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Tensor renormalization group analysis of CP(N — 1) model
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We apply the higher-order tensor renormalization group to the lattice CP(N — 1) model in two
dimensions. A tensor network representation of the CP(N — 1) model in the presence of the € term is
derived. We confirm that the numerical results of the CP(1) model without the 8 term using this method are
consistent with that of the O(3) model which is analyzed by the same method in the region > 1 and that
obtained by the Monte Carlo simulation in a wider range of . The numerical computation including the 6

term is left for future challenges.
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I. INTRODUCTION

One possible way to avoid the sign problem is to simply
abandon Monte Carlo simulation. Levin and Nave pro-
posed the tensor renormalization group (TRG) in Ref. [1],
where they study two-dimensional classical systems. This
method has no sign problem because it does not consider
the Boltzmann weight as a probability of generating field
configurations. This method makes it possible to calculate
the partition function approximately based on the singular
value decomposition. The TRG method comprises mainly
two steps. The first step is to construct a tensor network
representation of the partition function. The detail is
described in the next section. The second step is to decrease
the number of tensors under control of systematic errors.
After that, one can finally compute the partition function
approximately by contracting all indices of a few coarse
grained tensors. While the original TRG was a method
studying two-dimensional systems, Xie et al.[2] introduced
the higher-order TRG (HOTRG) as an extension to higher-
dimensional systems, which is based on the higher-order
singular value decomposition.

One example of systems having the sign problem is a
system including the € term. The QCD Lagrangian natu-
rally includes this term, which breaks CP symmetry. € is a
free parameter; for example, it takes from O to 2z. From the
experiment of the neutron electric dipole moment, however,
the parameter has the upper bound |0 < 107° [3,4]. Why
is the free parameter 6 so small? This puzzle is the so-called
strong CP problem. In order to answer the question, lattice
QCD simulation including the 8 term is desirable, but the
presence of the 6 term causes the sign problem.

Instead of approaching QCD directly, it is reasonable to
start to investigate its toy model, the CP(N — 1) model,
which shares many features with QCD and has the 6 term
too. A long time ago, Schierholz suggested an interesting
scenario to solve the strong CP problem in the CP(N — 1)
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model by analyzing the phase diagram in the f—~6 plane
[5]. In the phase diagram, there are two phases, the
confining phase and deconfinement phase (Higgs phase),
which are distinguished by observing “flattening” of free
energy, and it was argued that in the continuum limit, if
6 = 0 is the only choice in the confining phase, the strong
CP problem would be resolved. To confirm this result, the
authors of Refs. [6,7] also investigated the similar phase
diagram by a similar way as Schierholz, where they used
the Monte Carlo method and computed the partition
function in the presence of the 6 term Z(6) by computing
the topological charge distribution P(Q). However, they
insisted that the main reason of the “flattening” of free
energy is due to the statistical fluctuation of P(Q) in their
analysis. On the other hand, Plefka and Samuel [§]
supported Schierholz’s result by using another method,
the strong coupling expansion, but they could not confirm
whether € must be taken to zero in the continuum limit
since they truncated higher-order corrections. Although it is
not clear that the solution can be directly applied to QCD, it
is interesting to verify the scenario with another method,
namely the TRG approach which is free of the sign
problem. Moreover, this method can drastically reduce
the truncation error in an expansion of S.

In particular, the CP(1) model, which is equivalent to the
O(3) model, is interesting since it is connected with a
verification of the Haldane conjecture [9,10]: the two-
dimensional O(3) nonlinear sigma model with 8 = 7 is
gapless. In order to prove this conjecture, Monte Carlo
simulations for the O(3) model with the 6 term were
conducted in various methods. In spite of the presence of
the sign problem, the extended cluster algorithm [11-13]
and the refined analysis [14—16] made the calculation
feasible. As a result, the second-order phase transition at
6 = & was found and it was shown that the observed critical
exponents belong to the universality class of the Wess-
Zumino-Novikov-Witten (WZNW) model with a topologi-
cal coupling k=1 [17-19] as expected [20,21].
Furthermore, the phase structure of the two-dimensional
CP(1) model in the presence of the € term was also
investigated by the Monte Carlo simulation [22]. The

