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The order of the thermal phase transition in the chiral limit of quantum chromodynamics (QCD) with
two dynamical flavors of quarks is a long-standing issue and still not known in the continuum limit.
Whether the transition is first or second order has important implications for the QCD phase diagram and
the existence of a critical end point at finite densities. We follow a recently proposed approach to explicitly
determine the region of first order chiral transitions at imaginary chemical potential, where it is large
enough to be simulated, and extrapolate it to zero chemical potential with known critical exponents. Using
unimproved Wilson fermions on coarse Nt ¼ 4 lattices, the first order region turns out to be so large that no
extrapolation is necessary. The critical pion mass mc

π ≈ 560 MeV is by nearly a factor 10 larger than the
corresponding one using staggered fermions. Our results are in line with investigations of three-flavor QCD
using improved Wilson fermions and indicate that the systematic error on the two-flavor chiral transition is
still of order 100%.

DOI: 10.1103/PhysRevD.93.114507

I. INTRODUCTION

Mapping out the phase diagram of quantum chromody-
namics (QCD) as a function of temperature T and baryon
chemical potential μB is one of the most challenging tasks
of modern particle physics. As the strong interactions are
inherently nonperturbative on hadronic energy scales,
lattice QCD (LQCD) is the only first principle approach
to date, for which all systematic errors can eventually be
removed.
The order of the thermal transition from a hadron gas to a

quark gluon plasma changes as a function of the quark
masses. The qualitative situation at zero baryon chemical
potential is depicted in Fig. 1. Regions of first order phase
transitions are seen on coarse lattices for three degenerate
flavors of quarks (Nf ¼ 3) with large and small masses.
These are center-symmetry breaking (deconfinement) and
chiral symmetry restoring phase transitions, respectively.
At intermediate masses, including the physical point, the
thermal transition proceeds by an analytic crossover. The
first order and crossover regions are separated by second
order lines in the 3D Ising universality class [Zð2Þ], which
have been mapped out on coarse lattices ([1–3] and
references therein). However for two flavors of quarks,
the nature of the chiral phase transition (upper left corner of
Fig. 1) is particularly difficult to clarify because chiral
fermions cannot be simulated easily. In the massless, chiral
limit, the transition may be of either first or second order
[4,5], corresponding to the two different scenarios in Fig. 1.

Which option is actually realized in QCD is a long-standing
and controversial issue; for a recent overview see e.g.
Ref. [6]. Settling this issue is important, since the nature of
the chiral transition at zero density also has implications for
the physical QCD phase diagram at finite baryon density,
which cannot be simulated directly because of the sign
problem of LQCD. In particular, it influences the possibil-
ity of a critical end point at moderate densities [7].
A standard approach to address this question is to

simulate the Nf ¼ 2 crossover region at successively
decreasing pion masses and search for scaling behavior
related to a critical point. However, such studies are
computationally expensive and often inconclusive, because
of the similarity of the critical exponents distinguishing the
second order points of the two scenarios. For a recent
discussion, see e.g. Refs. [6,8]. Recently, an alternative
approach was used in Ref. [8], which employs the fact that
the first order chiral transition region widens when an
imaginary chemical potential is switched on, and thus can
be simulated directly. The second order boundary between
the crossover and first order region can then be extrapolated
to zero density with known exponents, which are induced
by the Roberge-Weiss symmetry. Using unimproved stag-
gered fermions on coarse Nτ ¼ 4 lattices, it was indeed
established that the transition is of first order in the chiral
limit. (A similar strategy is followed using additional heavy
flavors in [9], though no tricritical scaling has been reported
there as yet.).
It must be stressed that so far there is no continuum

extrapolation for any of these features. On the contrary, it is
becoming clear that the locations of the critical boundary
lines display particularly strong cutoff effects. In particular,
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the first order chiral transition region for staggered fer-
mions shrinks drastically on finer Nτ ¼ 6 lattices [10,11],
and can only be bounded when using improved staggered
fermions [12]. By contrast and indicating the size of cutoff
effects, the chiral first order region is found to stay rather
wide when using improved Wilson fermions [13]. The
purpose of this paper is to investigate cutoff effects on the
Nf ¼ 2 chiral transition region by repeating the study of
Ref. [8] with unimproved Wilson fermions, starting from
previous studies at imaginary chemical potential in
Refs. [14,15]. The reason we use unimproved Wilson
fermions is twofold. On a conceptual level, one can be
sure that there are no unphysical modifications to the phase
structure due to improvement terms. On a practical level, if
we wish to quantify cutoff effects and eventually remove
them by extrapolation, it is necessary to see and control the
chiral phase transition, rather than just bounding it.
We summarize QCD at imaginary chemical potential in

