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We present precise lattice computations for the b-quark mass, the quark mass ratios mb=mc and mb=ms

as well as the leptonic B-decay constants. We employ gauge configurations with four dynamical
quark flavors, up-down, strange and charm, at three values of the lattice spacing (a ∼ 0.06–0.09 fm)
and for pion masses as low as 210 MeV. Interpolation in the heavy quark mass to the bottom quark
point is performed using ratios of physical quantities computed at nearby quark masses exploiting the
fact that these ratios are exactly known in the static quark mass limit. Our results are also extrapolated
to the physical pion mass and to the continuum limit and read mbðMS; mbÞ ¼ 4.26ð10Þ GeV,
mb=mc ¼ 4.42ð8Þ, mb=ms ¼ 51.4ð1.4Þ, fBs ¼ 229ð5Þ MeV, fB ¼ 193ð6Þ MeV, fBs=fB ¼ 1.184ð25Þ
and ðfBs=fBÞ=ðfK=fπÞ ¼ 0.997ð17Þ.
DOI: 10.1103/PhysRevD.93.114505

I. INTRODUCTION

Lattice QCD simulations constitute the current dominant
theoretical framework for high-precision B-physics compu-
tations which are necessary, in combination with experi-
mental results, to obtain precious information in the quark
sector phenomenology. In fact, increasingly improved com-
putations of matrix elements (decay constants, form factors
and mixing parameters) are of high importance to carry out
challenging tests of the Cabibbo-Kobayashi-Maskawa
(CKM) paradigm, an effort also stimulated by the ambitious
prospect of discovering footprints of new physics effects.
Moreover, latticemethods are optimal to determine the quark
masses by confronting experimental quantities from spec-
troscopy with their theoretical counterparts computed from
first principles via lattice QCD simulations.
We should stress that although direct lattice simulations

are not yet possible at the physical value of the b-quark
mass due to computing power limitations, the combined
use of effective theories and improved lattice techniques
has progressively led to results that are characterized by
much reduced and reliable systematic uncertainties.
In the present paper,we have carried out a nonperturbative

determination of the b-quark mass as well as its ratios

to the charm and the strange quark mass. The latter turn out
to be very accurate because the renormalization scheme
dependence is absent and the systematics related to the
lattice scale determination are suppressed.We observe that a
precise b-quark mass evaluation is important for reducing
the uncertainty in the study of Higgs decays to bb̄ [1] and
possibly unveil non-SM features of theH − b − b̄ coupling.
In this paper, we have also computed the pseudoscalar

B-decay constants fBs and fB as well as their (SU(3)-
breaking) ratio, fBs=fB. Currently there is high experi-
mental interest by LHCb and B factories in the processes
BðsÞ → μþμ− [2] and B → τν [3,4] for the full description
of which the knowledge of the aforementioned decay
constants is indispensable. The importance of B-decays
is not limited only to their crucial contribution for improv-
ing the accuracy of the unitarity triangle determination; in
fact B-decays in channels that are loop suppressed in SM
are some of the first-class candidates for revealing features
of beyond the Standard Model (SM) dynamics.
In our lattice computation, we have used Nf¼2þ1þ1

dynamical quark gauge configurations generated by ETM
Collaboration [5,6] at three values of the lattice spacing.
Our results are extrapolated to the continuum limit. For the
determination of the B-physics observables, we have
employed the ETMC ratio method that has already been
applied within the Nf ¼ 2 lattice simulations framework
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[7–9]. In particular, in the present paper, we have brought
about improvements of the ratio method implementation
thanks to which it is possible to gain better control of
various sources of systematic uncertainty.
The plan of the paper is as follows. We describe our

computational setup in Sec. II. In Sec. III, we present an
improved implementation of the ratio method in the cases
of the determination of the b-quark mass, its ratios to the
charm and strange quark masses, and the pseudoscalar
B-decay constants. We also give a detailed error budget for
each one of the observables studied in the present work.
Finally, in Sec. IV, we compare our results with the ones
provided by other lattice collaborations. For the interested
reader, recent reviews on B-physics lattice computational
methods, techniques and collection of results are given in
Refs. [10–13]. Recent nonlattice results can be found e.g. in
Refs. [14–16].

II. COMPUTATIONAL DETAILS

A. Lattice action setup

In our computation, we employ Iwasaki glue [17,18] and
a mixed lattice fermionic action setup. The sea quark action
for the light mass-degenerate sea quark doublet, Sl, and the
action for the strange and charm quark doublet, Sh ([19,20])
read, respectively,

Sseal ¼ a4
X
x

ψ̄lðxÞ
�
1

2
γμð∇μ þ∇�
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3

�
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where ∇μ and ∇�
μ represent the nearest neighbor forward

and backward covariant derivatives and it is intended
that the untwisted mass has been tuned to its critical value,
Mcr. In Eq. (1), we have defined the quark doublet ψl ¼
ðψuψdÞT while μl denotes the light (sea) twisted quark
mass. In Eq. (2), ψh ¼ ðψ s;ψcÞT denotes the strange-charm
fermion doublet while μσ and μδ are the bare twisted mass
parameters from which the renormalized (sea) strange and
charm masses can be derived. Pauli matrices in Eqs. (1) and
(2) act in flavor space. For more details on the twisted mass
setup, we refer the reader to Refs. [5,6,19–23].
In the valence sector, we employ the Osterwalder-Seiler

(OS) action [24] which is written as the sum of individual
quark flavor contributions,

Sval;OSq ¼ a4
X
x
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�
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where the label f runs over the different valence flavors—
light, strange, charm or heavier and rf ¼ �1. Valence and
sea quark masses are matched to each other and fixed in
terms of meson masses in order to ensure unitarity in the
continuum limit. Lattice artifacts in physical observables
are just Oða2Þ [19,25].