© 2016 American Physical Society


http://dx.doi.org/10.1103/PhysRevD.93.114503
http://dx.doi.org/10.1103/PhysRevD.93.114503
http://dx.doi.org/10.1103/PhysRevD.93.114503
http://dx.doi.org/10.1103/PhysRevD.93.114503

HIKARU KAWAUCHI and SHINJI TAKEDA

universality class, however, turned out to be different from
that of the WZNW model. Therefore it is worthwhile to
assess the universality class and reanalyze the phase
structure by using the sign-problem-free method, i.e.,
tensor renormalization group methods.

Our purpose in this paper is to apply the HOTRG to the
CP(N — 1) model in two dimensions. The organization of
this paper is as follows: In Sec. II, we present a tensor
network representation of the CP(N — 1) model including
the 6 term, in Sec. III we show the numerical results at
60 =0, and in Sec. IV we give our conclusions.

II. TENSOR NETWORK REPRESENTATION
OF THE CP(N — 1) MODEL

The partition function of the lattice CP(N — 1) model in
two dimensions as a function of inverse coupling constant /3
and the parameter @ is given by

Z- / [Tz [0, (x)e, (1)

where

So=—PND_[2"(x) - 2(x + 1)U, (x)
F20) LA U] = in- Y g (2)

dz(x) = dz(x)dVz* (x)5(|z(x)| = 1), (3)

and z(x) is the N-component complex scalar field
(a=1,...,N) of unit length, z(x)-z(x)=z"(x)z%(x)=1,
and U,(x) is the link variable described by the auxiliary
vector field A, (x), i.e., U,(x) = exp{iA,(x)}. The second
term in the action is the 8 term and

gy =A1(x) +Ay(x + 1) = A (x +2) = Ay(x) mod 27.
(4)

In order to obtain a tensor network representation, one has to
expand the Boltzmann weight with new integers and then
integrate out the old degrees of freedom (the complex fields
z(x) and the auxiliary field A, (x) in this case). In the end, one
can obtain a tensor which has indices of the new integers.

First, we derive a tensor network representation without
the 6 term and then consider the € term. To expand the
Boltzmann weight with new integers, we use the character-
like expansion [8],

exp{BN[z*(x) - 2(x + @)U, (x) + 2(x) - " (x + L) UL(x)]}

[Se]

= Zo(B) D, ditmy expli(m — 1)A,(x)]
1,m=0
X D1y (B)f (1m) (2(%), 2(x + 1)), (5)
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where d;,,,) are dimensionalities of characterlike represen-
tations, h(z;m)(ﬂ) are characterlike expansion coefficients,
fzm(2(x), z(x + 1)) are characterlike expansion charac-
ters, and Z,(f) is the normalization factor which makes
h(o:0)(#) = 1. The integers / and m are non-negative and
will become the indices of the tensor shown below.

The characterlike expansion coefficients /., (/) are
expressed by the modified Bessel functions of the first kind,'

B Inci114m(2NB)
h(l;m) (/B) - W

Since the modified Bessel function of the first kind, 7, (x),
decreases rapidly as n increases with a fixed value of x, one can
safely truncate the sum of / and m in Eq. (5) at some order (say
[ = m = l,,). The normalization factor is given by

(6)

(N =1)"y_(2Np)
(NpN!

