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Pure compact Uð1Þ lattice gauge theory exhibits a phase transition at gauge coupling g ∼Oð1Þ separating
a familiar weak coupling Coulomb phase, having free massless photons, from a strong coupling phase.
However, the phase transition was found to be of first order, ruling out any nontrivial theory resulting from a
continuum limit from the strong coupling side. In this work, a compact Uð1Þ lattice gauge theory is studied
with addition of a dimension-two mass counterterm and a higher derivative (HD) term that ensures a unique
vacuum and produces a covariant gauge-fixing term in the naive continuum limit. For a reasonably large
coefficient of the HD term, now there exists a continuous transition from a regular ordered phase to a spatially
modulated ordered phase. For weak gauge couplings, a continuum limit from the regular ordered phase
results in a familiar theory consisting of free massless photons. For strong gauge couplings with g ≥ Oð1Þ,
this transition changes from first order to continuous as the coefficient of the HD term is increased, resulting in
tricritical points which appear to be a candidate in this theory for a possible nontrivial continuum limit.

DOI: 10.1103/PhysRevD.93.114504

I. INTRODUCTION

Through a strong coupling expansion of a Wilson loop in
a space-time (Euclidean) lattice, Wilson [1] showed evi-
dence for confinement in a pure compact SUð3Þ gauge
theory, marking the beginning of a new method for non-
perturbative investigation of quantum field theories.
Ironically, a similar calculation is equally applicable to
pure Uð1Þ gauge theory that shows nontrivial properties at
strong gauge coupling (the compact formulation allows
self-interaction for all powers of the Abelian gauge fields
on the discrete lattice). The hallmark of Wilson’s approach
is that gauge invariance is manifest at all stages of the
calculation and gauge-fixing is not required. The theory is
rigorously defined through a functional integral with a
gauge-invariant (Haar) measure with group-valued gauge
fields. The algebra-valued gauge fields become noncom-
pact, smooth and dimensionful only in the continuum limit.
Because of known physics from weak-coupling quantum

electrodynamics, a Uð1Þ gauge theory, it was expected that
at an intermediate gauge coupling, there would be a phase
transition from the strong coupling to a familiar weak
coupling phase with free massless photons in the con-
tinuum limit for the pure gauge theory. Indeed Monte Carlo
simulations found this transition, which was later con-
firmed to be first order [2]. Absence of a diverging
correlation length meant that no quantum continuum limit
could be taken in this Uð1Þ theory.
We shall now take a short detour to lattice formulations of

chiral gauge theories to understand why in certain situations
there is a need to control the longitudinal modes of lattice
gauge fields. Fermions on the discrete lattice necessarily

break chiral symmetry [3,4]. For chiral gauge theories,
obviously the gauge symmetry is then explicitly broken
on the lattice. Lack of gauge invariance in the Wilson
framework (without gauge-fixing) necessarily means strong
coupling between the physical degrees of freedom and the
longitudinal gauge degrees of freedom (lgdofs). This is
explained in the following.
Because of the Haar measure, the functional integral is

over all gauge configurations, including the ones related to
each other by gauge transformations. As a result, after a
gauge transformation, the lgdofs become explicitly present
in the action and interact with the physical degrees of
freedom. This interaction is strong because there is no
gauge-fixing and any point on the gauge orbit is as likely
as any other, essentially making the gauge fields very rough.
The roughgaugeproblemwas themain reasonof failureof

a full class of lattice chiral gauge theories [5,6]. These
failures gave rise to the understanding that controlling the
dynamics of lgdofs in these theories (in other words, gauge-
fixing) is essential to avoid undesirable results.
However, the Becchi-Rouet-Stora-Tyutin (BRST) scheme,

a standard mechanism for taking care of the redundancy
related to the lgdofs, cannot be used in this general non-
perturbative case with compact gauge fields, because of a
theorem, due to Neuberger, that proves that the partition
function and the unnormalized expectation value of a gauge-
invariant operator are each zero in presence of a BRST
symmetry [7,8]. This is presumably due to the cancelling
contributions from a bunch of Gribov copies signalling
multiple solutions of the gauge-fixing condition.
For the general non-Abelian case, the above theorem can

be evaded by employing an equivariant BRST (eBRST)
formalism [9,10] where gauge-fixing is done only in the
coset space, leaving, for example, an Abelian subgroup
gauge-invariant. This may be taken as a viable alternate
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nonperturbative scheme for defining a non-Abelian gauge
theory, a proposal worthy of investigation by itself.
However, for a chiral gauge theory, the residual Abelian
gauge symmetry needs to be fixed in an appropriate
manner. Failing to do so leads to a strongly interacting
sector of lgdofs which is undesirable, as explained above.
In fact, because of the no-go theorem mentioned above,

