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A symmetry-preserving truncation of the two-body bound state problem in relativistic quantum field
theory is used to compute the leading-twist parton distribution amplitudes (PDAs) for the first radial
excitations of the π and K mesons. In common with ground states in these channels, the PDAs are found to
be dilated with respect to the relevant conformal-limit form and skewed toward the heavier valence quark in
asymmetric systems. In addition, the PDAs of radially excited pseudoscalar mesons are not positive
definite, owing to the fact that dynamical chiral symmetry breaking (DCSB) forces the leptonic decay
constant of such states to vanish in the chiral limit. These results highlight that DCSB is expressed visibly in
every pseudoscalar meson constituted from light quarks. Hence, so long as its impact is empirically evident
in the pseudoscalar members of a given spectrum level, it is unlikely that chiral symmetry is restored in any
of the hadrons that populate this level.
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I. INTRODUCTION

One of the most challenging problems in contemporary
physics is presented by a question: Whence the mass of a
hadron, and hence that of the bulk of visible material in the
Universe? Numerical simulations of lattice-regularized
quantum chromodynamics (QCD) have produced informa-
tion on the hadron mass spectrum [1–4], but such analyses
do not readily supply an intuitive understanding of the
origin of that mass and its distribution within hadrons.
Notwithstanding that, it is clear the answer does not lie with
the Higgs boson, for if one measures its contribution to the
proton mass, mp, via the values it generates for the current
masses of the valence quarks, which explicitly violate both
the conformal invariance and the chiral symmetry of
classical QCD, the Higgs is responsible for less than 2%
of mp. Instead, dynamical chiral symmetry breaking
(DCSB) is the key [5].
DCSB is a crucial emergent phenomenon in the Standard

Model of particle physics. It is quite probably tied closely
to the confinement of gluons and quarks, and also simulta-
neously responsible for both the Nambu-Goldstone boson
character of the (almost) massless pion and the roughly

1 GeV value ofmp. Uncovering the manner by which these
features of nature are realized has long been a subject of
intense experimental and theoretical activity, some of
which is reviewed in Refs. [6,7]. Much of this work has
focused on the ground-state pion and its structure and
interactions. For instance, it has revealed that DCSB is
responsible for a marked broadening of this meson’s
leading-twist parton distribution amplitude (PDA) [8,9],
and also those of other meson ground states [10–12], an
effect which provides a plausible explanation of modern
data on pion elastic and transition form factors [13–16].
The impact of DCSB on the properties of hadron excited
states is less well explored and understood.
Of particular interest is the fact that, owing to DCSB,

Nambu-Goldstone modes are the only pseudoscalar
mesons to possess a nonzero leptonic decay constant in
the chiral limit—the decay constants of their radial
excitations vanish [17–32]:

∀n ≥ 1; fπn ≡m̂¼0
0; ð1Þ

where n is the radial quantum number (n ¼ 0 is the ground
state) and m̂ is the renormalization-group-invariant (RGI)
current quark mass. This result follows from the general
form of the Gell-Mann–Oakes–Renner relation for isospin-
nonzero pseudoscalars [33–35]:

fM5
m2

M5
¼ ðm̂M5

1 þ m̂M5

2 Þρ̂M5
; ð2Þ
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where M5 labels the meson; m̂M5

1;2 are the current masses of
its valence quarks; fM5

is the meson’s leptonic decay
constant, obtained from the pseudovector projection of its
Bethe-Salpeter wave function onto the origin in configu-
ration space; and ρ̂M5

is the RGI analogue obtained via
pseudoscalar projection [36–39].
Equations (1) and (2) must both be a natural outcome in

any framework with a genuine connection to QCD. If fine-
tuning is required to achieve either of these features in a
given approach, then that approach is inconsistent with
basic dynamics, symmetries and symmetry-breaking pat-
terns of QCD. For example, it is straightforward to achieve
mπ0 ¼ 0 in quantum-mechanical models, but impossible to
express the quadratic growth of mπ0 with current quark
mass, i.e. the complete content of Eq. (2). Equally, models
founded in quantum mechanics typically produce a sup-
pression of the decay constants of radially excited states,
owing to zeros in the associated bound-state wave func-
tions; e.g., a Schrödinger-equation treatment of positro-
nium γγ decays yields the following pattern of decay
strengths relative to the ground state: 1=8, n ¼ 1; 2=27,
n ¼ 2; etc. However, such models cannot yield a vanishing
value for even one decay constant, much less all of them.
It is known that DCSB places severe constraints on the

wave function of the ground-state pion [34,35], but our last
few observations emphasize, via Eq. (1), that it must also
impose extraordinary constraints on the chiral-limit wave
function for every excited-state pseudoscalar meson. Of
course, the nature of a wave function in quantum field
theory depends on the approach adopted for its analysis,
and only wave functions defined using light-front quanti-
zation can strictly provide a connection between dynamical
properties of the underlying relativistic quantum field
theory and notions familiar from nonrelativistic quantum
mechanics [40–42]. With a light-front wave function in
hand, however, one can translate features that arise purely
through the infinitely-many-body nature of relativistic
quantum field theory into images whose interpretation is
seemingly more straightforward.
A natural framework for deriving Eqs. (1) and (2), and

