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The full version of the QCD light-cone sum rule method is applied to tetraquarks containing a single
heavy b or ¢ quark. To this end, investigations of the strong vertices X, X,p and X_X_p are performed,
where X;, = [su][bd] and X, = [su][¢ d] are the exotic states built of four quarks of different flavors. The
strong coupling constants Gy, y, , and Gy x_, corresponding to these vertices are found using the p-meson

leading- and higher-twist distribution amplitudes. In the calculations, X, and X are treated as scalar bound

states of a diquark and antidiquark.
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I. INTRODUCTION

During last decade, due to experimental data from the
Belle, BaBar, LHCb, DO, and BES collaborations, which
provided valuable information on the so-called exotic
hadron states, this branch of high-energy physics has
demonstrated rapid growth. The exotic hadrons, i.e., ones
that cannot be embraced by the spectroscopy of the known
hadrons as ¢g or ggg bound states, may serve as a
laboratory for testing the quantum chromodynamics
(QCD)—the existing theory of strong interactions, as well
as various phenomenological models built on its basis. An
existence of the exotic hadrons does not contradict the
fundamental principles of this theory. Though relevant
problems attracted the interest of physicists from the first
years of the parton model, and later QCD, only recently did
these ideas find their experimental confirmation.

The discovery of the charmoniumlike resonance X (3872)
by the Belle Collaboration [1] was the first brick laid in the
foundation of what is now the XYZ family of exotic states.
The observation made by Belle was later reexamined and
confirmed by other collaborations [2—4]. Produced in the B-
meson decays or in the pp collisions, observed in the e*e™
annihilation or in the two-photon fusion, exotic states remain
a focus of the main experimental collaborations, which have
collected much data based on the processes of interest.

Considerable progress was made in the theoretical
understanding of the features of the exotic states, as well.
If experiments are devoted to measuring the masses and
decay widths and to identifying the spins and parities of the
exotic states, theoretical works are concentrated on studies
of their internal quark-gluon structure and on new models
and methods suggested for their exploration (for details
of theoretical and experimental studies, see the reviews in
[5-13] and references therein).

The charmoniumlike resonances of the XYZ family
contain, as is evident from their names, a ¢¢ component.
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Therefore, efforts were made to explain the new resonances
as excitations of the ordinary c¢ charmonium. Indeed, some
of the new particles allow such interpretation and are really
excited cc states. But the essential part of the relevant
experimental data cannot be included in the excited
charmonium scheme and, hence, for their exploration,
unconventional quark-gluon configurations are needed.
For this purpose, various models with different quark-
gluon structures were supposed. The tetraquark model of
the exotic states, i.e., the model that considers exotics as
four-quark particles, is among the most frequently
employed ones. It is worth noting that this approach led
to significant achievements in describing the processes with
the exotic states and in predicting their masses, decay
widths, and quantum numbers. There are some alternatives
to compose from the four quarks an exotic state within the
tetraquark model. In fact, the four constituent quarks may
group into a diquark and an antidiquark to form the exotic
state with required quantum numbers. This model is known
as the diquark-antidiquark model. In the meson molecule
picture, the quarks are collected into two conventional
mesons, and the exotic particle appears as a loosely bound
molecule state. There are other opportunities to organize
the exotic states from the four quarks, as well as alternative
models, such as the hybrid models, detailed presentation of
which is beyond the scope of the present work.

In the tetraquark model, the maximal number of quark
flavors in the XYZ states does not exceed three. But there
are not any fundamental laws in QCD forbidding the
existence of the exotic states built of four quarks of distinct
flavors. Namely, such exotic states have recently become
the object of comprehensive theoretical investigations. But
before going into the details of these studies, we have to
make some comments on the experimental situation formed
around one of these particles. Strictly speaking, all present
theoretical activity was inspired by the DO Collaboration’s
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report, where evidence for the existence of the exotic
state X(5568) was announced [14]. Based on the analysis
of pp collision data at /s = 1.96 TeV collected at the
Fermilab Tevatron collider, the collaboration reported on
evidence of a narrow resonance X(5568) in the consecutive
decays X(5568) — Bn*, B — J/yep, J/y — utyu-,
¢ — K*K~. From the decay channel X(5568) — Bor*,
it is easy to conclude that the state X(5568) consists of
valence b, s, u, and d quarks. The mass of this state is equal
to my = 5567.8 £ 2.9(stat) %9 (syst) MeV, and the decay

width is estimated as T = 21.9 & 6.4(stat) 132 (syst) MeV.
The DO assigned to this particle the quantum numbers
JP€ = 07+, but did not exclude a possible version 1+, A
few days later, the LHCb Collaboration presented prelimi-
nary results of their analysis of pp collision data at energies
7 and 8 TeV collected at CERN [15]. The LHCb
Collaboration could not confirm the existence of the
resonance structure in the Bz* invariant mass distribution
at energies less than 5700 MeV. In other words, the
situation with the exotic state X(5568), supposedly built
of four different quark flavors, is controversial and neces-
sitates further experimental studies. The exotic state dubbed
X(5568) deserves to be searched for by other collabora-
tions and, maybe, in other hadronic processes.

