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bc diquark pair production in high energy proton-proton collisions
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The cross section of the double heavy diquark pair production process pp — (bc) + (be) + X is
calculated in the leading order of the gluonic fusion channel, with all four possible color and spin
combinations—['Sy]3, ['Sole» [*S1]5, and [*S,] for each of the two final diquarks—taken into account.
Several sources of relativistic corrections to the cross section are handled in the framework of the relativistic

quark model. Perturbative (v?) corrections originating from the production amplitude expansions in
heavy quark relative velocity v depend on the color and spin states of the final particles, but can be
generally considered as unimportant, giving maximally 12% improvement in numerically significant cases.
Modifications of the quark-quark and antiquark-antiquark bound state wave functions caused by the
appropriate generalization of the Breit interaction potential have a rather severe impact on the cross section,
suppressing it almost 3 times. Under the assumption of antitriplets’ and sextuplets’ nonperturbative
parameters having the same order of magnitude, it is shown that the color-sextet mechanism strongly
dominates pair diquark production in both nonrelativistic and relativistic approximations.
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I. INTRODUCTION

At the moment, contrary to the broadly studied
charmonium and single heavy baryon families, there
are no concrete experimental results on baryons con-
taining two heavy b or ¢ quarks. Initially, their first
experimental observation was reported by the SELEX
Collaboration more than ten years ago, but it is still not
confirmed in any subsequent experimental study followed
since then [1,2]. Theoretical investigation of the double
heavy baryons, motivated by the uncertain experimental
situation as well as by unique properties and the wide
range of physics associated with such systems, represents
an actively developing field [3—11]. The double heavy
baryons provide a remarkable opportunity to test quan-
tum chromodynamics (QCD) and several effective theo-
ries based on it in both hard and low-energy regions. The
heavy quarks Q and Q' within the baryon (QQ'q) are
predicted to form a heavy diquark—a compact quark-
quark bound state (QQ’) in an antitriplet or, alternatively,
a sextuplet color state [12,13]. With respect to the picture
of strong interaction, a heavy diquark in an antitriplet
color state is equal to an antiquark in a heavy-light
meson: the smallness of the diquark radius rpy < Agep
allows us to consider it as an almost static and pointlike
source of gluonic field, so that the dynamics of the light
quark ¢ in both types of hadrons is expected to be quite
similar. Therefore, the double heavy baryons combine the
aspects of both heavy-heavy and heavy-light quark bound
states and can serve as an independent test object for the
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respective models and theoretical constructions, like
NRQCD [14] and HQET [15]. Moreover, there is a
close connection between the double heavy baryons and
even more unusual diquark bound states, such as double
heavy tetraquarks [10,16]. The latter can be considered as
possible candidates for some states from the broad list of
exotic “XYZ” resonances discovered during the last
several years [17].

According to the quark-diquark model, the production
of a double heavy baryon is divided into two stages. In the
first step, which is described by perturbative QCD, the
creation of two quark-antiquark pairs QQ and Q'Q’ takes
place. In the second step, the created quarks and antiquarks
rearrange to form the bound state of the heavy diquark
(QQ") or (QQ") with its subsequent hadronization to the
observable double heavy baryon. The transition of the
heavy diquark into the baryon is generally covered by
the appropriate fragmentation functions D¢ - (00'g)(2)
[3.18]. Nevertheless, taking into account the several-
order-of-magnitude difference between heavy diquark
and light quark masses, the diquark can be assumed to
carry almost all of the final baryon momentum, so that
the corresponding fragmentation function approximates to
Dio0)~(009)(2) = 8(1 = 2)P(gg)~(00'q) [13]- The appli-
cability of such approximation was confirmed by direct
calculations in Ref. [19]. Although the heavy diquark
(QQ") bounds the light quark g very easily, there is also
a possibility for the diquark dissociation events decreas-
ing the total transition probability Ppo)-(p0q) < -
Therefore, cross sections of double heavy diquarks re-
present an upper bound for the yield of double heavy

© 2016 American Physical Society


http://dx.doi.org/10.1103/PhysRevD.93.114029
http://dx.doi.org/10.1103/PhysRevD.93.114029
http://dx.doi.org/10.1103/PhysRevD.93.114029
http://dx.doi.org/10.1103/PhysRevD.93.114029

ANTON TRUNIN

baryons in the same reaction, summed over light quark
flavors and over all possible baryon spin states. The
nonperturbative stage of heavy baryon production can be
described by the appropriate matrix elements of NRQCD,
for which, due to the lack of experimental data, the
potential model predictions for |¥ 0 (0)|* are used.

The pair production of double heavy baryons in
eTe” annihilation and pp collisions was studied in
Refs. [20-22]. In all these studies, however, only the
case of (anti)triplet color states of the two final diquarks
has been considered. As was already mentioned, the
heavy diquark can be produced either in an antitriplet or
in a sextuplet color configuration, representing a close
analogy to the color-singlet and color-octet mechanisms
of heavy quarkonium production [14]. Both the octet and
sextuplet cases require an additional gluon to be emitted
in the nonperturbative part of the process, what generally
O(v?)-suppresses the appropriate matrix elements, if the
required emission is attributed to the heavy quark of
relative velocity ». Nevertheless, in the case of a double
heavy baryon, the final state also contains a light quark,
which produces a gluon easily, so that the different
power-counting rules can be applied, and both antitriplet
and sextuplet matrix elements turn out to be of the same
order [23]. Under this assumption, the sextuplet mecha-
nism was shown to be equally or even more important
than the conventional antitriplet channel for various high-
energy processes of double heavy baryon production
[19,23-28].