elucidating and expressing their impression on hadron
structure and interactions, is provided by the symmetry-
preserving analysis of QCD’s Dyson-Schwinger equations
(DSEs) [6]. This approach yields Poincaré-covariant Bethe-
Salpeter wave functions, which do not have a probability
interpretation. However, methods have recently been devel-
oped which enable these covariant wave functions to be
projected onto the light front [8], supplying predictions for
the leading-twist PDAs of ground-state mesons which are
practically indistinguishable from those obtained by ana-
lyzing simulations of lattice QCD (lQCD) [7,9,10,12].
Thus, it is now possible to express the parton content of
Eq. (1) in a manner which can place valuable constraints on
all approaches that may directly be connected with the light
front. In this connection, we focus herein on computing the

leading-twist PDAs of the first radial excitations of the π
and K mesons.
Our manuscript is composed as follows: Section II

describes calculations of the Bethe-Salpeter wave functions
for the radially excited π andK mesons, and their masses and
leptonic decay constants. Section III begins with a brief
synopsis of the behavior to be expected of PDAs associated
with meson radial excitations in the absence of DCSB, and
then continueswith a detailed explanation of both themethod
by which these PDAs can be computed from symmetry-
preserving DSE solutions and the results obtained therewith.
A summary and perspective are presented in Sec. IV.

II. π- AND K-MESON RADIAL EXCITATIONS

A. Bound-state equations

In order to reach our goal, we must first compute the
Bethe-Salpeter amplitudes associated with the radially
excited π and K mesons, and to achieve that, it is necessary
to settle on a truncation of QCD’s DSEs. As explained
elsewhere [43], Eqs. (1) and (2) are guaranteed in any
symmetry-preserving truncation. For our immediate pur-
poses, therefore, it is sufficient to use the simplest—
namely, rainbow ladder (RL) truncation1—in which case
the renormalized gap and Bethe-Salpeter equations are,
respectively,

SðpÞ−1 ¼ Z2ðiγ ·pþmbmÞ

þZ2
2

Z
Λ

dl
GðlÞl2D0

μνðlÞ
λa

2
γμSðp−lÞλ

a

2
γν; ð3Þ

ΓMðk;PÞ ¼ −Z2
2

Z
Λ

dq
Gððk − qÞ2Þðk − qÞ2D0

μνðk − qÞ

×
λa

2
γμSðqþÞΓMðq;PÞSðq−Þ

λa

2
γν; ð4Þ

where
R
Λ
dl ≔

R
Λ d4l
ð2πÞ4 represents a Poincaré-invariant regu-

larization of the integral, with Λ being the ultraviolet
regularization mass scale; Z2ðζ;ΛÞ is the quark wave
function renormalization constant, with ζ being the renorm-
alization scale; D0

μνðlÞ is the Landau-gauge free-gauge-
boson propagator2; one can choose q� ¼ q� P=2 without
loss of generality in this Poincaré-covariant approach; and

1Concerning ground-state PDAs, results obtained using RL
truncation can be compared with those produced by the most
sophisticated approximation currently available, the so-called DB
kernels [44,45]: despite noticeable quantitative differences, they
agree qualitatively in all respects [8,12,39].

2Landau gauge is used for many reasons [46]. For example, it
is a fixed point of the renormalization group, that gauge for which
sensitivity to model-dependent differences between Ansätze for
the fermion–gauge-boson vertex are least noticeable, and a
covariant gauge which is readily implemented in numerical
simulations of lattice regularized QCD.
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l2Gðl2Þ ¼ l2GIRðl2Þ þ 4π ~αpQCDðl2Þ ð5Þ

specifies the interaction, with ~αpQCDðk2Þ being a bounded,
monotonically decreasing regular continuation of the per-
turbative-QCD running coupling to all values of spacelike
l2, and GIRðl2Þ an Ansatz for the interaction at infrared
momenta, such that GIRðl2Þ ≪ ~αpQCDðl2Þ∀l2 ≳ 2 GeV2.
The nature of GIRðl2Þ determines whether confinement
and/or DCSB are realized in solutions of the gap equation,
with the former expressed in the sense described, e.g. in
Sec. III of Ref. [7].
The gap equation yields a dressed quark propagator,

which has the general form

SðpÞ ¼ Zðp2; ζ2Þ=½iγ · pþMðp2Þ� ð6Þ

and can be obtained from Eq. (3) augmented by a
renormalization condition. A mass-independent scheme
is useful and can be implemented by fixing all renormal-
ization constants in the chiral limit. Notably, the mass
function, Mðp2Þ, is independent of the renormalization
point, and the renormalized current quark mass is given by