B. Simulation parameters and correlation functions

We have used the Nf ¼ 2þ 1þ 1 gauge ensembles
generated by the ETM Collaboration [5,6]. A summary of
the most important details of our simulations is given in
Table I.
Simulation data have been taken at three values of the

lattice spacing, namely a ¼ 0.0885ð36Þ, 0.0815(30) and
0.0619(18) fm, corresponding to β ¼ 1.90, 1.95 and 2.10,
respectively (see Ref. [26]). In our simulation, the light
valence and sea quark masses are set equal, leading to pion
masses in the range between 210 and 450MeV. Strange and
charm sea quark masses are chosen close to their physical
value and fixed fromMK andMDs inputs (see Ref. [26]). To
allow for a smooth interpolation to the physical values of the
valence strange and charmmass as well as for heavier quark
masses, we have inverted the heavy valence Dirac matrix for
three values of the strangelike quark mass, μs, and a number
of charmlike and heavier quark mass, aμc − aμh.
We have fixed the lattice scale using fπ. The u=d, strange

and charm quark masses have been determined comparing
lattice data with the experimental values of the pion, K and
DðsÞ meson mass, respectively. Further details can be found
in Ref. [26]. The use of the mixed action of twisted mass
and OS quarks offers the advantage that the masses of light
quarks in the sea and of all types of quarks in the valence
are multiplicatively renormalized via the renormalization
constant (RC) Zm ¼ 1=ZP. The latter is computed non-
perturbatively using the RI -MOM scheme (for the RC
determination, see Appendix A of Ref. [26]). Moreover,
exact chiral lattice Ward-Takahashi identities imply that at
maximal twisted angle no normalization constant is needed
in the computation of decay constants [19,27].
In two-fermion correlation functions, valence light and

strangelike quark propagators have been calculated with the
“one-end” trick stochastic method [28,29] by employing
spatial stochastic sources at a randomly chosen time slice.
However for propagators of the charm or heavier quark, in
order to get suppressed contribution of the excited states in
the correlation functions, we have employed Gaussian
smeared interpolating quark fields [30]. For the values of
the smearing parameters, we set kG ¼ 4 and NG ¼ 30. In
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addition, we apply APE-smearing to the gauge links [31] in
the interpolating fields with parameters αAPE ¼ 0.5 and
NAPE ¼ 20. Smearing leads to improved projection onto
the lowest energy eigenstate at small Euclidean time sepa-
rations. We have implemented smeared fields in both source
and sink. We have thus evaluated two-point heavy-light
correlation functions made up by the four possible combi-
nations of local-smeared source-sink. We can thus employ
the GEVP method [32] to compute the ground state pseu-
doscalar masses. For the pseudoscalar decay constant cal-
culation, we evaluate two-point correlation functions with
pseudoscalar interpolating operators PðxÞ ¼ q̄1ðxÞγ5q2ðxÞ.
The typical form of the correlation function and its asymp-
totic behavior on periodic lattices read

CPPðtÞ ¼ ð1=L3Þ
X
~x

hPð~x; tÞP†ð~0; 0Þi⟶t≫0;ðT−tÞ≫0

×
ξPP
2Mps

ðe−Mpst þ e−MpsðT−tÞÞ: ð4Þ

We set opposite Wilson parameters, rf, for the two valence
quarks that form the pseudoscalar meson. This choice
guarantees that the cutoff effects on the pseudoscalar mass
are Oða2μqÞ [19,33,34]. We consider two cases, using
smeared source only and source and sink both smeared,
for which ξPP is given by ξPP ¼ h0jPLjpsihpsjPSj0i in the
first case and ξPP ¼ h0jPSjpsihpsjPSj0i in the second one,
where L and S indicate local and smeared operators,

respectively. From the combination of the two kinds of
correlators it is easy to get the matrix element of the local
operator, namely, gps ¼ h0jPLjpsiwhich, via PCAC, allows
for the computation of the pseudoscalar decay constant:

fps ¼ ðμ1 þ μ2Þ
gps

Mps sinhMps
; ð5Þ

where μ1;2 are the masses of the valence quarks entering the
pseudoscalarmesonmassMps. InEq. (5), the use of sinhMps

rather than Mps turns out to be advantageous for getting
reduced discretization errors. In Fig. 1, we illustrate the
beneficial effect of smearing in determining the ground state
signal at early time distance and making possible the decay
constant evaluation for values of the heavy quark mass for
which it fails if local interpolating fields only are used. In the
figure, we show the results at β ¼ 1.95 and aμsea ¼ aμl ¼
0.0035 obtained for the heavy-light effective mass versus the
Euclidean time separation panel (a) and the decay constant
versus the heavy quark mass panel (b) using either only local
or appropriate combinations of local and smeared interpolat-
ing fields.
For each of the β ¼ 1.90 and 1.95 gauge ensembles, the

ETM Collaboration has produced around 5000 thermalized
trajectories. For the ensembles at β ¼ 2.10 corresponding
to the two heaviest light quark masses (i.e. aμsea ¼ 0.0020,
0.0030), 4000 trajectories have been generated; while for
the case of the lightest sea quark mass (aμsea ¼ 0.0015), the
total number of the generated trajectories is about 2100. All

TABLE I. Summary of simulation details. Gauge couplings β ¼ 1.90, 1.95 and 2.10 correspond to lattice spacings a≃ 0.089, 0.082
and 0.062 fm, respectively. We denote with aμl, aμs and aμc − aμh, the light, strangelike, charmlike and heavier bare quark masses,
respectively, entering in the valence sector computations. Ncfg stands for the number of gauge configurations used in the analysis.