This paper is focused on the pair production of double
heavy (bc) diquarks in proton-proton collisions, with all
four possible color and spin combinations ['Sp]s, ['So]s.
[*S1]5, [}S1]¢ for each of the two final diquarks taken into
account. The calculation technique is based on the notion
of the relativistic quark model with the elements of the
quasipotential approach [29], which was first applied to
the problems of pair charmonium production in Ref. [30].
Our consideration is limited by the gluon fusion proc-
esses, for which the initial state of proton collision is
approximated by the gluonic pair gg. The alternative
possibilities, such as the so-called “intrinsic charm”
processes with initial states gc or cc, were studied in
Refs. [5,24] in connection with single =.. baryon
production. There it was shown that the intrinsic charm
mechanism is crucial under SELEX kinematical condi-
tions, while its contributions are much less important in
the Tevatron and LHC cases. The paper is organized as
follows: In Sec. II the general formalism of the applied
approach is briefly described. The exact expression for
the relativistic production amplitude is given in the
leading order in the strong coupling constant, and the
general formulas for the cross sections of pair diquark
production are presented, taking into account second-
order relativistic corrections in v. Section III contains
numerical details of the model and results for the cross
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sections calculated at the LHC c.m. energies /S = 7 and
14 TeV in nonrelativistic and relativistic approximations.
The role of sextuplet contributions is discussed, and
several sources of relativistic corrections are analyzed.
The Appendix delivers a short note on the structure of
electronic Supplemental Material [31] to the paper.

II. GENERAL FORMALISM

The cross section of pair double heavy diquark produc-
tion in proton-proton collisions can be presented in the
following form, corresponding to the collinear approxima-
tion for colliding protons [22,32]:

do[p + p = Dy + Dy + X]
= /dxldXng/p(xlvﬂ)fg/p(x2vﬂ)d6[gg_) Dhc—'—l_)ﬁf}7
(1)

where f,(x, #) is the partonic distribution function for the
gluon in a proton, x;, are the longitudinal momentum
fractions of gluons, and p is the factorization scale.
Neglecting the proton mass and taking the c.m. reference
frame of the initial protons with the beam along the z axis,
we can present the gluon on-mass-shell momenta as k; , =

X12 § (1,0,0,+1). At the high center-of-mass energy NG
in proton-proton collisions, the main contribution to the
cross section (1) is expected to come from the gluon fusion
process gg = D, + Dj .

Taking into account two spin and color states for each
of the final diquarks, there are 16 different subprocesses
contributing to the pair diquark production. Only 10 of
them are independent, while cross sections for the rest
can be obtained from the respective symmetry relations.
Nevertheless, contributions from all 16 processes eventu-
ally have to be summed up in order to obtain an estimate for
pair double heavy baryon production. In the quasipotential
approach, the production amplitude for the gluonic sub-
process gg — Dy, + Dj . can be expressed as a convolution
of the perturbative production amplitude of (bc) and (b &)
(anti)quark pairs 7 (py, p2; q1,q») and the quasipotential
wave functions of the final diquarks W,. (p,P) and

V52 (q, Q) [30]:
Mlgg = Dy + Dyel(ky ko, P, Q)
dp [ dq & _
B (27:)3/WW(bC')(p’P)W(Bz)(qu)

® T (p1, P23 415 92) (2)

where p , are four-momenta of ¢ and b quarks, and g, , are
the appropriate four-momenta for ¢ and b antiquarks. They
are defined in terms of total momenta P(Q) and relative
momenta p(q) as follows:
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FIG. 1.
interchanging the initial gluons.

FIG.2. One additional leading-order diagram contributing only
to the subprocesses with color states 3 + 6 or 6 + 3 of the final
diquark pair Dy, + Dj .

P12 =ma2P £ p, (pP) =0,

q12 =p120 £ q, (qQ) =0,

M3, +m2F mj
2M3,

M3 £ mg F my

2
ZMBE

Ma2= ) P12 =

’

(3)

Migg = Dye + Dysl (ki ko P. Q) = /Wby ona /
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The leading-order diagrams contributing to gg — D, + Dj-. The others can be obtained by reversing the quark lines or

where m,. ;, are quark masses, M. =Mp, and Mp.=Mp,
are diquark masses, p = Lp(0,p) and ¢ = L(0, q) are the
relative four-momenta obtained by the Lorentz transforma-
tion of the four-vectors (0, p) and (0,q) to the reference
frames moving with the four-momenta P and Q of the final
diquarks D, and Dj, respectively. The integration in
Eq. (2) is performed over the relative three-momenta of
quarks and antiquarks in the final state.

In the leading order in the strong coupling constant «,,
there are 36 Feynman diagrams describing the process
99 = Dy + Dy, which are presented in Figs. 1 and 2. The
single diagram from Fig. 2 produces a nonzero contribution
only if the resulting pair D, + D}, contains diquarks with
the color combination 3 + 6 or 6 + 3, and it still always
vanishes for the final state consisting of two scalar diquarks
SD,. + SDj.. Due to the large volume of calculations, the
package FeynArts [33] for Mathematica was used to obtain
analytical expressions for all diagrams, and their traces
were subsequently calculated with Form [34]. Then the
leading-order production amplitude (2) reads

