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We study the free energy of a static quark in QCD with 2þ 1 flavors in a wide temperature region,
116 MeV < T < 5814 MeV, using the highly improved staggered quark (HISQ) action. We analyze the
transition region in detail, obtain the entropy of a static quark, show that it peaks at temperatures close to
the chiral crossover temperature and also revisit the temperature dependence of the Polyakov loop
susceptibilities using gradient flow. We discuss the implications of our findings for the deconfinement and
chiral crossover phenomena at physical values of the quark masses. Finally a comparison of the lattice
results at high temperatures with the weak-coupling calculations is presented.
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I. INTRODUCTION

As the temperature is increased, strongly interactingmatter
undergoes a transition to a state with different properties than
the vacuum at zero temperature. Deconfinement of gluons
and quarks, restoration of chiral symmetry and screening of
color charges are the key properties of this thermal medium
(for recent reviews see e.g. [1–3]).
The expectation value of the Polyakov loop is a sensitive

probe of the screening properties of the medium. In SU(N)
gauge theories the Polyakov loop is an order parameter for
deconfinement. At the transition temperature, both the bare
and the renormalized Polyakov loop exhibit a discontinuity
and their fluctuations diverge. Hence, the bare Polyakov
loop is used to study the deconfinement phase transition in
SU(N) gauge theories, in particular the bare Polyakov loop
susceptibility is used to define the phase transition temper-
ature (see e.g. Ref. [4]). To what extent it is a sensitive
probe of deconfinement in QCD with light dynamical
quarks is not quite clear in view of the crossover nature of
the transition [5]. In particular, it is not clear if it is possible
to define a crossover temperature from the bare Polyakov
loop, since it is a continuous quantity in the crossover
region. In recent years the deconfinement transition in QCD
with light dynamical quarks has been studied in terms of
fluctuations and correlations of conserved charges, which
indicate the appearance of quark degrees of freedom just
above the chiral transition temperature [6–9].
After proper renormalization the expectation value of the

renormalized Polyakov loop is related to the free energy,
FQ, of a static quark [10,11]

Lren ¼ expð−Fren
Q =TÞ: ð1Þ

The renormalized Polyakov loop, or equivalently the free
energy of a static charge FQ has been studied in SU(N)
gauge theories in a wide temperature interval [11–15].
Comparisons of the lattice results with weak-coupling
calculations have also been performed up to next-to-leading
order (NLO) [16] and up to next-to-next-to-leading order
(NNLO) [17].
The renormalized Polyakov loop has been computed in

QCD with dynamical quarks for various quark flavor
content and quark masses [18–26]. Continuum extrapolated
results with physical quark masses exist for staggered
fermion formulations [23,25,26]. For large quark masses
continuum results are also available for overlap and Wilson
fermion formulations [27,28]. Unfortunately, none of the
above studies extend to sufficiently high temperature to
make contact with weak-coupling calculations.
The relation of the Polyakov loop to the nature of the

QCD crossover remains unclear. For large quark masses
the deconfinement crossover defined in terms of the
Polyakov loop and the chiral crossover defined in terms
of the chiral condensate happen at about the same temper-
ature [18,19,29]. In the crossover region, both the Polyakov
loop and the chiral condensate change rapidly and their
fluctuations become large. For physical values of the quark
masses the situation may be different. In Refs. [30,31] it
was found that the deconfinement crossover defined in
terms of the renormalized Polyakov loop happens at
temperatures significantly higher than the chiral crossover
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temperature defined as the maximum of the chiral suscep-
tibility. The study of ratios of fluctuations of the imaginary
and real parts of the Polyakov loop in Ref. [32] suggested
that the deconfinement and chiral crossover happen at
about the same temperature. However, as this study used an
ad-hoc renormalization prescription, lacked continuum
extrapolation and provided no information on the cutoff
effects in full QCD, the implications of this result are not
conclusive.
In this paper we will study the free energy of a static

quark in a broad temperature region extending to 5.8 GeV.
We will also reexamine the behavior of FQ in the transition
region, in particular, we will calculate the entropy of a static
quark, SQ ¼ −∂FQ=∂T, and discuss its relation to the
deconfinement transition temperature. We will show that
the deconfinement transition temperature, defined at the
peak of SQ, is actually consistent with the chiral transition
temperature.
The rest of the paper is organized as follows. In Sec. II

we discuss our lattice setup. In Sec. III we discuss the
renormalization of the Polyakov loop using the static quark
antiquark energy at zero temperature. In Sec. IVour results
on the entropy of a static quark will be presented. Section V
will show how to extend the lattice calculations of the static
quark free energy to higher temperatures. In Sec. VI we will
discuss the calculation of the renormalized Polyakov loop
and its susceptibility using the gradient flow. The free
energy of a static quark in the high temperature region will
be compared to the weak-coupling results in Sec. VII.
Finally, Sec. VIII contains our conclusions. Some technical
details of the calculations will be given in the appendices.

II. LATTICE QCD SETUP

We perform calculations of the bare Polyakov loop at
nonzero temperature on N3

σ × Nτ lattices with Nτ ¼ 4, 6, 8,
10 and 12, and the aspect ratio of Nσ=Nτ ¼ 4 using the
highly improved staggered quark (HISQ) action [33]. The
gauge configurations have been generated by the HotQCD
Collaboration [24,34], in the course of studies of quark
number susceptibilities at high temperatures [35,36] as well
as in a previous study of the renormalized Polyakov loop
with the HISQ action [25].
We required additional gauge configurations and gen-

erated these using the SuperMUC and C2PAP computers at
Leibniz Rechenzentrum (LRZ) in Garching. Additional
gauge configurations have been generated for Nτ ¼ 4, 6
and 8 to calculate the Polyakov loop at very high temper-
atures. Further gauge configurations have been generated
for Nτ ¼ 10 and 12 to reduce uncertainties of the free
energy at low temperatures and achieve sufficient resolu-
tion of the peak of SQ.
The gauge configurations have been generated in the

range of gauge coupling β ¼ 5.90 − 9.67 with β ¼ 10=g20
using the rational hybrid Monte-Carlo (RHMC) algorithm

and the MILC code. Details on the HISQ action imple-
mentation in the MILC code can be found in [37]. The
lattice spacing a has been fixed by the r1 scale and we use
the parametrization of r1=a given in Ref. [34]. Using this
parametrization we find that the above β range corresponds
to a temperature range of 116 MeV < T < 5814 MeV.
The Polyakov loop has been calculated after each
molecular dynamic time unit (TU). For temperatures T <
407 MeV the accumulated statistics corresponds to 30–60
thousands of TUs. At higher temperatures in many cases far
fewer gauge configurations are available. The details on
collected statistics are given in Appendix A.
The Polyakov loop on the lattice is defined as

PðxÞ ¼ 1

3
Tr

YNτ−1

x0¼0

U0ðx; x0Þ; ð2Þ

where Uμðx ¼ ðx; x0ÞÞ are the lattice link variables. The
bare expectation value of the Polyakov loop will be denoted
by Lbare in what follows, Lbare ¼ hPi. Since the expectation
value of the Polyakov loop is independent of x we average
the Polyakov loop over the entire spatial volume. Our
results for the bare Polyakov loop are summarized in Fig. 1
in terms of the scaled bare static quark free energy fbareQ ¼
− logLbare as a function of the gauge coupling β. Here and
in what follows we denote by fbareQ the scaled bare free
energy of a static quark, fbareQ ¼ Fbare

Q =T. As one may see
from the figure, fbareQ decreases for increasing β and for
decreasing Nτ. The continuum limit at fixed temperature
would be reached by varying Nτ and β simultaneously in
the limit Nτ → ∞, following lines going from the lower left
corner into the direction of the upper right corner. Since
fbareQ diverges as one proceeds along these lines, the
continuum limit of fbareQ is not defined. Thus, we must
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FIG. 1. The bare free energy of a static quark fbareQ ¼ Fbare
Q =T ¼

− logLbare as function of the gauge coupling β for different Nτ

values.

A. BAZAVOV et al. PHYSICAL REVIEW D 93, 114502 (2016)

114502-2



subtract this divergence before taking the continuum limit.
We will discuss this in the next section.