β V=a4 aμsea ¼ aμl Ncfg aμs aμc − aμh

1.90 323 × 64 0.0030 150 0.0180, 0.212 56, 0.250 00,
0.0040 150 0.0220, 0.294 04, 0.345 83,
0.0050 150 0.0260 0.406 75, 0.478 40,

0.562 67, 0.661 78,
0.778 36, 0.915 46

1.90 243 × 48 0.0040 150
0.0060 150
0.0080 150
0.0100 150

1.95 323 × 64 0.0025 150 0.0155, 0.187 05, 0.220 00,
0.0035 150 0.0190, 0.258 75, 0.304 33,
0.0055 150 0.0225 0.357 94, 0.420 99,
0.0075 150 0.495 15, 0.582 37

0.684 95, 0.805 61
1.95 243 × 48 0.0085 150

2.10 483 × 96 0.0015 90 0.0123, 0.144 54, 0.170 00,
0.0020 90 0.0150, 0.199 95, 0.235 17,
0.0030 90 0.0177 0.276 59, 0.325 31,

0.382 62, 0.450 01,
0.529 28, 0.622 52
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trajectories have integration length τ ¼ 1. In each ensem-
ble, gauge configurations are saved on one every two
trajectories. For each hadronic observable, the autocorre-
lation has been studied either by computing directly the τint
or employing the blocking method to estimate the final
error; blocking of about 25 measurements is the typical
case for our ensembles in order to safely estimate the final
statistical error for Mps and fps in the light sector. Both
methods lead to comparable estimates for the final stat-
istical error. Typical values for τint ∈ ½1; 3� for Mps and fps
depending on the gauge ensemble. In our analysis, we have
used a number of measurements, indicated by Ncfg in
Table I, forMps and fps performed on gauge configurations

each of which is separated by about 20 gauge configura-
tions (or equivalently separated by about 40 trajectories
with τ ¼ 1) of the original Monte Carlo history. Based on
the above findings we are confident that this choice ensures
that autocorrelation is highly suppressed. Moreover, we
perform our final analysis by applying the blocking
method; we consider blocks of 10 measurements for β ¼
1.90 and β ¼ 1.95 and 6 measurements for β ¼ 2.10.
Statistical errors on pseudoscalar meson masses and

pseudoscalar decay constants have been estimated with the
jackknife procedure. Autocorrelation is taken into account
using the blocking method. Fit cross correlations are kept
under control by generating 1000 bootstrap samples for
each gauge configuration ensemble. Notice also that the RC
computation has been performed on separate (i.e. totally
uncorrelated to the Nf ¼ 2þ 1þ 1 sets) Nf ¼ 4 gauge
configuration ensembles (for details, see Appendix A of
Ref. [26]). Moreover, from the comparison of results
obtained at the same lattice spacing (β ¼ 1.90) and light
quark mass (μsea ¼ 0.0040) but on different lattice volumes
(243 × 48 and 323 × 64) we notice no significant finite
volume effects on the values of all observables relevant for
this study. Note that finite size effects are expected to be
maximal correspondingly to the L ¼ 24, μl ¼ 0.0040
ensemble as it has the smallest value of ðMpsLÞ among
those we have considered (see Ref. [26]).

III. ANALYSIS AND RESULTS

For the determination of the B-physics quantities, we
have used the ratio method already applied in the Nf ¼ 2

framework [7–9]. The main idea can be summarized in
three steps. The first one is the calculation of the values of
the observables of interest at heavy quark masses around
the charm scale, for which relativistic simulations are
reliable (i.e. they produce results with well-controlled
discretization errors). The second step consists in evaluat-
ing appropriate ratios of the observables at increasing
values of the heavy quark mass up to a scale of 2–3 times
the charm quark mass (i.e. around 3 GeV). The key point is
that the static limit of the measured ratios is exactly known
from HQET arguments. The final step of the computation
consists in smoothly interpolating data from the charm
region to the infinite mass point and extracting their values
at the b-mass.
The great computational advantage of this method is that

one is able to make B-physics computations using the same
relativistic action setup with which the lighter quark
computations are performed. Moreover, an extra simulation
at the static point limit is not necessary, while the relevant
exact information about it is incorporated in the construc-
tion of the ratios of observables.
It should be stressed that the use of ratios of observables

drastically reduces the discretization errors and at the same
time leads to a great suppression of the uncertainties that

FIG. 1. (a) Effective mass of the pseudoscalar 2-point correlator
obtained using either a local source and sink (red circles) or the
GEVP method (blue squares) applied to a matrix of local-local,
smeared-local, local-smeared and smeared-smeared correlators vs
the Euclidean time separation in lattice units. Here β ¼ 1.95,
aμl ¼ 0.0035 on lattice volume V=a4 ¼ 323 × 64. The heavy-
quark mass is around 2 times the physical charm quark mass,
μphysc . (b) The decay constant of heavy-light mesons computed
using only local interpolating fields (red circles) or including
Gaussian smeared sources (blue squares) are plotted vs the heavy-
quark mass, ranging from μphysc up to ∼3μphysc .
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come from the QCD matching to HQET. Furthermore the
impact of possible (residual) effects of both types of
systematic uncertainty on the final results can be controlled
by employing appropriate variants of the ratio definition
(see below).
First preliminary analyses for the decay constants and the

b-quark mass with Nf ¼ 2þ 1þ 1 gauge ensembles have
been presented in Refs. [35,36], respectively.
In the following sections, we present our B-physics

analysis where we have made use of improved variants of
the ratio method that allow for better control over three
main sources of systematic uncertainty, namely, those due
to discretization, lattice scale determination and the fitting
procedure related to the b-point interpolation.