5 TrIN,

(275

c c b =~ Tbe \I 0, \Jc
M= \Ilb py/)'\IleqymFﬁw + \Il b ,,7/ F/w Yru\j[l}é,_qyﬁ + \I/?)CpY/iFgw Y{IJ\I,Q[Tqu

m. —ky + p,

" \P?)CPAI (k= p1)* = m% (\I/Cqu wFﬂ +Fﬂw\I’Cqu 2

+ qj?’l?—pél (kl—pi%m (\I'hc qy(')rﬁw T Fﬂw\l}hc qy‘”)

+ 05,8 (k_pk% 78 VG g1 + U5 pgz(kmh__pk% AR
+ ULy W 8wy qywrﬁw+\lfp o ﬁw—;z%z I\IJCquwa/f?,

4)
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where e, are polarization vectors of the initial gluons,
the hat symbol means contraction of the four-vector with
the Dirac gamma matrices, and vertex functions I'; were
introduced to make the entry of the amplitude (4) more
compact. The normalization factors \/2M,. and /2Mj,;
of the quasipotential bound-state wave functions were
explicitly extracted in (4).

The formation of diquark states from (anti)quark pairs,
which corresponds to the first stage of double heavy
|
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baryon formation, is determined in the quark model by the
quasipotential wave functions ¥,.(p, P) and ¥;.(q, Q).
These wave functions are calculated initially in the
diquark rest frame and then transformed to the reference
frames moving with the four-momenta P and Q. The law
of such transformations was derived in the Bethe-Salpeter
approach in Ref. [35] and in the quasipotential method in
Ref. [36]. The latter gives the following expressions for
the relativistic wave functions [21]:

\i,hc — \I’gc(p) |:®1 -1 +,[’> p2 _i:|
Pp \/@ef<5)+mcMeb<§>+mh Y2my(e,(p) +my)  2m,
me me my ny,
| p’ P
Zpl D ! v ~ |
<2 *’”)[ 2 T e (p) ) T om,
_ U0 (q by — 1 2 g
\I,chq: bc( ) |:U2 +@2 q + q :|
' \/M ec(q)tme ep(q) eplq)+my 2m.(ec(q) +m.)  2m,
m, 2m, my, 2my,
P+ 1 q’ q
ZQ 1 D 2 0 - 5 5
=5 *”2){ 2 P 2meylq) F ) 2m, G)

where e, (p) = \/p* +m?,, vy = P/M., v; = Q/Mj,,
and "€ is equal to y5 and &p  for scalar (S) and axial-
vector (AV) diquarks, respectively. The polarization vectors
epo of the axial-vector diquarks fulfill the relations
(epP) = 0 and (¢pQ) = 0. The quasipotential wave func-
tions (5) include (anti)quark pair-projection operators for
the given spin states i;(0)i;(0) = [C&(ys)(1 + 1o)];;/2V2

|

and v;(0);(0) = [(1 = 79)&(ys)C];;/2v/2, where C is the
charge conjugation matrix. Note that the order of the upper
indices b and c in the left-hand side of the definitions in
Eq. (5) is important, so that their permutation leads to the
proper replacements m,. <> m;, applied to the right-hand
side of Eq. (5).

Leading-order vertex functions I'; in (4) have the
following explicit form:

F/fm = IClDuﬂ(Pl + Cll)D»w<P2 + 612)((2 - Kc)<€7gg + chlllglé) - (1 + Kc)glw(gl'SZ)

Fgwa = K.;’Czcg}zl(_kl)l)yﬂ(kl + k2)D€w(pl + ql)

Fff“’ = ’C3Dﬂw(k1 —P1— fh)

Pa [0
F/su = KeDP(py + q5)

— D (ky = p1 = 1)V (p1 + @)CF (P2 + 42) — ik Dy (ky — P2 — 0)E¥ (P2 + 42)€5 (1 + 41)
+ i(1 = k) Dyg(ky + ko) C5 (ko) ¥ (ky + kp, p2 + 4)),

m, —p1— 41— 4
(p1+ a1+ q2)* —mj,

my +ky—q
mﬂ%mwﬁ(m +q1)

myth =gy

(ky —q2)* = mj
my+ky—py

== — K4y D (k) — py — q1)

(ky = Pz)2 - m%} ?

- Ks@5(pa + ¢2)D,f (ki — p1 — q1)D,” (P2 + 42).

me+ky— 4, . »
(kzc— q];z_r;2€2+lc7ggDﬂl(p2+QZ)
c

+ K, K125 G (py + q1)

m, +pi+pr+q
(p1+ P2+ q1)* = mj,
0z, my, + k= 4 )

(ky = q2)* = mj

my, —ky + g

(k2 = q2)* = mj, r

x D (k= py —q,)D,%(p) + 1)

X (Kc’(;z(gll‘(—kz)Dﬂw(kl + k2) + ]Cg&‘[l”g‘z

c= D2 — @2 .
(P24 a1+ qp)* —m2™ "
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k m 2, 7
b = KyDbo( Me + K1 = & TP~
P2+ 42) &1+ Ko&1D,” (P2 + q2) Y
? (kl_‘Il)z 2 é Y (prtart+qr)?—m2”
— K10€" (p2 + QZ)Dﬂﬁ(kl — P2 = 42)D," (P2 + q2),
+k2—p1 m_lz2+él
Y = kK DP* (k) — py — q M TR 7P, + Kk AK3e§ D (k) — Py — @r) ——— 55— 7
10 s/™11 ( 1 2 2) (kz—p1>2 m2 & K 3¢ ( 1 2 2) (kQ_CIl)z_m% 7
+ 1,K 1365 (p1 + 41)D,P (ki — p2 = 42)D,”(p1 + q1). (6)