In Appendix A, we show some explicit form® of the
dimensionalities of characterlike representations d;,,) and
the characterlike expansion characters f ., (z(x), z(x + )
for any integer / > 0. The d ;) and f ;.,,,) are determined so
as to satisfy the following conditions,

Zy(p) = (7)

/ de([;m)(Z/, Z)fzkl/;m,)(z”, Z) = 51,1’6m,m’f(l;m)(z/7 Z//)a

(8)

Fum (2, 2) = dimy.- 9)

d1m)

The term, f () (2(x), z(x + )), is expressed by the
combination of two complex scalar fields, z(x) and
zZ(x + f1). In order to obtain a tensor network representa-
tion, one has to integrate out the complex scalar fields z site
by site. For that purpose, it is convenient to rewrite it as
follows,

Fum (@) 2+ ) = Y Fi ) F (2(x+ ).

{a}
(10)
where {a} =ay,a5.....,q;,,d}.d},....a,, and a;=
1,2,....N for i=1,2,...,1, a}:1,2,...,N for

j=1,2,...,m. A pictorial expression of this decomposi-

tion is given in Fig. 1. The explicit forms of F and F are
shown in Appendix B.

'We confirm this expression for any integer / > 0 and m = 0,
1,2, 3.

*From these examples, fm (2(x), z(x + @) for any / and m is
inferred.
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F({lp}m )( z(x)) ((Lu;mea), {c})
Z(x) f(l:m)(z("l/’)v Z('/I; + /AL)) Z(I + ﬂ)
S * A ()
(Lesme) D* ((ly;me), {b})
{a} ((ls;ms), {a
F(l M) i)
{d} .
‘ 14(](1:’”’ >(,z(.1)) ((ly;my), {d})
fa} (0 .
2(z) (1m) (2(2 ).> 2(z + ) FIG. 2. Integrating out the N-component complex scalar field z(x).
4 > + > \ 4
{a } T ... . .
Fiiy (2(@ + ) After the decomposition, the last step is to integrate out

the old degrees of freedom, z and A. If we focus on a site x,

FIG. 1. Decomposition of characterlike expansion characters there are two F s and two F s, as illustrated in Fig. 2. A
Fam (2(x). 2(x + ). tensor expressed in terms of them is given by

|
D)(C(Il‘;m_g),{a})((l,;m,),{b})((lu;mu),{c})((l,y;m,;),{d}) :/dz(x)\/d<ls;m.y>d<lf;mz)d(lu:mu)d<l1,;m,,)h(l.‘;ms)(ﬂ)h(l,;mJ(ﬂ)h(lu;mu)(ﬁ)h(l,,;mp)(ﬁ)

o GEDF )F ) (2(x)). (11)

The integration of the complex scalar fields, z(x) and z*(x), can be done analytically thanks to the integral
[8,23]

/dZZalzaz...Za'"Z*h'Z*bz...Z*b"' = /dNZdNZ*5(|Z| _ 1)Za'Za2...Za’”Z*b'Z*bz...Z*hk

(N_ 1)' 54 5%

— AT 1 . a1 b

= (const) x & N—1+m) 2 by, bﬂz""sbam

B (N — 1)' {al,az ..... a,,,}

= (const) x o (= ol "

where the sum means all permutations of the indices b. The detail of the tensor D is shown in Appendix C.
At this point, we mention the integration of the link variable. The character expansion of the 8 term [24,25] is given by,

sin 9+27m
eirndy — e’"p‘/’p [ ((p =A(x)+Ay(x+ ) Aj(x+ 2) Az(x))
nze:Z 0+ 27m1, P
= Zeinl,(ppan (9)
n,€Z
_ Zem X)+Ay (x-+1) =4, (x4+2)=A, (x ))an(e)' (13)
n,€Z

In contrast to the case of the complex scalar fields, the integration of the link variable is rather simple. For one link variable,
four integers are coupled (Fig. 3):

pp

/ " dA eilumtAeinhA — glom, = g (14)

If @ = 0, the indices are selected to u,, = ¢, = 0 and the tensor H just gives a constraint that the integer / is equivalent to
the integer m, i.e.,