A. Bottom quark mass and bottom to
charm/strange quark mass ratios

At each value of the lattice spacing and sea quark mass
ensemble, we build the quantity

Qm ≡ Mhs

ðMhlÞγðMcsÞð1−γÞ
; ð6Þ

where Mhs and Mhl are the heavy-strange and heavy-light
pseudoscalar masses, respectively, while we denote byMcs
the mass of the pseudoscalar meson made out of a charm
and a strange quark. The parameter γ, not subject to tuning,
may take values, typically, in the interval [0, 1). We note
that by employing the dimensionless quantity Qmðμ̄hÞ of
Eq. (6) in our analysis, we gain large cancellations of the
lattice scale systematics onmb. Using HQETarguments we
know that the asymptotic behavior will be given by

lim
μpoleh →∞

�
Mhs=ðMhlÞγ
ðμpoleh Þð1−γÞ

�
¼ const; ð7Þ

where μpoleh is the heavy quark pole mass. We then consider
a sequence of heavy quark masses1 such that any two
successive masses have a common and fixed ratio i.e.

μ̄ðnÞh ¼ λμ̄ðn−1Þh , n ¼ 2; 3;…. The next step is to construct at
each value of the sea quark mass and lattice spacing the
following ratios:

yQðμ̄ðnÞh ; λ; μ̄l; μ̄s; aÞ

≡ Qmðμ̄ðnÞh ; μ̄l; μ̄s; aÞ
Qmðμ̄ðn−1Þh ; μ̄l; μ̄s; aÞ

·

�
μ̄ðnÞh ρðμ̄ðnÞh ; μÞ

μ̄ðn−1Þh ρðμ̄ðn−1Þh ; μÞ

�ðγ−1Þ

¼ λðγ−1Þ
Qmðμ̄ðnÞh ; μ̄l; μ̄s; aÞ
Qmðμ̄ðnÞh =λ; μ̄l; μ̄s; aÞ

�
ρðμ̄ðnÞh ; μÞ
ρðμ̄ðnÞh =λ; μÞ

�ðγ−1Þ
ð8Þ

with n ¼ 2; 3;… and we have used the relation μpoleh ¼
ρðμ̄h; μÞμ̄hðμÞ between the MS renormalized quark mass (at
the scale μ) and the pole quark mass. The factors ρ’s are
known perturbatively up to N3LO [37–41]. For each pair of
heavy quark masses, we then carry out a simultaneous
chiral and continuum fit of the quantity defined in Eq. (8) to
obtain yQðμ̄hÞ≡ yQðμ̄h; λ; μ̄u=d; μ̄s; a ¼ 0Þ. By construction
this quantity involves (double) ratios of pseudoscalar
meson masses at successive values of the heavy quark
mass, so we expect that systematic uncertainties due to the
use of the perturbative factors ρðμ̄h; μÞ as well as discre-
tization errors will be quite suppressed.2 In fact, this is the
case even for the largest values of the heavy quark mass
used in this work, as can be seen in the plot of Fig. 2(a). In
Fig. 2(b), the scaling behavior of the ratios is shown at
some intermediate value of heavy quark mass pair. Since in
the quark mass ratios of Eq. (8) we have taken account of
the matching of QCD onto HQET, our ratio yQðμ̄hÞ has
been defined such that the following Ansatz is sufficient to
describe the μ̄h-dependence of yQ

3

yQðμ̄hÞ ¼ 1þ η1
μ̄h

þ η2
μ̄2h

: ð9Þ

In Eq. (9), the constraint limμ̄h→∞yQðμ̄hÞ ¼ 1 has already
been incorporated. This fit is illustrated in Fig. 3(a). Finally,
we compute the b-quark mass through the chain equation,

yQðμ̄ð2Þh ÞyQðμ̄ð3Þh Þ…yQðμ̄ðKþ1Þ
h Þ

¼ λKðγ−1Þ
Qmðμ̄ðKþ1Þ

h Þ
Qmðμ̄ð1Þh Þ

·

�
ρðμ̄ðKþ1Þ

h ; μÞ
ρðμ̄ð1Þh ; μÞ

�
γ−1

; ð10Þ

in which the values of the factors in the lhs are evaluated
using the result of the fit function [viz. Eq. (9)]. The

parameters λ, K (integer) and μ̄ð1Þh are such that

Qmðμ̄ðKþ1Þ
h Þ matches ðMBs=ðMBÞγÞðMDsÞðγ−1Þ, where

MBs ¼ 5366.7ð4Þ MeV, MB ¼ 5279.3ð3Þ MeV and
MDs ¼ 1969.0ð1.4Þ MeV are the experimental values of
theBs,B andDsmesonmasses [42], respectively.Moreover,

Qmðμ̄ð1Þh Þ (the so-called “triggering point” of the chain
equation) can be safely computed in the continuum limit

and at the physical pion mass for any value of μ̄ð1Þh chosen in
the region of the charm quark mass; see Fig. 3(b). The
combined chiral and continuum fit Ansatz we used is linear
in μ̄l [43] and in a2.

1In the present analysis, quark masses are expressed in the
MS-scheme at the scale of μ ¼ 2 GeV.

2Notice that Mð1−γÞ
cs cancels out in the ratios defined in Eq. (8).

The dependence on the scale μ in the determination of the factors
ρðμ̄h; μÞ is also canceled out in the ratios.