where the constant k; equals +1 in the case of the equal spin states of the final diquark pair S(AV) + S(AV) and —1 for the
other two possibilities S(AV) + AV(S). Analogously, k, = +1 for 3(6) + 3(6), k. = —1 for 3(6) + 6(3), and the values of
A, =1/2,2,1 correspond to the final color states 6 + 3, 3 + 6, and 3(6) + 3(6), respectively. The following tensors are
mtroduced

g;wm(x’y) — g;w( @ 2xw) gum(2y —x )+ ga)y(xﬂ +yu)’
G5 (x) = ], L, (x, ki 2). €, (x) = &5 1 E75 (%), (7)

and D, (k) is the gluon propagator, which is subsequently taken in the Feynman gauge D}’ (k) = —ig"/k?. The additional
vertex functions I'; can be found by the simultaneous replacements m,. <> m,,, p; <> p,, and g; <> g, in Eq. (6):

5 = ik T5° R A b R R D A b Y = ke IR

myme mpme myme mpme mpme

P1=:r2 PI=:P2 P1=r2 P1 :I’z P1=:P2
9142 1492 192 91492 91492

(8)
The 36 leading-order Feynman diagrams summed with the antisymmetric color functions €14 /v/2 (¢;, A = 1, 2, 3) of
(anti)triplet diquarks and/or with the partially symmetric functions d“124/v/2 (A = 1, ..., 6) of (anti)sextuplets lead to the

nontrivial color structure of the production amplitude, which manifests itself through the color factors /C; in (6). For the
3 + 3 final state, we have'

4 2i ]
}Cl - —260—361 +6Cz, ICZ :§C1, IC3 :?Z(CO+2C1 —402), IC4 :%(CO_CI —Cz),
Ks =Cy+C) —3C,, }c6=—§(co+3cl ~5¢), K, :é(co—zcz), Ks :—%(szc1 —50y),

2 :
’C9:§Z(C0+261—2C2)7 Ko = Cy+2C, —3C,, K :_é(CO'f‘ZCl_CZ)v Ky = Ks,

K1z = Ko, Co = 87%25,p, Ci = if 1P (T) gy, Co = (TT%)py. )
For 3 + 6,
2 2i i i

K1 = Co, ICZ——§C0, K5 ?Cl’ K4:§(Cl —3C,), Ks=Ci =Gy, K6:_§(3cl -Cy),

2i i 2i
Kr=-3C, KSZ_g(CO_?’CI -G, ’C9:§(Co—cz)7 Kio=Co—C =y,

i
Ky = —5(300 - C; =30y), Ky =-C=Cy, Kiz=Co+C =G, (10)
For 6 + 3,

"The author is grateful to S. P. Baranov for pointing out that the color structure of the amplitude can be additionally simplified in this
case.
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4 . .
Ki=—Co.  Ko=3Cp Ky=-3C. Ki=3(0+30).  Ks==C+0. Ke=3(30+0).
4i i 4i
’C7*§62, K8:_§(CO+3CI_C2)’ ’C9:—§(C0—C2)’ Kio=-Co+Ci+Cy,
,Cll :%(3604'01—302), ]C12261+Cg, ’C13:—Co—cl+62. (11)
And finally, for 6 + 6,
2 2i i
ICI — _CO - 261 + 262, ’Cz — §C0, IC3 — gcl, IC4 — g(cl - 362), ICs — C] - Cz,
i 2i i 2i
’C6:—§(3C1—C2)» K5 :—gcza Ks :—§(60+3C1—Cz), ’C9:§(Co—cz),
i
Kio=0Co+Ci =y, Kn = —5(3(30 +C1 = 3Cy), K =Ks. Kiz = Kio- (12)

The coeftficients C; are written explicitly in Eq. (9) for the
3+ 3 final color state, where f“* and T¢ are SU(3)
structure constants and fundamental representation gener-
ators; g, = 1, ..., 8 are color indices of initial gluons; and
A and B are color indices of the diquarks D, and Dj_,
respectively. Note that the color factors of Ref. [22] agree
with Eq. (9) after the equality C3 = f91¢¢ f%cb(TeT?)p, =
Co/4 + 3C,/2 is applied. For all other color combinations,
the following general form is valid:

A B
Co = if19%24(T),, ., cf " P,
A cseiB
Cl — (Tyl)L']Cg(ng)Lz(,4c}]L2 ;364 ,
C, = (T9T%),,,, c;‘CZAc?C’B, (13)

where ¢ stands for the corresponding color wave function
€ ord.

The production amplitude (4) and vertex functions (6)
contain relative momenta p and ¢ in exact form. In order to
take into account relativistic corrections of the second order
in p and ¢, the expansion is performed for all inverse
denominators of the quark and gluon propagators:

1 _ 1 [1 + 2(m2pQ+p129P)
(Pi2+a12)* Zo

Zy
2 2
+2
Zy
1 _i[ _200+p° 4(pO) ]
(P1+a1+q2)*—my  Z, Z, A
1 1 2k,g—q* 4(kyq)?
e et (2;1) +..s
(ky—qi)"—m;  Z, Zy Z5
(14)
where s= (k; +k)?> = (P+Q)> =xx,S and =
(P—k)>=(Q —k,)? are the Mandelstam variables for

|
the gluonic subprocess, and the leading-order expansion
denominators are Zy = 5012 + (1112 — Pl,z)(’h,zMic—
p1aM3.), Zy = sny = m(mMy, — M3 ) —mj, and Z, =
tpy = p1p2M3; —m;. The amplitude (4) contains 16
different denominators to be expanded in the manner of
Eq. (14). Temporarily neglecting the bound-state correc-
tions, it can be found that expansion denominators have
one of the following forms: sy, ,, sni,, n2(M* —1), or
Mma(M? — s —1). Then, taking into account kinematical
restrictions for s and 7, along with the nonrelativistic
estimate  n; = p; = m./(m. +m,)=~1/4 for (bc)
diquarks, one can conclude that the expansion parameters
in (14) are at least as small as 4p?/M? and 4q*/M>.
Preserving in the expanded amplitude terms up to the
second order in both of the relative momenta p and g,
the angular integration can be performed according to the
relations for S-wave states:

/ Yo(p) dp
\/ plom el ) b (p)tmy, (27)3
ZmC 2mb
2 / - )> o P
+m[e +m
2 \/ (P gmb b
/ pupu\IJO(p) dp
\/ p)+m, eb ) »(p)+my (271')3
2m( 2my,
1)1 U1y (
= ” ! / ) dp,
+mceb p) b(P)+mp
\/ 2m 2my,
(15)

where R, (p) is the radial wave function in the momentum
representation.

In order to calculate the cross section, the squared
modulus of the amplitude has to be summed upon the
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final polarizations in the case of axial-vector diquarks, and
also has to be averaged over polarizations of the initial
gluons using the following relations:

¥ U __ oM v v
E glil’.QgP,Q =V, — ¢,
7

K kS + ki K,
& 8], = 12— 2 — g 16
; 1,2¢1,2 (klkz) ( )
|
”MbcMBZ‘a?

27
2
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Then it is also averaged over 8 x 8 possible initial gluon
color states and summed over diquark color indices A and B:

~ CrA CaCiA - e O - c .
ec]cz €(,3L4 — 66]6356264 —_ 56](,4662(,3’

dclczAdc3c4A = 5163 562¢4 + S5C1€4 §62€3 (17)

In the case of the diquark pair with identical spin states and
masses, the cross section can be presented as

’R(O)“‘[F(l)(& 1) = 3Q2wo; + 2w,o - wl])F(l)(S, 1)

1
+ 5 (o1 + @10)*FV (s, 1) + 5 @u(2 = 9a0 - 9010) FP (5. 1) + & FO (s,1)],  (18)
22

while for the final state containing particles of unequal masses it has a more complicated form:

dolgg — S(AV)Dy, + AV(S)Dj)(s. 1)
o ﬂMbch_v 5,(14
6553652

4 1
|RSD,,(.(O)‘2|RAVD,;E(0)|2 X {F(l)(s’ 1) — 3<w(§1 + wigo + 0131‘/ + wfov __w]gl __w?lv> F(l)(s, 1)

2

9 9
+9(ef) + o) (@) + o) x F(s.1) + 7 (a) + w}o)?FW(s. 1) + 2 () + arly)?F U (5.1

4

1 1
+ wa_%(Z = 3a; = 3wy — 6wy — 6wy )F)(s.1) +

22 22 22 22

1
ool PO (s.0) + 4 o + o PEO 6.0

The relativistic parameters w,; are expressed through
momentum integrals of the double heavy diquark radial
wave function R, (p):

_ [ (ec(p) + me)(ep(p) + my)
Ly = A szp<P>\/ 2ee(p)2€Z(P) :

(o) (e o

k0 =\ [Trr e o

is the value of the coordinate wave function at the origin.
The first term in Egs. (18) and (19) is proportional to the
single function F(!)(s,7) and corresponds to the zeroth-
order result in heavy quark velocity expansion of the cross
sections, and the other terms containing products of the

4

a)%‘/@ = 3w = 3wl — 6w — 6w}y F)(s.1)

(19)

|

form , F")(s,t) represent relativistic corrections to it.
The analytical results for the functions F()(s,¢) are too
lengthy and cannot be given here in an explicit form, but
they are provided as Supplemental Material [31] to the
electronic version of this paper.

III. NUMERICAL RESULTS AND DISCUSSION

The quasipotential wave functions of the double heavy
diquarks in the (anti)triplet color state are obtained by
numerical solving of the Schrodinger equation with an
effective relativistic Hamiltonian based on the QCD gen-
eralization of the Breit potential, which was additionally
improved by the scalar and vector exchange confinement
terms, as is described in detail in Ref. [21]. The values of
diquark masses and relativistic parameters defined by
Eq. (20) are given in Table I. There is no such model
available for sextuplet diquarks, so all their nonperturbative
parameters, including R(0), are simply taken to be equal to
those of triplet diquarks, which is the common practice
allowing us to roughly estimate the order of contributions
from these color states [5,19,23-28]. The relativistic
parameters w,; from Table I are almost indistinguishable
for scalar and axial-vector (bc) diquarks, and this fact was
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TABLE 1. Numerical values of the parameters describing scalar and axial-vector (bc) diquarks.

