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The full version of the QCD light-cone sum rule method is applied to tetraquarks containing a single
heavy b or c quark. To this end, investigations of the strong vertices XbXbρ and XcXcρ are performed,
where Xb ¼ ½su�½b̄ d̄� and Xc ¼ ½su�½c̄ d̄� are the exotic states built of four quarks of different flavors. The
strong coupling constants GXbXbρ and GXcXcρ corresponding to these vertices are found using the ρ-meson
leading- and higher-twist distribution amplitudes. In the calculations, Xb and Xc are treated as scalar bound
states of a diquark and antidiquark.
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I. INTRODUCTION

During last decade, due to experimental data from the
Belle, BaBar, LHCb, D0, and BES collaborations, which
provided valuable information on the so-called exotic
hadron states, this branch of high-energy physics has
demonstrated rapid growth. The exotic hadrons, i.e., ones
that cannot be embraced by the spectroscopy of the known
hadrons as qq̄ or qqq bound states, may serve as a
laboratory for testing the quantum chromodynamics
(QCD)—the existing theory of strong interactions, as well
as various phenomenological models built on its basis. An
existence of the exotic hadrons does not contradict the
fundamental principles of this theory. Though relevant
problems attracted the interest of physicists from the first
years of the parton model, and later QCD, only recently did
these ideas find their experimental confirmation.
The discovery of the charmoniumlike resonance Xð3872Þ

by the Belle Collaboration [1] was the first brick laid in the
foundation of what is now the XYZ family of exotic states.
The observation made by Belle was later reexamined and
confirmed by other collaborations [2–4]. Produced in the B-
meson decays or in the pp collisions, observed in the eþe−
annihilation or in the two-photon fusion, exotic states remain
a focus of the main experimental collaborations, which have
collected much data based on the processes of interest.
Considerable progress was made in the theoretical

understanding of the features of the exotic states, as well.
If experiments are devoted to measuring the masses and
decay widths and to identifying the spins and parities of the
exotic states, theoretical works are concentrated on studies
of their internal quark-gluon structure and on new models
and methods suggested for their exploration (for details
of theoretical and experimental studies, see the reviews in
[5–13] and references therein).
The charmoniumlike resonances of the XYZ family

contain, as is evident from their names, a cc̄ component.

Therefore, efforts were made to explain the new resonances
as excitations of the ordinary cc̄ charmonium. Indeed, some
of the new particles allow such interpretation and are really
excited cc̄ states. But the essential part of the relevant
experimental data cannot be included in the excited
charmonium scheme and, hence, for their exploration,
unconventional quark-gluon configurations are needed.
For this purpose, various models with different quark-
gluon structures were supposed. The tetraquark model of
the exotic states, i.e., the model that considers exotics as
four-quark particles, is among the most frequently
employed ones. It is worth noting that this approach led
to significant achievements in describing the processes with
the exotic states and in predicting their masses, decay
widths, and quantum numbers. There are some alternatives
to compose from the four quarks an exotic state within the
tetraquark model. In fact, the four constituent quarks may
group into a diquark and an antidiquark to form the exotic
state with required quantum numbers. This model is known
as the diquark-antidiquark model. In the meson molecule
picture, the quarks are collected into two conventional
mesons, and the exotic particle appears as a loosely bound
molecule state. There are other opportunities to organize
the exotic states from the four quarks, as well as alternative
models, such as the hybrid models, detailed presentation of
which is beyond the scope of the present work.
In the tetraquark model, the maximal number of quark

flavors in the XYZ states does not exceed three. But there
are not any fundamental laws in QCD forbidding the
existence of the exotic states built of four quarks of distinct
flavors. Namely, such exotic states have recently become
the object of comprehensive theoretical investigations. But
before going into the details of these studies, we have to
make some comments on the experimental situation formed
around one of these particles. Strictly speaking, all present
theoretical activity was inspired by the D0 Collaboration’s
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report, where evidence for the existence of the exotic
state Xð5568Þ was announced [14]. Based on the analysis
of pp̄ collision data at

ffiffiffi
s

p ¼ 1.96 TeV collected at the
Fermilab Tevatron collider, the collaboration reported on
evidence of a narrow resonance Xð5568Þ in the consecutive
decays Xð5568Þ → B0

sπ
�, B0

s → J=ψϕ, J=ψ → μþμ−,
ϕ → KþK−. From the decay channel Xð5568Þ → B0

sπ
�,

it is easy to conclude that the state Xð5568Þ consists of
valence b, s, u, and d quarks. The mass of this state is equal
to mX ¼ 5567.8� 2.9ðstatÞþ0.9

−1.9ðsystÞ MeV, and the decay
width is estimated as Γ ¼ 21.9� 6.4ðstatÞþ5.0

−2.5ðsystÞ MeV.
The D0 assigned to this particle the quantum numbers
JPC ¼ 0þþ, but did not exclude a possible version 1þþ. A
few days later, the LHCb Collaboration presented prelimi-
nary results of their analysis of pp collision data at energies
7 and 8 TeV collected at CERN [15]. The LHCb
Collaboration could not confirm the existence of the
resonance structure in the B0

sπ
� invariant mass distribution

at energies less than 5700 MeV. In other words, the
situation with the exotic state Xð5568Þ, supposedly built
of four different quark flavors, is controversial and neces-
sitates further experimental studies. The exotic state dubbed
Xð5568Þ deserves to be searched for by other collabora-
tions and, maybe, in other hadronic processes.
Namely, these unclear circumstances surrounding the