3For more details on this point, see Appendix of Ref. [8].
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The result for the b-quark mass will be given by4

μ̄b ¼ λKμ̄ð1Þh . Figures 2 and 3 refer to one of the analyses

we have performed in this work where, by setting, μ̄ð1Þh ¼
1.175 GeV and γ ¼ 0.75, we find ðλ; KÞ ¼ ð1.160; 10Þ. We
note here that for the running coupling entering in the

ρðμ̄h; μÞ function we have usedΛNf¼4

QCD ¼ 297ð8Þ MeV [42].
A detailed error budget is given in Table II. The

description of the various entries follows:
(i) “statþ fit”: we gather the error coming from the

statistical uncertainties of correlators, the interpola-
tion/extrapolation of the simulated quark masses to
the physical values, the extrapolation to the con-
tinuum limit, as well as the statistical uncertainties of

the RCs. We here recall that statistical errors have
been evaluated using the jackknife method and fit
cross correlations are taken into account by gen-
erating bootstrap samples for each gauge configu-
ration ensemble.

(ii) “syst. discr.”: it refers to two sources of systematic
uncertainty, both due to cutoff effects. The first is
related to the two evaluations of the quark mass RC,

FIG. 2. Combined chiral and continuum fit of the ratio defined
in Eq. (8) against the renormalized light quark mass μ̄l ¼ μ̄sea:
(a) for the two largest values of heavy quark mass and (b) for
intermediate values of heavy quark masses. The fit Ansatz is
linear both in μ̄l and in a2. The empty black circle is our result at
the physical u=d quark mass point in the continuum limit.

FIG. 3. (a) yQðμ̄hÞ against 1=μ̄h using the fit Ansatz of Eq. (9).
The vertical black thin line marks the position of 1=μ̄b. (b) Com-
bined chiral and continuum fit at the triggering point, i.e. for the

quantity Qmðμ̄ð1Þh Þ against the renormalized light quark mass μ̄l.
The empty black circle is our result at the physical u=d quark
mass point in the continuum limit.

TABLE II. Full error budget for mb and mb=mc.

Uncertainty (in %) mb mb=mc

statþ fit 0.9 0.7
syst. discr. 1.6 0.9
syst. ratios 0.8 0.8
syst. chiral 0.4 0.3
syst. trig. point � � � 1.2
RI0-MS matching 1.3 � � �
Total 2.4 1.9

4Here the value for the b-quark mass is expressed in the MS-
scheme at the scale of 2 GeV, i.e., the same scheme and scale we
have decided to work in this analysis.
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called M1- and M2-type, which correspond to
different ways in which the cutoff effects are treated
in the RI-MOM calculation (see Appendix A of
Ref. [26]). This amounts to about 1.4%. The second
one is the difference (of about 0.8%) between the
result obtained through an analysis where data from
the coarsest lattice spacing (β ¼ 1.90) have been
excluded and the one that uses data from all three
values of β. The two above systematic uncertainties
have been added in quadrature.

(iii) “syst. ratios”: we collect five different types of
systematic uncertainties added in quadrature: (a) sys-
tematic uncertainty, of about 0.7%, due to the choice
of the parameter γ. In our analysis, we have
employed the following values for the parameter
γ ¼ 0.0, 0.25, 0.50, 0.60, 0.75, 0.90; (b) uncertainty
in tuning the value of the step λ to satisfy the chain
equation (of about 0.3%); (c) in our analysis we have
made use of the NLL order formulae for the ρ’s
while the use of LL or TL ones, thanks to the fact
that we work with ratios, would lead to a discrep-
ancy of about 0.3% in the final results; (d) uncer-
tainty of less than 0.1% on the final result if we add
to the fit Ansatz of Eq. (9) an extra cubic term in
1=μh; (e) difference of the final result with the one
obtained by excluding from the analysis the ratio
corresponding to the heaviest quark mass pair (less
than 0.1%). Let us stress that the freedom of varying
the value of the parameter γ ∈ ½0; 0.9� in our analy-
sis,5 at the cost of a moderate increase of the
systematic error in the final value, allows to gain
confidence in estimating the systematic uncertainties
due to discretization effects and the use of the fit
Ansatz given in Eq. (9).

(iv) “syst. chiral”: it refers to the systematic uncertainty
stemming from chiral extrapolation, which is esti-
mated as the spread between the result obtained from
all data and the one computed using data with pion
mass smaller than 350 MeV.

(v) “RI0-M̄S matching”: for this systematic error esti-
mate, concerning the matching between the two
schemes at the typical scales the RCs are computed,
we refer the reader to Appendix A of Ref. [26].

The (small) experimental error (of about 0.01% or less) on
the values of the BðsÞ and Ds pseudoscalar meson masses
has a negligible impact on our error budget.
Our final result for the b-quark mass is given by the

average over the estimates obtained by varying the param-
eter γ ∈ ½0; 0.9� and using M1- or M2-type quark mass RC.
The maximum half-difference between extreme values
related to the investigation for each one of the sources

of systematic error is taken as our estimate of the corre-
sponding systematic uncertainty. Systematic uncertainties
are always added in quadrature. Finally, we get

mbðMS; mbÞ ¼ 4.26ð3Þstatþfitð10Þsyst½10� GeV; ð11Þ
where the total error (in brackets) is the sum in quadrature
of the statistical and the systematic ones.