Sec. II and give technical details of our simulation setup in
Sec. III. Numerical results are presented in Sec. IV,
followed by a discussion in Sec. V.

II. QCD AT IMAGINARY
CHEMICAL POTENTIAL

At imaginary quark chemical potential μ ¼ iμi
(μ ¼ μB=3) the sign problem is absent and standard
simulation algorithms can be applied. QCD possesses a
rich phase structure in this region, which depends on the
number of flavors Nf and the quark mass m. The partition
function is an even function of μ due to CP-symmetry, and
it is periodic in μ=T with period 2π=Nc due to gauge
symmetry and the antiperiodic boundary conditions of
fermions in the temporal direction [16]. As a consequence,
critical values μci =T ¼ ð2kþ 1Þπ=Ncðk ∈ NÞ mark the
boundaries between adjacent, physically equivalent
ZðNcÞ center sectors of the gauge group (throughout the
paper we use Nc ¼ 3). The transitions in the μi-direction
between these sectors are called Roberge-Weiss (RW)

transitions. For low temperatures, the RW transition is a
smooth crossover, whereas it becomes a first order tran-
sition for high T [16–18]. Consequently, there is a so-called
RWend point, where these two distinct behaviors meet. For
small and large quark masses, the analytic continuation of
the chiral and deconfinement transitions also join this point,
which then becomes a triple point. For intermediate masses,
where there is no chiral or deconfinement transition, it is
instead a second order end point. Hence, the nature of the
RW end point depends on the masses and the number of
flavors just as the order of the transition at μ ¼ 0 does.
This is the content of Fig. 2 (left), which represents Fig. 1

(left) enlarged by an additional μ2-axis. The value μi=T ¼
π=3 denotes the RW-plane with its regions of triple point
behavior and second order end point behavior, separated by
tricritical lines. The critical lines at μ ¼ 0 bounding the
chiral and deconfinement transitions continue as critical
surfaces to imaginary chemical potential and terminate in
these tricritical lines [19]. This phase structure has been
mapped out in recent years, and is qualitatively the
same using staggered [1,8,17–24] or Wilson fermions
[14,15,25–27].
Our interest now is in the Nf ¼ 2 backplane, shown in

Fig. 2 (right). More specifically, leaving the critical μi-value
of the RW-transition (bottom of the figure), a line of second
order transitions departs from the tricritical point, separat-
ing regions of first order transitions from crossover regions.
This line has to terminate in another tricritical point at
mud ¼ 0. In the vicinity of tricritical points, the functional
form of the line is governed by tricritical scaling laws,
which allows for its extrapolation to the chiral limit [8].
There are two possible scenarios as shown in Fig. 2 (right).
If the tricritical point at mud ¼ 0 is at negative values of μ2,
the chiral phase transition is second order. On the other
hand, if it is at positive values, there exists a first order
region at μ ¼ 0 and the transition in the chiral limit must be
first order, too. In this way one can clarify the order of the
chiral limit at zero chemical potential by mapping out the
second order line. For staggered fermions on Nτ ¼ 4

FIG. 1. Possible scenarios for the QCD phase transition at μ ¼ 0 as a function of quark mass. See text for details.
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lattices, it was found to be of first order [8]. In this work we
apply the same strategy using Wilson fermions.