G,,(0=0) = E=6,0. (15)
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FIG. 3. Integrating out the link variable.
((Lusma), {c}) Up
u
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Sp A Gl tp
T -
S t - D* o
” ((Ls;ms), {a}) ((Le;ma), {b})
((Losmy), {d}) Up
FIG. 4. Tensor of the CP(N — 1) model.
I IR
HI(A,,W;F) - HE),(;n) = 5l,m' (16)

The combination of these tensors derived above leads to
one tensor network representation,
TX

stuv

= T)(C(l.\;m\-)-{a}’sp)((lf;m,)-,{b}-tp)((lu;mu),{c}ﬂp)((Lsm,,),{d},vp)

X

= D((l.f;ms),{a})((h;ml)-{b})((lu;mu)~{C})((l,,v;m,,),{d})
13m, lm,
x Hy W HI G, (08, . (17)

Syl
This combination of tensors is depicted in Fig. 4.

III. NUMERICAL RESULTS

By using the tensor in Eq. (17), we apply the HOTRG and
obtain the partition function of the CP(N — 1) model in the
case N = 2 and 0 = 0, in which case the tensor is given by

Ty = T(1,0,) 40} 0)((1e1) (B} (1, :1) L} O)((1,1,) {d}.0)
= D11 {a)) (1) 00 (i) D) (Lot ) (18)

where each a; and a} take lor2fori =1,2,...,l,and j =
1,2, ..., and the same holds for {b}, {c} and {d}. Since
this tensor has infinite number of elements, we calculate for
two cases: (i) [ =0, 1 (/[x =1) and (i) /=0, 1, 2
(Imax = 2), which correspond to the truncation of the sum
of the integers / and m in Eq. (5). Due to the truncation, the
bond dimension of the tensor is (4/m*! — 1)/3. One can see
the weights d%z;z)h(l;l) (p) in Fig. 53ForN =2, d(;,;) equals

*Here, we put the value of fum(2(x),z(x + @) as its
maximum, d;.,,)-
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FIG. 5. The weights d%z;m)h(l;m) (B) of the characterlike expan-
sion [Eq. (5)] in the case N =2 and [ = m. We suppose that

diyy =20+ 1 and h,)(p) in Eq. (6) for any L.

HOTRG:1, =1 e

4 HOTRG: 1 =2 i

Metropolis +—*—

po

Average Energy
1
S
>

FIG. 6. Average energy of the CP(l1) model computed by
HOTRG and Metropolis algorithm. The lattice size is 4 x 4.
The circle marks indicate the results of HOTRG and the triangle
marks indicate the results of Metropolis algorithm.

V2[+1." This figure indicates that the truncation error
grows as f} increases.

First, we compare the result of the TRG method
(Ipax = 1, 2) with that of the Monte Carlo simulation.
Figure 6 compares the average energy of the CP(1) model
computed by the two methods on 4 x 4 lattice. The average
energy E is defined by

o) |
— 275 n
where L is the linear lattice size. We take the derivative with
respect to f numerically in the TRG method. In our
Monte Carlo simulation, we use the Metropolis algorithm
and 10° configurations after thermalization are generated

E= z. (19)

*We confirm this expression for the case [ =0, 1, 2, 3.
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FIG. 7. Average energy of the CP(1) model and the O(3) model
computed by using HOTRG. The lattice size is 22 x 229, The
circle marks indicate the results of the CP(1) model and the
triangle marks indicate the results of the O(3) model.

for each . The statistical errors are estimated by the
jackknife method and the autocorrelation time
Tine = 1 — 65. The result of the TRG method (/,,,x = 2)
is almost consistent with that of the Monte Carlo simu-
lation. The little difference between the two results is
considered to the truncation error /,,,,, = 2 of the HOTRG.
It is expected that these two results are consistent at
sufficiently large [,,,-

Next, Fig. 7 compares the result of the HOTRG with that
of the O(3) model on 2% x 2%0 Jattice which is analyzed by
the same method. Unmuth-Yockey er al. applied the
HOTRG to the O(3) model in Ref. [26]. By following
them, we compute the average energy of the O(3) model.
The energy of the two models is connected to each other in
the continuum limit by the relation

1
BJr Eoi3)(B) = Ecp1)(B) + 6. (20)

Using this relation, we mapped the result of the O(3) model
into the graph. In the limit § — oo, that is, the continuum
limit, these two results are expected to be consistent® and in
fact such a tendency is observed.