Namely, these unclear circumstances surrounding the
X(5568) resonance make relevant theoretical studies even
more important than just after the information on its
existence. The first suggestions concerning the diquark-
antidiquark or meson molecule model for organization
of the new state were made in Ref. [14]. Calculations
performed until now covered only some topics of the
X(5568) physics. Primarily, they include computation
of the mass and decay constant of X(5568); a few works
were devoted to the calculation of the width of the
X(5568) — BYn* decay, as well. It should be emphasized
that the diquark-antidiquark model with J*¢ = 0+ pre-
vails among approaches used to explain parameters of the
X(5568) state.

Thus, in Ref. [16], we accepted for this state the diquark-
antidiquark structure X, = [su|[bd] with the quantum
numbers 0" and calculated its mass my, and decay
constant (i.e., the meson-current coupling) fx,. Our pre-
diction for my, agrees with the mass of the X(5568)
resonance found by the DO Collaboration. In the framework
of the diquark-antidiquark model, some parameters of
X(5568) were also analyzed in Refs. [17-20], where an
alternative choice for the diquark-antidiquark-type inter-
polating current was realized. The values for my obtained
in these works agree with each other and are consistent with
the experimental data from the DO Collaboration.

Employing the same X, structure and interpolating
current as in our previous work, in Ref. [21] we computed
the width of the X, — Bz decay channel. We applied
the QCD sum rule on the light cone supplemented by the
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soft-meson approximation (see Ref. [22]): our result for
(X, — Bn*) describes correctly the experimental data.
The width of the decay channels X*(5568) — B,z™ was
also calculated in Refs. [23,24] using the three-point QCD
sum rule approach. In these works, authors found a very
nice agreement between the theoretical predictions for
I'(X* - B%*) and the data.

The X (5568) can also be considered as a meson molecule;
namely, this picture was realized in Refs. [25,26], where
X (5568) was treated as the BK bound state. It is worth
noting that, in accordance with Ref. [26], the mass of
such a moleculelike state was found to be equal to
my, = 5757 £ 145 MeV.

A charmed partner of the X, state, i.e., the X, structure
built of the valence c, s, u and d quarks and possessing the
quantum numbers 07", was analyzed in Ref. [27]. Here, we
computed the mass, decay constant, and width of the
decays X, — Dyz+ and X, — DK considering X, =
[su][cd] as the diquark-antidiquark state and employing
two forms for the interpolating currents. The questions of
quark-antiquark organization of X, and its partners were
also addressed in Ref. [28].

The contradictory information from the DO and LHCb
collaborations concerning existence of the X, state resulted
in the appearance of interesting theoretical works devoted
to analysis of the X, physics, where its structure, spectro-
scopic parameters, and production mechanisms were inves-
tigated. For details and further explanations, we refer to the
original papers [29-38].

In the present work, we explore the strong vertices
XpXpp and X X .p and calculate the couplings Gy, y,, and
Gx, x,., by employing the QCD light-cone sum rule (LCSR)
approach, which is one of the powerful nonperturbative
methods in hadron physics enabling us to evaluate param-
eters of the particles and processes [39]. Within this
approach, one expresses the relevant correlation functions
as convolution integrals of the perturbatively calculable
coefficients and nonlocal matrix elements, which are the
distribution amplitudes (DAs) of the particles under con-
sideration. It is worth noting that expansion in terms of
nonlocal matrix elements cures shortcomings of the local
expansion used in the conventional QCD sum rules.