III. SIMULATION DETAILS

We employ the same numerical setup as for our previous
studies of Wilson fermions at imaginary chemical potential,
described in Refs. [14] and [15]. In the gauge sector we use
the standard Wilson gauge action,

Sgauge ¼ β
X
n

X
μ;ν>μ

f1 − ReTrcðPμνðnÞÞg;

with plaquette Pμν and lattice coupling β ¼ 2Nc
g2 ; lattice sites

n; Lorentz indices μ, ν; and bare coupling g2. In the
fermionic sector we consider two flavors of mass-
degenerate quarks with the standard Wilson action

Sf ½ψ̄ ;ψ ; U� ¼ a4
X
Nf

X
n;m

ψ̄ðnÞDðn;mÞ½U�ψðmÞ;

and fermion matrix

Dðn;mÞ ¼ δnm − κ
X
i

ð1 − γiÞeaμδjij;0sgnðiÞU�iðnÞδnþî;m:

Here, the shorthand notation γ−μ ¼ −γμ and U−μðnÞ ¼
U†

μðn − ~μÞ has been used. The bare fermion massm sets the
value of the hopping parameter

κ ¼ ð2ðamþ 4ÞÞ−1:

Finite temperature on the lattice is given by

T ¼ 1=ðaðβÞNτÞ:

All our numerical simulations have been performed
using the publicly available [28] OpenCL [29] based code

CL2QCD [30,31], which is optimized to run efficiently on
GPUs. In particular, the LOEWE-CSC [32] at Goethe-
University Frankfurt and the L-CSC [33] at GSI in
Darmstadt have been used.
We work at fixed temporal lattice extent Nτ ¼ 4, leaving

the RW-plane μci ¼ πT=3 investigated in Ref. [14] at the
same Nτ. We work at four different values of the bare quark
mass, parametrized by κ ¼ 0.165, 0.17, 0.175 and 0.18 to
account for the shift of the critical line towards smaller
masses. In order to locate the critical chemical potential for
each bare quark mass, we scan in aμi for each mass. We
also performed a mass scan at μ ¼ 0 in κ ¼ 0.175, 0.1775,
0.18 and 0.1825.
For all parameter sets, temperature scans were carried

out on Nσ ¼ 12 lattices, locating the (pseudo)critical gauge
coupling βc with a Δβ of at most 0.001 around βc.
Simulations on larger volumes Nσ ¼ 16 and 20 were added
for finite size scaling, corresponding to aspect ratios Nσ=Nτ

of 3, 4 and 5, respectively. In order to accumulate statistics,
we simulated four independent Monte Carlo chains for
each parameter set, with acceptance rates of the order of
75% for each run. The autocorrelation on the data was
estimated using a python implementation [34] of the Wolff
method [35]. After discarding 5k to 10k trajectories for
thermalization, 40k to 100k trajectories were collected for
each individual Monte Carlo chain, such that there are
Oð100Þ statistically independent configurations in the
critical region. Observables were measured after each
trajectory. Additional β-points have been generated using
Ferrenberg-Swendsen reweighting [36]. For scale-setting
purposes, T ¼ 0 simulations at or close to certain critical
parameters have been performed. The scale itself is then set
by the Wilson flow parameter w0 using the publicly
available code described in Ref. [37]. This method is very
efficient and fast. In addition, the pion mass mπ was
determined along the critical line using these vacuum
configurations.

FIG. 2. Left: QCD phase diagram as a function of ðμ=TÞ2 as an extension of Fig. 1 (left). The red surfaces mark second order
transitions. Bold dark blue lines on the surfaces μ=T ¼ iπ=3 and mud ¼ 0 are tricritical lines. The bold bright blue line on the surface
ms ¼ ∞ is the second order line we study. Right: The Nf ¼ 2 backplane (ms ¼ ∞). Solid dots depict tricritical points and the two green
lines describe scenarios I and II for the second order transition line. Both figures follow Ref. [8].
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IV. RESULTS

We define a (pseudo)critical coupling βc (corresponding
to some temperature Tc) by the vanishing of the skewness

SðβcÞ ¼ hðX − hXiÞ3iβc=hðX − hXiÞ2i3=2βc
¼ 0

of a suitable observable X. In a study of the chiral transition
it is natural to use the chiral condensate

X ¼ ψ̄ψ ¼ NfTrD−1:

As an example, we show βcðμi=TÞ for κ ¼ 0.17 in Fig. 3.
Note that, because of the reflection symmetry of the partition
function in μ, the critical coupling is an even function of
chemical potential. For chemical potential values up to the
RW-plane it is well fitted by the leading quadratic Taylor
term (cf. also [17,18]). This allows us to interpolate between
simulation points and zero chemical potential to obtain
preliminary estimates for βc which are then numerically
tuned to the desired precision. As expected, the results show
a decreasing critical coupling, and thus temperature, as the
chemical potential approaches zero. The same holds if the
(bare) quark mass is lowered. See Table I for details.
We use the Binder cumulant [38] of the chiral con-

densate,

B4ðXÞ ¼ hðX − hXiÞ4i=hðX − hXiÞ2i2;

evaluated at the coupling of vanishing skewness, i.e. on the
phase boundary, in order to extract the order of the

transition as a function of quark mass and chemical
potential, B4ðβc;m; μi=T; VÞ. In the thermodynamic limit
V → ∞, it takes the values 1 for a first order transition and
3 for an analytic crossover, respectively. For the case of a
second order transition in the 3D Ising universality class it
takes the value 1.604 [1]. Hence, a discontinuity exists
when passing from a first order region to a crossover region
via a second order point. On finite volumes, this discon-
tinuous step function is smeared out to a smooth function.
On sufficiently large volumes and in the vicinity of a critical
point ðβc; μci =TðmÞÞ, the Binder cumulant can be expanded
in a finite size scaling variable according to

FIG. 3. Critical temperature as a function of μi=T for κ ¼ 0.17.
The vertical line indicates the Zð2Þ-critical value of μi=T (see
Table II).

TABLE I. Results for the critical coupling βc and corresponding B4 value. βc has been determined from the data by a vanishing
skewness. For βc, a constant, conservative error of 0.0005 has been assigned given our resolution in the simulated points of Δβ ¼ 0.001.
Values for μi=T are chosen such that the simulation points gradually leave the RW-plane (see text) and follow the Zð2Þ-line to smaller
μi=T values as the (bare) mass is lowered. In addition, simulations at μi=T ¼ 0 have been added.

κ μi=T βcðNσ ¼ 12Þ B4ðβc;Nσ ¼ 12Þ βcðNσ ¼ 16Þ B4ðβc;Nσ ¼ 16Þ βcðNσ ¼ 20Þ B4ðβc;Nσ ¼ 20)

0.165 0.984 5.2439(5) 1.564(19) 5.2440(5) 1.492(20) 5.2439(5) 1.458(30)
0.890 5.2356(5) 1.878(48) 5.2354(5) 1.874(52) 5.2356(5) 2.062(62)
0.796 5.2287(5) 2.085(55) 5.2284(5) 2.265(59) 5.2283(5) 2.629(79)
0.733 5.2241(5) 2.246(108) 5.2243(5) 2.068(111) 5.2245(5) 2.861(298)
0.576 5.2159(5) 2.391(145) 5.2159(5) 2.505(151) � � � � � �
0.419 5.2094(5) 2.543(115) 5.2096(5) 2.897(128) � � � � � �

0.17 0.890 5.1561(5) 1.417(23) 5.1560(5) 1.269(108) 5.1561(5) 1.184(17)
0.733 5.1459(5) 1.728(32) 5.1459(5) 1.819(38) 5.1459(5) 1.847(116)
0.576 5.1383(5) 1.926(38) 5.1385(5) 2.118(35) 5.1385(5) 2.340(48)

0.175 0.733 5.0601(5) 1.290(36) 5.0596(5) 1.215(108) 5.0604(5) 1.113(94)
0.576 5.0533(5) 1.522(33) 5.0531(5) 1.439(31) 5.0531(5) 1.459(41)
0.419 5.0481(5) 1.774(36) 5.0482(5) 1.859(48) 5.0480(5) 1.991(66)
0 5.0426(5) 2.035(32) 5.0427(5) 2.113(37) 5.0425(5) 2.383(44)

0.1775 0 4.9981(5) 1.888(34) 4.9981(5) 2.066(46) 4.9981(5) 1.864(31)
0.18 0.419 4.9568(5) 1.466(56) 4.9568(5) 1.357(41) 4.9567(5) 1.370(158)