mζ ¼ Zmðζ;ΛÞmbmðΛÞ ¼ Z−1
4 Z2mbm; ð7Þ

wherein Z4 is the renormalization constant associated with
the Lagrangian’s mass term. Like the running coupling
constant, this running mass is a familiar concept. The RGI
current quark mass may be inferred via

m̂ ¼ lim
p2→∞

�
1

2
ln½p2=Λ2

QCD�
�

γm
Mðp2Þ; ð8Þ

where γm ¼ 12=ð33 − 2NfÞ, Nf is the number of quark
flavors employed in computing the running coupling, and
ΛQCD is QCD’s dynamically generated RGI mass scale.
The chiral limit is expressed by

m̂ ¼ 0: ð9Þ

The Bethe-Salpeter equation (BSE) is an eigenvalue
problem for a meson’s mass squared; i.e., in a given
channel, Eq. (4) has solutions only at particular, isolated
values of P2 ¼ −m2

M. At these values, solving the equation
produces the associated meson’s Bethe-Salpeter amplitude.
Herein we consider isospin-nonzero pseudoscalar states,3

so that only the following amplitude is relevant:

ΓM5
ðk;PÞ ¼

X4
i¼1

γ5τ
i
0−ðk; PÞFi

M5
ðk;PÞ; ð10Þ

τ10− ¼ iID; τ20− ¼ γ · P; τ30− ¼ γ · k; τ40− ¼ σμνPμkν:

ð11Þ

The canonical normalization condition [48,49] constrains
the bound state to produce a pole with unit residue in the
quark-antiquark scattering matrix, and the Bethe-Salpeter
wave function is

χM5
ðk;PÞ ¼ SfðkþÞΓM5

ðk;PÞSgðk−Þ; ð12Þ
where f and g describe, respectively, the meson’s valence
quark and valence antiquark.
To proceed, it remains only for us to specify the

interaction in Eq. (5). We use that proposed in
Ref. [50,51], viz.

GðsÞ ¼ 8π2

ω4
De−s=ω

2 þ 8π2γmF ðsÞ
ln½τ þ ð1þ s=Λ2

QCDÞ2�
; ð13Þ

where Nf ¼ 4 in γm, ΛQCD ¼ 0.234 GeV; τ ¼ e2 − 1, and
F ðsÞ ¼ f1 − expð−s=½4m2

t �Þg=s, mt ¼ 0.5 GeV. This
interaction preserves the one-loop renormalization group
behavior of QCD in the gap and Bethe-Salpeter equations
[52], it is consistent with modern DSE and lattice studies
[53,54], and the infrared structure serves to ensure confine-
ment and DCSB. Notably, as illustrated in Refs. [50,51],
the parameters D and ω are not independent: with
Dω ¼ constant, one can expect computed observables to
be practically insensitive to ω on the domain
ω ∈ ½0.4; 0.6� GeV. We use ω ¼ 0.5 GeV.

B. Amplitudes, masses and decay constants

A detailed analysis of ground and radially excited
isospin-1 pseudoscalar mesons is presented in Ref. [51].
We follow that study and use Dω ¼ ð1.1 GeVÞ3 in our
analysis of the first radial excitations of the π and K
mesons; and, as elsewhere [8–10,12,39], we work with a
renormalization scale ζ ¼ ζ2 ≔ 2 GeV. The radially
excited K meson is constituted from valence quarks with
RGI current masses [12]

m̂u ¼ m̂d ¼ 6.8 MeV; m̂s ¼ 162 MeV; ð14Þ
which correspond to one-loop evolved values:

mζ2
u¼d ¼ 4.7 MeV; mζ2

s ¼ 112 MeV: ð15Þ
So as to fully illustrate the implications of Eq. (1), we
employ the chiral limit, Eq. (9), for our analysis of the
radially excited π meson.
In order to obtain the mass and amplitude associated with

the first radial excitation of the π and K mesons from
Eqs. (3) and (4), we employ the methods of Refs. [55,56] to
solve the equations and isolate the excited states. This
procedure yields

3Masses and other properties of charge-neutral pseudoscalar
mesons are affected by the non-Abelian anomaly. In the BSE
context, this is discussed in Ref. [47].
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m0
π1 ¼ 1.26 GeV; f0π1 ¼ 0; ð16aÞ

mK1
¼ 1.39 GeV; fK1

¼ 6.7 MeV; ð16bÞ

where we have included a superscript “0” to emphasize that
the π1 results were obtained in the chiral limit.4 Non-
negative values of fπ1;K1

result from our decision to employ
a convention that produces a negative value at k2 ¼ 0 for
the j ¼ 0 Chebyshev moment of the F1 term in the excited-
state Bethe-Salpeter amplitudes:

jFM5
ðk2Þ ≔ 2

π

Z
1

−1
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
UjðxÞFM5

ðk2; x;P2Þ; ð17Þ

where k · P ¼ x
ffiffiffiffiffiffiffiffiffiffi
k2P2

p
, and UnðxÞ is a Chebyshev

polynomial of the second kind. When solving for the
Bethe-Salpeter amplitude, we adopted the Chebyshev
expansion technique described as “Method B” in
Ref. [52]; and fM5