Xð5568Þ resonance make relevant theoretical studies even
more important than just after the information on its
existence. The first suggestions concerning the diquark-
antidiquark or meson molecule model for organization
of the new state were made in Ref. [14]. Calculations
performed until now covered only some topics of the
Xð5568Þ physics. Primarily, they include computation
of the mass and decay constant of Xð5568Þ; a few works
were devoted to the calculation of the width of the
Xð5568Þ → B0

sπ
� decay, as well. It should be emphasized

that the diquark-antidiquark model with JPC ¼ 0þþ pre-
vails among approaches used to explain parameters of the
Xð5568Þ state.
Thus, in Ref. [16], we accepted for this state the diquark-

antidiquark structure Xb ¼ ½su�½b̄ d̄� with the quantum
numbers 0þþ and calculated its mass mXb

and decay
constant (i.e., the meson-current coupling) fXb

. Our pre-
diction for mXb

agrees with the mass of the Xð5568Þ
resonance found by the D0 Collaboration. In the framework
of the diquark-antidiquark model, some parameters of
Xð5568Þ were also analyzed in Refs. [17–20], where an
alternative choice for the diquark-antidiquark-type inter-
polating current was realized. The values for mX obtained
in these works agree with each other and are consistent with
the experimental data from the D0 Collaboration.
Employing the same Xb structure and interpolating

current as in our previous work, in Ref. [21] we computed
the width of the Xb → B0

sπ
þ decay channel. We applied

the QCD sum rule on the light cone supplemented by the

soft-meson approximation (see Ref. [22]): our result for
ΓðXþ

b → B0
sπ

þÞ describes correctly the experimental data.
The width of the decay channels X�ð5568Þ → Bsπ

� was
also calculated in Refs. [23,24] using the three-point QCD
sum rule approach. In these works, authors found a very
nice agreement between the theoretical predictions for
ΓðX� → B0

sπ
�Þ and the data.

TheXð5568Þ can also be considered as a mesonmolecule;
namely, this picture was realized in Refs. [25,26], where
Xð5568Þ was treated as the BK̄ bound state. It is worth
noting that, in accordance with Ref. [26], the mass of
such a moleculelike state was found to be equal to
mXb

¼ 5757� 145 MeV.
A charmed partner of the Xb state, i.e., the Xc structure

built of the valence c, s, u and d quarks and possessing the
quantum numbers 0þþ, was analyzed in Ref. [27]. Here, we
computed the mass, decay constant, and width of the
decays Xc → D−

s π
þ and Xc → D0K0 considering Xc ¼

½su�½c̄ d̄� as the diquark-antidiquark state and employing
two forms for the interpolating currents. The questions of
quark-antiquark organization of Xb and its partners were
also addressed in Ref. [28].
The contradictory information from the D0 and LHCb

collaborations concerning existence of the Xb state resulted
in the appearance of interesting theoretical works devoted
to analysis of the Xb physics, where its structure, spectro-
scopic parameters, and production mechanisms were inves-
tigated. For details and further explanations, we refer to the
original papers [29–38].
In the present work, we explore the strong vertices

XbXbρ and XcXcρ and calculate the couplings GXbXbρ and
GXcXcρ by employing the QCD light-cone sum rule (LCSR)
approach, which is one of the powerful nonperturbative
methods in hadron physics enabling us to evaluate param-
eters of the particles and processes [39]. Within this
approach, one expresses the relevant correlation functions
as convolution integrals of the perturbatively calculable
coefficients and nonlocal matrix elements, which are the
distribution amplitudes (DAs) of the particles under con-
sideration. It is worth noting that expansion in terms of
nonlocal matrix elements cures shortcomings of the local
expansion used in the conventional QCD sum rules.
Strictly speaking, the light-cone expansion was already

applied for investigation of the exotic states. Indeed, in
order to study strong vertices involving the exotic states and
calculate corresponding couplings and decay widths in
Refs. [21,22,26], we applied a technique of the light-cone
calculations and obtained very good results, which agree
with available experimental data and predictions of other
theoretical works. But because of the differences in the
quark contents of the conventional and exotic mesons, in
those works we had to supply the light-cone expansion by
the soft-meson approximation; the latter reduces the light-
cone expansion to the expansion in terms of local matrix
elements, weakening effects and advantages of the LCSR.
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In the present work, we employ the full version of the
LCSR method in computation of the strong vertex com-
posed of the exotic particles. This method previously was
applied to analyze numerous vertices of conventional
mesons and baryons and to calculate corresponding cou-
plings and form factors. Here we are able to cite only some
of the works devoted to this interesting topic of hadron
physics [40–45], noting among them Ref. [45], where, for
the first time, effects of the η and η0 mesons’ gluon
components on the strong vertices D�

sDsη
ð0Þ and B�

sBsη
ð0Þ

were taken into account. To our best knowledge, the present
work is the first attempt to investigate the strong vertex of
tetraquarks by employing the full version of the QCD
LCSR method. Therefore, it is instructive to reveal possible
technical problems hidden behind such calculations and to
elaborate schemes and methods to evade them.
This work is structured in the following manner. In

Sec. II, we derive the light-cone sum rule for the strong
coupling GXbXbρ using the expansion of the correlation
function in terms of the ρ meson’s two- and three-particle
distribution amplitudes of various twists. In Sec. III, we
perform numerical analysis of the obtained sum rules for
the couplings GXbXbρ and GXcXcρ. Appendixes A and B
contain some technical details of calculations and formulas
useful in the continuum subtraction, respectively.