Strictly speaking, the light-cone expansion was already
applied for investigation of the exotic states. Indeed, in
order to study strong vertices involving the exotic states and
calculate corresponding couplings and decay widths in
Refs. [21,22,26], we applied a technique of the light-cone
calculations and obtained very good results, which agree
with available experimental data and predictions of other
theoretical works. But because of the differences in the
quark contents of the conventional and exotic mesons, in
those works we had to supply the light-cone expansion by
the soft-meson approximation; the latter reduces the light-
cone expansion to the expansion in terms of local matrix
elements, weakening effects and advantages of the LCSR.
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In the present work, we employ the full version of the
LCSR method in computation of the strong vertex com-
posed of the exotic particles. This method previously was
applied to analyze numerous vertices of conventional
mesons and baryons and to calculate corresponding cou-
plings and form factors. Here we are able to cite only some
of the works devoted to this interesting topic of hadron
physics [40-45], noting among them Ref. [45], where, for
the first time, effects of the 5 and #' mesons’ gluon
components on the strong vertices DD ;") and BBy
were taken into account. To our best knowledge, the present
work is the first attempt to investigate the strong vertex of
tetraquarks by employing the full version of the QCD
LCSR method. Therefore, it is instructive to reveal possible
technical problems hidden behind such calculations and to
elaborate schemes and methods to evade them.

This work is structured in the following manner. In
Sec. II, we derive the light-cone sum rule for the strong
coupling Gy,x,, using the expansion of the correlation
function in terms of the p meson’s two- and three-particle
distribution amplitudes of various twists. In Sec. III, we
perform numerical analysis of the obtained sum rules for
the couplings Gy,x,, and Gy x ,. Appendixes A and B
contain some technical details of calculations and formulas
useful in the continuum subtraction, respectively.

II. SUM RULE FOR THE COUPLING Gy,y,,

In this section, we derive the sum rule for the strong
coupling Gy, x, ,; the same expressions, after trivial replace-
ments of the meson and quark masses, can be applied for
computation of the coupling Gy x ,, as well.

To calculate the coupling Gy, x,, corresponding to the
vertex X, X,p in the framework of the QCD light-cone sum
rules method, we consider the corresponding correlation
function, which in the case under consideration is given by
the expression

(p.q) = i/d“xeip"(P(Q)lT{JXb(X)JX”(O)IO}% (1)

where J%#(x) is the current with required quantum numbers
within the diquark-antidiquark model of the X, state
defined in the form

J¥r(x) = eee®[sP (x) Cysuc (x)][b! (x)ysCd* ()] (2)

First, let us calculate this function in terms of the physical
degrees of freedom. We get

(0% |X, (p))

™ (p. q) = P (@) Xs(P)IXs(p + q))
. Xo(p + q)lI7[0)
(p+aq)?=mz, o
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Here the matrix element (p(q)X,(p)|X,(p+ q)) deter-
mines the coupling of interest and is given as

(r(q)

where p is the momentum of the X, state, and &* the
polarization vector of the p meson. We define, also in the
standard manner, the matrix element

Xp(P)IXp(p +q)) = Gx,x,,P " & (4)

(0% | X, (p)) = mx, fx,- (5)

Then we easily find

m%gf%(h Gx,x,p
(p* = mz)(p + q)* —my,]

" (p, q) = p-e+-

(6)

where the first term is the ground state contribution and the
dots stand for the contributions arising from the higher
resonances and continuum states. As is seen, the correlation
function contains only the structure p -e. The relevant
invariant amplitude is given by the expression

m%(bf %(,, Gx,x,p
(p* =mx )[(p +q)* —m3z,]

// d51d52/7phyb(51 52)

~(p+4q)’]
(7)
Here the dots indicate the single dispersion integrals that
should be included to make the expression finite: they
vanish after double Borel transformations.
The Borel transformations on variables p?> and p’> =
(p + q)? applied to the invariant function yields

PYs(p2, (p + q)%) =

B, (M), (M (2. p2) = I (o1
e
= mg(bfgbeXbXbPe mXb/
+/ds1dsze_(sl“Z)/Zszphys(ﬁ,Sz), (8)

where the Borel parameters M3 and M3 for the problem
under consideration are chosen as M2 M3 =2M?
and M? = M3M3/ (M3 + M3).

To proceed, we need to determine the correlation
function using the quark propagators and distribution
amplitudes of the p meson, i.e., to find 1P (p, ). We
note that it is the sum of two terms:

HQCD(p’ q) = 1_[l (p’ q) + H2<p7 Q>

The first function corresponds to a physical situation, when
the strong vertex is formed due to interaction of the X,
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states with the dd component of the p° meson and is
determined by the formula

Hl (p, q) = i/d4xeipxsabcetlde€a'b’c’gg’d’e/
X Trlys 8¢ ()5S (0)lrsS (=x)15]ap
x (p(q)|d(x)df (0)]0). )

The second component I, (p, ¢) appears via the interaction
of the X, states and p° meson’s #iu content:

. 7 . NN, !l
Hz(p’q) — _l/d4xelpx€ahc8ude€uhL gade

X TF[J/SS';/E(—X)}’SSZ,CJ(—X)][755'?” (X)Ys]aﬁ
x {p(q)liig (0)uj(x)[0). (10)

In the equations above, we introduce the notation

Sg.s.0 (x) = CSg,s,Q(X)C

where S, o)(x) are the quark propagators, and C is the
charge conjugation matrix. In the x space for propagators of
the u, d, and s quarks, we accept the expressions

ix m

bl q
Si(x) = 272 x* Oap = 272 %2

5ab

. ld X " w [vxH o .
~igs | A T iy (vx)o T2 wp(0X)y

img

y x2A?
_WGﬁh(vx)oﬂy {ln (—T> —1—27/4 } (11)

In Eq. (11), the first two terms are the perturbative
components of the propagator: terms ~G** appear due
to its expansion on the light cone and describe interaction
with the gluon field. In calculations, we neglect terms ~my,
and, at the same time, take into account the ones ~m,. For
the heavy quark propagator on the light cone, we employ its
expression in terms of the second kind of Bessel functions
K,(2),

1
S‘éb(x) - S(Qo)“b(x) - w/o dv {G’;Z(vx)(oﬂyx

167>
K (moV—x%
+ Xgﬂy)% + 2(7”DK0(mQ V —x2) R

(12)

where the perturbative propagator of the heavy quark is
given by
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B m2Q Ki(mgV —x?)

N 477:2 vV _x2
,m_ZQkKZ(mQ\/ —x?)

l4nzwéab' (13)

In Egs. (11) and (12), the shorthand notation

0)ab
S22> (X) 5ab

G =G, A=12.38,
is adopted with a, b being the color indices. Here
t4 = 24/2, where 1* are the Gell-Mann matrices.

The Feynman diagrams corresponding, for example, to
the term IT;(p, ¢) are depicted in Figs. 1, 2, and 3. The
leading-order contribution comes from the diagram shown
in Fig. 1, which corresponds to the term IT?*"(p, ¢), where
all of the propagators are replaced by their perturbative
components: contribution of this diagram can be computed
using the p-meson two-particle twist-two and higher-twist
distribution amplitudes. The diagrams drawn in Fig. 2 are
obtained by choosing in one of the propagators its ~GH

FIG. 1. The leading-order diagram contributing to IT;(p, q).

FIG. 2. The one-gluon exchange diagrams due to a gluon
originating from (a) b quark, (b) u quark, and (c) s quark.
They give rise to corrections, which can be computed by utilizing
p-meson three-particle DAs.

FIG. 3. Some many-particle diagrams neglected in this work.
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component. They will be expressed in terms of the meson’s
three-particle DAs. In this work, we neglect corrections
arising from the diagrams (see Fig. 3 for some samples),
where in two or three propagators components ~G** are
chosen simultaneously. These contributions require invok-
ing four- and five-particle distributions of the p meson and
are beyond the scope of the present study.

To provide some details of the calculations, as an
example, we choose the term IT,(p, ¢). The similar con-
sideration can also be carried our for I, (p, g). We start our
analysis from the perturbative component of II;(p, q)
(Fig. 1), i.e., from the contribution

leyert(p q) _ i/ dAxelPx gabe gade ga'b'c’ gd'd'e!
x TrlysSYP P (x)ysSi P ()]

x [r585 P (=x)s] 5 (p(q) | (x) 5 (0)]0).
(14)

It is convenient first to perform the summation over the
color indices. To this end, we apply the projector onto the
color singlet product of quarks fields %5“/ by performing
the replacement

a5(0)d5 (0) = 55,04,(9)y(0).  (15)

and use the expansion

d,(x)dy(0) =~ T, d(x)[Vd(0), (16)

1
7

where the sum runs over J:

= 1,ys, Yo i757/uo-;w/\/§'

Substituting this expansion into Eq. (14), we obtain

Hrfert(p,Q) _ i/d4xeipXTr[y53'£Pert) (X)VSS,(}’W) (x)]

x TrlysSP™ (=x)ysTY) (p(q) | d(x)Td(0)|0).
(17)

Now, as an example, we analyze the nonperturbative
diagram depicted in Fig. 2(b). After some manipulations,

we recast the corresponding function HT'(};E)“( p,q) into the

form
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e (pog) =i / d*xe'P¥Tr [7535‘”") (x)rs

1 1
—7 Y AivxHyY
X { zgs/o dv 62 [£o ivxty ]H

< Telys S (275 ()l
x TG, (vx)d(0)[0). (18)

A similar analysis can be done for other nonperturbative
diagrams, as well.