> 0 is guaranteed by normalizing such
that 0FM5

ðk2 → ∞Þ → 0þ.
A context for the results in Eq. (16) is provided by the

following empirical values [58,59]:

mπ1 ¼ 1.3ð1Þ GeV; fπ1 < 5.9 MeV; ð18Þ

mK1
¼ 1.43ð5Þ GeV; ð19Þ

and fπ1 ¼ 1.6ð3Þ MeV, fK1
¼ 15ð2Þ MeV estimated using

finite-energy sum rules [24]. (We employ a normalization
with which the empirical values of the ground-state pion
and kaon leptonic decay constants are fEπ ¼ 92 MeV,
fEK ¼ 110 MeV.) It is notable, too, that the same frame-
work predicts fρ1=fρ0 ≈ 0.6 [51], while a sum-rules analy-
sis yields fρ1=fρ0 ¼ 0.77ð9Þ [32].
The leading Chebyshev moments of the Fi¼1

M5
amplitudes

associated with the π and K radial excitations are depicted
in Fig. 1. The appearance of a single zero in the j ¼ 0
Chebyshev moment is a characteristic feature of the
amplitude associated with a meson’s first radial excitation
[25]. It is particularly important to highlight here that the
relative weighting of the domains of positive and negative
support in the multicomponent Bethe-Salpeter amplitude
associated with the chiral-limit π1 meson is precisely
determined in a symmetry-preserving DSE solution such
that, independent of any and all parameters,

f0π1Pμ ¼ Z2trCD

Z
Λ

dl
iγ5γμχ0π1ðl;PÞ ¼ 0; ð20Þ

where P is the meson’s four-momentum, P2 ¼ −m2
π1 , and

the trace is over color and spinor indices.

III. PDAS OF THE RADIAL EXCITATIONS

A. Expectations absent DCSB

We noted in the Introduction that quantum mechanical
models typically produce a suppression of the leptonic
decay constant for meson radial excitations because they
introduce zeros in the excited-state wave functions, but they
cannot make the decay constants vanish. This is apparent,
e.g. in Ref. [60], which computes fπ1=fπ0¼0.20,
fπ2=fπ0 ¼ 0.46.
Another example is provided by the holographic QCD

framework reviewed in Ref. [61]. A model of mesons is
described therein, along with, inter alia, the associated
light-front wave functions for all meson excitations, so it is
straightforward to calculate the associated PDAs. Consider,
therefore, the model’s chiral-limit wave functions for
ground-state and radially excited mesons:

Ψπnðx; jb⊥jÞ¼2κXðxÞe−b2⊥κ2X2ðxÞ=2Lnðb2⊥κ2X2ðxÞÞ; ð21aÞ

FIG. 1. Leading Chebyshev moments obtained from the dom-
inant piece of the π1 and K1 Bethe-Salpeter amplitudes—i.e.
F1
M5
, M5 ¼ πþ1 , K

þ
1 —in Eq. (10). j-odd Chebyshev moments are

zero for the π1 because it is a charge-conjugation eigenstate.
Notably, in contrast to ground states, the first few Chebyshev
moments in radial excitations are all of comparable magnitude.
(Note: The figures display negative F1.)

4At a realistic value of the current quark mass, Eq. (14), fπ1 ¼
1.6 MeV [25,26]. It is fair to consider that RL truncation used in
connection with one-loop QCD renormalization-group-improved
kernels for the gap and bound-state equations is accurate at the
level of 15% [57].
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XðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

p
; ð21bÞ

where κ ≈ 0.5 GeV is the model’s mass scale and Ln is a
Laguerre polynomial. Notably, within this holographic
model, these wave functions simultaneously represent
the structure of πn and ρn mesons ∀n ≥ 0.
Equation (21) defines wave functions in impact param-

eter space. The momentum-space results are obtained via
Fourier transform, e.g.

Ψπ0ðx; jk⊥jÞ ¼
4π

κXðxÞ e
−k2⊥=½2κ2X2ðxÞ�; ð22aÞ

Ψπ1ðx; jk⊥jÞ ¼ Ψπ0ðx; jk⊥jÞ
ðk2⊥ − κ2X2ðxÞÞ

κ2X 2ðxÞ ; ð22bÞ

with expressions of greater complexity for n ≥ 2. Owing to
the presence of a single zero and since X ≥ 0,
Ψπ1ðx; jk⊥j ¼ 0Þ ≤ 0, a result consistent with the conven-
tion we adopted for Eq. (16). Moreover, orthonormality is
here guaranteed via the k⊥ integral alone:

Z
d2k⊥
16π3

Ψπiðx; jk⊥jÞΨπjðx; jk⊥jÞ ¼ δij: ð23Þ

The PDA associated with a given wave function in
Eq. (21) is

ϕhQ
πn ðxÞ ¼

Z
d2k⊥
16π3

Z
d2b⊥eik⊥·b⊥Ψπnðx; jb⊥jÞ ð24aÞ

¼ Ψπnðx; jb⊥j ¼ 0Þ ¼ κ

2π
XðxÞ; ð24bÞ

viz. the same result ∀n ≥ 0. Stated plainly, in the holo-
graphic model of Ref. [61], the PDA of every one of the
pion’s radial excitations is identical.
At this point we would like to reiterate that, in the chiral

limit, the light-front holographic model predicts the same
wave functions for all π and ρ mesons. In constructing
ρ-meson PDAs, however, one must amend Eq. (24) by
including information about the quark and antiquark
helicites in this J ¼ 1 system [62,63]. Doing that, one
may arrive at ground-state ρ-meson PDAs that are broadly
consistent with other analyses, e.g. obtaining two indepen-
dent leading-twist PDAs associated with ρ mesons [64]:
ϕ∥
ρðxÞ and ϕ⊥

ρ ðxÞ, which are connected, respectively, with a
description of the light-front fraction of the ρ meson’s total
momentum carried by the quark in a longitudinally or
transversely polarized bound state. Notably, QCD-
connected calculations indicate that ϕ∥

ρ0ðxÞ is significantly
narrower than ϕ⊥

ρ0ðxÞ, which itself is much narrower than
ϕπ0ðxÞ [11,65].

With the conventions employed in Ref. [61] and using
Eq. (24b), one finds the following results for the leptonic
decay constants of pseudoscalar mesons:

∀n ≥ 0; fπn ¼ 2
ffiffiffiffiffiffi
Nc

p Z
1

0

dxϕhQ
π0 ðxÞ; ð25Þ

and hence the holographic model predicts (Nc ¼ 3)

∀n ≥ 0; fπn ¼ fπ0 ¼
p
3

8
κ ∼ 0.11 GeV; ð26Þ

an outcome in marked conflict with Eq. (1) ∀n ≥ 1.5

The result in Eq. (24) is supposed to be valid at a scale
appropriate to the AdS/QCD model, which is typically
assumed to be ζhQ ∼ 1 GeV. Given that the ERBL evolu-
tion equations [67–69] for pseudoscalar-meson radial
excitations are the same as those for ground states, then
the conformal-limit result for these PDAs can be written

∀n ≥ 0; ϕhQ
πn ðxÞ ≈

ΛQCD=ζ≃0
ϕ̂clðxÞ ¼ fπ0

p
3xð1 − xÞ:

ð27Þ

Naturally, in a truly conformal theory, all mass scales
disappear: there is no dynamics in a conformal theory, only
kinematics, and hence bound states are impossible. In
connection with the material in this subsection, that is
evident via κ → 0 ⇒ fπ0 → 0, so that all the PDAs and,
indeed, all the light-front wave functions vanish.

B. DSE results

With symmetry-consistent solutions of the gap and
Bethe-Salpeter equations in hand, the leading-twist PDA
of any given pseudoscalar meson, ϕM5

ðxÞ, can be obtained
via the following light-front projection:

ϕM5
ðxÞ ¼ trCDZ2

Z
Λ

dl
δxnðlþÞγ5γ · nχM5

ðl;PÞ; ð28Þ

5It has been argued [14] that for n ¼ 0, one should include a
factor Zqq̄ ≈ 0.94 in Eq. (26) so as to express the probability of
finding the valence qq̄ component in the physical pion at the
model’s scale. The remainder then reflects the presence of higher
Fock-space components, viz. a “meson cloud.” The value of Zqq̄

was not calculated, but instead determined through a fit to pion
electromagnetic form-factor data (Ref. [61], Sec. 6.1.5). It is
conceivable that a similar factor, Zqq̄ → Zqq̄

n , should appear for
every one of the holographic model’s radial excitations, and this
could alter the conclusion in Eq. (26) [66]. However, it is unlikely
to mend the basic conflict between Eq. (1) and the formulation of
the holographic model in Ref. [61]. Only a very particular
symmetry-breaking pattern can enforce Zqq̄

n ¼ 0∀n ≥ 1, and
consistency between the holographic formulation in Ref. [61]
and the axial-vector Ward-Green-Takahashi identity has yet to be
demonstrated. On the other hand, that has been achieved in a
different holographic model [31].
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where δxnðlþÞ¼ δðn·lþ − xn·PÞ, n2 ¼ 0, n · P ¼ −mM5
,

and ϕM5
has mass dimension 1 in this convention, as in

Sec. III A; but, using our canonical normalization,

ϕclðxÞ ¼ fπ06xð1 − xÞ: ð29Þ

The Bethe-Salpeter wave function is typically computed in
Euclidean space, whereafter one can reconstruct the PDA
from its Mellin moments [8,11,12,70]:

hxmi ≔
Z

1

0

dxxmϕM5
ðxÞ; ð30Þ

which are here given explicitly by

hxmi ¼ trCDZ2

Z
Λ

dl
Dðn;l; P;mÞγ5γ · nχM5

ðl;PÞ; ð31Þ

where Dðn;l; P;mÞ ¼ ðn · lþÞm=ðn · PÞmþ1.
When the meson’s mass is small, viz. mM5