M, RNR(0) R(0),
Diquark state n**L, GeV GeV3/2 GeV3/2 w1 g Wy o1
SD,. 1S, 6.517 0.67 0.54 0.0383 0.0045 0.0131 0.000 39
AVDy,. 135, 6.526 0.67 0.52 0.0384 0.0045 0.0132 0.000 38

used to slightly simplify the final view of the cross
section (19). The definition (20) of the relativistic integrals
I, contains a cutoff at the value of c-quark mass A = m,.
Although the integrals (20) are numerically convergent, the
relativistic wave function cannot be reliably calculated in
the region p = m, in the considered model. It should also
be noted that the formulation of the effective relativistic
Hamiltonian in Ref. [21] assumes expansion of the inter-
i’b";r"n”( ~2|p|/m,, and the
expansion parameters of Eq. (14) were estimated as
~%|p[*/m?. So, the current choice of cutoff for relativistic
terms preserves the validity of both relativistic expansions
and also prevents the contribution of large numerical errors
connected with multiplication of the wave function by
additional p? factors in the highly relativistic region. There
is no such numerical instability involved in calculation of
the parameter R(0) determining the zeroth-order contribu-
tion in v, which is therefore defined over the whole
available momentum range in both nonrelativistic and
relativistic approximations. The nonrelativistic version of
this parameter RNR(0) has the same formal definition
RNR(0) = \/2/x [ pRYR(p)dp, with the only difference
being that it is calculated with the simple Cornell potential
model VNR(r) = —2a,/(3r) + 1/2(Ar + B) in contrast to
the complicated Breit-based Hamiltonian used to obtain
R(0). Therefore, the parameter R(0) purely reflects the

action potential in powers of |p|/

interaction within the bound state, while all auxiliary
normalization factors of the wave function transformation
law (5) have been incorporated into the correction terms
0, FY(s,1) in Egs. (18) and (19).

The numerical results for the total cross section of pair
scalar and axial-vector (bc) diquark production correspond-
ing to the LHC energies v/S = 7 and 14 TeV are presented
in Table II. The integration in (1) was performed with the
partonic distribution functions CTEQSL and CTEQ6LI1
[37]. Both renormalization and factorization scales were
set to p=/(My. +Mj.)*/4+ P}, where P; is the
transverse momentum of the final diquarks, and the
leading-order result for the strong coupling with the initial
condition a,(M ) = 0.118 was used. In the nonrelativistic
limit, all parameters w,, are taken to equal zero, so that
only the F()(s, ) term survives in the square brackets of
Eq. (18), and diquark masses are assumed to be equal to
the sums of their constituent (anti)quark masses
My = my;, +m,.. The cross sections calculated in such
approximation are marked as o,y in Table II. As shown
in Table I, the nonrelativistic parameter RNR(0) has the
value RNR(0) = 0.67 GeV3/? for (bc) diquarks in the
considered model [21,22], lying close to the result
0.73 GeV?/? from Ref. [38].

Table II contains numerical results for all ten indepen-
dent spin (scalar and axial-vector) and color (triplet and

nonperturbative  relativistic effects of quark-quark  sextuplet) state combinations of the final diquarks
TABLE II. Cross sections of the pair (bc) diquark production in proton-proton collisions (nb). The results in nonrelativistic
approximation (nonrel.) and with relativistic effects (rel.) are given.
VS =7TeV VS =14 TeV
CTEQSL CTEQ6LI CTEQSL CTEQG6L1

Diquark pair Ononrel Orel Ononrel Orel Ononrel Orel Ononrel Orel
S(bc);s + S(b¢), 0.063 0.023 0.057 0.021 0.14 0.05 0.12 0.043
S(bc); + S(be)g 0.007 0.003 0.007 0.003 0.016 0.006 0.014 0.005
S(bc)g + S(be)g 0.04 0.015 0.037 0.013 0.088 0.032 0.078 0.029
AV(bc); +AV(b ), 0.25 0.068 0.23 0.062 0.55 0.15 0.48 0.13
AV(bc); +AV(bT)g 0.29 0.076 0.27 0.07 0.63 0.17 0.56 0.15
AV(bc)s +AV(bT)g 1.4 0.38 1.3 0.35 3.1 0.84 2.7 0.74
S(bc)s +AV(b¢E), 0.031 0.009 0.029 0.009 0.069 0.02 0.061 0.018
S(bc)s +AV(be)g 0.17 0.051 0.15 0.047 0.37 0.11 0.32 0.098
S(bc)g +AV(bT), 0.16 0.047 0.14 0.043 0.34 0.1 0.3 0.091
S(bc)s +AV(bE)g 0.14 0.041 0.12 0.037 0.3 0.089 0.26 0.078
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contributing to o[pp — Dy, + Dj, + X|. The other six
cross sections can be obtained by interchanging
with simultaneous charge conjugation of the diquark
pair, so that o[S(bc)g + S(b¢)s] = o[S(bc); + S(bE)g),
o[AV(bc)s + S(b¢);] = o[S(bc); + AV(DE)g], and so
on. Formally, in the case of a final diquark pair with
unequal spin states, the diquark masses have to be
interchanged too, but due to their very close proximity
in the actual cases of scalar and axial-vector diquarks
(Mg(pey = 6.517 GeV and M,y () = 6.526 GeV), the
numerical effects on the cross section will be negligible.
Table II clearly shows that gluonic fusion subprocesses
involving one or two final diquarks in a(n anti)sextuplet
color state provide considerable contributions, which basi-
cally prove to significantly exceed the corresponding
triplet-antitriplet results. The largest contribution comes
from the process of double axial-vector production, where
the cross section of the 6 4 6 pair is more than 5 times
larger than its 3 4 3 counterpart, and the cross sections for
the two other possibilities 3 + 6 and 6 + 3 are both higher
by almost 20% in comparison with 6[AV (bc); +AV (bT)5).
The sextuplet contributions are also important for S + AV
and AV + § diquark spin pairs, with all three additional
subprocesses enhancing the purely triplet result by a
factor of 4.5-5.5 each. Then, the simultaneous scalar