IV. SUMMARY AND OUTLOOK

In this work, we show a tensor network representation of
the CP(N — 1) model including the @ term. It is confirmed
that the numerical results of the CP(1) model at # = 0 using
the TRG method are consistent with that computed by the
Monte Carlo simulation and that of the O(3) model which is
analyzed by the same method in the region f > 1.

5Here, we assume that the truncation error is small in the large
p region.
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For our future work, we shall try to do the implementa-
tion including the @ term. In the presence of this term, / no
longer equals m. In this case, the computational cost of the
TRG methods turns out to be very expensive, and we may
need some techniques to reduce the cost.
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APPENDIX A: SOME EXAMPLES OF
DIMENSIONALITIES OF CHARACTERLIKE
REPRESENTATIONS d AND CHARACTERLIKE
EXPANSION CHARACTERS f

For m = 0,
N—1+1)!
@wfz¢m§—@mN—n’ (A1)
Fo)(z(x), z(x + 1))
- \/ TV B ) ) (82
For m =1,
N+ DN=1+1) N-1
dWV_¢HW—UMN—UNFI+F (A3)
Fun(z(x),z(x + 7))
- \/ oy e
ot )~y ) )| (A
For m = 2,
p _¢W+1+MW+DW—LH)
(:2) = 2UINY(N - 1)
N(N=1) (435)

“NTDIN=1+1)
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Fum (). 2(+7)) = \/ W+l gii,’%ljﬁj [ ()2 (4 ) (@ (1) - 2 ))°

~ ) G ) ) e M) 4 P

(z(x)-2"(x+a)72|. (A6)

For m = 3,

dis _\/(N+2+l)!(N+1+l)(N+l)(N—1+l) (N+ DN(N=1) o

3N+ 1)I(N—-1) N+ 1+ DN+ D(N=1+1)’

N+2+DUN+1+1)(N+

H(N=1+1) 31
BN+ 1IN -1)

(2(x) - 2* (x+ )" (2" (x) - 2(x + )

fusy(a(x),z(x+p) = \/(

30(1-1)
(NT1+D(N+])
1(1-1)(1-2)
NFI+O)(N+D)(N=1+1)

X (2(x) 2" (x+)) 1 (@ (x) -2 (x + 1)) +

x (2(x) -2 (x + )72 (" (x) -2 (x + 1)) = ( (z(x) 2 (x+0) ] (A8)

APPENDIX B: SOME EXAMPLES OF F AND F For m = 2,
For m =0, ay,....a;,d,.db
Fuzy ™)
F?Zlgb')'”a' (Z) = C(Z;O)Z“' R AL (Bl) — C(l;z) [Zalzazz*a'lz*a'z + E(“l‘;gzazz*a/z}zas R (]39)
F?ll;b')'"a’(Z) = Cz™ -+ 2", (B2) F(all;i)‘"a"a"az (2)
with _ C(I;Z) [Z*alz*aZZa’] Za’2 + E?i;;z*“‘z“/l}z*@ R (BlO)
N—-1+1)! i with
cw=(mvozmven) B 1
: : Coo (N+1+D(N+D(N-=1+1)\s (BI1)
Form= 1, 02 = 2NN - 1) ’
ad IN=14+10)+/INN-1+1) /
aj,....ap;d, / a,d E 1. == 5a1a1’ B12
Foy (@) = Can ez + Egjlz® -2, (B4) (2) (N+D(N=1+1) (B12)

- / —ad = ayd, IN-14+1)—\/INN-1+1) _
» *ay d A1411_xa *a 2% ard
Fupy @) = Caple e + Egylere -z (BS) - Epg) = (N+DO(N=-1+1) gt (BI3)