III. RENORMALIZATION OF THE
POLYAKOV LOOP AND THE

CONTINUUM EXTRAPOLATION

The Polyakov loop needs multiplicative renormalization
[38]. This means that the free energy of a static quark FQ

needs an additive renormalization. The additive renormal-
ization of FQ is related to the additive renormalization of
the energy of a static quark antiquark (QQ̄) pair at zero
temperature. The static quark antiquark free energy
FQQ̄ðr; TÞ agrees with the static quark antiquark energy
at zero temperature at short distances once a finite additive
term due to trivial color factors is included [11]. On the
other hand FQQ̄ðr → ∞; TÞ ¼ 2FQðTÞ [10,11]. Therefore,
the renormalization constant of FQ, which we denote by
CQ, is half of the renormalization constant of the static
energy at zero temperature.
To determine the normalization constant CQ we require

that the static QQ̄ energy for zero temperature at a distance
r ¼ r0 is equal to 0.954=r0 [24]. This normalization
condition is equivalent to normalizing the static energy
to 0.2065=r1 [34] at a distance r ¼ r1. Normalizing the
static energy at r1, i.e. at shorter distances has the advantage
of reducing the statistical errors at large β, while the
normalization at distance r0 is more suitable for coarser
lattices, i.e. smaller values of β. Using the lattice results on
the static QQ̄ energy from Ref. [24] and normalizing them
to 0.954=r0 for β ≤ 6.488 we determine r0CQ. Then using
the results on the static QQ̄ energy at higher β from
Refs. [24,34] and normalizing those to 0.2065=r1 we
determine r1CQ. Finally using r1=a and r0=a from
Refs. [24,34] we calculate the values of the normalization
constant in lattice units aCQðβÞ ¼ cQðβÞ which are shown
in Fig. 2 and tabulated in Appendix A. Note that since CQ

has a 1=a divergence, cQ is finite and is a slowly varying
function of β. Once the cutoff dependence is rephrased in
terms of the lattice spacing aðβÞ, we may write
CQ ¼ b=aþ cþOða2Þ. The divergence b=a cancels
against the divergence of the bare free energy. The constant
c is a scheme dependent constant, which depends on the
distances r0 or r1, but is independent of the lattice spacing.
Since the leading higher order corrections are suppressed
by αsa2 for the HISQ/Tree action, the derivative in a of
these corrections vanishes in the continuum limit. We note
that, since T ¼ 1=ðaNτÞ, at fixed Nτ the dependence of cQ
on a translates into a dependence on the temperature.
Now for the renormalized free energy in temperature

units we can write

frenQ ðTðβ; NτÞ; NτÞ ¼ fbareQ ðβ; NτÞ þ NτcQðβÞ: ð3Þ

The renormalized free energy depends on β through the
chain rule for Tðβ; NτÞ. We use T as argument instead of β,
since the continuum limit of frenQ ðTðβ; NτÞ; NτÞ can be
taken for fixed temperature. Hereafter, we usually omit the
superscript “ren”when referring to renormalized quantities,
but keep the superscript “bare” for the bare quantities. Here
and in what follows we denote by fQ the scaled renor-
malized free energy of a static quark, fQ ¼ FQ=T. In order
to determine fbareQ and cQ as a function of β and/or as a
function of the temperature, we interpolate the lattice
results on cQðβÞ and fbareQ ðβ; NτÞ independently in β.
First, we discuss the interpolation procedure for cQ. To

obtain cQ as a function of β we use smooth splines and
polynomial interpolations. The errors on the interpolations
have been estimated using the bootstrap method. We varied
the number of knots of the splines as well as the value of the
smoothing parameter in order to estimate the systematic
errors. In the case of polynomial fits we consider poly-
nomials of different degree. The interpolation of cQ is also
shown in Fig. 2. In the inset of the figure we show the
derivative of cQ with respect to beta in order to highlight the
spread in different interpolations. The differences between
the different interpolations are most visible in the β
dependence of the derivative of cQ that is needed for the
evaluation of the entropy of a static charge to be discussed
in the next section.
Next, we discuss the interpolations of the free energy as

well as the continuum extrapolations. At finite cutoff, the
temperature T is related to Nτ and the lattice spacing a
through aNτ ¼ 1=T; trading a for β we can also write
β ¼ βðT;NτÞ. Consequently, the limit a → 0 at fixed
temperature is tantamount to the limit Nτ → ∞. The power
law dependence of cutoff effects on a or 1=Nτ respectively
is determined by the leading discretization errors of the
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lattice simulations [Oðαsa2; a4Þ for the HISQ action].
We will use two approaches to do this, which we will
call local and global extrapolations. In the first approach,
which we will call a local fit, we perform the interpolation
of the lattice results for fbareQ as function of β for each Nτ

separately. Using the value of cQ determined above we then
calculate the renormalized free energy fQðTðβ; NτÞ; NτÞ
for each Nτ and perform continuum extrapolations. In the
second approach, which we will call a global fit, we
simultaneously fit the temperature and Nτ dependence of
fbareQ ðβ; NτÞ þ NτcQðβÞ. SettingNτ → ∞ in the resulting fit
we obtain the continuum extrapolated results for the
renormalized free energy. We will discuss these two
approaches in the following subsections in more details.

A. Local interpolations and extrapolations

To perform the interpolation of fbareQ ðβ; NτÞwe split the β
range in overlapping low β and high β intervals which
roughly correspond to temperatures T < 200 MeV and
T > 200 MeV respectively. In these intervals for each
Nτ we perform interpolations in β using smoothing splines
as well as polynomial fits. We find that in the low beta
range it is sufficient to use splines with 5–7 knots, while in
the high β range we use splines with 8–19 knots depending
on the value of Nτ. The statistical errors of the interpola-
tions are estimated using the bootstrap method. To estimate
possible systematic errors in the interpolation we also
performed polynomial fits of the lattice data for
fbareQ ðβ; NτÞ in the above intervals. We find that the
interpolations obtained with polynomials and splines agree
well within the estimated statistical errors not only for
fbareQ ðβ; NτÞ but also for its derivative. Therefore, there are
no additional systematic errors in our analysis. The details
of the interpolations and fits are presented in Appendix B.

Having the interpolation for fbareQ ðβ; NτÞ and the interpo-
lation for cQ we calculate the renormalized free energy for
each Nτ. We then perform a 1=N2

τ extrapolation for fQ to
obtain the continuum limit for each value of the temper-
ature. In Fig. 3 we show the Nτ dependence of fQ together
with 1=N2

τ and 1=N4
τ extrapolations. As one can see from

the figure cutoff effects are fairly small for T > 200 MeV
and 1=N2

τ holds including Nτ ¼ 6 data. Note that we do not
consider the Nτ ¼ 4 results partly because they are avail-
able only for T > 200 MeV and partly because they are
outside the scaling window. At lower temperature cutoff
effects are larger and the Nτ ¼ 6 data are not in the scaling
regime. Therefore, we have to consider fits with 1=N4

τ term
included, or use 1=N2

τ fits for Nτ ≥ 8 only. The continuum
results obtained with the above extrapolations are shown
in Fig. 4.
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B. Global fits and extrapolations

In the previous subsection we have seen that the temper-
ature dependence can be described by polynomials in the
low and high beta ranges once β has been reexpressed in T.
Furthermore, theNτ dependence of the lattice results is well
described by a function P0 þ P2=N2

τ þ P4=N4
τ . Therefore,

we performed fits for Nτ ¼ 6, 8, 10 and 12 data on
fQðTðβ; NτÞ; NτÞ using the following form

P0ðTÞ þ
P2ðTÞ
N2

τ
þ P4ðTÞ

N4
τ

: ð4Þ

Here Pi, i ¼ 0, 2, 4 are polynomials in the temperature T.
As we did for local interpolations, we split the temperature
range in overlapping low and high temperature intervals
and performed the global fits in both intervals separately.
These intervals roughly correspond to T < 200 MeV and
T > 200 MeV. The low temperature fits extend only down
to the lowest temperatures where bare free energies are
available for Nτ ¼ 12, which is slightly above 120 MeV.
The high temperature fits extend only up to the highest
temperature where cQ is available for Nτ ¼ 12, which is
slightly below 410 MeV. We used fits with and without the
1=N4

τ term, as well as including and excluding the Nτ ¼ 6
data. We find that within estimated statistical errors all
the fits agree both for fQðTðβ; NτÞ; NτÞ and its derivatives.
The account of these fits is given in Appendix B. For the
continuum result we use the fit which does not include the
Nτ ¼ 6 data and has fixed P4 ¼ 0. We consider this fit as
our continuum limit after setting Nτ ¼ ∞, which corre-
sponds to setting P2 ¼ 0 in the resultant fit function. This is
shown in Fig. 4, where we see that local and global
continuum extrapolations for fQ agree very well.

C. Comparison with previous calculations

Now let us compare the above continuum results with the
previously published results that use the same renormal-
ization scheme with improved staggered quark actions.
Namely we compare our results with the continuum results
obtained with the stout action [23] as well as with the HISQ
action [25]. This comparison is shown in Fig. 5. We see that
our results agree with the previously published results
within errors, however, the central values for FQ in our
analysis are slightly smaller for T < 130 MeV due to
different way the continuum extrapolation is performed.
The previous estimate of the continuum limit for T ≤
135 MeV had been performed by averaging Nτ ¼ 10 and
Nτ ¼ 8 data [25], whereas our analysis includes new
Nτ ¼ 12 ensembles at low temperatures that made a
controlled continuum extrapolation possible. For T >
180 MeV the central value of FQ in our analysis is
somewhat larger. This is due to the updated value of the
renormalization coefficients cQ. The previous HISQ cal-
culations relied on the zero temperature static quark

antiquark energies obtained in Ref. [24], which have
larger statistical uncertainty and use fewer β values. The
current analysis of cQ is based on the analysis of the zero
temperature static quark antiquark energies from Ref. [34],
which has higher statistics and uses more β values. The
main new element in our analysis is that it extends to
significantly higher temperatures.
Finally, we compare our results with the prediction of

the hadron resonance gas (HRG) calculation for FQ [25],
which includes the contribution of all static-light mesons
and all the static-light baryons (see also Ref. [39]). Since
the HRG value of FQ is only defined up to a temperature
independent constant, this constant needs to be fixed. We
do so by matching the HRG value of FQ to the lattice
results at lowest temperature. The comparison is shown in
Fig. 5. We see that the HRG description works only for
temperature T < 140 MeV which is in agreement with the
previous analysis [25].