II. SUM RULE FOR THE COUPLING GXbXbρ

In this section, we derive the sum rule for the strong
couplingGXbXbρ; the same expressions, after trivial replace-
ments of the meson and quark masses, can be applied for
computation of the coupling GXcXcρ, as well.
To calculate the coupling GXbXbρ corresponding to the

vertex XbXbρ in the framework of the QCD light-cone sum
rules method, we consider the corresponding correlation
function, which in the case under consideration is given by
the expression

Πðp; qÞ ¼ i
Z

d4xeipxhρðqÞjTfJXbðxÞJXb†ð0Þj0gi; ð1Þ

where JXbðxÞ is the current with required quantum numbers
within the diquark-antidiquark model of the Xb state
defined in the form

JXbðxÞ ¼ εabcεade½sbðxÞCγ5ucðxÞ�½b̄dðxÞγ5Cd̄eðxÞ�: ð2Þ

First, let us calculate this function in terms of the physical
degrees of freedom. We get

ΠPhysðp; qÞ ¼ h0jJXb jXbðpÞi
p2 −m2

Xb

hρðqÞXbðpÞjXbðpþ qÞi

×
hXbðpþ qÞjJXb†j0i
ðpþ qÞ2 −m2

Xb

: ð3Þ

Here the matrix element hρðqÞXbðpÞjXbðpþ qÞi deter-
mines the coupling of interest and is given as

hρðqÞXbðpÞjXbðpþ qÞi ¼ GXbXbρp · ε; ð4Þ

where p is the momentum of the Xb state, and εμ the
polarization vector of the ρ meson. We define, also in the
standard manner, the matrix element

h0jJXb jXbðpÞi ¼ mXb
fXb

: ð5Þ

Then we easily find

ΠPhysðp; qÞ ¼ m2
Xb
f2Xb

GXbXbρ

ðp2 −m2
Xb
Þ½ðpþ qÞ2 −m2

Xb
�p · εþ � � � ;

ð6Þ

where the first term is the ground state contribution and the
dots stand for the contributions arising from the higher
resonances and continuum states. As is seen, the correlation
function contains only the structure p · ε. The relevant
invariant amplitude is given by the expression

ΠPhysðp2; ðpþ qÞ2Þ ¼ m2
Xb
f2Xb

GXbXbρ

ðp2 −m2
Xb
Þ½ðpþ qÞ2 −m2

Xb
�

þ
Z Z

ds1ds2ρphysðs1; s2Þ
ðs1 − p2Þ½s2 − ðpþ qÞ2�

þ � � � : ð7Þ

Here the dots indicate the single dispersion integrals that
should be included to make the expression finite: they
vanish after double Borel transformations.
The Borel transformations on variables p2 and p02 ¼

ðpþ qÞ2 applied to the invariant function yields

Bp2ðM2
1ÞBp02ðM2

2ÞΠPhysðp2; p02Þ≡ ΠPhysðM2Þ
¼ m2

Xb
f2Xb

GXbXbρe
−m2

Xb
=M2

þ
Z

ds1ds2e−ðs1þs2Þ=2M2

ρphysðs1; s2Þ; ð8Þ

where the Borel parameters M2
1 and M2

2 for the problem
under consideration are chosen as M2

1 ¼ M2
2 ¼ 2M2

and M2 ¼ M2
1M

2
2=ðM2

1 þM2
2Þ.

To proceed, we need to determine the correlation
function using the quark propagators and distribution
amplitudes of the ρ meson, i.e., to find ΠQCDðp; qÞ. We
note that it is the sum of two terms:

ΠQCDðp; qÞ ¼ Π1ðp; qÞ þ Π2ðp; qÞ:

The first function corresponds to a physical situation, when
the strong vertex is formed due to interaction of the Xb
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states with the d̄d component of the ρ0 meson and is
determined by the formula

Π1ðp; qÞ ¼ i
Z

d4xeipxεabcεadeεa
0b0c0εa

0d0e0

× Tr½γ5 ~Sb
0b

s ðxÞγ5Scc0u ðxÞ�½γ5 ~Sd
0d

b ð−xÞγ5�αβ
× hρðqÞjd̄eαðxÞde0β ð0Þj0i: ð9Þ

The second componentΠ2ðp; qÞ appears via the interaction
of the Xb states and ρ0 meson’s ūu content:

Π2ðp; qÞ ¼ −i
Z

d4xeipxεabcεadeεa
0b0c0εa

0d0e0

× Tr½γ5 ~Se
0e
d ð−xÞγ5Sd0db ð−xÞ�½γ5 ~Sbb

0
s ðxÞγ5�αβ

× hρðqÞjūc0α ð0ÞucβðxÞj0i: ð10Þ

In the equations above, we introduce the notation

~Sq;s;QðxÞ ¼ CSTq;s;QðxÞC;

where Sqðs;QÞðxÞ are the quark propagators, and C is the
charge conjugation matrix. In the x space for propagators of
the u, d, and s quarks, we accept the expressions

Sabq ðxÞ¼ ix
2π2x4

δab−
mq

2π2x2
δab

− igs

Z
1

0

dv

�
x

16π2x2
Gμν

abðvxÞσμν−
ivxμ

4π2x2
Gμν

abðvxÞγν

−
ims

32π2
Gμν

abðvxÞσμν
�
ln

�
−
x2Λ2

4

�
þ2γE

��
: ð11Þ

In Eq. (11), the first two terms are the perturbative
components of the propagator: terms ∼Gμν appear due
to its expansion on the light cone and describe interaction
with the gluon field. In calculations, we neglect terms ∼mq

and, at the same time, take into account the ones ∼ms. For
the heavy quark propagator on the light cone, we employ its
expression in terms of the second kind of Bessel functions
KνðzÞ,

SabQ ðxÞ ¼ Sð0ÞabQ ðxÞ − gsmQ

16π2

Z
1

0

dv

�
Gμν

abðvxÞðσμνx

þ xσμνÞ
K1ðmQ

ffiffiffiffiffiffiffiffi
−x2

p
Þffiffiffiffiffiffiffiffi

−x2
p þ 2σμνK0ðmQ

ffiffiffiffiffiffiffiffi
−x2

p
Þ
�
;