any BRST-type symmetry cannot be entertained for the
Abelian theory either. A naive lattice transcription of a
covariant gauge fixing term results disastrously in a dense set
of lattice Gribov copies [11]. To overcome this issue, Shamir
and Golterman [11,12] proposed to add, to the standard
Wilson lattice gauge action for the compactUð1Þ pure gauge
case, a higher-derivative (HD) term (involving physical
fields only), breaking gauge invariance explicitly. This term,
as a first requirement, leads to a covariant gauge fixing term
in the naive continuum limit, and, at the same time, is
designed to ensure, in the weak gauge coupling limit, a
unique absolute minimum for the effective potential, thus
avoiding the problem of the Gribov copies and enabling
weak-coupling perturbation theory (WCPT) around the
unique vacuum. Counterterms are possible to construct
because of the emergence of a renormalizable gauge, and
are required to restore gauge symmetry.
WCPT analysis and numerical investigations performed

earlier [13], only in the weak gauge coupling region of the
above compact Abelian pure gauge theory, confirmed the
existence of a new continuous phase transition between a
regular ordered phase and a spatially modulated ordered
phase, for sufficiently large value of the coefficient of the HD
term.At this phase transition, gauge symmetry is restored and
the scalar fields ( lgdofs) decouple, leading to the desired
emergence of massless free photons only, in the continuum
limit taken from the regular broken phase.
In this paper, we explore the phase diagram of the above

compact Uð1Þ pure gauge theory with the HD gauge-fixing
term and a suitable counterterm, in the strong gauge coupling
region and present only the key findings regarding the nature
of the possible continuum limits in that region. Details of our
investigation will be available in [14].
Ourwork is important fromseveral points of view. First, for

both Abelian and non-Abelian1 chiral gauge theories in the
nonperturbative gauge-fixing approach, it is important to
know, for a large range of the gauge couplings (including
strong gauge couplings), that a correct continuum limit (with
the lgdofs decoupled andmassless free photons) is achievable
in the pureAbelian gauge theory.2 Second, given that the pure

compact Uð1Þ gauge theory with the HD term, in the weak
gauge coupling region, has produced a correct quantum
continuum limit with free massless photons, it is important
to explore a broader region of the coupling parameter space
and ask what happens for strong gauge couplings. Obviously
this question is linkedwith the issueof short distance behavior
of Uð1Þ gauge theory and possibility of nontrivial physics.
Third, HD actions are a challenge for algorithms, especially
the so-called local update algorithms. The theory provides a
good opportunity to evaluate aspects of different algorithms
with large coefficients of the HD term. Lastly, because of the
presence of tricritical points andcritical endpoints in the phase
diagram as we shall see, and phase transitions that restore a
local symmetry, the investigated theory is interestingalso from
the point of view of statistical mechanics and critical
phenomena.
The paper is organized as follows. In Sec. II, the lattice

action under investigation for the compact Uð1Þ gauge
theory is presented. The action contains a HD gauge fixing
term which includes irrelevant pieces, and also a counter-
term required for reviving the gauge symmetry. Section II
also summarizes the main results from previous investiga-
tions of the theory at weak gauge couplings. Section III
presents some of the details of our numerical investigations
in the parameter space of the action, including the algo-
rithms used in our investigation. The results of our
investigation are presented in Sec. IV which identifies
the tricritical point and determines the possible continuum
limits. Finally, in Sec. V, we present our conclusions on the
possible continuum physics from the theory investigated at
strong gauge couplings.

II. THE LATTICE ACTION

The investigated lattice action is given by:

S ¼ SW þ SGS þ Sct; ð1Þ

where,

SW ¼ 1

g2
X
x;μ<ν

ð1 − ReUPμνðxÞÞ ð2Þ

is the (gauge-invariant) Wilson term containing a summa-
tion over all gauge plaquettes UPμνðxÞ, the plaquette being
the smallest Wilson loop on a ðμ; νÞ plane.
The second term in (1) is the Golterman-Shamir HD

gauge-fixing term, given by

SGS ¼ ~κ

�X
xyz

□xyðUÞ□yzðUÞ −
X
x

B2
x

�
; ð3Þ

with the covariant Laplacian

1Remember, for the non-Abelian case, the residual Abelian
gauge symmetry after eBRST has to be fixed by the HD action.