IV. ENTROPY OF A STATIC QUARK

While the free energy of a static quark encodes the
screening properties of the hot QCD medium its temper-
ature dependence is relatively featureless. The change in
the screening properties of the medium can be seen more
clearly in terms of the entropy of a static quark

SQðTÞ ¼ −
∂FQðTÞ

∂T : ð5Þ

Note that the equality holds also if the temperature
derivative is taken at changing volume, since the pressure
exerted by a static quark is zero. The entropy was discussed
recently in connection with the strongly coupled nature of
quark gluon plasma [40,41]. The entropy of a static quark
in SU(3) gauge theory diverges at the phase transition
temperature and was considered in Refs. [42,43]. The
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entropy was also calculated for 2 and 3 flavor QCD with
larger than physical quark masses [18,42]. It has a peak at
the crossover temperature, i.e. it corresponds to the inflec-
tion point of FQ. Therefore, calculating SQ for the physical
quark masses is of interest, since SQ could be used to define
a deconfinement transition temperature.
Based on the interpolation of fQ and cQ described in the

previous section it is straightforward to estimate SQ. We
write

−SQ ¼ fbareQ þ T
∂β
∂T

∂fbareQ

∂β þ Nτ

�
cQ þ T

∂β
∂T

∂cQ
∂β

�
: ð6Þ

Here, the derivative ∂β=∂T is related to the nonperturbative
beta function Rβ through Rβ ¼ Tð∂β=∂TÞ, determined in
Ref. [34]. The entropy can also be calculated using the
global fits for fQðTðβ; NτÞ; NτÞ discussed in the previous
section.
The numerical results for the entropy of a static quark are

shown in Fig. 6 for Nτ ¼ 6, 8, 10 and 12 with local as well
as global fits. These fits have been discussed in Secs. III A
and III B. We see that with increasing temperature SQ
increases reaching a maximum at some temperature and
then decreases again. Therefore, it makes sense to discuss

the behavior of the entropy at low temperatures, in the peak
region and at high temperatures separately. Since SQ for
Nτ ¼ 6 is not in the a2 scaling regime in the peak region
and below, no a2 scaling fit is shown for Nτ ¼ 6.
At low temperatures we expect SQ to be described by

the HRG model of Ref. [25], discussed in the previous
section. The HRG predictions from this model for SQ are
shown as black lines in Fig. 6. For low temperatures T <
130 MeV our lattice results for SQ overlap with the HRG
curve. As the temperature increases we see very clear
deviations from the HRG result, namely the entropy SQ
calculated on the lattice is significantly larger than the
HRG prediction.
As mentioned above the entropy shows a peak at some

temperature. The position of the maximum in SQ turns out
to be up to 3 MeV below the chiral crossover temperature at
finite cutoff, TχðNτÞ [24], which is shown as a vertical line
in the figure for each Nτ separately. The bands indicate the
uncertainty in TχðNτÞ. The values of TχðNτÞ are obtained
from the Oð2Þ scaling fits of the chiral susceptibilities [24].
If the maximum in the entropy of a static quark is used to
define a deconfinement crossover temperature one could
say that deconfinement and chiral crossover happen at
about the same temperature.
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We extrapolate to the continuum with different local and
global fits, either including a P4=N4

τ term (cf. Sec. III B)
and Nτ ¼ 6 data or excluding both. The position of the
peak scatters in the range 150.5 MeV ≤ T ≤ 157 MeV,
depending on the details of the fits, which are discussed in
Appendix B. We consider the local fit excluding P4 and
Nτ ¼ 6 as our final result and find the maximum of SQ at
TS ¼ 153þ6.5

−5 MeV.We estimate a systematic uncertainty of
TS as

þ4
−2.5 MeV from the spread of the fits, which is smaller

than the statistical errors that we quote.
The deconfinement transition temperature was defined as

the inflection point of the renormalized Polyakov loop in
Refs. [5,31] and values of TL ¼ 171ð3Þð4Þ MeV1 and
TL ¼ 170ð4Þð3Þ MeV have been found, respectively.
These values are significantly larger than the chiral tran-
sition temperature. The most likely reason for this is that the
inflection point of the renormalized Polyakov loop depends
on the renormalization condition and could be different
from the inflection point of FQ. The inflection point of the
renormalized Polyakov loop can be obtained from the
equation

0 ¼ 1

Lren

∂2Lren

∂T2
¼

�∂fQ
∂T

�
2

−
�∂2fQ
∂T2

�

¼ 1

T

�ðfQ þ SQÞ2 − 2ðfQ þ SQÞ
T

þ
�∂SQ
∂T

��
; ð7Þ

whereas the inflection point of the free energy FQ is
obtained from 0 ¼ ∂SQ=∂T. In other words, the two
inflection points of the Polyakov loop and the free energy
would agree if and only if fQ þ SQ ¼ 0 or 2. This would be
the case if weak-coupling relation, SQ ≃ −fQ, was correct
close to the crossover point. Instead, in support of the
findings in Refs. [5,31] we find the inflection point of
the renormalized Polyakov loop significantly above the
chiral transition temperature, between 180 and 200 MeV
for each Nτ ¼ 12, 10, 8 and 6. Systematic uncertainties for
Nτ ¼ 12 are underestimated by the error in this range
(cf. Appendix B). Equation (7) shows that the inflection
point of Lren ¼ exp ð−fQÞ depends on the term c of cQ
(cf. Sec. III) through fQ and f2Q. For FQ the change in the
renormalization condition does not affect its inflection
point in the continuum limit, which, in fact, does not
depend on c.
We also compare our continuum results for SQ with

previous calculations obtained at much larger quark masses
and Nτ ¼ 4 lattices [18,42]. This comparison is shown in
Fig. 7. The temperature axis in the figure has been rescaled
by the corresponding transition temperatures. We see that
the peak in the entropy is much reduced compared to the

previous calculations. The height of the peak is about a
factor of two smaller compared to the previous calculations.
Both larger quark masses and fewer quark flavors corre-
spond to physical settings in between QCD with 2þ 1
flavors at physical quark masses and pure gauge theory. In
pure gauge theory SQ would diverge as the temperature
approaches the deconfinement phase transition from above.
We further remark that Fig. 6 clearly shows that the height
of the peak decreases for increasing Nτ. Therefore, one
would generally expect to see a higher peak in SQ at finite
cutoff than in the continuum limit. Hence, the much
reduced height of the peak is no surprise.
Finally, let us discuss the behavior of SQ in the high

temperature region. For T > 220 MeVwe have sufficiently
accurate data for all lattice spacings. We have performed
several continuum extrapolations based on global and local
fits. These are shown in Fig. 8. We can see from the figure
that different continuum extrapolations have overlapping
error bands. In particular Nτ ¼ 6 data is consistent with
1=N2

τ scaling behavior. The uncertainty grows significantly,
however, as we approach T ¼ 400 MeV due to the fact that
renormalization constants are available only up to that
temperature for Nτ ¼ 12 data. In the next section we will
discuss how to extend the results to higher temperatures. In
Fig. 8 we also show the results for weak-coupling calcu-
lations at leading order with one-loop running coupling for
two different renormalization scales. As one can see from
the figure the LO result for SQ is not very different from
the lattice calculations, however, the scale dependence is
quite large. Furthermore, higher order corrections are also
important. Therefore, for a meaningful comparison of the
lattice and the weak-coupling results it is necessary to
extend the calculations to higher temperatures and to higher
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1We adjusted for the change in the value of the kaon decay
constant that was used to set the scale in Ref. [5] to the most
recent value.
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orders in the perturbative expansion. This will be discussed
in Sec. VII.