PHYSICAL REVIEW D 93, 114029 (2016)

and axial-vector diquark production acquires the same
order of magnitude as the main AV 4 AV channel, in spite
of 6[S(bc)s + AV (b ¢);] having the smallest value between
all triplet-antitriplet states. The scalar-scalar diquark pair
appears to be of the least significance, since its exclusively
sextuplet case 6 + 6 has only 60% of the double triplet
343 cross section, and both cases of mixed color
combinations are even more suppressed by a factor of 9.
So, the S+ § diquark contributions to the pair double
heavy baryon production are expected to be negligible.
The stated relations between the various subprocesses of
99 = D + Dy are independent of the choice of partonic
functions f,/,(x) or collision energy /S, and they also
remain valid with relativistic corrections taken into account.
Moreover, they demonstrate a remarkable stability through
almost the whole range of (bc) diquark rapidity y for the
corresponding differential cross section do/dy, as shown in
Fig. 3. The invariant mass distributions presented in Fig. 4
have almost the same asymptotics at large values of /s,
with the sole exception of 3 + 6 cross sections in § + S and
AV + AV cases, which are suppressed by 1 additional
power of s~!/2 in comparison with the sextet-antisextet and
antitriplet-triplet color pairs.

The cross section of pair diquark production in proton-
proton interaction ¢[pp — D, + Dj- + X| gives an upper

do /dy [nb] S+S do /dy [nb] S+AV do /dy [nb] AV+AV
' ' = 6 0050f  _ZEEEem=al !
0.005 ~ 6
0.001 5
5x1074 0.002 0.010} 5
6 0.001 4 0005} 4
1x107¢ 5x107 3 3
5%107° 14 0.001 F
2x 1074 V og3/0 2 5><i0’4 12
_ 2 —4 ——- 63/033 r
IXIOS 1x10 I+ I 0_2: 00—66/0—33 | 1 1
o : : : : 0 0
4 -2 0 2 4
y
FIG. 3. The rapidity y =yp, distributions for S+ S (left), S+ AV (center), and AV + AV (right) pair double heavy diquark

production at p p collision energy /S = 7 TeV. The scale at the right edge of the figures corresponds to the ratios of cross sections. The
compact notations o33 = do[(bc)s + (b ¢);]/dy and so on are used in the figures.

do/d\s [nb/GeV

do/d\s [nb/GeV] S+S

do/dVs [nb/GeV]  S+4V

AV + AV

0.01 7 0.01F & 017~ '
N — 343 N
0.001 + ] 22 4 o1t
0.001 F —— 3456

104 | ==== 6+3 10001}

; 1074 -—=6+6
107 ¢ | _ i 1074} - ~

6 3+3 10-5F — 343 ~
10~ 'I__ 3+§ \\ 3 1075> —— 3+§ -
W7k TTTL0X6 S cTo6x6 SN

15 20 25 30 35 40 45 50 15 20 25 30 35 40 45 50 15 20 25 30 35 40 45 50
Vs [GeV] Vs [GeV] Vs [GeV]

FIG. 4. The invariant mass /s distributions for S + S (left), S+ AV (center), and AV + AV (right) pair double heavy diquark

production at the energy /S = 7 TeV.
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bound for the yield of the double heavy baryon pairs
(bely) + (bely) in the same process summed over spin
states of both baryons and also over all possible flavors of
light quarks and antiquarks [/, , = u, d, s. Adding up the

contributions from Table II for the collision energy v/S =
7(14) TeV and CTEQSL functions, we obtain the estimates
3.3(7.3) nb and 0.9(2.1) nb in nonrelativistic and relativistic
cases, respectively, where the purely sextuplet channel is
responsible for slightly more than half of the result [1.7
(3.8) nb and 0.5(1.1) nb], final states with mixed colors
3 + 6 and 6 + 3 contribute about 37% of the cross section
[1.2(2.7) nb and 0.3(0.8) nb], and the 12% residue [0.4
(0.8) nb and 0.1(0.2) nb] originates from the conventional

PHYSICAL REVIEW D 93, 114029 (2016)

triplet-antitriplet diquark pairs. So, under the assumption
that both triplet and sextuplet states are described by the
same value of |R(0)|?, the processes involving one or two
final sextuplets are the dominant ones for pair double heavy
diquark and baryon production, and they will still prevail
over the triplet-only cases even if the values of their
nonperturbative parameters corresponding to |R(0)|> are
found to be overestimated as much as 3—4 times.

The cross sections (18) and (19) contain several types of
relativistic corrections with the net effect of up to a factor of
4 decrease in comparison with the completely nonrelativ-
istic analysis. Such a tremendous fall is entirely caused by
the Breit-like interaction between (anti)quarks in the bound

do /dPy [nb/GeV] S+S do /dPy [nb/GeV] S+
//“t~::\\
0.01F = 0.01F 1
—
/N
0.001 ¢ 0.001 § E
104 H —— 3+ 3 nonrel. 10-4+ — §+ Erel. ~ J
—— 6+§rel. =— = 3 + 6 nonrel. ~
=== 6+ 6 nonrel. \\
10754 : : . * * : 1075 : * . * : ) e
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Pr[GeV] Pr [GeV]
do /dPy [nb/GeV] S+AV do /dPy [nb/GeV] S+AV
0.1F T - - 01T =T : - - e
0.01F 0.01 E
0.001 ¢ _ 0.001 §, _ E
—&— 3 +3rel —&— 3+ 6rel X
— = 3 + 3 nonrel. — = 3 + 6 nonrel.
107 —%— 6+3rel 1074 —%— 6+ 6rel
——— 6+ 3 nonrel. === 6+ 6 nonrel.