≲mp, the
ðn · lþÞm factor in Eq. (31) produces a highly oscillatory
integrand, and thus reliable values for the moments cannot
be obtained using a direct approach to computing the
integrals. In these cases, the procedure of Ref. [8], based
upon generalized spectral representations of the light-quark
propagators and bound-state amplitudes, is necessary and
efficacious. With increasing bound-state mass, however,
owing to a damping influence from n · P, this problem is
shifted to progressively higher moments, which are also of
diminishing magnitude and hence have little real impact.
Accordingly, a “brute force” approach is feasible for
radially excited states.
A practical implementation of the brute force method is

described in Ref. [70], and we follow that technique—
namely, direct computation of the integrals defined by
Eq. (31) using interpolations of numerical solutions for the
propagators and Bethe-Salpeter amplitudes. In order to
eliminate dependence on the upper bound of the momen-
tum integration, which is a remnant of the oscillation
problem just described, a factor

dðk2r2Þ ¼ 1=ð1þ k2r2Þm=2 ð32Þ

is introduced for each hxmi, m ≥ 1. The moment is then
computed as a function of r2, with the values subsequently
fitted by a smooth function, which is used to extrapolate to
r2 ¼ 0. The reliability of this procedure is illustrated by
Fig. 2; and the results are listed in Table I. In all cases we
found that reliable estimates could be obtained for m ≤ 5.
Higher moments showed modest sensitivity to the number
of Chebyshev moments retained in solving the BSE for the
given radial excitation and were therefore discarded. We
verified that the same results are obtained using different
forms of regulator function in Eq. (32). The results listed in
Table I were obtained with j ¼ 0;…; 5 in the Chebyshev

expansion of each meson’s Bethe-Salpeter amplitude, given
in Eq. (17).
Using the moments in Table I, the PDAs of the

pseudoscalar-meson radial excitations, π1, Kþ
1 , may be

reconstructed using the method introduced and tested in
Refs. [8–10,12,39]. One first writes6

ϕM5
ðxÞ ¼ ½xx̄�α−

Xzmax

z¼0

azM5
Cα
z ðx − x̄Þ; ð33Þ

where fCα
zg are order-α Gegenbauer polynomials,

α− ¼ α − 1=2, and x̄ ¼ ð1 − xÞ. (For a charge-conjugation
eigenstate, like the π1, the sum only includes even
Gegenbauer polynomials.) In this analysis, we use
zmax ¼ 4, and the parameters fα; az¼0;1;…

M5
g are determined

in a least-squares fit that requires the moments of ϕM5
ðxÞ in

Eq. (33) tomatch those in Table I, with the following results:

α a0 a1 a2 a3 a4

π1 1.21 0 0 1.00 0 0.180

Kþ
1 1.30 0.0285 −0.0657 1.24 −0.703 0.0813

;

ð34Þ

where the coefficients are measured in GeV. We have
checked, and using moments computed from the K−

Bethe-Salpeter wave function, we obtain

FIG. 2. The Kþ
1 moments in Table I (m ≥ 1) are the r2 → 0

extrapolations of the curves depicted in this figure: hx1i, black
circles; hx2i, purple squares; hx3i, red diamonds; hx4i, blue
upward-pointing triangles; hx5i, green downward-pointing tri-
angles. The curves are [2, 1]-Padé fits to the points depicted.
Other fitting forms were also employed, with no quantitative
change in the results. Naturally, no extrapolation is required for
the m ¼ 0 moment, which is simply the meson’s leptonic decay
constant.

6A normalizing constant, based on a0M5
, is not factorized in

Eq. (33), because hx0i≡ 0 in the chiral limit. Notwithstanding
that, correct normalization is guaranteed, owing to the canonical
procedure we have adopted for the Bethe-Salpeter amplitude.
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ϕK−ðxÞ ¼ ϕKþðx̄Þ: ð35Þ

Additionally, the results are practically unchanged if one
changes zmax → 6.
The PDAs defined by Eqs. (33) and (34) are depicted in

Fig. 3. For comparison, the PDA of the pion ground state
computed in RL truncation is also drawn:

ϕRL
π0 ðx; ζ2Þ ≈ fπ01.77½xð1 − xÞ�0.3: ð36Þ

It is worth reiterating that herein our convention is to define
all PDAs such that they carry mass dimension 1. This
enables a direct comparison to be made between all PDAs,
even in cases when the zeroth moment vanishes [Eq. (1)].
The magnitudes in Fig. 3 therefore reflect natural mass
scales associated with these PDAs.
Given that the pseudoscalar-meson leptonic decay con-

stant discussed in connection with Eqs. (1) and (20) is
simultaneously the zeroth moment of that meson’s PDA
[Eq. (31)], it was always clear that the manifestation of
DCSB in the PDAs of pseudoscalar-meson radial excita-
tions would be striking. Indeed, fπn≥1 ≡ 0 at m̂ ¼ 0 entails
that in the chiral limit, the first two coefficients in any
Chebyshev expansion of ϕπn≥1 are required to vanish at all
resolving scales, ζ. The leading term in Eq. (33) must then
involve Cα

zmin
ðx − x̄Þ with zmin ≥ 2, and the value zmin ¼ 2

largely explains the general features of the π1 and K1 PDAs
in Fig. 3.
One might guess that the PDA associated with the pion’s

second radial excitation should possess four zeros on
x ∈ ð0; 1Þ. That can be also achieved with a PDA of the
form in Eq. (33) using zmin ¼ 2, e.g. so long as that
function is orthogonal to ϕπ1 . Orthogonality, however, will
typically produce a4π2 > a2π2 in Eq. (33). We have checked
by direct chiral-limit computation ofmπ2 , Γπ2 , fπ2 , ϕπ2 , and
all these expectations are confirmed.
Pursuing this line of reasoning further, we remarked in

Sec. III A that the ERBL evolution equations for pseudo-
scalar-meson radial excitations are the same as those for
ground states. Consequently, our expectation for the
conformal-limit behavior of the PDAs associated with
radially excited pseudoscalar mesons is

ϕcl
πnðx; ζÞ ¼ cπnðζÞxx̄C3=2

2 ðx − x̄Þ; ð37Þ

with cπnðζÞ → 0 as ΛQCD=ζ → 0. Notwithstanding this, we
anticipate that at ζ2 the dominant coefficient in Eq. (33) will
be associated with az¼2n

πn ; but, since coefficients of higher
Chebyshev polynomials vanish (slightly) faster under
ERBL evolution, there should always be a scale, ζcl, such
that Eq. (37) is valid ∀ζ > ζcl. Returning to Fig. 3, in order
to provide additional context for our numerical results we
also plot ϕcl

π1ðxÞ with cπ1 ¼ 1.40, chosen such that hx2i
computed using the PDA obtained therewith is the same as
that listed for π1 in Table I. Notably, the prediction of the
holographic model, Eq. (27), conflicts with Eq. (37) and the
associated discussion.
Important to this discussion is the feature of mutual

orthogonality between the PDAs we compute for different
radial excitations. That is not a characteristic of the PDAs
produced by the holographic model described in Sec. III A.
Our analysis and results therefore indicate that Eq. (23)
is a loose assumption, not valid in general. The general

FIG. 3. Leading-twist PDAs, first radial excitation of πþ and
Kþ mesons, computed at a resolving scale ζ2 ¼ 2 GeV: πþ1 , solid
(black) curve; Kþ

1 , dashed (green) curve. For comparison, the
dotted (blue) curve shows the ground-state conformal-limit result,
Eq. (29); the dot-dashed (red) curve shows the RL-truncation
result for ground-state π mesons, Eq. (36); and the long-dashed
(purple) curve shows the radial-excitation “conformal limit”
function described in connection with Eq. (37). The upper panel
displays the PDA itself, and the lower panel displays
its absolute value.

TABLE I. Mellin moments ð×102Þ of the leading-twist πþ1 and
Kþ

1 PDAs, computed from Eq. (31) using the method described in
connection with Eq. (32) and Fig. 2. (The Bethe-Salpeter wave
functions are computed in RL truncation.)

102hxmi m ¼ 0 1 2 3 4 5

πþ1 0 0 1.99 3.02 3.40 3.46
Kþ

1 0.668 −0.101 2.00 2.76 2.86 2.66
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statement of orthonormality for light-front wave functions
should be

Z
1

0

dx
Z

d2k⊥
16π3

Ψπiðx; jk⊥jÞΨπjðx; jk⊥jÞ ¼ δij: ð38Þ

Thus, while Eq. (23) is a sufficient condition, it is not
necessary, and hence is likely insufficient to adequately
constrain a realistic wave function.
Turning now to some particular features of the π1 and K1

PDAs, the lower panel of Fig. 3 depicts jϕðxÞj, which may
be interpreted as a probability density. The radial excitation
curves in this panel exhibit a distinctive pattern of support:
jϕπ1 j is plainly dilated with respect to jϕcl

π1 j, with a
significant amount of strength shifted to the end points,
analogous to the pattern seen in the ground state; and jϕK1

j
is markedly distorted toward x ¼ 0 (x̄ ¼ 1). These images
help in understanding the top panel, which is now seen to
confirm that ϕπ1ðxÞ is dilated with respect to ϕcl