For m = 3,
(N + l)!(N - 1 + l) % Fal""'a"a/l'“/z’“; (Z)
Clery = ) B6 (1:3)
o = (= =1 B0 R
= Cay[zh1z%zB " %" + Elél;g)zazz%z*azz*“s
Eﬂla/l = ;5(11(1/1 <B7) + E;Ez;?l%zuzz*a’z]zm - Za’, (B14)
1) — _ s
(1:1) N(N—-1+1) ~ay....ad, dy.d,
F(I;B) ‘ (Z)

" « « ’ / ’ ~a2a' * % U !
g | L s (BS) = Cug)lz™ 122" B2 2%2% + E 3,27 27 2 2%
(1:1) N(N=1+1) i Ezzzg;gagz*”lz“'l]zw e (B15)
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with 4 — _n2
_ 3(N+4—-NIl-1 )2 (B21)
co <(N+2+l)!(N+ 1+ DN+ D(N-1 +1)>% (N+ DN+ 1+1)
) 3UN + 1IN = 1) ’ Vx4 ANII-1)0-2) 522)
(B16) B (N+1+D(N+DH(N=1+1)"
31
a,d - +vX /
Eléz;é) = 7N+]+2l f5”‘“1, (B17)
o -3 X APPENDIX C: SOME EXAMPLES
E\is) = —H——0ue, (B18) OF THE TENSOR D
In this appendix, we show several examples of the tensor
a,a3d’ d, Y -vX / / .
EZE,.;)I = %—5‘”“15“3“3, (B19)  D* in Eq. (11). Here, we define
~ arazahd, - ' ' Wit = 1/ A Piom Cim)- C1
ERGhYG _\/_Y_ \/)?5“2“25‘13”3, (B20) (I:m) (Lm) (1 )(ﬂ) (I;m) ( )
2(1;3) 2N
|
Example 1:
D%muwxwmwnwmudwmmwh:ﬂ/dd”vu%mdwmﬁmmﬁmmmmmWmeﬂmhme”MmmW)

~ ..., a by, S Cpyenns <, dy,..., dp,
xF@mleu»F@m'(4x»F¢ml<dx»F¢m'<z@»

(N - 1)! {a....ai.cr....cp }

_ L5+,
= WaoWao W0 Wi (7 757 5171 0t byds ) (€2)
In the last two lines, Eqs. (B1) and (12) are used.
Example 2:
D)(C(l.,-;l),{a})((l,;0>’{h})((lu;O)-{c})((lu;O),{d})
= W(z,,-;1>W(z,;o)W(zu;o)Wuv;O)/dz(x)[Z*“‘(x)Z“II( )+E?sz)][zmz(x)---zm" (0)][27 (x)...2% (x)]
X [2#r(x)... 2" ()] [z (x)... 2% ()]
I+, (N-1)! {ar....ay.cie.cr,}
=Wy WaoWa,0Wa,0 {5l,+lv+1 (N—1+1, +1,)! 5{al h,,..l..h[: dy.. : cdy }
~aydy ol +1,—1 (N - 1)' {ay,....a1.,¢1,..0c, }
B0 N T 0 g gy = 1)1 by | (C3)
Example 3:
Dx ((1:2){a})((1:0).{6})((1,:0).{c})((1,:0).{d})
=WauWa.0Wa,0Wa,0
X /dz *“1 *“Z(x)zall( ) ( )—l—E?zaz) *a‘( )Zall (x)][z*‘% (x)...z*“ls (x)]
X 201 (1) .2 (]2 (1) 2 () [ (). 2 ()]
1,41, (N - 1)' {ay..... ap,C1sennnCry }
= Wuy W0 Wa,0Wa,0 51,+z1,+2 (N—1+1, +1,)! {a’i,a’z,bi....l.b,[.di....,d,v}
Zardy o] 41,—1 (N - 1)! {aj.a3.a4,....a;;,c1.....c1, }
T Eq 001141 N1+, +1, — 1) dbrbydids) | (C4)
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D(1,0) 1) (120451 (10 (D) ((1,:0). {1}