ð12Þ

where the perturbative propagator of the heavy quark is
given by

Sð0ÞabQ ðxÞ ¼ m2
Q

4π2
K1ðmQ

ffiffiffiffiffiffiffiffi
−x2

p
Þffiffiffiffiffiffiffiffi

−x2
p δab

þ i
m2

Q

4π2
xK2ðmQ

ffiffiffiffiffiffiffiffi
−x2

p
Þ

ð
ffiffiffiffiffiffiffiffi
−x2

p
Þ2

δab: ð13Þ

In Eqs. (11) and (12), the shorthand notation

Gμν
ab ≡Gμν

A tAab; A ¼ 1; 2…8;

is adopted with a, b being the color indices. Here
tA ¼ λA=2, where λA are the Gell-Mann matrices.
The Feynman diagrams corresponding, for example, to

the term Π1ðp; qÞ are depicted in Figs. 1, 2, and 3. The
leading-order contribution comes from the diagram shown
in Fig. 1, which corresponds to the term Πpert

1 ðp; qÞ, where
all of the propagators are replaced by their perturbative
components: contribution of this diagram can be computed
using the ρ-meson two-particle twist-two and higher-twist
distribution amplitudes. The diagrams drawn in Fig. 2 are
obtained by choosing in one of the propagators its ∼Gμν

FIG. 3. Some many-particle diagrams neglected in this work.

FIG. 2. The one-gluon exchange diagrams due to a gluon
originating from (a) b quark, (b) u quark, and (c) s quark.
They give rise to corrections, which can be computed by utilizing
ρ-meson three-particle DAs.

FIG. 1. The leading-order diagram contributing to Π1ðp; qÞ.
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component. They will be expressed in terms of the meson’s
three-particle DAs. In this work, we neglect corrections
arising from the diagrams (see Fig. 3 for some samples),
where in two or three propagators components ∼Gμν are
chosen simultaneously. These contributions require invok-
ing four- and five-particle distributions of the ρ meson and
are beyond the scope of the present study.
To provide some details of the calculations, as an

example, we choose the term Π1ðp; qÞ. The similar con-
sideration can also be carried our for Π2ðp; qÞ. We start our
analysis from the perturbative component of Π1ðp; qÞ
(Fig. 1), i.e., from the contribution

Πpert
1 ðp; qÞ ¼ i

Z
d4xeipxεabcεadeεa

0b0c0εa
0d0e0

× Tr½γ5 ~Sb
0bðpertÞ

s ðxÞγ5Scc
0ðpertÞ

u ðxÞ�
× ½γ5 ~Sd

0dðpertÞ
b ð−xÞγ5�αβhρðqÞjd̄eαðxÞde

0
β ð0Þj0i:

ð14Þ

It is convenient first to perform the summation over the
color indices. To this end, we apply the projector onto the
color singlet product of quarks fields 1

3
δee0 by performing

the replacement

d̄eαðxÞde0β ð0Þ →
1

3
δee0 d̄αðxÞdβð0Þ; ð15Þ

and use the expansion

d̄αðxÞdβð0Þ≡ 1

4
ΓJ
βαd̄ðxÞΓJdð0Þ; ð16Þ

where the sum runs over J∶

ΓJ ¼ 1; γ5; γμ; iγ5γμ; σμν=
ffiffiffi
2

p
:

Substituting this expansion into Eq. (14), we obtain

Πpert
1 ðp; qÞ ¼ i

Z
d4xeipxTr½γ5 ~SðpertÞs ðxÞγ5SðpertÞu ðxÞ�

× Tr½γ5 ~SðpertÞb ð−xÞγ5ΓJ�hρðqÞjd̄ðxÞΓJdð0Þj0i:
ð17Þ

Now, as an example, we analyze the nonperturbative
diagram depicted in Fig. 2(b). After some manipulations,
we recast the corresponding function Πn-pert

1ðbÞ ðp; qÞ into the

form

Πn-pert
1ðbÞ ðp; qÞ ¼ i

Z
d4xeipxTr

�
γ5 ~S

ðpertÞ
s ðxÞγ5

×

�
−igs

Z
1

0

dv
1

16π2x2
½xσμν − 4ivxμγν�

��

× Tr½γ5 ~SðpertÞb ð−xÞγ5ΓJ� 1
4
hρðqÞjd̄ðxÞ

× ΓJGμνðvxÞdð0Þj0i: ð18Þ

A similar analysis can be done for other nonperturbative
diagrams, as well.
The sum of the Πpert

1 ðp; qÞ and Πn−pert
1ðiÞ ðp; qÞ for i ¼ a, b,

and c determines the first component Π1ðp; qÞ of the
correlation function. It is given as the integral of the
products of the coefficient functions and nonlocal matrix
elements:

hρðqÞjd̄ðxÞΓJdð0Þj0i;
hρðqÞjd̄ðxÞΓJGμνðvxÞdð0Þj0i: ð19Þ

The matrix elements of the neutral ρ meson from Eq. (19)
up to an isospin factor in the overall normalization are
connected with ones of the charged ρ mesons and can
be expanded in terms of the corresponding distribution
amplitudes. Below we provide expressions for the
h0jūðxÞΓJdð0ÞjρðqÞi-type matrix elements obtained to
twist-4 accuracy and given by means of the ρ meson’s
two-particle DAs. For the structures ΓJ ¼ 1 and γμγ5, we
get

h0jūðxÞdð0ÞjρðqÞi ¼ −if⊥ρ ε · xm2
ρ

Z
1

0

dueiūqxψ∥
3ðuÞ;