V. POLYAKOV LOOP AT
HIGH TEMPERATURES

The highest temperature at which we can study the
Polyakov loop or equivalently FQ so far was limited by the
knowledge of cQ determined by the zero temperature static
QQ̄ energy. Below we will discuss a method to work
around this limitation which we call the direct renormal-
ization scheme.
The idea of the direct renormalization scheme is to

determine cQ by comparing the free energy fQ calculated
for the same temperature but differentNτ [14]. Equation (3)
can be applied to obtain cQðβÞ once fQðTðβ; NτÞ; NτÞ and
fbareQ ðβ; NτÞ are known. If there were no cutoff effects in
fQðTðβ; NτÞ; NτÞ after renormalization, cQðβÞ at some
value of β would read

cQðβÞ ¼
1

Nτ
½Nref

τ cQðβrefÞ

þ fbareQ ðβref ; Nref
τ Þ − fbareQ ðβ; NτÞ�; ð8Þ

where Nref
τ and βref correspond to a reference point, where

cQ is known.
Next, we study the cutoff dependence of fQ. It is

convenient to do so by considering the following difference

ΔNτ;Nref
τ
ðTÞ ¼ fQðTðβ; NτÞ; NτÞ

− fQðTðβref ; Nref
τ Þ; Nref

τ Þ: ð9Þ

In Fig. 9 we show ΔNτ;Nref
τ
ðTÞ as a function of the temper-

ature for different combinations of Nτ and Nref
τ . At low

temperatures, T < 250 MeV, this quantity shows a strong
temperature dependence. However, for T > 250 MeV the
temperature dependence of ΔNτ ;Nref

τ
ðTÞ is rather mild, and

one may approximate it by a constant. Therefore, we assume
that above the temperatures where no lattice data for cQ are
available ΔNτ;Nref

τ
ðTÞ is constant. If predictions for cQ from

all possible pairs ðNτ; Nref
τ Þ are consistent within uncertain-

ties, one may conclude in retrospect that the assumption was
justified. We estimate its central value from the average of
the minimum and the maximum of the one sigma band of
ΔNτ;Nref

τ
ðTÞ for T > 250 MeV and its uncertainty by the

respective difference. This estimate is shown in Fig. 9. Using
Δav

Nτ;Nref
τ
ðTÞ determined this way together with the corre-

sponding error we can provide an estimate for cQ that should
be free of cutoff effects:

cQðβÞ ¼
1

Nτ
½Nref

τ cQQ̄
Q ðβrefÞ þ Δav

Nτ;Nref
τ

þ fbareQ ðβref ; Nref
τ Þ − fbareQ ðβ; NτÞ�: ð10Þ

We use all possible pairs ðNτ; Nref
τ Þ and compute

cdirectQ ðβ; Nτ; Nref
τ Þ via Eq. (10) from cQQ̄

Q ðβÞ for all possible
temperatures. We can only calculate cQ with direct renorm-
alization procedure up to β ¼ 8.57, if we useNτ ¼ 8 results
for the bare Polyakov loops (Tðβ ¼ 8.57; Nτ ¼ 8Þ ¼
1155 MeV) or to β ¼ 8.85 if we use Nτ ¼ 12 results for
the bare Polyakov loop (Tðβ¼8.85;Nτ¼12Þ¼974MeV).
To extend the beta range even further, we use the two step
procedure for the direct renormalization. First, we compute

cdirectQ up to β ¼ 8.85 from cQQ̄
Q in the first iteration. Next,

we add the new values of the renormalization constant to
the bare free energies up to Tðβ ¼ 8.85; 4Þ ¼ 2922 MeV.
Finally, we compute cdirectQ up to β ¼ 9.67 from cdirectQ in a
second iteration and add the new values of the renormal-
ization constant to bare free energies up to
Tðβ ¼ 9.67; 4Þ ¼ 5814 MeV. We sketch the procedure
in the flow chart in Fig. 10. In order to test robustness
and predictive power of direct renormalization, we omit
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cQQ̄
Q ðβÞ for β > 7.373 and calculate cdirectQ using the above

procedure. After excluding cQQ̄
Q ð7.596Þ and cQQ̄

Q ð7.825Þ
from the input, we compare the predictions for
cdirectQ ð7.596; Nτ; Nref

τ Þ and cdirectQ ð7.825; Nτ; Nref
τ Þ with

known values of cQQ̄
Q ðβÞ. We show this comparison for a

few selected β values and pairs (Nτ; Nref
τ ) in Fig. 11. Black

bursts represent cQQ̄
Q ðβÞ data from zero temperature lattices.

Results cdirectQ ðβ; Nτ; Nref
τ Þ inferred from coarser resp. finer

lattices (Nτ > Nref
τ resp. Nτ < Nref

τ ) are displaced to the

right resp. left of cQQ̄
Q ðβÞ. Shape and color of the symbols

encode Nref
τ and Nτ. As one can see from the figure the

direct renormalization method correctly reproduces
the values of the renormalization constant obtained in
the QQ̄ procedure.
Since no trends in cdirectQ ðβ; Nτ; Nref

τ Þ depending on either
Nτ or Nref

τ are observed, we conclude that no residual cutoff

effects are present. We average over all possible pairs
ðNτ; Nref

τ Þ that reproduce one of the β values of an under-
lying Polyakov loop within�0.01, take the error’s mean as
statistical error and the standard deviation as systematical
error estimate (at most 25% of the statistical error). We add
these errors in quadrature and show the 1σ bands of
cdirectQ ðβÞ in the figure. We show with dark blue lines

(for β ≤ 7.373) that input values cQQ̄
Q ðβÞ are reproduced.

Hence, consistency between both renormalization schemes
is evident. We show with cyan lines (for β > 7.373) that
predictions of the direct renormalization procedure are

consistent with cQQ̄
Q ðβÞ outside of the input β range.

Therefore, we confirm that our approach for the direct
renormalization procedure has predictive power outside of
the input β range and that our extrapolation assuming
constant cutoff effects in Fig. 9 is justified.
Having determined the renormalization constant in the

extended range of β (cf. Fig. 12) it is straightforward to
calculate the free energy fQ at considerably higher temper-
atures. Namely our calculations with Nτ ¼ 12 now extend
to T ¼ 900 MeV, while for Nτ ¼ 6 and Nτ ¼ 8 we can
reach to temperatures of about 3800 MeV and 2900 MeV,
respectively. The results of our calculations at high temper-
atures (T > 400 MeV) are shown in Fig. 13 for different
Nτ. In the figure we also show the local interpolation of the
data as bands. One can see that the cutoff dependence of the
data is rather mild, i.e. the bands corresponding to different
Nτ are largely overlapping, including the Nτ ¼ 4 results. In
other words, even for our coarsest lattice the cutoff effects
are very small in this high temperature region. This will be
important for the comparison with the weak-coupling
calculations discussed in Sec. VII since this comparison
can be performed using the Nτ ¼ 4 results that extend up to
temperatures as high as 5814 MeV. We also note that the
free energy becomes negative for T > 500 MeV as
expected from the weak-coupling calculations. The other
interesting feature of fQ is that it has a minimum around

FIG. 10. The flow chart sketches the different steps of the direct
renormalization procedure. For each step the temperature
Tðβ; NτÞ is limited by the corresponding β ≤ βmax.
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temperatures of about 1500 MeV corresponding to a
maximum of the renormalized Polyakov loop. This feature
was observed in the SU(3) gauge theory, where the
renormalized Polyakov loop has the maximum at temper-
atures of 12Td, with Td being the deconfinement phase
transition temperature [14]. These SU(3) Yang-Mills
theory results, which have been included in Fig. 13, yield
significantly smaller jfQj than our results with 2þ 1

flavors. The difference is pronounced most strongly in
the vicinity of the minimum of fQ.
From the interpolations of fQ it is straightforward to

calculate the entropy of a static quark. This is shown in
Fig. 13 (right panel). Furthermore, since for T > 400 MeV
the free energy varies smoothly with the temperature it is
possible to calculate SQ without any interpolation. We
could estimate SQ by approximating the temperature
derivative of FQ by finite differences of the lattice data
on FQ at two neighboring temperature values. The entropy
estimated from the finite differences is also shown in
Fig. 13 and it agrees very well with the results obtained
from interpolations. For T > 900 MeV we have SQ ≃ −fQ
as expected in the weak-coupling picture. We also note that
the entropy at high temperatures is also higher than in the
SU(3) gauge theory.

VI. RENORMALIZATION WITH
GRADIENT FLOW

The gradient flow was introduced as a tool to remove
short distance divergences in the lattice observables
[44,45]. It is defined by the differential equation [44]

dVμðx; tÞ
dt

¼ −g20∂x;μS½V�Vμðx; tÞ; ð11Þ

where S½V� is the lattice gauge action and g20 ¼ 10=β is the
bare lattice gauge coupling. The new link variable Vμðx; tÞ

has the initial value given by the original link variable
Vμðx; t ¼ 0Þ ¼ UμðxÞ. Here we use the same notation for
∂x;μS½V� as in Ref. [44]. The gradient flow has been
extensively used at zero temperature for scale setting
(see, e.g., Ref. [46,47]) as well as at nonzero temperature
for the calculations of the equation of state [48]. In
Ref. [49] it was proposed to use the gradient flow to
calculate the renormalized Polyakov loops. It was shown
there that up to a temperature independent constant the
free energy of a static quark calculated using the gradient
flow agrees with the free energy obtained in the conven-
tional (QQ̄) scheme in the continuum limit up to temper-
atures T ¼ 400 MeV, provided that the flow time f ¼ ffiffiffiffi

8t
p

satisfies the condition:

a ≪ f ≪ 1=T; or 1 ≪ fT ≪ Nτ: ð12Þ
The gradient flow method also enabled the calculation of
the free energy of static charges in higher representation
and confirmed the expected Casimir scaling in the high
temperature region [49]. Here wewould like to extend these
studies to higher temperatures and also analyze the fluc-
tuations of the Polyakov loop.