=Wu0Wu2Wa,0Wa,0
X/ﬂumwmmfummwmﬁun%uwwm+ﬁ£¢%m%un

o 223 (x). 2 ()] (27 (). ()] [ () .2 ()]

. L+1,+2 (N - 1)' {aj,..., a, b b cy...cp,}
=Waui.oWu2)Wae,0Wa,0 61;+l,,- (N=1+1,+1, + 2)!5{1)1.b2...IA.b,:.dlz,..l.ﬁd,v}I
N (N-1)! {aymar, By, }
+ E( 151 +1,—1 (N 1+ ls + lu + 1)! {bs..... h,t,d]z..“.d,“} . (CS)

For more simplicity, we define

o - _ slmitl,m, (N=1)! O A
(Usm) {a}) (Lim ) ABD Gma) deD(Um) ) T (N = 1 L+ my 4+ L+ my )L (e b by e, oy}
(Co)
Using this definition, for example, we can express
N—l)! {ay....a;..cr....cp, }
§* _ 513-4-1,{ ( ’1 - I5-C1 Iy , C7
(2D (BNt day) 2N = T4 L4 ) b by dieedi, ) ()
N—l)' {ay,....a; b byeq,ne, }
S o _ 5l.x+lu+2 ( Loeelly s Crend cs
DN TN e =T T4 Ly 7 D (ot ()
- N_l)‘ {aj,az,a4,....a; .c,....c; }
S . _ sl ( 103,401y ol 7 9
(=1 a0 BN (AN gay) (N = T L+ 1, = 1)1 b by, ) (©9)
§ — gl 1) SLav i By} (C10)

(O A (=) AN (O AN (0 fay) T (N = T L+ 1, + 1)1 o2l )

The Kronecker deltas suggest a possibility of block diagonalization of the tensor D. Using these tensors S, we obtain the
following expressions:

D(1,:2) 1) (1:0), 451 (10 (e} ((1,:0). 4}

=Wu2Wu0WaoW [Sx oy TEOSS = e ]
(12 {a}) (1:0) {6} (1 0) e} (1,:0) ) (= 1:1) {a}2) (1:0).{61) (1:0) e} ((1,:0).{a})
(C11)
D(1,0) 1)) (1241 (1,:0)-{e})((1,:0){a)
b b
=Wi.oWa2) W0 W0 [5"4 4 oo S . el } (C12)
(00D ((:2) B} (1 0) e} (1450 {a) (00 LD ((L=151) 4B} (i 0) e} (14:0).{a)

where the subscript “2” of {a}, means the absence of a, and d} in {a} and the same holds for {b}, {c}, and {d}. This
simple expression of the tensor D allows us to compute the more complicated tensor easily.
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For example,

X
Dll

(1) {ab)((1:2).{b3)((1:2) £e1)((1:0).4d})

=W I;:1 w 1,2 w 1,2 w 1,:0 §*
() T 02) T2 TE1L0) ((Z:1){ab)((152).{01(1

u;z>,{c}><<zv;o>,{d}> Eaa) ((1,=1:0).4a})) (L2). 4B 1) (U
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a,al g - -
wi2).{c})((1,:0).{d})

+E§’;f’2/') x N +E(”§“.§) x N
D7) Lah) (=101 (L2 AD (LD D (1) (e (L2 ABD (=151, (k) (1:0).{d})
b\b', ~cyc) Zaydy 56,6,
L BN Ee gx - T N N R .
U202 ) ) (=48 (L=t ) (o ay) D 2 (1 10) 4ad ) () 061 (= 11) L)) (1,:0) L))
aa b\ b’ aa cc
L EN R e N L ENG ER E o .
0 B0, 5ty enontan D 0BG T 000 e 0144
(C13)
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