h0jūðxÞγμγ5dð0ÞjρðqÞi ¼
1

2
f∥ρmρϵ

ναβ
μ ενqαxβ

×
Z

1

0

dueiūqxψ⊥
3 ðuÞ; ð20Þ

whereas ΓJ ¼ γμ and σμν give

h0jūðxÞγμdð0ÞjρðqÞi

¼ f∥ρmρ

�
ε · x
q · x

qμ

Z
1

0

dueiūqx
�
ϕ∥
2ðuÞ þ

m2
ρx2

4
ϕ∥
4ðuÞ

�

þ
�
εμ − qμ

ε · x
q · x

�Z
1

0

dueiūqxϕ⊥
3 ðuÞ

−
1

2
xμ

ε · x
ðq · xÞ2m

2
ρ

Z
1

0

dueiūqxCðuÞ þ � � �
�
; ð21Þ

and
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h0jūðxÞσμνdð0ÞjρðqÞi

¼ if⊥ρ
�
ðεμqν−ενqμÞ

Z
1

0

dueiūqx
�
ϕ⊥
2 ðuÞþ

m2
ρx2

4
ϕ⊥
4 ðuÞ

�

þ1

2
ðεμxν−ενxμÞ

m2
ρ

q ·x

Z
1

0

dueiūqx½ψ⊥
4 ðuÞ−ϕ⊥

2 ðuÞ�

þðqμxν−qνxμÞ
ε ·x

ðq ·xÞ2m
2
ρ

Z
1

0

dueiūqxDðuÞþ���
�
;

ð22Þ

respectively. Here ū ¼ 1 − u, and mρ and ε are the mass of
the ρ meson and its polarization vector. In the equations
above the functions, CðuÞ and DðuÞ denote the following
combinations of the two-particle DAs:

CðuÞ ¼ ψ∥
4ðuÞ þ ϕ∥

2ðuÞ − 2ϕ⊥
3 ðuÞ; ð23Þ

DðuÞ ¼ ϕ∥
3ðuÞ −

1

2
ϕ⊥
2 ðuÞ −

1

2
ψ⊥
4 ðuÞ: ð24Þ

The twists of the distribution amplitudes are shown as
subscripts in the relevant functions. As is seen, these
matrix elements include the two-particle leading-twist

DAs ϕ∥ð⊥Þ
2 ðuÞ, the twist-3 distribution amplitudes

ϕ∥ð⊥Þ
3 ðuÞ and ψ∥ð⊥Þ

3 ðuÞ, as well as twist-4 distributions

ϕ∥ð⊥Þ
4 ðuÞ and ψ∥ð⊥Þ

4 ðuÞ.
We do not write down lengthy equalities, which express

the matrix elements hρðqÞjd̄ðxÞΓJGμνðvxÞdð0Þj0i in terms
of the numerous higher-twist DAs of the ρ meson, and
refrain from giving further information on the DAs them-
selves. The definitions and detailed information on

properties of the distribution amplitudes of the ρ and other
vector mesons, as well as explicit expressions for some of
their models, used also in the present work, can be found in
Refs. [46–50].
Our aim is to calculate the correlation function

ΠQCDðp; qÞ in terms of the DAs of the ρ meson, extract
the invariant amplitude ΠQCDðp2; p02Þ corresponding to
the structure p · ε, and perform its double Borel trans-
formation:

ΠQCDðM2Þ ¼ Bp2ðM2
1ÞBp02ðM2

2ÞΠQCDðp2; p02Þ:

After equating ΠQCDðM2Þ to its counterpart ΠPhysðM2Þ
and subtracting contributions of the higher resonances
and continuum states presented in Eq. (8) as the double
dispersion integral, we can derive the LCSR for the strong
coupling GXbXbρ.
Presenting some details of calculations in Appendix A,

below we write down the final expression obtained for
ΠQCD

1 ðM2Þ∶

ΠQCD
1 ðM2Þ ¼ mbmρ

64π4

Z
∞

m2
b

dseðm2
ρ−4sÞ=4M2 ½ΓðM8; sÞ

þ ΓðM6; sÞ þ ΓðM4; sÞ�: ð25Þ

Here,

ΓðM8; sÞ ¼ −2m3
bf

∥
ρM8ϕ∥

2ðū0Þ
�
1

s3
−
2m2

b

s4
þm4

b

s5

�
; ð26Þ

ΓðM6; sÞ ¼ −mbmρM6

�
m2

bmρf
∥
ρ

�
m2

b

s4
−

1

s3

�
ϕ∥
4ðū0Þ þmρf

∥
ρ

��
1

s2
−
2m2

b

s3
þm4

b

s4

�
½I1ð ~Φ∥

3ðαÞ; 1Þ − 3I1ðΦ∥
4ðαÞ; 1Þ

þ 6I1ðΦ∥
4ðαÞ; vÞ þ 3I1ð ~Φ∥

4ðαÞ; 1Þ − I1ðΨ∥
4ðαÞ; 1Þ þ 2I1ðΨ∥

4ðαÞ; vÞ þ I1ð ~Ψ∥
4ðαÞ; 1Þ − I1ðΦ∥

3ðαÞ; 1Þ

þ 2I1ðΦ∥
3ðαÞ; vÞ� þ 8m2

b

�
m2

b

s4
−

1

s3

�
I2½Cðu0Þ�

�
þ 4mbf⊥ρ

�
1

s2
−
2m2

b

s3
þm4

b

s4

�
ψ∥
3ðū0Þ

�
ð27Þ

and

ΓðM4; sÞ ¼ m3
ρM4

�
f⊥ρ

�
1

s
−
2m2

b

s2
þm4

b

s3

�

× ½3I0ðΦ⊥
3 ðαÞ; 1Þ − 2ðI0ðΦ⊥ð3Þ

4 ðαÞ; 1Þ

þ I0ðΦ⊥ð4Þ
4 ðαÞ; 1ÞÞ� þ 8mbmρf

∥
ρ

�
1

s2
−
m2

b

s3

�

× I0ðΨ∥
4ðαÞ; k − u0Þ

�
: ð28Þ

In the formulas presented above, we introduce shorthand
notations for some integrals. Namely, we use