The sum of the IT}*"(p, ¢) and Hrl’gm(p, q) fori = a, b,
and ¢ determines the first component IT,(p,g) of the
correlation function. It is given as the integral of the
products of the coefficient functions and nonlocal matrix
elements:

(x)I7d(0)]0),
d(x)IV G, (vx)d(0)[0). (19)

)
S
Y

The matrix elements of the neutral p meson from Eq. (19)
up to an isospin factor in the overall normalization are
connected with ones of the charged p mesons and can
be expanded in terms of the corresponding distribution
amplitudes. Below we provide expressions for the
(0]a(x)T’d(0)|p(q))-type matrix elements obtained to
twist-4 accuracy and given by means of the p meson’s
two-particle DAs. For the structures IV =1 and 7,75, we
get

Ola(@)d(0)|p(q)) = ~if -e - xm? /  duc ) (),
0
(Ofa(x)7,r5dO)pa)) = 5 Fhmyeie, a5,

1 .
X / due™ Py (u), (20)
0
whereas IV =y, and 0, give

(0la(x)7,d(0)lp(q))

£-X 1 - m2x?
—shm{ g, [ duene[ghiu + "5 ghiw]

£-X 1 -
+ (ﬁ‘ﬂ - 4q, —x> / due™*px(u)
0
1

and
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(0/(x)0,,d(0)|p(q))
2
—irt{ =) [ duens | g0+ "2 g0
mZ (1 .
(e, —en) 72 [ due ey ()= o)

E-X
+(qﬂxy—qyxﬂ)w p/o duequD( )+ }7

(22)

respectively. Here 2 = 1 — u, and m, and ¢ are the mass of
the p meson and its polarization vector. In the equations
above the functions, C(u) and D(u) denote the following
combinations of the two-particle DAs:

Clu) =yl (u) + Pph(u) — 24 (u). (23)

1

D) = ) 3 b3 ) —ywit (). (24)

The twists of the distribution amplitudes are shown as

subscripts in the relevant functions. As is seen, these

matrix elements include the two-particle leading-twist

DAs (ﬁg(l)(u), the
l)(u) and l//!u)(u), as well as twist-4 distributions
1 i

$4 (u) and yi ().

We do not write down lengthy equalities, which express
the matrix elements (p(q)|d(x)IV G, (vx)d(0)|0) in terms
of the numerous higher-twist DAs of the p meson, and
refrain from giving further information on the DAs them-

twist-3  distribution amplitudes

+ 61, (}(a). v) + 31 (). 1) = 1, (Vy(a). 1) + 20, (Wi (@), v) + [ (Pi(a). 1) —

selves. The definitions and detailed information on
|
6 6 I L\ -
F(M N S) = —mpm, M m p S4 S_3 (MO) + m,
I my 1
+ 21, (®3(a), v)] + 8mj, R 5[C(up)]
and

L(M*,s) = mgM4{ Fr ( 2;"” + ’:32)
x [310<<1>3i<a>, 1) = 2(Lo(@; (). 1)

m2
+ 1o(®5 " (a). )] + 8mym, ) (slz—s—f)
% Io((a). k uo>}. (28)

PHYSICAL REVIEW D 93, 114036 (2016)

properties of the distribution amplitudes of the p and other
vector mesons, as well as explicit expressions for some of
their models, used also in the present work, can be found in
Refs. [46-50].

Our aim is to calculate the correlation function
P (p, ¢) in terms of the DAs of the p meson, extract
the invariant amplitude TT?°P(p?, p?) corresponding to
the structure p - e, and perform its double Borel trans-
formation:

NP (M?) = B2 (M?)B 2 (M3)19P (p?, p?).
After equating TTI%P(M?) to its counterpart TTP"YS(M2)
and subtracting contributions of the higher resonances
and continuum states presented in Eq. (8) as the double
dispersion integral, we can derive the LCSR for the strong
coupling Gy, x, -

Presenting some details of calculations in Appendix A,
below we write down the final expression obtained for
Y (m?):

QCD mpm, 4 2
> (M?) = i / dse M=)/ M DM 5)
+T(M®, s) + T(M*, 5)]. (25)
Here,

B 1 2m? mt
r(M8,s) = —2m3 fimB el (@) <s—3 - S—f + S—5‘7> . (26)

N N

(-2 2 i@ 1) =31, b )

1,(2}(a). 1)

2 4
+ dmy <l—2—n§b+%)l//!(ﬁo)} (27)