A. Renormalized Polyakov loop from gradient flow

We followed the procedure outlined in Ref. [49] and
calculated the Polyakov loop at nonzero flow time by
replacing the link variablesUμðxÞ in Eq. (2) by Vμðx; tÞ. We
use the tree level Symanzik gauge action in Eq. (11). We
calculated the Polyakov loop for the same flow times as in
Ref. [49], namely, f ¼ ffiffiffiffi

8t
p ¼ f0, 3=4f0, 1=2f0, 1=4f0

and 1=8f0, f0 ¼ 0.2129 fm. See Ref. [49] for further
details. In Fig. 14 we show our numerical results for
Nτ ¼ 12 shifted by a constant such that the results obtained
at different flow times agree with the continuum result for
FQ obtained in the previous section at T ¼ 600 MeV. The
bands shown in the figure correspond to the interpolation of
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the lattice data. One can see from the figure that the
temperature dependence of FQ obtained with f ¼ f0,
3=4f0, 1=2f0 is very similar to the temperature dependence
of the free energy obtained using the direct renormalization
procedure for T < 500 MeV. With a suitable constant shift
all these results can be made to agree with each other in
this temperature region. For higher temperatures, however,
the temperature dependence of FQ obtained with these
values of the flow time is not captured correctly. Choosing a
smaller flow time, namely f ¼ f0=4, the temperature
dependence of FQ obtained using direct renormalization
method is reproduced. However, decreasing the flow time
even further to f0=8 leads to a completely different
temperature dependence. Thus, for T > 500 MeV the
results are very sensitive to the choice of the flow time,
i.e. the scaling window is very narrow. We also performed
the calculations for Nτ ¼ 6, 8 and 10. The corresponding
results are similar to the ones shown in Fig. 14 but the flow
time dependence is even stronger. This stronger flow time
dependence is expected [cf. Eq. (12)].
To understand the flow time dependence of the free

energy of a static quark shown in Fig. 14 it is useful to
analyze the leading order result for the Polyakov loop
obtained at nonzero flow time [50]. In terms of the free
energy the leading order result reads

Ff
QðTÞ ¼ CFαs

ffiffiffi
π

p
f

− CFαs
mD

2
~ΦðmDf=2Þ; ð13Þ

where ~ΦðzÞ ¼ ez
2 2ffiffi

π
p

R
∞
z dxe−x

2

. Here and in what follows

we use the label f on the free energy to denote the free
energy obtained with gradient flow. For sufficiently small
flow time this result approaches the well known leading
order result for FQ (up to a temperature independent

constant ∼1=f), since ~Φðz ¼ 0Þ ¼ 1. Now the question
arises which value of the flow time can be considered as
sufficiently small. Therefore, in Fig. 15 we show the
leading order result given by Eq. (13) omitting the constant

term ∼1=f. Furthermore, we shifted Ff
Q by 300 MeV to

facilitate the comparison with the lattice results. We see a
similar trend in the flow time dependence of the leading
order result for Ff

QðTÞ: As the flow time increases the
temperature dependence becomes milder. For T <400MeV
f ¼ f0=4 can be considered as sufficiently small. However,
at higher temperature we must have f < f0=8. On the other
hand, as we have seen above, the value of f ¼ f0=8 is too
small for Nτ ¼ 12 lattices to remove the lattice artifacts.
This suggests that one has to use lattices with temporal
extent Nτ > 12 to obtain the correct temperature depend-
ence of the Polyakov loop for T > 400 MeV.
One could also try to follow a different philosophy and

fix the flow time such that f · T ¼ const as it was done in
Ref. [50]. In this case the term proportional to 1=f would
contribute to the temperature dependence of Ff

Q and thus to

the entropy SfQ ¼ −∂Ff
Q=∂T. The additional contribution

to the entropy just amounts to a constant shift compared to
the entropy of a static charge defined in the conventional
way, i.e. the temperature dependence of the entropy would
be the same as before. By matching the entropy obtained
from the gradient flow to the entropy of a static quark
obtained in the conventional scheme one could in principle
obtain results for the entropy at higher temperatures. We
tried to implement this scheme, however, it turns out that
the resulting errors are too large to obtain reliable results for
the entropy of a static charge at high temperatures.

B. Fluctuations of Polyakov loop

The Polyakov loop susceptibility defined as

χ ¼ ðVT3ÞðhjPj2i − hjPji2Þ; ð14Þ

is often used to study the deconfinement transition in
SU(N) gauge theories and for the determination of the
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transition temperature. It has a sharp peak at the pseudoc-
ritical temperature. It is not clear, however, how to renorm-
alize this quantity. Attempts to renormalize it using the
square of the renormalization factor of the Polyakov loop
have been proposed [32,51]. However, apart from being ad-
hoc this procedure does not remove all the UV divergences
in the susceptibility as can be seen from the comparison of
lattice data obtained for different Nτ [32]. In Ref. [50] the
gradient flow was used in the calculation of the Polyakov
loop susceptibilities in SU(3) gauge theory. The gradient
flow effectively renormalizes the susceptibility and thus no
cutoff dependence can be seen [50], but the value of
the Polyakov susceptibility depends on the choice of the
flow time. The peak position is, however, independent
of the flow time and is equal to the phase transition
temperature [50].
We also used gradient flow to study the Polyakov loop

susceptibility in 2þ 1 flavor QCD. Our results for flow
time f ¼ 3f0 and different Nτ are shown in Fig. 16 (left
panel). The Polyakov loop susceptibility obtained for f ¼
3f0 shows a peak around T ≃ 200 MeV, i.e. at signifi-
cantly higher temperature than the peak position in SQ, TS

(e.g. TSðNτ¼12Þ¼157ð6ÞMeV). The Nτ dependence of
Polyakov loop susceptibility is rather mild and does not
show a clear tendency. Next, we examine the dependence of
the Polyakov loop susceptibility on the flow time. In
Fig. 16 (right panel) we also show the flow time depend-
ence of χ for Nτ ¼ 12, where the flow time dependence is
expected to be the mildest. We see that the Polyakov loop
susceptibility strongly depends on the choice of the flow
time. The peak position shifts to large values as the flow
time is decreased from 3f0 to f0. This behavior of the
Polyakov loop susceptibility in 2þ 1 flavor QCD can be
understood as follows. Unlike in SU(N) gauge theory the
Polyakov loop is not related to singular behavior of the free
energy in the transition region. The fluctuations of the
Polyakov loop are therefore not affected by the critical

behavior in the transition region and thus are not enhanced
in a significant way. The value of χ is determined by the
regular terms and thus depends on the renormalization
procedure, i.e., the choice of the flow time.
In addition to the Polyakov loop susceptibility defined

by Eq. (14), which corresponds to the fluctuation in the
absolute value of the Polyakov loop, one can consider
separately the fluctuations of real and imaginary parts of the
Polyakov loop

χL ¼ ðVTÞ3hðRePÞ2i − hPi2; χT ¼ ðVTÞ3hðImPÞ2i;
ð15Þ

which, following Refs. [32,51], we will call the longi-
tudinal and transverse susceptibilities. In the above equa-
tions we used the fact that hPi ¼ hRePi and hImPi ¼ 0.
We have calculated χL and χT using the gradient flow. We
find that χL behaves as χ, i.e. it has the same flow time
dependence, and for f ¼ 3f0 it shows a broad peak in the
temperature region T ¼ ð180–200Þ MeV. We also find a
significant flow time dependence for χT. However, χT has a
peak at temperatures around 160 MeV, i.e. close to the
chiral transition temperature. One may speculate that with
increasing the flow time further the peak position of χL will
move closer to the chiral transition temperature because the
large flow time will enhance the infrared fluctuations in the
real part of the Polyakov loop. However, we did not pursue
this in the present study.
In Refs. [32,51] the ratios of the Polyakov loop suscep-

tibilities RA ¼ χ=χL and RT ¼ χT=χL have been studied.
It has been argued there that these ratios are sensitive
probes of deconfinement and are independent of the cutoff.
Therefore, we will study these ratios in more detail. First,
let us consider the ratio RA. It is shown in Fig. 17 as
function of the temperature for various flow times and
lattice spacings. For zero flow time our results for RA are
in qualitative agreement with the results of Ref. [32]. The
ratio RA exhibits a crossover behavior for temperatures
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T ¼ ð150–200Þ MeV. However, we see a very strong
cutoff (Nτ) dependence of this ratio. While for Nτ ¼ 8
the crossover happens at temperatures close to the chiral
transition temperatures, for larger Nτ it happens at signifi-
cantly higher temperatures. For flow time f ¼ f0 we do not
see any significant cutoff dependence in RA, i.e. this value
of the flow time is sufficiently large to get rid of the cutoff
effects and obtain a renormalized quantity for RA (cf. the
middle panel of Fig. 17). Since cutoff effects are quite small
already for f ¼ f0 it is sufficient to study the flow time
dependence of our results for the Nτ ¼ 8 lattice data, which
is also shown in Fig. 17. One can see from the figure that as
the flow time increases the value of RA at low temperatures
increases, and the step function like behavior of RA
gradually disappears. For flow time f ¼ 2f0 and f ¼
3f0 the ratio RA smoothly approaches one from below
as the temperature increases and shows no sign of an
inflection point. Note, that there is no significant flow time
dependence for f ≥ 2f0 in RA. The flow time dependence
for other Nτ is similar.
Now let us examine the temperature dependence of RT .