I0ðΦðαÞ; k − u0Þ ¼
Z

Dα

Z
1

0

dvðk − u0ÞΦðαq̄; αq; αgÞ

× θðk − u0Þ; ð29Þ

I1ðΦðαÞ; fðvÞÞ ¼
Z

Dα

Z
1

0

dvΦðαq̄; αq; αgÞ

× fðvÞδðk − u0Þ; ð30Þ
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and

I2ðCðu0ÞÞ ¼
Z

1−u0

0

du0ðu0 þ u0 − 1ÞCðu0Þ: ð31Þ

In Eqs. (29), (30), and (31),

k ¼ αq̄ þ αgð1 − vÞ;

and the integration measure Dα is defined as

Z
Dα ¼

Z
1

0

dαq

Z
1

0

dαq̄

Z
1

0

dαgδð1 − αq − αq̄ − αgÞ:

The similar calculations have been carried out to derive the
second component of the correlation function ΠQCD

2 ðM2Þ.
As we have noted above, the sum rules for the coupling

GXbXbρ can be derived after continuum subtraction. The
contribution coming from the higher resonances and
continuum states is written down in Eq. (8) as the double
dispersion integral over the physical spectral density
ρphysðs1; s2Þ. The subtraction is performed invoking ideas
of the quark-hadron duality, i.e., by assuming that in some
regions of physical quantities, ρphysðs1; s2Þmay be replaced
by its theoretical counterpart ρQCDðs1; s2Þ, the latter being
calculable within the perturbative QCD. The spectral
density ρQCDðs1; s2Þ may be found by computing the
imaginary part of the correlation function or extracted
directly from its Borel transformed expression using a
technique, which is described in Refs. [40,43,44,51]. Then
the continuum subtraction can be performed in accordance
with the prescriptions developed in these papers. It is based
on the observation that the double spectral density of the
leading contributions ∼M2 is concentrated near the diago-
nal s1 ¼ s2. In this case, for the continuum subtraction, the
simple expressions can be derived, which are not sensitive
to the shape of the duality region. In the case M2

1 ¼ M2
2 ¼

2M2 and u0 ¼ 1=2, for example, the factor

ðM2ÞNe−m2=M2 ð32Þ

remains in its original form if N ≤ 0 and is replaced as

ðM2ÞNe−m2=M2

→
1

ΓðNÞ
Z

s0

m2

dse−s=M
2ðs −m2ÞN−1 ð33Þ

for N > 0. The subtracted version of other expressions,
which may be encountered in the sum rule calculations, are
collected in Appendix B. In the present work, we follow
these procedures to perform the continuum subtraction.

III. NUMERICAL RESULTS

The sum rules for the strong couplings contain some
parameters, which should be determined to carry out the

numerical computations. The mass and current coupling of
the exotic Xb state, as well as the mass and decay constants
of the ρ meson are among the important physical param-
eters of the problem under consideration. The situation with
the ρmeson is clear, because its parameters are well known:
they were extracted from experimental data or evaluated
employing various nonperturbative approaches, including
the LCSR method [50,52]. The relevant information is
given in Table I.
The parameters of the Xb state deserve more detailed

consideration. Thus, its mass mXb
, decay constant fXb

and
the width of the decay Xb → Bsπ were calculated in our
previous works (see [16,21]) using a vector diquark-vector
antidiquark type interpolating current. The same parame-
ters were also computed in Ref. [26] by suggesting the
molecule-type internal structure for the Xb state.
In the present study, as an intermediate stage of the full

analysis, we would like to calculate the spectroscopic
parameters of the Xb state using the interpolating current
adopted in the present work [see Eq. (2)]. Our predictions
for the mass

mXb
¼ ð5620� 195Þ MeV; ð34Þ

found in this way, is slightly larger than one given in
Ref. [16], but still in agreement with the data of the D0
Collaboration. For the current coupling fXb

, we obtain

fXb
¼ ð0.14� 0.02Þ × 10−2 GeV4: ð35Þ

We utilize the masses of the heavy quarks in the MS
scheme:

mbðmbÞ ¼ 4.18� 0.03 GeV;

mcðmcÞ ¼ 1.275� 0.025 GeV: ð36Þ

The scale dependence ofmb andmc is taken into account in
accordance with the renormalization group evolution,

mqðμÞ ¼ mqðμ0Þ
�
αsðμÞ
αsðμ0Þ

�
γq
; ð37Þ

with γb ¼ 12=23 and γc ¼ 12=25. The renormalization scale
in computation of the coupling GXbXbρ is taken equal to

TABLE I. The mass, decay constants, and parameters of the ρ-
meson leading-twist DAs.

Parameters Values

mρ ð775.26� 0.25Þ MeV

f∥ρ ð0.216� 0.003Þ GeV
f⊥ρ ð0.165� 0.009Þ GeV
a∥2 0.15� 0.07

a⊥2 0.14� 0.06
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μb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Xb
− ðmb þmsÞ2

q
≃ 3.598 GeV: ð38Þ

Themass of the b quark is evolved to this scale by employing
the two-loop QCD running coupling αsðμÞ with
Λð4Þ ¼ 326 MeV.
Another set of parameters is formed due to various

distribution amplitudes of the ρmeson. Indeed, the leading-
and higher-twist DAs are the important ingredients of the
LCSR expressions and, in turn, contain numerous param-
eters. The leading-twist DAs of the longitudinally and
transversely polarized ρ meson are given by the formula

ϕ∥ð⊥Þ
2 ðuÞ ¼ 6uū

�
1þ

X∞
n¼2

a∥ð⊥Þ
n C3=2

n ð2u − 1Þ
�
; ð39Þ

where Cm
n ðzÞ are the Gegenbauer polynomials.