2It may be mentioned here that the success of the gauge-fixing
approach in lattice Abelian chiral gauge theories has been
demonstrated in a number of papers [15,16], however, only
for weak gauge couplings. The above papers involved both
analytic and numerical methods in the so-called reduced Uð1Þ
theory.
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□xyðUÞ ¼
X
μ

ðδy;xþμUxμ þ δy;x−μU
†
x−μ;μ − 2δxyÞ; ð4Þ

and,

Bx ¼
X
μ

ðAx−μ;μ þAxμÞ2=4; where Axμ ¼ ImUxμ: ð5Þ

The third term Sct represents possible counterterms, and
we use

Sct ¼ −κ
X
xμ

ðUxμ þ U†
xμÞ ð6Þ

which is a dimension-2 mass counterterm, as apparent from
expanding the lattice gauge field Uxμ ¼ expðiagAμðxÞÞ for
small lattice spacing a. Also possible are a host of marginal
counterterms that can be treated perturbatively [12]. The
dimension-2 counterterm is enough to give rise to a new
universality class, as we shall see.
The presence of the HD term ensures a unique absolute

minimum for the action at Uxμ ¼ 1, validating WCPT
around g ¼ 0 or ~κ ¼ ∞ and leads to the familiar covariant
gauge fixing term

ð1=2ξÞ
Z

d4xð∂μAμÞ2 ð7Þ

in the naive continuum limit with ξ ¼ 1=ð2~κg2Þ.
The action contains only physical fields (and does not

include, for example, ghosts which are expected to decou-
ple only in the continuum limit) and as such is not BRST-
invariant. The relevant symmetry for the action (1) is the
gauge symmetry, and Sct½Uxμ� and SGS½Uxμ� are not gauge-
invariant. Under a gauge transformation Uxμ → gxUxμg

†
xþμ,

these terms pick up the lgdofs, and the theory becomes a
scalar-gauge system with S½ϕ†

xUxμϕxþμ� where mass of the
scalar fields ϕx ≡ g†x with gx ∈ Uð1Þ may scale in an
appropriate continuous phase transition of the lattice
theory. However, the goal here is not to have a gauge-
Higgs theory in the continuum, it is rather to decouple the
scalar fields (lgdofs) at a continuum limit.
The two extra terms (with coefficients κ and ~κ) ensure

that in the neighborhood of the perturbative point (i.e., for
small g and large ~κ) the lgdofs are weakly coupled, and
indeed numerical simulations confirm that the lgdofs
decouple at a new phase transition separating the regular
ordered phase (to be called FM in the following) from a
so-called spatially modulated ordered phase (FMD) [13].
Numerical simulations in [13], were done at weak

couplings (g < 1) in the so-called vector picture [action
(1) where no scalars appear explicitly] and in the so-called
Higgs picture (action with both scalars and gauge fields,
obtained after a gauge transformation). For weak couplings,
these studies confirmed a phase diagram with generic

features as given in Fig. 1. The nomenclature of the phases
in this theory has been taken as per the phases in the so-
called reduced model [13]. The reduced model is obtained
by putting Uxμ ¼ 1 (corresponding to the trivial orbit) in
the Higgs picture of the theory. The regular broken phase,
FM (with ferromagnetic order) is characterized by a
massive photon and a massive scalar, the PM (for para-
magnetic) phase is the disordered (symmetric) phase
having massless photons, and finally the new FMD
(ferromagnetic-directional) phase is the spatially modulated
ordered phase that breaks Euclidean rotational symmetry
with a nonzero vector condensate (hAμðxÞi ≠ 0) (there is
also an antiferromagnetic or AM phase with staggered
order, not to be discussed further in this study). Photon
and scalar masses scale by approaching the continuous FM-
PM transition from the FM phase, leading to a continuum
gauge-Higgs theory. A sufficiently large ~κ (and small g)
ensures a satisfactory continuum limit with only the photon
mass scaling (thereby recovering gauge symmetry and
decoupling the scalars) at the FM-FMD phase transition
by tuning a single parameter κ from the FM side.
Given the above that this new formulation of a compact

Uð1Þ gauge theory on lattice produces a correct continuum
limit for weak gauge couplings, it is certainly worthwhile to
ask about the nature of a continuum limit, if at all, for
strong gauge couplings and also explore the possibilities of
a nontrivial theory. The strong coupling region was first
explored in [17] with speculations of a few novel features.
In this paper, a completely independent and new inves-
tigation, a more careful and precise exercise has been
carried out employing newmethods (see Sec. III below). As
a result, a clear picture of the phase diagram of the theory at
strong gauge couplings has emerged. In the following, we
present some of the key findings, principal among them is
the existence of FM-FMD transition even at strong gauge
couplings, and tricritical points on this transition.