In Fig. 18 we show our results for RT for three different
flow times: f ¼ 0, f0 and 3f0. For zero flow time we see
sizable cutoff dependence in RT and our results are
qualitatively similar to those of Ref. [32]. For flow time
f ¼ f0 the large cutoff dependence is removed and we see
a crossover like behavior around temperatures of about
160 MeV. For f ¼ 3f0 we have a very similar picture and

again we see a crossover behavior around temperatures of
about 160 MeV. However, the value of RT is somewhat
reduced at low temperatures.
In summary, we find that the ratios RA and RT are

strongly cutoff dependent contrary to the conjecture of
Refs. [32,51] stating their cutoff independence. Evaluating
these ratios with the gradient flow removes the cutoff
dependence. However, RA obtained from the gradient flow
is not sensitive to deconfinement. On the other hand RT
obtained from the gradient flow is sensitive to deconfine-
ment, it shows a crossover behavior close to the chiral
crossover temperature. Furthermore, RT is not very sensi-
tive to the choice of the flow time, and therefore it can be
considered as a sensitive probe of deconfinement.

VII. COMPARISON WITH THE
WEAK-COUPLING CALCULATIONS

In this section we discuss the comparison of our lattice
results with the weak-coupling calculations. The free
energy of a static quark has been calculated to next-to-
next-to leading order (NNLO) [17]. It is important to
calculate the free energy to this order to reduce the large
scale dependence of the weak-coupling result. We will use
the Nτ ¼ 4 results for this comparison as these extend up to
the rather high temperatures of 5814 MeV and the lattice
artifacts are small, see discussions in Sec. V. As was
pointed out in Ref. [17] the comparison of the lattice results
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and the weak-coupling calculations is complicated by the
fact that the two calculations are performed in different
schemes. The weak-coupling calculations are performed in
MS scheme, while in the lattice calculations the scheme is
fixed by the prescribed values of the static QQ̄ energy at
zero temperature at some distance. The two schemes can be
related by a constant (temperature independent) shift in FQ

that can be calculated. This, however, introduces additional
uncertainty in the comparison. The most straightforward
way to perform the comparison of the lattice and the weak-
coupling results is to consider the entropy [17]. Such a
comparison has been performed in SU(3) gauge theory, i.e.
for Nf ¼ 0 in a temperature range extending up to 24Td,
with Td ≃ 300 MeV being the deconfinement phase tran-
sition temperature in [17]. It was found that the lattice data
are in between the leading order (LO) and the NNLO
results, and at the highest temperature the NNLO and the
lattice results agree within the uncertainties.
In Fig. 19 we show the comparison of the LO and NNLO

weak-coupling results with the Nτ ¼ 4 results for SQ. We
used the 1-loop running coupling constant in the weak-
coupling calculations and the value ΛMS ¼ 315 MeV
obtained from the static energy at zero temperature [52].
This value is compatible with the earlier determination
from the static energy in Ref. [53]. The bands shown in
Fig. 19 correspond to scale variations between μ ¼ πT and
μ ¼ 4πT. At the highest temperature the lattice results and
the NNLO results agree within the estimated uncertainties.
At lower temperatures, T < 1500 MeV the lattice results
are closer to the LO weak-coupling results. For T <
1000 MeV the NNLO result for SQ can turn negative
for some choices of the renormalization scale. This is
clearly an unphysical behavior indicating that higher-order
corrections are too large. The situation is quite different
from the case of quark number susceptibilities, where the
weak-coupling prediction seems to work for T > 300 MeV
[35,36]. This is due to the fact that quark number
susceptibilities are dominated by the contribution of the

non-static Matsubara modes, while for the free energy of a
static quark the dominant contribution comes from the
static sector [17]. Overall, the agreement of the weak-
coupling and the lattice results for SQ is similar to the case
of the SU(3) gauge theory. As previously noted in Sec. V
the value of SQ at high temperature in QCD is larger than
in the SU(3) gauge theory. This increase is well explained
by the weak-coupling calculations.

VIII. CONCLUSIONS

In summary, we have calculated the free energy of a
static quark in 2þ 1 flavor QCD at physical quark masses
using several lattice spacings and in a large temperature
range. We have presented continuum results for this
quantity at much higher temperature than previously
available. We also calculated the entropy of a static quark
and showed that it is a useful quantity for studying
deconfinement in 2þ 1 flavor QCD. Namely, we showed
that it has a peak at a temperature around the chiral
transition temperature, indicating that deconfinement and
chiral transitions happen at similar temperatures. The
entropy of a static quark is also useful for comparing
lattice and weak-coupling results at high temperatures.
Since the cutoff effects are very small at high temperatures
we could do this comparison using the Nτ ¼ 4 lattice
results which extend up to temperatures as high as
5814 MeV. At the highest temperatures we see agreement
between the lattice and the NNLO weak-coupling results
within the estimated uncertainties but at lower temperatures
higher-order corrections become large and the weak-
coupling expansion may not be reliable.
We also studied the fluctuations of the Polyakov loop

using the gradient flow. We showed that Polyakov loop
susceptibilities can be renormalized using the gradient flow
and the transverse Polyakov loop susceptibility may be a
sensitive probe of deconfinement.
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APPENDIX A: DETAILS OF THE LATTICE
CALCULATIONS

In this appendix we will discuss the gauge configurations
and the calculation of the bare Polyakov loop used in the
present analysis as well as some other details of the lattice

TABLE I. List of extended and new gauge ensembles and the
corresponding parameters.

β ams Nτ No. TU Lbare

6.2850 0.079000 10 9260 0.000200(15)
6.3410 0.074000 10 39220 0.000256(08)
6.4230 0.067000 10 10350 0.000403(12)
6.4450 0.065200 8 19150 0.004353(41)
6.5150 0.060400 12 32510 0.000121(13)
6.6080 0.054200 12 19890 0.000198(07)
6.6640 0.051400 12 29590 0.000295(07)
6.7000 0.049600 12 17070 0.000369(08)
6.7700 0.046000 12 16890 0.000585(11)
6.8400 0.043000 12 18720 0.000930(14)
6.9100 0.040000 12 9230 0.001382(18)

TABLE II. The parameters and the expectation values of the bare Polyakov loops for the high temperature runs for Nτ ¼ 6, 8, 10 and
12.

β ams Nτ ¼ 12 Nτ ¼ 10 Nτ ¼ 8 Nτ ¼ 6
No. TU Lbare No. TU Lbare No. TU Lbare No. TU Lbare

7.2000 0.029600 4590 0.004236(34) 4990 0.013329(77) � � � � � � � � � � � �
7.5000 0.022200 8990 0.008988(35) 4990 0.022541(89) 4990 0.053915(132) 6670 0.125003(202)
7.6500 0.019200 6220 0.011604(79) 2990 0.027463(107) 2990 0.062378(213) � � � � � �
8.0000 0.014000 6090 0.019224(89) 39270 0.040274(211) 21810 0.083107(317) 4200 0.165828(296)
8.2000 0.011670 30090 0.024071(46) 27490 0.047833(97) 3070 0.093920(224) 10110 0.181014(126)
8.4000 0.009750 29190 0.029292(53) 8530 0.055774(114) 2990 0.105302(286) 10160 0.195736(153)
8.5700 0.008376 3040 0.033996(136) 2990 0.062941(191) 10260 0.115224(140) 10200 0.208437(141)
8.7100 0.007394 3140 0.037736(117) � � � � � � 10040 0.122951(148) 10230 0.217793(125)
8.8500 0.006528 2990 0.041652(169) � � � � � � 10010 0.130870(126) 10070 0.227509(159)
9.060 0.004834 � � � � � � � � � � � � 10820 0.142401(130) 10080 0.241385(124)
9.230 0.004148 � � � � � � � � � � � � 10260 0.152031(119) 10070 0.252699(154)
9.360 0.003691 � � � � � � � � � � � � 8130 0.158728(172) 8250 0.260614(197)
9.490 0.003285 � � � � � � � � � � � � 8020 0.165972(115) 8140 0.268749(158)
9.670 0.002798 � � � � � � � � � � � � 8060 0.174995(146) 10300 0.279328(173)

TABLE III. The parameters of Nτ ¼ 4 ensembles and the
corresponding expectation values of the bare Polyakov loops.

