplitude, Tðs; t; Q2Þ, is a function of
s ¼ ðqþ p1Þ2, t ¼ ðp1 − p2Þ2, and the virtuality of the
photon, Q2.
In our case we are interested in the amplitude for the

P-wave, which can be obtained in the standard way [86,87]
by partial wave expanding Mλγ ,

Mλγ ¼
X

J¼1;3;…

ð2J þ 1ÞdðJÞλγ ;0
ðθÞAJ;λγ ðs;Q2Þ; ðD3Þ

where we have chosen the scattering plane to have ϕ ¼ 0,

and where dðJÞλγ ;0
ðθÞ are the reduced Wigner d functions.

Enforcing parity conservation ensures that AJ;0ðs;Q2Þ ¼ 0

and AJ;−1ðs;Q2Þ ¼ −AJ;1ðs;Q2Þ. The contribution of the
P-wave can be isolated,

Mλγ ¼ −
3ffiffiffi
2

p λγ sin θA1;λγ ðs;Q2Þ þ…; ðD4Þ

with the ellipses denoting the higher partial-wave
contributions.
The decomposition in Eq. (D2) is most easily inves-

tigated in the c.m. frame. If we let the incoming states have
momenta lying along the ẑ-axis and the outgoing momenta
in the x̂ ẑ-plane,

qμ ¼ ðEγ; 0; 0; qÞpμ
2 ¼ ðE0; k sin θ; 0; k cos θÞ;

pμ
1 ¼ ðE1; 0; 0;−qÞpμ

3 ¼ ðE0;−k sin θ; 0;−k cos θÞ;

with the photon polarization vector being
ϵμðq; λγ ¼ �1Þ ¼ ∓ 1ffiffi

2
p ð0; 1;�i; 0Þ. It follows that

Mλγ ¼ −
ffiffiffi
2

p
iTðs; t; Q2ÞkqE0 sin θ, and the presence of a

single factor of sin θ, as is the case for the P-wave in
Eq. (D4), indicates that the P-wave part of the amplitude
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must lack any further t dependence in Tðs; t; Q2Þ. We also
note that Mλγ contains explicitly the factors q and k which
describe the P-wave threshold behavior in the initial and
final states. In light of this we can write an invariant
decomposition capable of describing the P-wave as

M½1�
λγ

¼ ϵμνρσϵ
μðq; λγÞpν

1p
ρ
2p

σ
3T1ðs;Q2Þ; ðD5Þ

where T1ðs;Q2Þ should not have the ∝ k, ∝ q threshold
behavior and where the superscript “[1]” denotes this is the
first of two decompositions we are relating.
We are now in a place to reconcile this decomposition

with the one used through this work, Eq. (8), which we
rewrite here using the variables defined in this appendix,

M½2�
λγ

¼ ϵμνρσϵ
μðq; λγÞpν

1ϵ
ρ�ðP; λÞPσAðs;Q2Þ; ðD6Þ

where Pσ ¼ ðp2 þ p3Þσ and ϵρ�ðP; λÞ is the polarization
vector of the ππ system which has been projected in a P-
wave with helicity λ. In this appendix we are considering
the time-reversed process, γ⋆π → ππ which explains the
presence of the complex conjugate of the ππ polarization
vector.
The claim is that Eq. (D7) is equivalent to Eq. (D6), after

the ππ state appearing in the latter has been projected in a
P-wave. To show this, we begin by constructing a ππ
helicity state in the c.m. frame,

jjkj; J ¼ 1; λi ¼
Z

dk̂
Y1λðk̂Þffiffiffiffiffiffi

4π
p jπðkÞπð−kÞi; ðD7Þ

which we can boost to a frame having momentum P by first
boosting the system along the ẑ-axis and then performing a
rotation to the axis of the momentum

jP; jkj; J ¼ 1; λi ¼ U½RðP̂Þ�U½ZP�jjkj; J ¼ 1; λi: ðD8Þ

The ẑ-axis boost acting on four-vectors can be
expressed as

½ZP�μν ¼

2
666664

γ 0 0 βγ

0 1 0 0

0 0 1 0

βγ 0 0 γ

3
777775 ¼ 1

2ωπ

2
666664
Eππ 0 0 jPj
0 1 0 0

0 0 1 0

jPj 0 0 Eππ

3
777775;

ðD9Þ

since γ ¼ Eππ
2ωπ

and βγ ¼ jPj
2ωπ

where ωπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ k2
p

.