1. Computation of mb=mc and mb=ms

The ratio method offers the advantage of determining the
ratio mb=mc in a simple and fully nonperturbative way. To
this end we have to set the triggering point quark mass
equal to the physical value of the charm quark mass,

μ̄ð1Þh ¼ μ̄c. We then apply the ratio method employing the
following quantity:

Q̂m ¼ Mhs

ðMhlÞγ
; ð12Þ

which, unlike the one defined in Eq. (6), must be chosen
dimensionful for ensuring charm scale dependence at the
triggering point. So by implementing a similar procedure to
the case of the b-quark mass, it becomes possible to
compute the b to c quark mass ratio directly from the
relationship μ̄b ¼ λKμ̄c. The error budget is also given in
Table II. The various entries have a description similar to
those for mb. However there is an extra contribution under
the name “syst. trig. point,” which refers to the systematic
uncertainty related to residual uncertainties in the compu-
tation of the (dimensionful) quantity Q̂m at the triggering
point. These uncertainties are not related (directly) to the
scale setting and to the renormalization constant’s uncer-
tainties that in the bottom to charm quark mass ratio clearly
cancel out. They include, instead, the following systematic
uncertainties related to the determination of mc (see
Ref. [26]) which refer to the two choices of scaling variable
in that fit analysis, the systematic chiral and discretisation
uncertainties, the systematic uncertainty stemming from the
matching toMD andMDs as well as statistical uncertainties
in the pseudoscalar mass values computed in the charm
region. We consider the sum in quadrature of the above
uncertainties to get our estimate.
Our final result reads

mb=mc ¼ 4.42ð3Þstatþfitð8Þsyst½8�; ð13Þ
where the total error (in brackets) is the sum in quadrature
of the statistical and systematic ones. As stated above in the
quark mass ratio computation, the uncertainties due to the
RC and renormalization scheme as well as the systematic
lattice scale uncertainties cancel out.
Finally, by combining the result of Eq. (13) with the

result

mc=ms ¼ 11.62ð16Þstatþfitð1Þsyst½16� ð14Þ
5Notice that in practice for γ ∈ ð0.9; 1.0Þ it becomes difficult to

estimate the systematic uncertainty in the tuning of λ from the
chain equation (10).
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presented in Ref. [26], we obtain the value for the bottom to
strange quark mass ratio,

mb=ms ¼ 51.4ð1.1Þstatþfitð0.9Þsyst½1.4�; ð15Þ

where, again, the sum of the statistical and the
systematic errors in quadrature give the total error (in
brackets). The error estimate has been obtained assuming
full correlation between the “statþ fit” uncertainties of
Eqs. (13) and (14), which thus have been added linearly,
whereas systematic uncertainties have been added in
quadrature. Our result of Eq. (15) compares well with
the (nonperturbative) result mb=ms ¼ 52.55ð55Þ obtained
by the HPQCD Collaboration [44]. It is also in agreement
with the Georgi-Jarlskog prediction [45] that, for certain
classes of grand unified theories, the ratio of b to s quark
masses should be equal to 3mτ=mμ ¼ 50.45.

B. B-pseudoscalar decay constants

At each value of the lattice spacing and sea quark mass
ensemble, we evaluate the quantity

F hq ≡ fhq=Mhq; q ¼ l; s; ð16Þ

for which the appropriate HQET asymptotic conditions
lead to

lim
μpoleh →∞

F hqðμpoleh Þ3=2 ¼ const: ð17Þ

and

lim
μpoleh →∞

ðF hs=F hlÞ ¼ const: ð18Þ

Based on QCD to HQET matching of heavy-light meson
decay constant and quark mass, we define the ratios

FIG. 4. Combined chiral and continuum fit for the ratio zs
against μ̄l calculated: (a) between the two largest heavy quark
mass values used in this work; (b) for intermediate values of the
heavy quark masses. The empty black circle is our result at the
physical u=d quark mass point in the continuum limit.

FIG. 5. Same as in Fig. 4 for the ratio ζ.
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zsðμ̄h; λ; μ̄s; aÞ

¼ λ3=2
F hsðμ̄h; μ̄s; aÞ
F hsðμ̄h=λ; μ̄s; aÞ

·
Cstat
A ðμ�; μ̄h=λÞ
Cstat
A ðμ�; μ̄hÞ

½ρðμ̄h; μÞ�3=2
½ρðμ̄h=λ; μÞ�3=2

ð19Þ
zdðμ̄h; λ; μ̄l; aÞ

¼ λ3=2
F hlðμ̄h; μ̄l; aÞ
F hlðμ̄h=λ; μ̄l; aÞ

·
Cstat
A ðμ�; μ̄h=λÞ
Cstat
A ðμ�; μ̄hÞ

½ρðμ̄h; μÞ�3=2
½ρðμ̄h=λ; μÞ�3=2

:

ð20Þ

The factor Cstat
A ðμ�; μ̄hÞ is known up to N2LO in PT [46]. It

provides the matching between the ðhlÞ decay constant in
QCD and its static-light counterpart in HQET.6 For the
calculation of the decay constant ratio, we also form the
double ratio:

ζðμ̄h; λ; μ̄l; μ̄s; aÞ ¼
zsðμ̄h; λ; μ̄s; aÞ
zdðμ̄h; λ; μ̄l; aÞ

: ð21Þ

The ratios zd, zs and ζ have, by construction, an exactly
known static limit equal to unity. They also show smooth
chiral and continuum combined behavior. This is a con-
sequence of the fact that zd, zs and ζ (as it is also the case
for the y ratios) are simply ratios of quantities evaluated at
nearby values of the heavy quark mass for which discre-
tization errors get suppressed. Figures 4(a) and 5(a) are two
examples illustrating the quality of the combined chiral and
continuum fits for zs and ζ respectively, at the largest heavy
quark mass values used in the decay constant analysis. See
also the analogous Figs. 4(b) and 5(b) for the same
quantities at intermediate values of the heavy quark mass
pair. Notice that, since the cutoff effects for the ratios are
under good control, even for rather large values of the
heavy quark mass pairs the combined chiral and continuum
fits of ratios are reliable.