β ams T [MeV] No. TU Lbare

5.900 0.132000 201 65350 0.05906(11)
6.000 0.113800 221 62610 0.07475(15)
6.050 0.106400 232 62400 0.08280(13)
6.125 0.096600 249 63510 0.09502(17)
6.215 0.086200 272 26650 0.10985(21)
6.285 0.079000 291 25380 0.12144(16)
6.354 0.072800 311 19480 0.13242(15)
6.423 0.067000 333 21930 0.14331(17)
6.515 0.060300 364 31330 0.15767(14)
6.575 0.056400 386 22770 0.16674(12)
6.608 0.054200 399 39400 0.17192(12)
6.664 0.051400 421 75770 0.17996(09)
6.800 0.044800 480 37860 0.19956(10)
6.950 0.038600 554 38090 0.21979(11)
7.150 0.032000 669 31800 0.24452(12)
7.280 0.028400 753 42810 0.25964(10)
7.373 0.025000 819 65010 0.26990(10)
7.500 0.022200 918 42950 0.28351(10)
7.596 0.020200 1000 69920 0.29314(10)
7.825 0.016400 1222 65380 0.31535(08)
8.000 0.014000 1422 27510 0.33112(11)
8.200 0.011670 1687 20790 0.34806(13)
8.400 0.009750 1999 20950 0.36397(18)
8.570 0.008376 2308 20280 0.37672(08)
8.710 0.007394 2597 20200 0.38712(10)
8.850 0.006528 2921 19210 0.39680(11)
9.060 0.004834 3487 20950 0.41113(07)
9.230 0.004148 4021 21240 0.42222(08)
9.360 0.003691 4484 10620 0.43025(14)
9.490 0.003285 5000 10320 0.43755(15)
9.670 0.002798 5814 10340 0.44799(15)
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calculations. As mentioned in Sec. II we have used the
gauge configurations and the bare Polyakov loop calculated
by the HotQCD Collaboration in Refs. [24,34]. The
parameters corresponding to these gauge configurations,
including the gauge coupling β, strange quark mass and the
accumulated statistics are given in Table VI of Ref. [24] and
Table III of Ref. [34]. The values of the bare Polyakov
loops are given in Tables X, XI and XII of Ref. [24] and
Tables IX, X, XI and XII of Ref. [34]. We also used the
Polyakov loop calculated on 403 × 10 lattices in Ref. [25].
To extend the calculations of the Polyakov loop to
significantly higher temperatures we performed calcula-
tions on 163 × 4 lattices. The parameters of these calcu-
lations along with the expectation values of the bare
Polyakov loop are given in Table III. We also used the
gauge configurations generated for the study of the quark
number susceptibilities in Refs. [35,36]. The bare lattice
parameters and the statistics corresponding to these gauge
configurations are given in Table II. We extended the beta

range for Nτ ¼ 6, 8 and these additional ensembles are also
shown in Table II. The expectation values of the bare
Polyakov loop are also shown in this Table. Finally, we
have found it necessary to extend some of the previous
gauge ensembles in order to have sufficiently small error
for Lbare. These ensembles with extended statistics are
given in Table I. We further added a few new gauge
ensembles with low beta for Nτ ¼ 12, which are also
included in the same Table. Since we found for some
ensembles with relatively small ensemble sizes that
Jackknife errors are disproportionally small compared to
ensembles with much larger ensemble sizes, we enlarged
the respective Jackknife errors by a factor two. This set of
ensembles with manually enlarged errors consists of
β ¼ 6.195, 6.245, 6.260, 6.285, 6.315, 6.341 and 6.445
for Nτ ¼ 8 and β ¼ 6.990, 7.100 and 7.200 for Nτ ¼ 12.
The criteria for enlarging the Jackknife errors for Nτ ¼ 8
respectively 12 was statistics with less than 6000 TU
respectively 10000 TU. Since we did not modify the central

TABLE IV. The renormalization constant cQ is obtained from the static energy at zero temperature.

β cQ β cQ β cQ

5.9000 −0.3773ð39Þ 6.4230 −0.4160ð41Þ 6.8800 −0.3973ð29Þ
6.0000 −0.3914ð66Þ 6.4600 −0.4122ð55Þ 6.9500 −0.3943ð28Þ
6.0500 −0.3983ð64Þ 6.4880 −0.4124ð44Þ 7.0300 −0.3890ð29Þ
6.1000 −0.3993ð58Þ 6.5500 −0.4102ð41Þ 7.1500 −0.3824ð30Þ
6.1950 −0.4092ð60Þ 6.6080 −0.4105ð39Þ 7.2800 −0.3747ð23Þ
6.2850 −0.4103ð65Þ 6.6640 −0.4072ð39Þ 7.3730 −0.3696ð19Þ
6.3410 −0.4152ð24Þ 6.7400 −0.4049ð17Þ 7.5960 −0.3555ð32Þ
6.3540 −0.4183ð81Þ 6.8000 −0.4019ð32Þ 7.8250 −0.3401ð26Þ

TABLE V. The renormalization constant cQ from the direct renormalization procedure.

β cQ β cQ β cQ

5.9000 −0.3788ð25Þ 6.4450 −0.4139ð10Þ 7.1500 −0.3830ð22Þ
5.9500 −0.3853ð23Þ 6.4600 −0.4138ð14Þ 7.2000 −0.3795ð08Þ
6.0000 −0.3917ð18Þ 6.4880 −0.4135ð11Þ 7.2800 −0.3754ð20Þ
6.0250 −0.3942ð16Þ 6.5150 −0.4125ð19Þ 7.3730 −0.3702ð23Þ
6.0500 −0.3973ð20Þ 6.5500 −0.4120ð11Þ 7.5000 −0.3623ð23Þ
6.0750 −0.3994ð16Þ 6.5750 −0.4112ð13Þ 7.5960 −0.3560ð20Þ
6.1000 −0.4012ð29Þ 6.6080 −0.4103ð20Þ 7.6500 −0.3523ð14Þ
6.1250 −0.4041ð22Þ 6.6640 −0.4081ð17Þ 7.8250 −0.3403ð21Þ
6.1500 −0.4052ð15Þ 6.7000 −0.4067ð10Þ 8.0000 −0.3297ð27Þ
6.1750 −0.4069ð18Þ 6.7400 −0.4048ð08Þ 8.2000 −0.3179ð23Þ
6.1950 −0.4084ð22Þ 6.7700 −0.4034ð08Þ 8.4000 −0.3062ð21Þ
6.2150 −0.4091ð16Þ 6.8000 −0.4019ð15Þ 8.5700 −0.2965ð22Þ
6.2450 −0.4111ð16Þ 6.8400 −0.3996ð11Þ 8.7100 −0.2894ð21Þ
6.2600 −0.4116ð16Þ 6.8800 −0.3976ð07Þ 8.8500 −0.2825ð24Þ
6.2850 −0.4120ð20Þ 6.9100 −0.3961ð06Þ 9.0600 −0.2708ð24Þ
6.3150 −0.4134ð13Þ 6.9500 −0.3940ð16Þ 9.2300 −0.2618ð24Þ
6.3540 −0.4135ð20Þ 6.9900 −0.3913ð07Þ 9.3600 −0.2562ð22Þ
6.3900 −0.4140ð18Þ 7.0300 −0.3892ð08Þ 9.4900 −0.2504ð22Þ
6.4230 −0.4136ð24Þ 7.1000 −0.3854ð07Þ 9.6700 −0.2431ð22Þ
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TABLE VI. 243 × 6 gauge configurations used for the gradient
flow analysis.

β tmax No. TU

5.850 0.850 5000
5.900 0.900 5000
5.950 1.000 5000
6.000 1.100 5000
6.025 1.150 5000
6.050 1.200 5000
6.075 1.250 5000
6.100 1.300 5000
6.125 1.350 5000
6.150 1.450 5000
6.175 1.500 5000
6.195 1.550 5000
6.215 1.700 5000
6.245 1.700 5000
6.285 1.850 5000
6.341 2.050 5000
6.354 2.150 5000
6.423 2.400 5000
6.488 2.750 5000
6.515 2.900 5000
6.550 3.100 5000
6.575 3.250 5000
6.608 3.450 5000
6.664 3.800 5000
6.800 4.900 5000
6.950 6.500 5000
7.150 1.100 5000
7.280 1.400 1000
7.373 1.650 1000
7.500 2.050 1000
7.596 2.400 1000
7.825 3.550 1000

TABLE VIII. 403 × 10 gauge configurations used for the flow
analysis.

β tmax No. TU

6.285 1.850 2420
6.341 2.050 5000
6.423 2.450 3640
6.488 2.700 5000
6.515 2.850 5000
6.575 3.200 5000
6.608 3.400 5000
6.664 3.800 5000
6.700 4.050 4000
6.740 4.400 5000
6.770 4.650 4460
6.800 4.900 5000
6.840 5.300 4580
6.880 5.700 9720
6.950 6.500 5000
7.030 7.550 5000
7.150 9.450 5000
7.200 11.500 1000
7.280 12.000 1000
7.373 1.600 1000
7.500 2.100 4000
7.596 2.400 1000
7.650 2.650 1000
7.825 3.500 1000
8.000 4.800 1000
8.200 6.700 1000
8.400 9.400 1000
8.570 12.500 1000

TABLE VII. 323 × 8 gauge configurations used for the gradient
flow analysis.