In the formulas presented above, we introduce shorthand
notations for some integrals. Namely, we use

Ih(P(a), k —uy) = /Dall dv(k —ug)®(ay, a,. a,)

x O(k — uy), (29)
L(®(a), f /Da/ dv®(az, a,, a,)
x f(v)8(k = up), (30)

114036-6



APPLICATION OF THE QCD LIGHT CONE SUM RULE TO ...

and

L(Clug)) = /1_”° il (g + i = YC@).  (31)
0
In Egs. (29), (30), and (31),
k=a; +a,(1-v),

and the integration measure Da is defined as

1 1 I
/Da :/ daq/ da,—]/ dad(l —a, —a; —a,).
0 0 0

The similar calculations have been carried out to derive the

second component of the correlation function H?CD (M?).

As we have noted above, the sum rules for the coupling
Gx,x,, can be derived after continuum subtraction. The
contribution coming from the higher resonances and
continuum states is written down in Eq. (8) as the double
dispersion integral over the physical spectral density
pPYS(s1,s,). The subtraction is performed invoking ideas
of the quark-hadron duality, i.e., by assuming that in some
regions of physical quantities, pP"Y* (s, s,) may be replaced
by its theoretical counterpart pP (s, s,), the latter being
calculable within the perturbative QCD. The spectral
density p?©P(s;,s,) may be found by computing the
imaginary part of the correlation function or extracted
directly from its Borel transformed expression using a
technique, which is described in Refs. [40,43,44,51]. Then
the continuum subtraction can be performed in accordance
with the prescriptions developed in these papers. It is based
on the observation that the double spectral density of the
leading contributions ~M? is concentrated near the diago-
nal s; = s,. In this case, for the continuum subtraction, the
simple expressions can be derived, which are not sensitive
to the shape of the duality region. In the case M3 = M3 =
2M? and u, = 1/2, for example, the factor

(1‘,12)Ne—m2/M2 (32)

remains in its original form if N <0 and is replaced as

1 s 2
(M2)N g=m*/M* _, F—(N) / " dse=s/M (s —m?)N-! (33)
mz

for N > 0. The subtracted version of other expressions,
which may be encountered in the sum rule calculations, are
collected in Appendix B. In the present work, we follow
these procedures to perform the continuum subtraction.

III. NUMERICAL RESULTS

The sum rules for the strong couplings contain some
parameters, which should be determined to carry out the

PHYSICAL REVIEW D 93, 114036 (2016)

TABLE I. The mass, decay constants, and parameters of the p-

meson leading-twist DAs.

Parameters Values

m, (775.26 + 0.25) MeV
ﬂ (0.216 + 0.003) GeV
j (0.165 £ 0.009) GeV

ag 0.15£0.07

ar 0.14 £ 0.06

numerical computations. The mass and current coupling of
the exotic X, state, as well as the mass and decay constants
of the p meson are among the important physical param-
eters of the problem under consideration. The situation with
the p meson is clear, because its parameters are well known:
they were extracted from experimental data or evaluated
employing various nonperturbative approaches, including
the LCSR method [50,52]. The relevant information is
given in Table I.

The parameters of the X, state deserve more detailed
consideration. Thus, its mass my, , decay constant fx, and
the width of the decay X, — B,z were calculated in our
previous works (see [16,21]) using a vector diquark-vector
antidiquark type interpolating current. The same parame-
ters were also computed in Ref. [26] by suggesting the
molecule-type internal structure for the X, state.

In the present study, as an intermediate stage of the full
analysis, we would like to calculate the spectroscopic
parameters of the X, state using the interpolating current
adopted in the present work [see Eq. (2)]. Our predictions
for the mass

my, = (5620 + 195) MeV, (34)

found in this way, is slightly larger than one given in
Ref. [16], but still in agreement with the data of the DO
Collaboration. For the current coupling f,, we obtain

fx, = (0.14 £0.02) x 107 GeV*, (35)

We utilize the masses of the heavy quarks in the MS
scheme:

my(my) = 4.18 £ 0.03 GeV,
m.(m,) = 1.275 £ 0.025 GeV. (36)

The scale dependence of m,, and m,. is taken into account in
accordance with the renormalization group evolution,

) = )| 2 (37)

Ay (MO )

withy, = 12/23 andy. = 12/25. The renormalization scale
in computation of the coupling Gy, x,, is taken equal to
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= \/m§h — (my, +m,)? =3.598 GeV.  (38)

The mass of the b quark is evolved to this scale by employing
the two-loop QCD running coupling a () with
A® =326 MeV.