π1ðxÞ and
ϕKþ

1
ðxÞ is distorted, with its minimum located at x̄ ¼ 0.6,

and

h2x̄ − 1iKþ
1
¼ 0.079 fEK; ð39aÞ

hð2x̄ − 1Þ2iKþ
1
¼ 0.82 fEK; ð39bÞ

hð2x̄ − 1Þ2iπ1 ¼ 0.87 fEπ ; ð39cÞ

values which may be compared with
hð2x − 1Þ2iϕcl ¼ 0.2fEπ . Evidently, therefore, as in the
ground-state Kþ, the s̄ quark carries more of the bound
state’s momentum than the lighter u quark, and flavor
symmetry breaking is a 20% effect. Moreover, here, as in so
many other cases [12,71–74], it is the flavor dependence of
DCSB that determines the strength of SUð3Þ flavor break-
ing, not the current quark mass difference generated by the
Higgs mechanism.
It is worth reiterating at this point that all DSE numerical

results reported above were obtained using RL truncation.
Based on analyses of pseudoscalar-meson ground states,
we anticipate that the more realistic DCSB-improved
truncation (see Ref. [45] and Appendix A.2 of Ref. [75])
will produce PDAs for the radial excitations that exhibit
less dilation and less s-quark/u-quark distortion; but it will
not have any material qualitative impact on our results.
In closing this section, it is worth remarking that, owing

to charge-conjugation invariance and the SUðNfÞ vector
Ward-Green-Takahashi identity [59,73,76,77], the leptonic
decay constant is zero for any and all states on the JPC ¼
0þþ trajectory constituted from equal-mass valence quarks,
whether ground state, radial excitation or hybrid. This
decay constant is the vector projection of the scalar meson’s
Bethe-Salpeter wave function onto the origin in configu-
ration space, viz. the zeroth moment of the scalar meson’s

PDA. As a consequence, scalar meson PDAs must also
exhibit interesting features.

IV. CONCLUSION

We computed the parton distribution amplitudes (PDAs)
of the first radial excitations of the π and K mesons: ϕπ1ðxÞ
and ϕK1

ðxÞ, respectively, where x is the valence quark’s
light-front momentum fraction. The properties and struc-
ture of ground states in these channels are strongly
influenced by dynamical chiral symmetry breaking
(DCSB), and this is also true of the radial excitations, in
some ways more strikingly. Like the ground states, the
excited-state PDAs are dilated with respect to the appro-
priate conformal-limit PDA, and the distribution associated
with the K1 meson is skewed toward the heavier valence
(anti)quark. In addition, however, ϕπ1ðxÞ and ϕK1

ðxÞ are
not positive definite [Fig. 3]: in each case there is a large
domain of negative support, which contains the point
x ¼ 1=2. This feature is a remarkable, novel consequence
of DCSB, which owes to the fact that DCSB requires the
leptonic decay constant of all pseudoscalar-meson radial
excitations to vanish in the chiral limit [Eq. (1)].
It was possible to expose this feature herein because we

used a symmetry-preserving truncation of QCD’s two-
valence-body bound-state problem, realized explicitly in a
rainbow ladder truncation of the Dyson-Schwinger equa-
tions (DSEs). This framework preserves the one-loop
renormalization group behavior of QCD, so that current
quark masses have a direct connection with the parameters
in QCD’s action and the dressed quark mass functions,
Ms;uðp2Þ, are independent of the renormalization point.
Likewise, the renormalization point can be fixed unambig-
uously, as in lattice QCD. Moreover, in working in the
continuum and computing Bethe-Salpeter wave functions
directly, the DSEs enable one to deliver a prediction for the
pointwise behavior of the PDAs on the full domain
x ∈ ½0; 1�. Capitalizing on these features, we ensured that
our results genuinely express the pattern of chiral symmetry
breaking in QCD, and hence the impact of DCSB is
abundantly clear.
The analysis herein highlights that DCSB is expressed

dramatically in the entire collection of pseudoscalar mesons
constituted from light quarks. Consequently, so long as its
impact is empirically evident in the pseudoscalar members
of a given spectrum level, it is unlikely that chiral symmetry
is restored in any of the hadrons that populate this level.
Our results were obtained using the simplest symmetry-

preserving truncation of the two-valence-body problem.
They will not change qualitatively with the use of a more
sophisticated truncation, but it is nevertheless worth doc-
umenting the quantitative changes and delivering predic-
tions in the future that may reasonably be considered to be
definitive. Detailed study of PDAs characterizing n ≥ 2
radial excitations of pseudoscalar mesons may provide
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further insights, too, because e.g. the decay constants of
these systems also vanish in the chiral limit, but their Bethe-
Salpeter wave functions possess an additional zero with
each level of excitation. Likewise, calculation of the PDAs
describing scalar mesons should prove instructive, given
the symmetry constraints on their leptonic decay constants.
Additionally, a study of the PDAs characterizing vector-
meson radial excitations is also worthwhile. The leptonic
decay constants of these systems do not vanish, and it is
thus possible that the associated PDAs will bear some
similarity to those computed using quantum mechanical
models. Checking that possibility will serve, inter alia, the
valuable purpose of assisting in charting the domain of
validity of such models.
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