Then the action of the boost on kμ ¼ ðωπ;kÞ and k̄μ ¼
ðωπ;−kÞ is

k0μ ¼ ½ZP�μνkν ¼

2
666664

Eππ
2
þ jPj

2ωπ
kz

kx
ky

jPj
2
þ Eππ

2ωπ
kz

3
777775;

k̄0μ ¼ ½ZP�μν k̄ν ¼

2
666664

Eππ
2
− jPj

2ωπ
kz

−kx
−ky

jPj
2
− Eππ

2ωπ
kz

3
777775; ðD10Þ

and as expected, k̄0μ ¼ Pμ − k0μ. It follows that

jP; jkj; J ¼ 1; λi ¼
Z

dk̂
Y1λðk̂Þffiffiffiffiffiffi

4π
p jπðRk0ÞπðP − Rk0Þi:

ðD11Þ

We can write the matrix element

hP; jkj;J¼1;λjJ μð0Þjγðq;λγÞπðp1Þi

¼
Z

dk̂
Y�
1λðk̂Þffiffiffiffiffiffi
4π

p hπðRk0ÞπðP−Rk0ÞjJ μð0Þjγðq;λγÞπðp1Þi;

ðD12Þ

and substituting in the decomposition in Eq. (D5) we have

M½1�
λγ

¼ T1ðs;Q2Þϵμνρσϵμðq; λγÞpν
1P

σ

×
Z

dk̂
Y�
1λðk̂Þffiffiffiffiffiffi
4π

p ðRk0Þρ; ðD13Þ

which will be equivalent to Eq. (D6) if
R
dk̂Y�

1λðk̂ÞðRk0Þρ
transforms in the same way as ϵρ�ðP; λÞ. Since the rotation
can be factored out of the integral, and since
ϵρðRPz; λÞ ¼ ½R�ρσϵσðPz; λÞ, it follows that we just need
to show that XσðλÞ ¼ R

dk̂Y1λðk̂Þk0σ transforms like
ϵσðPz; λÞ. First, we establish that PμXμ ¼ 0,

PμXμ ¼
Z

dk̂Y1λðk̂Þ
�
E2
ππ

2
−
P2

2

�
¼ 0; ðD14Þ

and then we may check that the λ ¼ �1 components are
what is expected, e.g.,

ππ → πγ� AMPLITUDE AND THE … PHYSICAL REVIEW D 93, 114508 (2016)

114508-17



Xσðλ ¼ þ1Þ ¼
Z

dk̂Y1;þ1ðk̂Þk0σ

¼ −
ffiffiffiffiffiffi
4π

3

r
jkj 1ffiffiffi

2
p

2
6664
0

1

i

0

3
7775

¼
ffiffiffiffiffiffi
4π

3

r
jkjϵσðPz; λ ¼ þ1Þ; ðD15Þ

and indeed the forms are equivalent. Note the presence of a
factor of jkj ¼ k above, which suggests that A ∼ kT1.
Recalling that T1 does not have the threshold factor for the
final state ππ, we see that in the case that the ρ is unstable
into ππ, the quantity A should behave like k around the ππ
threshold.

APPENDIX E: CROSS SECTIONS

In this appendix we derive the relation given in Eq. (27)
for the cross section with a real photon. We begin with the
standard definition of the differential cross section,

dσ
dΩ

ðπþγ → ðπþπ0ÞλÞ ¼
1

64π2
q⋆f
q⋆i

1

E⋆2
ππ
e2jM½2�

λ j2 ðE1Þ

where λ is the helicity of the final state and M½2�
λ has been

defined in Eq. (D6). To obtain the total cross section, we
average over the initial photon helicity and sum over the
helicity of the final ππ state, and this gives

σðπþγ → πþπ0Þ≡ 1

2

X
λ;λγ

Z
dΩ

dσ
dΩ

ðπþγ → ðπþπ0ÞλÞ;

ðE2Þ

which is proportional to

1

2

X
λ;λγ

jM½2�
λ j2¼1

2
jAðE⋆

ππ;0Þj
X
λ;λγ

ϵμνρσϵ
μðq;λγÞpν

1ϵ
ρ�ðP;λÞPσ

×ϵμ̄ν̄ρ̄σ̄ϵ
¯μ�ðq;λγÞpν̄

1ϵ
ρ̄ðP;λÞPσ̄

¼1

2
jAðE⋆

ππ;0Þjϵμνρσϵμ̄ν̄ρ̄σ̄ð−gμμ̄Þ
�
−gρρ̄þPρPρ̄

E⋆2
ππ

�
×pν

1p
ν̄
1P

σPσ̄

¼1

2
jAðE⋆

ππ;0Þjϵμρνσϵμρν̄σ̄pν
1p

ν̄
1P

σPσ̄; ðE3Þ

and evaluating the tensor contraction and writing in terms
of c.m. frame quantities this becomes jAðE⋆

ππ; 0Þj2E⋆2
ππq⋆2i ,

and for the cross-section we have

σðπþγ → πþπ0Þ ¼ e2

4π

q⋆fq⋆i
m2

π
jAðE⋆2

ππ; 0Þj2: ðE4Þ

The cross section can be expressed in terms of the form
factor, FðE⋆

ππ; Q2Þ, using Eqs. (22) and (23) as

σðπþγ → πþπ0Þ ¼ 16πα
q⋆i
m2

π
jFðE⋆

ππ; Q2Þj2 sin
2δ1ðE⋆

ππÞ
ΓðE⋆

ππÞ
;

ðE5Þ
from which it is easy to find the peak cross section by
evaluating when δ1 ¼ 90°. Comparing to the expression
given in Ref. [63], where the c.m. energy E⋆

ππ has been
approximated by the real part of the ρ mass, we find a
definition of the radiative decay width of ρþ → πþγ in
terms of the form factor,

Γðρþ → πþγÞ ¼ α
4

3

q⋆i
m2

π
jFðmρ; 0Þj2: ðE6Þ
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