Another set of parameters is formed due to various
distribution amplitudes of the p meson. Indeed, the leading-
and higher-twist DAs are the important ingredients of the
LCSR expressions and, in turn, contain numerous param-
eters. The leading-twist DAs of the longitudinally and
transversely polarized p meson are given by the formula

{9 0) = a1+ 3P 1)]. 39
n=2

where C7(z) are the

Equation (39) is the general expression for qﬁg(l)(u). In
our calculations, we employ twist-2 DAs with only one

Gegenbauer polynomials.

nonasymptotic term, i.e., only the coefficients agm #0
(see Table I). The models for the higher-twist DAs, which
enter into Egs. (27) and (28), are borrowed from
Refs. [49,50]. The values of the relevant parameters at
the normalization scale py =1 GeV can be found in
Tables 1 and 2 of Ref. [50].

Finally, the sum rule expressions depend on two aux-
iliary parameters, i.e., on the Borel parameter M? and
continuum threshold sq, which are unavoidable within
this method. Results, in general, should not depend on
the choice of M? and s,. In practice, however, one may only
minimize effects connected with their variations. Exploring
the obtained sum rules, we fix working windows within
which the parameters s, and M? can be varied: for the
threshold s,, we find

34.4 GeV? < 54 < 36.8 GeV?, (40)

whereas the Borel parameter can be varied in the limits
6 GeV? < M? < 8 GeV>. (41)
The results of computations are depicted in Fig. 4. In
accordance with our studies, the strong coupling Gy, , is

equal to

Gx,x,p = 10.46 £2.26. (42)
The similar analysis in the case of the vertex X X .p

using the parameters of the X, state, namely,

my_ = (2634 +62) MeV,
fx, = (0.11 £0.02) x 1072 GeV*, (43)
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20 [ T T T T T T T T T T T T T T T
i 50=34.4 GeV?
» === 5,=35.6 GeV?
15 > ]
: """" S0:36.8 GeV
QU
e e e e ]
NA 10: --------------------------------------------------------------
C) [
5| ]
0 L n 1 n 1 n n n n 1 n n n n
6.0 6.5 7.0 75 8.0
M*(GeV?)

FIG. 4. The strong coupling Gy, x,, as a function of the Borel
parameter M at different values of s.

given in Ref. [27], restricts s, and M? inside the following
ranges:

7.6 GeV?* < 53 < 8.1 GeV?, (44)

3 GeV? < M2 <5 GeV2. (45)

The scale dependence of m, is taken into account in
accordance with Eq. (37), where

4 — \/m§ — (m, +m,)? =2.224 GeV.  (46)

As in the previous case, the mass of the ¢ quark is evolved
to the scale . by employing the two-loop QCD running
coupling o (u).

The results of the numerical calculations are shown in
Fig. 5. The QCD light-cone sum rule prediction for the
strong coupling Gy x , extracted in the present work reads

20— T T
I 50=7.56 GeV?
» === 5,=7.84 GeV?
15+ 2 ]
o 50=8.12 GeV
s |
S 1
o 107 ]
RD .'-'-'.‘.T.‘.-'.T.‘.:.'..‘.:-'.T.‘.:'.T.-.:.-..'.T.'.?.—..-.T.-.:'.-..'.'.'.'.f.'.:'-1.-.7
st 1
T — T —
3.0 35 4.0 4.5 5.0
M*(GeV?)

FIG. 5. The coupling Gy x , vs the Borel parameter M? at
different values of s.
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Gy x., = 8.01 % 1.66. (47)

In the present work, we applied, for the first time, the full
theory of the QCD light-cone sum rule method to systems
of the tetraquarks with a single heavy quark and calculated
the strong couplings of the X, and X, states with the p
meson. To this end, we derived the sum rules by equating
the Borel transformations of the same correlation function,
found in terms of physical quantities, to its expression
obtained by employing the leading- and higher-twist
distribution amplitudes of the p meson. We also demon-
strated that technical tools elaborated for analysis of the
transition form factors and strong couplings of the conven-
tional hadrons, in general, are applicable to these compli-
cated quark systems, as well.
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APPENDIX A: CALCULATION OF 112" (M2):
SOME DETAILS

In this Appendix, we provide some details of the
calculations of the function TP (M2). To this end, we
pick up a simple term from the perturbative component
given by Eq. (17) and a term ~¢(u) from the expression of
the distribution amplitude. Obtained in this way, the
integral has the form