III. NUMERICAL SIMULATIONS

Multihit Metropolis, a local update algorithm that was
used in all previous investigations of the theory (e.g.

FIG. 1. Schematic phase diagram in the ð~κ; κÞ plane at a given
weak gauge coupling (g < 1).
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[13,17]), was discarded for the current work because at
large g it produced results unstable against variation of
the number of hits and also the particular order the lattice
was swept. This is understandable, since with such a HD
action density, spread over quite a few lattice sites, a local
algorithm is bound to struggle, especially at large ~κ (at
strong gauge couplings, the FM-FMD transition is obtained
at larger ~κ). In this paper, we present results of numerical
simulation done with Hybrid Monte Carlo (HMC), a global
algorithm, and this marks a major difference with our
previous work [17] and produces new, reliable and numeri-
cally stable results at strong gauge couplings so that we
now have a better understanding of the possible continuum
limit at the FM-FMD transition at strong gauge couplings.
Numerical simulation was done at gauge couplings

g ¼ 1.0, 1.1, 1.2, 1.3, 1.5 and also at 0.6 and 0.8 (for
comparing with available results in literature) at a variety of
lattice volumes 104; 124; 164; 204 and 244 to determine the
phase diagrams in the κ − ~κ plane at each fixed gauge
coupling with κ-scans and ~κ-scans having intervals as fine
as Δκ ¼ 0.001, Δ~κ ¼ 0.005 around the interesting phase
transition regions. Each run in the scans typically has 5000
HMC trajectories for thermalization, and 10000 − 30000
HMC trajectories for measurement. Integrated autocorre-
lation times were measured and taken into account for error
estimates. Error bars of all data points, wherever not shown
explicitly, are smaller than the symbols. Only a small
fraction of our results are produced here, more details will
be made available in [14].
Measurements were made on lattice volume of L4 (or

L3T, L ≠ T for propagators) for the plaquette energy

EP ¼ ð1=ð6L4ÞÞ
�X

x;μ<ν

ReUPμνðxÞ
�
; ð8Þ

the photon mass term

Eκ ¼ ð1=ð4L4ÞÞ
�X

x;μ

ReUxμ

�
; ð9Þ

the lattice version V of the vector condensate hAμi (expect-
ation value of the modulus of ð1=L4ÞPxImUxμ averaged
over all the directions), the photon propagator and also the
chiral condensate with quenched Kogut-Susskind (KS)
fermions. The vector condensate V is the order parameter
for the FM-FMD transition.

IV. RESULTS

In Fig. 2 we show the phase diagram at a fixed strong
coupling g ¼ 1.3 in the κ − ~κ plane (with a certain criterion
to determine the transitions on a finite lattice). Similar
phase diagrams were also obtained for g ¼ 1.1, 1.2, 1.3,
1.5. Contrast the above with that of Fig. 1. The FM-FMD
phase transition in Fig. 1 for g < 1 is entirely a continuous

transition [13,17], while for strong g (Fig. 2) there is a
tricritical point separating a first order FM-FMD transition
from a continuous transition. Figure 2 shows the tricritical
point for g ¼ 1.3 at κ ¼ −0.99� 0.01 and ~κ ¼ 0.45� 0.02
for the lattice size 164. The location changes slightly with
lattice volumes bigger than 104. The PM-FMD transition is
found to be strongly first order, and ends at a critical
endpoint [18] where the continuous FM-PM transition
terminates at first order transitions. The first order FM-
FMD transition weakens gradually as ~κ is increased till the
tricritical point where it becomes continuous.
The location of the triciritical point in the κ − ~κ plane