0.262 4.9537(5) 1.560(44) 4.9539(5) 1.445(52) 4.9538(5) 1.492(34)
0.105 4.9523(5) 1.704(30) 4.9523(5) 1.683(30) 4.9522(5) 1.683(35)
0 4.9521(5) 1.714(26) 4.9520(5) 1.812(35) 4.9519(5) 1.863(49)

0.1825 0 4.9045(5) 1.604(30) 4.9043(5) 1.605(34) 4.9044(5) 1.401(19)
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B4ðm;μi=T;NσÞ ¼ B4ðm;μci =T;∞Þ
þ b1ðmÞfðμi=TÞ2 − ðμci =TÞ2gN1=ν

σ þ…;

ð1Þ

i.e. it approaches the step function with a characteristic
critical exponent ν. For the 3D Ising universality class, one
has B4 ≈ 1.604 and ν ≈ 0.63.
Our simulated values for B4ðm; μci =T;NσÞ are then fitted

to this form, resulting in the fit parameters b1; μci =T, where
μci =T indicates the position of the critical point. Examples
are given in Fig. 4 and results for μci =T are collected in
Table II. As can be seen in the figures, B4 increases with
volume if the transition is a crossover (left of the second
order point), whereas it decreases in the first order region,
ultimately approaching the infinite volume values 3 and 1,
respectively. As the (bare) quark mass is lowered, μci =T
decreases towards zero (see Table II).
Contrary to the situation with staggered quarks, the first

order region in this case is wide enough to be simulated
everywhere and no extrapolation is necessary. In order to
locate the critical mass at μ ¼ 0 directly, a scan in κ was
performed, with results presented in Table III and plotted in
Fig. 5. Since here we scan at fixed μ ¼ 0 in κ, Eq. (1) needs
to be replaced by its analogue [20]

B4ðκ;NσÞ ¼ B4ðκ;∞Þ þ k1

�
1

κ
−

1

κc

�
N1=ν

σ þ…: ð2Þ

Fitting the Binder data to Eq. (2) allows us to extract
κcðμ ¼ 0Þ; see Table III. Here we have interpolated the βc
data to get an estimate for βcðκcÞ, similar to what is shown
in Fig. 3. Our results for the critical point in bare parameter
space read

κcðμ ¼ 0Þ ¼ 0.1815ð1Þ;
βcðμ ¼ 0Þ ¼ 4.9228ð1Þ: ð3Þ

In order to compare with results from different discre-
tizations or finer lattices in the future, we need to convert
the critical line to physical units. The results of the scale-
setting procedure are summarized in Table IV. (Also
included are the reevaluated results for κ ¼ 0.1575 from
Ref. [14], which were originally carried out using a
different scale-setting method.) The results show that, in
terms of pion masses, the first order region is very large,
with the smallest critical pion mass at zero density being
mc

πðμ ¼ 0Þ ≈ 560 MeV. This result differs from an earlier
one with unimproved Wilson fermions which was, how-
ever, based on a different definition of the critical point
[39]. At this point, the critical boundary line does not yet
fall into the scaling region of the upper tricritical point and
no controlled extrapolation to positive μ2 is possible.
Note that for simulations at fixed Nτ the lattices grow

coarser going to lower masses, since βc decreases.
However, all lattices considered in this work are very
coarse, with a≳ 0.25 fm. Because of this, large discretiza-
tion artifacts are to be expected. On the other hand, our
volumes satisfy mπL > 5 for all our parameter sets, so that
finite size effects are negligible.

FIG. 4. Finite size scaling of B4 and fits for κ ¼ 0.165 (left) and κ ¼ 0.18 (right). The vertical lines indicate the fit ranges.

TABLE II. Results for fits to Eq. (1). B4ðm; μci =T;∞Þ and ν
have been set to 1.602 and 0.6301 throughout, respectively.

κ μci =T b1 Fit range χ2

0.165 0.9632(56) −0.0293ð13Þ [0.80∶0.98] 0.85
0.17 0.7924(24) −0.0219ð6Þ [0.58∶0.89] 0.42
0.175 0.5292(60) −0.0310ð30Þ [0.42∶0.58] 0.56
0.18 0.2040(88) −0.0443ð48Þ [0.00∶0.26] 1.94

TABLE III. Results for fits at aμ ¼ 0 to Eq. (2). B4ðκ;∞Þ and ν
have been set to 1.602 and 0.6301, respectively.