β tmax No. TU

6.050 1.200 5000
6.125 1.350 5000
6.175 1.500 5000
6.195 1.550 5000
6.245 1.700 5000
6.260 1.750 5000
6.285 1.850 5000
6.315 1.950 5000
6.341 2.050 5000
6.354 2.100 5000
6.390 2.250 5000
6.423 2.400 5000
6.445 2.500 5000
6.460 2.550 5000
6.488 2.700 5000

(Table continued)

TABLE VII. (Continued)

β tmax No. TU

6.515 2.850 5000
6.550 3.050 5000
6.575 3.200 5000
6.608 3.400 5000
6.664 3.800 5000
6.740 4.400 5000
6.800 4.900 5000
6.880 5.700 5000
6.950 6.550 5000
7.030 7.550 5000
7.150 5.000 1000
7.280 5.000 1000
7.373 5.000 1000
7.500 2.100 1000
7.596 5.000 1000
7.825 5.000 1000
8.000 25.000 1000
8.200 6.700 1000
8.400 9.400 1000
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values, these data may have a particularly adverse effect for
the calculation of the entropy in the respective temperature
ranges.
In Table IV we give the values of the renormalization

constant cQ obtained from the static energy at zero temper-
ature. The renormalization constants corresponding to the
direct renormalization are listed in Table V.
We used the gradient flow to calculate the renormalized

Polyakov loop expectation value and the Polyakov loop
susceptibilities. We always used step size dt ¼ 0.01 in
lattice units in our gradient flow study. The parameters of
the gradient flow analysis, including the values of β, the
number of gauge configurations analyzed and the maximal
flow time tmax are given in Tables VI–IX.

APPENDIX B: INTERPOLATIONS AND
EXTRAPOLATIONS

In this appendix we present some details of our inter-
polation procedure. As discussed in the main text we use
polynomial fits and smoothing splines for the interpola-
tions. The calculations of cQ and the corresponding
interpolations are performed in three steps. In the first
step we interpolate the value of cQ obtained in the QQ̄
procedure in the interval β ¼ 5.900–7.825. Then we use cQ

obtained in the direct renormalization procedure and
interpolate in the interval β ¼ 5.900–8.850. Finally we
calculate cQ at higher β using direct renormalization only
and interpolate in the interval β ¼ 5.900–9.67. The details
of the interpolations are given in Table X. In the Table, nk is
the number of knots for spline interpolations and sm is the
smoothing parameter for the built-in smooth spline inter-
polations of the R statistical package [54]. np is the
polynomial order for polynomial interpolations. We refer
to the interpolation of cQ from QQ̄ procedure as the 0th
iteration of direct renormalization.
To calculate the entropy we also perform interpolations

of the bare free energy in β. The details of these inter-
polations are presented in Table XI. The column labels are
the same as in Table X.
In some temperature ranges, continuum extrapolations

do not converge well and yield χ2=df > 1. First, in the
temperature interval 176 MeV < T < 189 MeV, local
continuum extrapolations of FQ with Nτ ≥ 8 yield up to
χ2=df ¼ 1.23 (cf. Fig. 3). Second, in the temperature
interval 150 MeV < T < 169 MeV, local continuum
extrapolations of SQ yield up to χ2=df ¼ 1.50 with Nτ ≥
8 and P4 ¼ 0. Third, in the temperature interval
190 MeV < T < 211 MeV, local continuum extrapola-
tions of SQ yield up to χ2=df ¼ 3.37with Nτ ≥ 6 and P4 ≠
0 and up to χ2=df ¼ 3.69with Nτ ≥ 8 and P4 ¼ 0. Judging
from Fig. 20, these poor continuum extrapolations are
caused by fluctuations of some Nτ ¼ 12 data in the interval

TABLE IX. 483 × 12 gauge configurations used for the gra-
dient flow analysis.

β tmax No. TU

6.664 3.800 3230
6.700 4.100 5000
6.740 4.400 5000
6.770 4.650 5000
6.800 4.900 5000
6.840 5.300 5000
6.860 5.500 5000
6.880 5.700 5000
6.910 6.050 4120
6.950 6.500 5000
6.990 7.050 5000
7.030 7.550 5000
7.150 9.450 1000
7.200 10.350 3600
7.280 11.950 1000
7.373 14.150 5000
7.500 2.050 1000
7.596 2.400 5000
7.650 2.650 1000
7.825 5.000 1000
8.000 5.000 1000
8.200 7.000 1000
8.400 10.000 1000
8.570 12.500 1000
8.710 15.800 1000
8.850 19.950 1000

TABLE X. Spline and polynomial interpolations of cQ.

Scheme β nk, sm χ2

df
np χ2

df

QQ̄ procedure
0th iteration [5.900,7.825] 5, 0.18 0.30
Direct renormalization
1st iteration [5.900,8.850] 5, 0.04 0.83
2nd iteration [5.900,9.670] 6, 0.03 0.28 5 0.17

TABLE XI. Primary spline and polynomial interpolations of
fbareQ .

Nτ T [MeV] β nk, sm χ2

df
np χ2

df

4 [201,5814] [5.900,9.670] 18, 0.0 0.93 9 0.71
6 [234,237] [5.900,6.488] 7, 0.05 0.90 9 0.79
6 [181,3876] [6.215,9.670] 19, 0.0 1.03 9 1.06
8 [116,227] [6.050,6.740] 6, 0.0 1.01 7 0.73
8 [201,2907] [6.515,9.670] 15, 0.0 0.87 9 1.07
10 [116,239] [6.285,7.030] 6, 0.0 0.86 6 0.83
10 [181,924] [6.740,8.570] 8, 0.0 1.06 7 1.01
12 [122,233] [6.515,7.200] 5, 0.05 0.88 4 0.85
12 [185,974] [6.950,8.850] 8, 0.0 0.96 7 1.00
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FIG. 20. The static quark entropy at various temperatures as function of 1=N2
τ . “CL” marks the continuum limit (Nτ → ∞). The 1=N2

τ

continuum extrapolations are shown as bands with filled pattern. The continuum extrapolations with 1=N4
τ term included are shown as

solid filled bands. The widths of the band shows the statistical uncertainty of the fits. The left panel shows the results in the low
temperature region, while the right panel shows the result in the high temperature region.

TABLE XII. Global continuum extrapolations usingQQ̄ procedure. The last four columns denote R½Nτ� ¼ χ2ðNτÞ
nptðNτÞ, the ratio of residues

and number of points for each Nτ.

fn0; n2; n4g Nmin
τ T [MeV] χ2

df
R½12� R½10� R½8� R½6�

f6; 5; 0g 8 [115,215] 0.26 0.30 0.26 0.22 � � �
f6; 5; 4g 6 [115,225] 0.24 0.21 0.30 0.34 0.10
f5; 3; 0g 8 [173,410] 0.21 0.36 0.25 0.04 � � �
f5; 3; 0g 6 [173,410] 0.28 0.62 0.17 0.27 0.10

TABLE XIII. Continuum limit of the free energy FQ and
entropy SQ for high temperatures. FQ is a shifted finite Nτ result
above T > 920 MeV. For T ≤ 2800 MeV, Nτ ¼ 8 is used and
for T > 2800 MeV Nτ ¼ 4 is used. The cutoff effects at T ¼
920 MeV are used as shift and added to the errors linearly. SQ is a
finite Nτ result above T > 680 MeV. For T ≤ 2000 MeV, Nτ ¼
8 is used and for T > 2000 MeV Nτ ¼ 4 is used. Errors of SQ for
these Nτ are increased by 0.01 to account for systematic effects.

T [MeV] FQ [MeV] SQ

125 481(7) 1.99(56)
130 470(6) 2.00(49)
135 459(5) 2.29(40)
140 446(4) 2.78(34)
145 431(4) 3.26(29)
150 413(4) 3.60(24)
155 395(4) 3.67(20)
160 377(4) 3.47(20)
165 360(4) 3.19(18)
170 345(4) 2.94(15)
175 330(4) 2.83(15)
180 317(4) 2.75(15)
185 303(4) 2.56(15)
190 291(4) 2.45(13)
200 268(4) 2.15(13)
210 248(4) 1.89(11)

(Table continued)

TABLE XIII. (Continued)

T [MeV] FQ [MeV] SQ

220 231(4) 1.72(12)
230 214(5) 1.67(10)
240 198(5) 1.60(10)
250 182(5) 1.52(10)
260 170(4) 1.38(08)
270 157(5) 1.30(08)
280 144(5) 1.21(07)
290 132(5) 1.14(06)
300 121(6) 1.07(06)
310 113(5) 0.99(06)
320 103(6) 0.94(06)
330 94(6) 0.90(06)
340 85(6) 0.87(05)
350 76(6) 0.85(05)
360 68(7) 0.82(05)
370 59(7) 0.80(05)
380 50(6) 0.80(05)
390 42(6) 0.77(05)
400 34(6) 0.75(05)
410 27(6) 0.74(05)
420 19(6) 0.72(05)
430 12(7) 0.71(05)
440 6(7) 0.69(05)

(Table continued)
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190 MeV < T < 211 MeV, which originate in the rela-
tively small ensemble sizes underlying some data in this
interval (cf. Appendix A).
We summarize the global fits in Table XII. Hereby, ni,

i ¼ 0, 2, 4 are the orders of the temperature polynomials
PiðTÞ as in Eq. (4). We include in the table ratios R½Nτ� ¼

χ2½Nτ�=npt½Nτ� as measure how well data for each Nτ is
matched by the global fit. Global residuals of χ2=df ≲ 0.3
are required to bring all ratios R½Nτ� sufficiently below one
such that global fits yield reliable results.
We collect the final, continuum extrapolated results for

the free energy and entropy in Table XIII.
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