shifts to more negative κ and also to larger ~κ with increasing
g. It appears from our simulation that, at a particular gauge
coupling g� between g ¼ 1.0 and 1.1, the tricritical point
tends to approach the critical endpoint. For g < g�, the
FM-FMD transition is fully continuous.
The rest of the plots in this paper are all at g ¼ 1.3.
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FIG. 2. Phase diagram in the ð~κ; κÞ plane at gauge coupling
g ¼ 1.3 on 164 lattice.
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FIG. 3. Eκ versus κ plot on three different lattice volumes at
g ¼ 1.3 and ~κ ¼ 0.4, showing a first order FM-FMD tran-
sition. Inset shows a histogram with a double peak structure
at κ ¼ −1.000.
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Figures 3 and 4 plot Eκ, an observable similar to the
entropy for the κ scan. With increasing volume, Fig. 3
shows a more distinct gap at κFM-FMD ∼ −1.00 for ~κ ¼ 0.4,
while Fig. 4 shows no discontinuity at κFM-FMD ∼ −1.01 for
~κ ¼ 0.5. The inset of Fig. 3 shows a double peaked
histogram at the critical κ, confirming the transition to
be first order. The inset of Fig. 4 shows the corresponding V
versus κ plot illustrating the FM-FMD transition at κ ∼
−1.01 for ~κ ¼ 0.5.
To understand the properties of the FM phase around

the tricritical point, the region was further probed with
quenched KS fermions. Figure 5 shows, for two lattice
volumes, quenched chiral condensates in the FM phase
near the FM-FMD transition at ~κ ¼ 0.4 (where the tran-
sition is first order) and at ~κ ¼ 0.5 (where the transition is
continuous). Noisy estimator method was employed using
4 noise vectors with conjugate gradient inverter (Bi-
CGStab, a more modern inverter, was also tried without

any gain). Extrapolation to zero bare fermion mass m0 was
done with a phenomenological polynomial ansatz (keeping
up to quadratic terms with five lowest masses fitted) and
shows a condensate consistent with zero on the continuous
side of the FM-FMD transition while clearly there is a
nonzero condensate where the transition is first order. There
is a hint of nonzero chiral condensate as the tricritical point
is approached from the FM side. However, confirmation on
larger volumes is required.
The inverse of photon propagator (2-point correlator of

ImUxμ) in momentum space was also measured and is
plotted against the square of lattice momentum p̂2 (discrete
on a finite box) in Fig. 6 for the continuous part of the
FM-FMD transition, staying in the FM phase.3 Inset shows
a gradually vanishing photon mass (y-intercept), as κ
approaches κFM-FMD (∼ − 1.07) for the given fixed ~κ
(0.6), suggesting an expected scaling of the photon mass
at the transition and recovery of gauge symmetry. The slope
of the fitted straight lines, in the main figure, suggests a
field renormalization constant Z that is not unity. However,
the figure shows that the slope increases with increasing ~κ.
It seems reasonable to expect the slope to approach unity at
large ~κ, consistent with WCPT at g ¼ 0 or ~κ ¼ ∞. In
addition, the continuous FM-FMD transition line at all
strong g is found in our simulations to be below but roughly
parallel to the transition (the dotted line in Fig. 2), obtained
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3It may be mentioned here that the three data lines in the main
part of Fig. 6 at three ~κ are each at a value of κ which is at a
fixed small distance away (Δκ ¼ κ − κFM-FMD ¼ 0.03) from the
FM-FMD transition.
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from 1-loop WCPT in [13]. Of course, the gap between
them decreases as the coupling gets smaller.

V. CONCLUSION

The phase diagram of the compact Uð1Þ pure gauge
theory in the nonperturbative gauge-fixing approach
including the HD term and a mass counterterm has turned
out to be somewhat more complex in the strong gauge
coupling region (g > 1). Numerical simulation is also more
difficult in this region, and local update algorithms struggle,
forcing us to use global update algorithms with some care.
However, after the algorithmic issues were sorted out, a
clear picture of the possible continuum limits has emerged
which is very relevant for all the major important issues
discussed in Sec. I, e.g., both Abelian and non-Abelian
lattice chiral gauge theories and short distance behavior of
Uð1Þ gauge theories.
Existence of the FM-FMD transition at strong gauge

couplings is confirmed. The continuous part of this
transition, away from the tricritical point, appears to

produce familiar physics with free massless photons
(and lgdofs decoupled) and zero chiral condensate.
The possibility for a nontrivial continuum limit in this

pure compact Uð1Þ lattice gauge theory at strong gauge
couplings rests on the tricritical points with a new univer-
sality class.
Details of our study including results at other gauge

couplings that help develop the overall picture in the strong
gauge coupling region, will appear in [14]. Based on
evidences so far, the gauge-fixing scheme appears as a
valid method to define a gauge theory nonperturbatively.
For the non-Abelian case, this involves eBRST (gauge-
fixing the coset) and preparations are underway to study it
as well.
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