: ipx+iiigx 1 KU(m '_xz)
I:/O du¢(u)/d4xep+ g xﬁ(\/g_ixz)u

In Eq. (A1), the factor 1/x20n+m) = 1/x*" is due to the
light quark propagators, whereas the factor ~K, comes
from the heavy quark propagator. To proceed, we apply the
integral representation for the Bessel functions,

K, (moV—x*) 1 /00 dt exp | Mo x?
( /_xz)u ) 0 1 p ’
and perform the Wick rotation, i.e., replace x> = —x2,

px — —p X, and gx — —g X. Finally, we make use of the
Schwinger representation for the terms 1/x%",

(A1)

2

1 1 o _ -
(/’%2)11 = m/(; did 1 exp (—/Ixz),

and, in what follows, omit the tilde on these variables.
These replacements yield

PHYSICAL REVIEW D 93, 114036 (2016)

i 1 o dt mQ By
= [ a ) B P
i ) oot [ e[ |

2
x /d4xexp {—ipx— iigx — Ax* _%x?] (A2)
Having shifted the variable x as
U V)
2(A+mgp/2t)

and performed the four-dimensional Gaussian integral over
the new x, we find

2
< 2nt )2 { 1(p + ug)* ]
=|——) exp |- ——|-
The Borel transformations of the integral / give
i 1 ot mg o
I~ d 2! !
F(n)% uqb(u)A e A

« ex tui 2| s 1 tu
P 2(mg + 20T |7\02 ™ 2(mg + 220)

2
/d4xexp [—ipx — iligx — Ax* ——7]

(305 3mg ) (A
Now using
(s 3 )~ A= Aol ()
M7 2(mg + 24t1) 4
where 4, equals
M%tu —2mg (A5)

4¢ ’

we carry out the 4 integration. The next step is computation
of the u integral. To this end, we employ the second delta
function and transform it as

1 th M2MA
5 _ — 1 2 5 _ )
(5s 2<mQ+2zor>> 3+ 3y 2 )
where
M3
Mozﬁ.
M; + M5

The integration over u sets ¢(u) — ¢(uy) and also deter-
mines the low limit of the remaining ¢ integral, which has
become equal to
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By rescaling the variable 7,

2 s

t————,
M]MOmQ

we obtain the integral over s running from m2Q until infinity

and, in this way, the considered component of HIQCD(MZ)
takes its final form.

APPENDIX B: THE FORMULAS FOR THE
CONTINUUM SUBTRACTION

Here we have collected useful formulas, which can be
applied in the continuum subtraction. In the left-hand side
of the formulas presented below, we write down the original
form, and in the right-hand side the subtracted version of
expressions encountered in the sum rule calculations:

(s Ry
(M2)N / dse /M f(s) = / 2° dse™™ Fy(s).  (Bl)
m m
For the more complicated factor,

(M?)N In (Z—j) /:o dse™s/M f(s),

and for all values of N the following formula is valid:

‘ i )
/nzo dse=s/M [FN(mZ) ln(%> +yeFy(s)

(B2)

s S—u
+ Lz duFN—l (u) ln (T)] . (BS)
The next formula is
2\N M? —m2/M?
(M ) In F e
1-N :
d =N 50— m? 1
—s0/M? o« 1 0 '
—et (d) [( A2 ﬂ (07
+ VE<M2)N<e_m2/M2 - 5N16_S0/M2)
S —_— 2
+ (M?)N-! /mz0 dse=s/M* ln(s A;n >, (B4)

if N<1, and

PHYSICAL REVIEW D 93, 114036 (2016)

VE O —sIM2 [« _ o 2\N=1
V) /nz dse (s —m*)

1 S0 K
—s/M? _ \N=2
+—F(N— I)Lz dse [nz du(s —u)

M_m2
X In T s

for N > 1.
The following expressions are also useful:

(M?)N L:o dse™/™" f(s)In (—s ;Zﬂ)

LI
N e_‘“/M 2 : N+l

+ (MY / ZO dse=*"" f (s)

2
x In (SA2’”> N <0, (B6)
and
L/SO dse=s/M’ /S du(s — u)N~!
F(N) m? m?
)
x In (%) fu), N>0. (B7)

In the equations above, we have employed the notations

o= (%) s <o @)
and
Fyls) = ﬁ [n Cdu(s—wVf(w). N >0. (BY)

For N <0, we have also used

Py = () ) [ e (- 205 |

Futo) = () [fou)n (‘—’") “n] ®10

The expressions provided above are valid only if
f(m?) = 0. In other cases, one has to use the prescription

f(s) = [f(s) = f(m?)] + f(m?), where the first term in the

brackets is equal to zero, when s = m2.
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