Equation (39) is the general expression for ϕ∥ð⊥Þ
2 ðuÞ. In

our calculations, we employ twist-2 DAs with only one

nonasymptotic term, i.e., only the coefficients a∥ð⊥Þ
2 ≠ 0

(see Table I). The models for the higher-twist DAs, which
enter into Eqs. (27) and (28), are borrowed from
Refs. [49,50]. The values of the relevant parameters at
the normalization scale μ0 ¼ 1 GeV can be found in
Tables 1 and 2 of Ref. [50].
Finally, the sum rule expressions depend on two aux-

iliary parameters, i.e., on the Borel parameter M2 and
continuum threshold s0, which are unavoidable within
this method. Results, in general, should not depend on
the choice ofM2 and s0. In practice, however, one may only
minimize effects connected with their variations. Exploring
the obtained sum rules, we fix working windows within
which the parameters s0 and M2 can be varied: for the
threshold s0, we find

34.4 GeV2 ≤ s0 ≤ 36.8 GeV2; ð40Þ

whereas the Borel parameter can be varied in the limits

6 GeV2 ≤ M2 ≤ 8 GeV2: ð41Þ

The results of computations are depicted in Fig. 4. In
accordance with our studies, the strong coupling GXbXbρ is
equal to

GXbXbρ ¼ 10.46� 2.26: ð42Þ

The similar analysis in the case of the vertex XcXcρ
using the parameters of the Xc state, namely,

mXc
¼ ð2634� 62Þ MeV;

fXc
¼ ð0.11� 0.02Þ × 10−2 GeV4; ð43Þ

given in Ref. [27], restricts s0 and M2 inside the following
ranges:

7.6 GeV2 ≤ s0 ≤ 8.1 GeV2; ð44Þ

3 GeV2 ≤ M2 ≤ 5 GeV2: ð45Þ

The scale dependence of mc is taken into account in
accordance with Eq. (37), where

μc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Xc
− ðmc þmsÞ2

q
≃ 2.224 GeV: ð46Þ

As in the previous case, the mass of the c quark is evolved
to the scale μc by employing the two-loop QCD running
coupling αsðμÞ.
The results of the numerical calculations are shown in

Fig. 5. The QCD light-cone sum rule prediction for the
strong coupling GXcXcρ extracted in the present work reads

s0 34.4 GeV2

s0 35.6 GeV2

s0 36.8 GeV2

0

5

10

15

20

M2 GeV2

G
X

b
X

b

6.0 6.5 7.0 7.5 8.0

FIG. 4. The strong coupling GXbXbρ as a function of the Borel
parameter M2 at different values of s0.

s0 7.56 GeV2

s0 7.84 GeV2

s0 8.12 GeV2

3.0 3.5 4.0 4.5 5.0
0

5

10

15

20

M2 GeV2

G
X

c
X

c

FIG. 5. The coupling GXcXcρ vs the Borel parameter M2 at
different values of s0.
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GXcXcρ ¼ 8.01� 1.66: ð47Þ

In the present work, we applied, for the first time, the full
theory of the QCD light-cone sum rule method to systems
of the tetraquarks with a single heavy quark and calculated
the strong couplings of the Xb and Xc states with the ρ
meson. To this end, we derived the sum rules by equating
the Borel transformations of the same correlation function,
found in terms of physical quantities, to its expression
obtained by employing the leading- and higher-twist
distribution amplitudes of the ρ meson. We also demon-
strated that technical tools elaborated for analysis of the
transition form factors and strong couplings of the conven-
tional hadrons, in general, are applicable to these compli-
cated quark systems, as well.
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APPENDIX A: CALCULATION OF ΠQCD
1 ðM2Þ:

SOME DETAILS

In this Appendix, we provide some details of the
calculations of the function ΠQCD

1 ðM2Þ. To this end, we
pick up a simple term from the perturbative component
given by Eq. (17) and a term ∼ϕðuÞ from the expression of
the distribution amplitude. Obtained in this way, the
integral has the form

I ¼
Z

1

0

duϕðuÞ
Z

d4xeipxþiūqx 1

x2n
KνðmQ

ffiffiffiffiffiffiffiffi
−x2

p
Þ

ð
ffiffiffiffiffiffiffiffi
−x2

p
Þυ

: ðA1Þ

In Eq. (A1), the factor 1=x2ðn1þn2Þ ≡ 1=x2n is due to the
light quark propagators, whereas the factor ∼Kν comes
from the heavy quark propagator. To proceed, we apply the
integral representation for the Bessel functions,

KνðmQ

ffiffiffiffiffiffiffiffi
−x2

p
Þ

ð
ffiffiffiffiffiffiffiffi
−x2

p
Þυ

¼ 1

2

Z
∞

0

dt
tνþ1

exp

�
−
mQ

2

�
t −

x2

t

��
;

and perform the Wick rotation, i.e., replace x2 ¼ −~x2,
px → − ~p ~x, and qx → − ~q ~x. Finally, we make use of the
Schwinger representation for the terms 1=~x2n,

1

ð~x2Þn ¼
1

ΓðnÞ
Z

∞

0

dλλn−1 exp ð−λ~x2Þ;

and, in what follows, omit the tilde on these variables.
These replacements yield