κc b1 Fit range χ2

0.1815(1) 0.0492(39) [0.1800∶0.1825] 5.59
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V. DISCUSSION

Our findings are summarized in Fig. 6, which shows the
critical Zð2Þ line separating the regions of first order chiral
transitions from analytic crossovers for Nf ¼ 2 QCD on
Nτ ¼ 4 lattices in themπ − ðμ=TÞ2 plane. As expected from
the staggered results [8], leaving the RW-plane towards
μ ¼ 0 the first order region shrinks as ðμ=TÞ2 grows.
However, the lowering of mc

π is relatively mild and we
end up with a large region of first order chiral phase
transitions at zero density, corresponding to scenario II in
Fig. 2 (right). For comparison, the μ ¼ 0 and μi ¼ πT=3
points of the critical line for staggered fermions [8] are also
shown in Fig. 6. While the qualitative behavior is thus the
same for both discretizations, the first order region is much
wider for Wilson fermions. Assuming that both discretiza-
tion schemes are fundamentally sound and lead to the same
continuum limit, we must conclude that the cutoff effect
on the chiral critical pion mass at a lattice spacing of
a ≈ 0.25 fm is of the order of 100%.
To place our results into context, the figure also shows

two simulation points used in studies with OðaÞ-improved
Wilson fermions on much finer lattices with Nτ ¼ 12 [41]

and 16 [42], where the thermal transition has been
identified to be an analytic crossover. These points may
thus be taken as an upper bound for the critical pion mass in
Wilson-type discretizations; i.e. the wide first order region
is to a large extent due to discretization effects. Indeed, in a
recent study of the RWend point on Nτ ¼ 6 lattices [15], it
was shown that the tricritical point in the RW-plane moves
to lower masses by around 70% with the unimproved
action, as also shown in Fig. 6. Assuming a similar shift at
μ ¼ 0 would put mc

πðμ ¼ 0;Nτ ¼ 6Þ to ∼400 MeV and
thus in the vicinity to those crossover points. Our findings
are in qualitative accord with other investigations. A recent
study with OðaÞ-improved Wilson-Clover fermions deter-
mined a similarly large mc

π of around 880 MeV for Nf ¼ 3
on Nτ ¼ 4 lattices [43]. Taken the improved and unim-
proved results together, this suggests that the OðaÞ effects
are far from dominant on Nτ ¼ 4 lattices.
Altogether this suggests a very small or even vanishing

mc
πðμ ¼ 0Þ in the continuum limit. Being able to explicitly

simulate the critical boundary of the transition region with
the help of imaginary chemical potential and studying its
change with the lattice spacing might in the future allow for
a continuum extrapolation.

FIG. 5. Finite size scaling of B4 and fit for μ ¼ 0. The vertical
lines indicate the fit ranges.

TABLE IV. Overview of the T ¼ 0 simulations performed on 163 × 32 lattices. w0=a has been determined and converted to physical
scales using the publicly available code described in Ref. [37]. For the pion mass determination, eight point sources per configuration
have been used onOð400Þ uncorrelated configurations. The amπ measurements for all κ but 0.1575 and 0.1815 are taken from Ref. [40].
The table also contains the lattice spacing and the pion mass in physical units and, in the last column, the temperature of the
corresponding finite temperature ensemble with Nτ ¼ 4.

κ β w0=a amπ a (fm) mπ (MeV) T (MeV)

0.1815 4.9228 0.56418(9) 0.8828(3) 0.311(3) 560(6) 159(2)
0.1800 4.9519 0.56738(5) 0.9076(2) 0.309(3) 579(6) 159(2)
0.1750 5.0519 0.58381(7) 0.9655(2) 0.301(3) 634(7) 164(2)
0.1700 5.1500 0.60973(10) 1.0059(2) 0.288(3) 690(7) 171(2)
0.1650 5.2420 0.64801(16) 1.0421(2) 0.271(3) 759(8) 182(2)
0.1575 5.3550 0.71045(26) 1.1426(17) 0.246(3) 913(9) 200(2)

FIG. 6. Zð2Þ line in the mπ − μ2 plane. See text for details.
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