FIG. 6. Fit of zsðμ̄hÞ (top panel) and ζðμ̄hÞ (bottom panel)
against 1=μ̄h. The fit function in both panels has a polynomial
form of the type given in Eq. (9). The vertical black thin line
marks the position of 1=μ̄b.

FIG. 7. Combined chiral and continuum fit against μ̄l: (a) linear

fit in μ̄l and in a2 for the triggering point of F ðμ̄ð1Þh Þ; (b) fit

Ansätze for Rfðμ̄ð1Þh Þ given in Eqs. (25) and (26). The empty
black symbols denote results at the physical u=d quark mass
point in the continuum limit.

6Notice that the renormalization scale μ� of HQET as well as
the quark mass renormalization scale μ cancel when ratios are
considered.
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In Figs. 6(a) and 6(b), we show the dependence of
zsðμ̄hÞ and ζðμ̄hÞ on the inverse heavy quark mass,
respectively. The fit Ansätze we have used are polynomial
fit functions in the inverse heavy quark mass analogous
to the one displayed in Eq. (9). For the case of the double
ratio ζðμ̄hÞ, we have also tried a linear fit in 1=μ̄h where
the exact condition limμ̄h→∞ζðμ̄hÞ ¼ 1 is explicitly
implemented.
In order to determine fBs and fBs=fB, we exploit the

equations

zsðμ̄ð2Þh Þzsðμ̄ð3Þh Þ…zsðμ̄ðKþ1Þ
h Þ

¼ λ3K=2
F hsðμ̄ðKþ1Þ

h Þ
F hsðμ̄ð1Þh Þ

·
Cstat
A ðμ�; μ̄ð1Þh Þ

Cstat
A ðμ�; μ̄ðKþ1Þ

h Þ

×

�
ρðμ̄ðKþ1Þ

h ; μÞ
ρðμ̄ð1Þh ; μÞ

�3=2

; ð22Þ

ζðμ̄ð2Þh Þζðμ̄ð3Þh Þ…ζðμ̄ðKþ1Þ
h Þ

¼
�
F hsðμ̄ðKþ1Þ

h Þ=F hu=dðμ̄ðKþ1Þ
h Þ

F hsðμ̄ð1Þh Þ=F hu=dðμ̄ð1Þh Þ

�
: ð23Þ

Thevalues of the left-hand sides of the above equations are
taken from the fits of Figs. 6(a) and 6(b), respectively. Setting

μ̄ðKþ1Þ
h ¼ μ̄b and having determined the values of F hsðμ̄ð1Þh Þ

and ½F hsðμ̄ð1Þh Þ=F hu=dðμ̄ð1Þh Þ� from a combined chiral and
continuum fit, and using experimental input for theBs andB-
meson masses, we finally obtain our results for fBs and
ðfBs=fBÞ. The use of the observable of Eq. (16) yields the
continuum limit determination offBs in physical units via the
experimental value ofMBs, leading thus to the elimination of
the lattice scale systematic uncertainty. As for the combined
chiral and continuum fit of the triggering point quantity

F hsðμ̄ð1Þh Þ, this poses no problems becauseF hsðμ̄ð1Þh Þ exhibits
only tolerably small cutoff effects and veryweak dependence
on the light quark mass [see Fig. 7(a)].

In order to estimate the triggering point ratio ½F hsðμ̄ð1Þh Þ=
F hu=dðμ̄ð1Þh Þ�, we build the following double ratio,

Rf ¼ ½ðF hs=F hlÞ=ðfsl=fllÞ�; ð24Þ

which provides the advantage of large cancellations in the
chiral logarithmic terms [47,48]. One then can get the
desired triggering point ratio by combining the continuum
limit result forRf with the analogous result for the ratio of
the K to π decay constants, ðfK=fπÞ. In Fig. 7(b), we
present the combined continuum and chiral extrapolation
for Rf. We have used two fit Ansätze. The first is linear in

TABLE III. Full error budget for fBs, fBs=fB and fB.

Uncertainty (in %) fBs fBs=fB fB

statþ fit 1.7 1.5 2.5
syst. discr. 1.3 0.6 0.7
syst. ratios 0.5 0.3 0.6
syst. chiral 0.3 0.2 0.4
syst. trig. point & fK=fπ � � � 1.3 1.3

Total 2.2 2.1 3.0

FIG. 8. A comparison of the available continuum extrapolated lattice determinations for mb, panel (a), and mb=mc, panel (b). For the
other results, we refer to (from top to bottom) (a) Refs. [44,50,51,52,53,9,42]; (b) Refs. [44,52].
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μ̄l while the second one is suggested by the combined use
of the SU(2) ChPT and HMChPT. They read

Rð1Þ
f ¼ að1Þh þ bð1Þh μ̄l þDð1Þ

h a2 ð25Þ

Rð2Þ
f ¼ að2Þh

�
1þ bð2Þh μ̄l þ

�
3ð1þ 3ĝ2Þ

4
−
5

4

�

×
2B0μ̄l
ð4πf0Þ2

log

�
2B0μ̄l
ð4πf0Þ2

��
þDð2Þ

h a2: ð26Þ

The magnitude of the logarithmic term in this fit depends
on the value of ĝ. Given the form of Eq. (26) we have used