I ¼ i
ΓðnÞ

Z
1

0

duϕðuÞ
Z

∞

0

dt
tνþ1

exp

�
−
mQ

2
t

� Z
∞

0

dλλn−1

×
Z

d4x exp

�
−ipx − iūqx − λx2 −

mQ

2

x2

t

�
: ðA2Þ

Having shifted the variable x as

x → x −
iðpþ ūqÞ

2ðλþmQ=2tÞ

and performed the four-dimensional Gaussian integral over
the new x, we find

Z
d4x exp

�
−ipx − iūqx − λx2 −

mQ

2

x2

t

�

¼
�

2πt
mQ þ 2λt

�
2

exp

�
−

tðpþ ūqÞ2
2ðmQ þ 2λtÞ

�
:

The Borel transformations of the integral I give

I ∼
i

ΓðnÞ
Z

1

0

duϕðuÞ
Z

∞

0

dt
tνþ1

e−
mQ
2
t

Z
∞

0

dλλn−1

× exp

�
tuū

2ðmQ þ 2λtÞ q
2

�
δ

�
1

M2
1

−
tu

2ðmQ þ 2λtÞ
�

× δ

�
1

M2
2

−
tū

2ðmQ þ 2λtÞ
�
: ðA3Þ

Now using

δ

�
1

M2
1

−
tu

2ðmQ þ 2λtÞ
�

¼ M4
1u
4

δðλ − λ0Þθðλ0Þ; ðA4Þ

where λ0 equals

M2
1tu − 2mQ

4t
; ðA5Þ

we carry out the λ integration. The next step is computation
of the u integral. To this end, we employ the second delta
function and transform it as

δ

�
1

M2
2

−
tū

2ðmQ þ 2λ0tÞ
�

¼ M2
1M

4
2

ðM2
1 þM2

2Þ2
δðu − u0Þ;

where

u0 ¼
M2

2

M2
1 þM2

2

:

The integration over u sets ϕðuÞ → ϕðu0Þ and also deter-
mines the low limit of the remaining t integral, which has
become equal to
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tmin ¼
2mQ

M2
1u0

:

By rescaling the variable t,

t →
2

M2
1u0

s
mQ

;

we obtain the integral over s running fromm2
Q until infinity

and, in this way, the considered component of ΠQCD
1 ðM2Þ

takes its final form.

APPENDIX B: THE FORMULAS FOR THE
CONTINUUM SUBTRACTION

Here we have collected useful formulas, which can be
applied in the continuum subtraction. In the left-hand side
of the formulas presented below, wewrite down the original
form, and in the right-hand side the subtracted version of
expressions encountered in the sum rule calculations:

ðM2ÞN
Z

∞

m2

dse−s=M
2

fðsÞ →
Z

s0

m2

dse−s=M
2

FNðsÞ: ðB1Þ

For the more complicated factor,

ðM2ÞN ln

�
M2

Λ2

�Z
∞

m2

dse−s=M
2

fðsÞ; ðB2Þ

and for all values of N the following formula is valid:

Z
s0

m2

dse−s=M
2

�
FNðm2Þ ln

�
s −m2

Λ2

�
þ γEFNðsÞ

þ
Z

s

m2

duFN−1ðuÞ ln
�
s − u
Λ2

��
: ðB3Þ

The next formula is

ðM2ÞN ln

�
M2

Λ2

�
e−m

2=M2

→ e−s0=M
2
X1−N
i¼1

�
d
ds0

�
1−N−i

�
ln

�
s0 −m2

Λ2

��
1

ðM2Þi−1

þ γEðM2ÞNðe−m2=M2 − δN1e−s0=M
2Þ

þ ðM2ÞN−1
Z

s0

m2

dse−s=M
2

ln

�
s −m2

Λ2

�
; ðB4Þ

if N ≤ 1, and

γE
ΓðNÞ

Z
s0

m2

dse−s=M
2ðs −m2ÞN−1

þ 1

ΓðN − 1Þ
Z

s0

m2

dse−s=M
2

Z
s

m2

duðs − uÞN−2

× ln

�
u −m2

Λ2

�
; ðB5Þ

for N > 1.
The following expressions are also useful:

ðM2ÞN
Z

∞

m2

dse−s=M
2

fðsÞ ln
�
s −m2

Λ2

�

→ e−s0=M
2
XjNj

i¼1

~FNþiðs0Þ
ðM2Þi−1 þ ðM2ÞN

Z
s0

m2

dse−s=M
2

fðsÞ

× ln

�
s −m2

Λ2

�
; N ≤ 0; ðB6Þ

and

1

ΓðNÞ
Z

s0

m2

dse−s=M
2

Z
s

m2

duðs − uÞN−1

× ln

�
u −m2

Λ2

�
fðuÞ; N > 0: ðB7Þ

In the equations above, we have employed the notations

FNðsÞ ¼
�
d
ds

�
−N

fðsÞ; N ≤ 0 ðB8Þ

and

FNðsÞ ¼
1

ΓðNÞ
Z

s

m2

duðs − uÞN−1fðuÞ; N > 0: ðB9Þ

For N ≤ 0, we have also used

~FNðsÞ ¼
�
d
ds

�
−N

�
fðsÞ

Z
∞

1

dt
t
exp

�
−

Λ2t
s −m2

��
;

~FNðs0Þ ¼
�

d
ds0

�
−N

�
fðs0Þ ln

�
s0 −m2

Λ2

�
− γE

�
: ðB10Þ

The expressions provided above are valid only if
fðm2Þ ¼ 0. In other cases, one has to use the prescription
fðsÞ ¼ ½fðsÞ − fðm2Þ� þ fðm2Þ, where the first term in the
brackets is equal to zero, when s ¼ m2.
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