0 2 4 6 8 10 12 14

0 2 4 6 8 10 12 14

Pr [GeV] Py [GeV]
do [dPy [nb/GeV] AV +AV do /dPy [nb/GeV] AV + AV
o . . . . . . .
/’ ~\\\
1 ——
0.1F) 01 »~ ~ E
! / >~
0.01} < 0.01}+ 1
—h— §+ 3 rel. S L
0001 — = 3+ 3nonrel oootf| T 3+orel Se
—¥— 6+6rel — — 3 + 6 nonrel.
=== 6+ 6 nonrel.
10-4 . . . . . 10-4

0 2 4 6 8 10 12 14
P; [GeV]

FIG. 5.

0 2 4 6 8 10 12 14
P, [GeV]

The transverse momentum Py distributions for S + S (upper panel), S + AV (center), and AV + AV (lower panel) pair double

heavy diquark production at the energy v/S = 14 TeV. The results in nonrelativistic approximation (nonrel.) and with relativistic effects

(rel.) are shown.
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state determining the masses and wave functions of scalar
and axial-vector diquarks. The transition from the non-
relativistic parameter |[RNR(0)|* to its relativistic generali-
zation |Rp, (0)]*|Rp, (0)]* suppresses the cross section by
a factor of 2.3-2.9 depending on the final spin content.
Note that direct corrections to the diquark wave functions
induced by relativistic terms in quark-quark interaction
potential are not so large. According to Table I, the
difference between RNR(0) and R(0) does not exceed
20%, but its fourth power actually entering expressions
(18) and (19) significantly amplifies the decreasing effect.
The diquark masses enter cross sections (18) and (19) as
prefactors and also essentially influence the functions
F <")(s, t), so that the bound-state corrections connected
with the nonzero values of bound-state energies
Wsavive) = Msav(pe) — me —my, #0 can be identified.
These corrections also turn out to be negative and decrease
the cross sections by 20%-30% against the results calcu-
lated in the nonrelativistic approximation Mg =
M sy (pe) = mp + m,. Finally, our analysis includes pertur-
bative corrections of the second order in the (anti)quarks’
relative momenta p and g [or, alternatively, O(v?) order in
relative velocity v], which are directly determined by the
relativistic structure of the production amplitude (4). As
was mentioned earlier, such corrections are represented by
the terms @, F")(s, t) in Eqs. (18) and (19). They generally
add 8%—12% to all of the considered production channels,
with the exception of the following three color-spin
combinations of the final diquark pair: S35+ Sz (25%),
AV3z+AV; (5%), and AVg+ AVg (1.5%). The above
example of a scalar-scalar pair shows that perturbative
corrections can give considerable enhancements, which are,
however, negligible in this particular case due to the low
numerical importance of the gg — S(bc); + S(h¢)g sub-
process. On average, O(v?) corrections contribute slightly
more than 6% to the upper estimate of 0.9(2.1) nb for the
cross section of double heavy baryons at /S = 7(14) TeV.
The relativistic corrections do not change the visible shape
of all examined cross section distributions, as shown in
Fig. 5 in the example of transverse momentum distribu-
tion do/dPr.

The total error of the numerical results for cross
sections (18) and (19) presented in Table II is basically
given by the main sources of relativistic corrections and can
be estimated as 44%. The 10% uncertainty of wave
functions calculated in the potential model is responsible
for the main 40% error coming from the fourth power of
R(0) [21]. The perturbative contributions from the fourth
and higher orders of the amplitude expansion can be taken
to be 10%, since the calculated second-order corrections are
already small. Another 15% error source is introduced by
the uncertainty of the CTEQSL and CTEQO6LI1 partonic
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distribution functions [37,39]. In order to obtain the final
value of 44%, all mentioned uncertainties are summed in
quadrature.

In this paper, a complete study of pair (bc) diquark
production at the LHC center-of-mass energies v/S = 7 and
14 TeV has been performed in the leading order of the
gluonic fusion channel. Several types of relativistic
improvements to the cross section have been implemented
according to the framework of the relativistic quark model.
The corresponding nonperturbative parameters calculated
in the assumption of a Breit-like interaction between (anti)
quarks of the bound state are found to significantly
decrease the cross section in comparison to the estimates
based on the completely nonrelativistic Cornell model. The
perturbative O(v?) corrections originating from the pro-
duction amplitude expansions can give moderate improve-
ments, although they turn out to be irrelevant for the main
subprocess gg — AV (bc)g + AV (b ¢)g determining almost
half of the final result. The total error of the calculation is
estimated to be on the level of 50%, which is mostly
determined by the accuracy of the double heavy diquark
wave functions obtained in the considered model. It is
shown that sextuplet color states of the final diquarks
appear to dominate the total cross section. So, pair double
heavy baryon production can represent a good test for the
color-sextuplet production mechanism.
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APPENDIX: THE STRUCTURE OF
SUPPLEMENTAL MATERIAL

The electronic Supplemental Material [31] to the paper
consists of 84 textual files containing the explicit form of

the functions F() (s, 1) entering the cross sections (18) and
(19) for all ten independent spin- and color-state combi-
nations of the final diquark pair. The functions are linearly
expanded in diquark bound energies W, =M, .—m,.—m,,
and Wi, = My —m, — my:

FO(s,1) = F(s,0) + Wy FY) (5, 1) + Wy FY (s,1),
(A1)

where the last term exists only for the S 4 AV final states
with two diquarks of unequal masses. Then, for example,

the file F[3S + 6AV](1).0 contains the function F{" (s, )
of the S(bc); +AV(b¢)g pair.
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