ĝ ¼ 0.61ð7Þ [42], since for this value we get the most
conservative estimate for the fit systematic uncertainty.
As can be noticed from Fig. 7(b), discretization effects

on Rf are small. Moreover, the two estimates for the
triggering point ratio at the physical light quark mass are
compatible within less than two standard deviations. So we
take their average as our best estimate and we consider their
half difference as a systematic uncertainty.
The central values of fBs and fBs=fB have been obtained

from the weighted average over the various estimates

corresponding to the sets of values (μ̄ð1Þh ; λ; K; γ) employed

FIG. 9. A comparison of the available continuum extrapolated lattice determinations for (a) fBs, (b) fB and (c) fBs=fB. For results
by other groups, we refer to (from top to bottom) (a) Refs. [54,10,55,56,57,58,10,59,9,10] FLAG 13 estimates are determined by
HPQCD 13 for Nf ¼ 2þ 1þ 1, HPQCD 12, HPQCD 11 and FNAL-MILC 11 for Nf ¼ 2þ 1 and ETMC 13 for Nf ¼ 2;
(b) Refs. [54,10,55,55,56,56,58,10,59,9,10] FLAG 13 estimates are determined by HPQCD 13 for Nf ¼ 2þ 1þ 1, HPQCD 12a,
HPQCD 12b and FNAL-MILC 11 for Nf ¼ 2þ 1 and ETMC 13 for Nf ¼ 2; (c) Refs. [54,10,55,55,60,56,58,10,59,9,10] FLAG 13
estimates are determined by HPQCD 13 for Nf ¼ 2þ 1þ 1, HPQCD 12a and FNAL-MILC 11 for Nf ¼ 2þ 1 and ETMC 13 for
Nf ¼ 2. Results for fBs and fB from Ref. [60] display somewhat bigger errors than the results shown above, so we have not included
them in the plots.
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in our b-quark mass analysis. The fB computation is carried
out through the expression fB ¼ fBs=ðfBs=fBÞ. We now
give the description of the full error budget for the decay
constants, presented in Table III:

(i) “statþ fit”: this has been estimated along the same
lines as for the b-quark mass.

(ii) “syst. discr.”: it includes two sources of systematic
discretization errors, then added in quadrature.
Concerning the first one we take into account the
fact that for the decay constants computation at the
b-quark point we have collected as many estimates

as there are the respective sets (μ̄ð1Þh ; λ; K; γ) em-
ployed in our b-mass analysis. We then consider the
maximum spread of these results from their average
(about 0.5% for fBs and 0.4% for fBs=fB). The
second systematic error related to cutoff effects has
been estimated by investigating the impact of
removing from our analysis the coarsest lattice
(β ¼ 1.90) data. The maximum difference between
results from the full data analysis and the one when
only data from the two finest lattices are used
amounts to 1.2% for fBs and 0.4% for fBs=fB.

(iii) “syst. ratios”: we have checked the impact on our
final results of the various sources of systematic
uncertainty related to the ratio analysis. We have
worked along the same lines as for the b-mass error
budget. In particular, we have checked the effects by
(a) varying the polynomial fit Ansatz used for
interpolating to the b-quark mass, (b) excluding
the heaviest quark mass pair from our analysis and
(c) changing the perturbative order for the ρ’s and
Cstat
A from NLL to LL. None of these tests gave a

change to the values of fBs and fBs=fB larger than
0.3–0.4%. The final estimates in Table III corre-
spond to the sum in quadrature of the individual
spreads due to (a), (b) and (c).

(iv) “syst. chiral”: we estimate the systematic uncertainty
due to chiral extrapolation from the difference
between results obtained from all data or using only
data corresponding to pion mass less than 350 MeV.

(v) “syst. trig. point & fK=fπ”: this concerns only
fBs=fB and fB and it is given as the sum in
quadrature of the chiral extrapolation systematic
uncertainty, which we estimate from the spread of
results obtained from the two-fit Ansätze of Eqs. (25)
and (26) (of about 0.4%), and the error in the
determination of fK=fπ; for the latter we have used
the value fK=fπ ¼ 1.188ð15Þ from Ref. [49].

Our final results for the decay constants read

fBs ¼ 229ð4Þstatþfitð3Þsyst½5� MeV; ð27Þ

fBs=fB ¼ 1.184ð18Þstatþfitð18Þsyst½25�; ð28Þ
fB ¼ 193ð5Þstatþfitð3Þsyst½6� MeV; ð29Þ

ðfBs=fBÞ=ðfK=fπÞ ¼ 0.997ð15Þstatð7Þsyst½17�; ð30Þ

where the total error (in brackets) is the sum in quadrature
of the statistical and the systematic ones.

IV. CONCLUSIONS

Using the ratio method, we have obtained nonperturba-
tive results extrapolated to the continuum limit for the b-
quark mass and its ratio to the charm and the strange quark
mass. Moreover, we have evaluated in the continuum limit
the pseudoscalar B-decay constants, fBs, fB and their ratio
as well as the (double) ratio of the latter with fK=fπ . It is
worth mentioning that the ratios between the SU(3) break-
ing ratios ðfBs=fBÞ=ðfK=fπÞ computed in this paper and
the one of ðfDs=fDÞ=ðfK=fπÞ ¼ 1.003ð14Þ determined in
Ref. [49], are both perfectly compatible with unity within
the errors, indicating, thus, an almost negligible depend-
ence on the quark mass. Our results, Eqs. (11), (13), (15)
and (27)–(30), are of high precision with well-controlled
systematic uncertainties. In Figs. 8 and 9, we compare our
results with the ones obtained by other lattice collabora-
tions. Each panel includes determinations of the relevant
observable that are carried out in the continuum limit by
using unquenched lattice simulations with Nf ¼ 2; 2þ 1

and 2þ 1þ 1 dynamical quarks.
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