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Recent studies have shown that the well-established Λcð2595Þ resonance contains a large meson-baryon
component, which can vary depending on the specific formalism. In this work, we examine such a picture
by utilizing the compositeness condition and the large number of colors (Nc) expansion. We examine three
different models fulfilling two body unitarity in coupled-channels, and adopting renormalization schemes
where the mass of the Λcð2595Þ resonance is well described, but not necessarily its width, since we do not
consider three body channels and work at the isospin symmetric limit. Both approximations might have an
effect larger on the width than on the mass. In this context, our studies show that the compositeness of the
Λcð2595Þ depends on the number of considered coupled channels, and on the particular regularization
scheme adopted in the unitary approaches and, therefore, is model dependent. In addition, we perform an
exploratory study of the Λcð2595Þ in the large Nc expansion, within a scheme involving only the πΣc and
KΞ0

c channels, whose dynamics is mostly fixed by chiral symmetry. In this context and formulating the
leading-order interaction as a function of Nc, we show that for moderate Nc > 3 values, the mass and width
of the Λcð2595Þ deviate from those of a genuine qqq baryon, implying the relevance of meson-baryon
components in its wave function. Furthermore, we study the properties of the Λcð2595Þ, in the strict
Nc → ∞ limit, using an extension of the chiral Weinberg-Tomozawa interaction to an arbitrary number of
flavors and colors. This latter study hints at the possible existence of a (perhaps) subdominant qqq
component in the Λcð2595Þ resonance wave function, which would become dominant when the number of
colors gets sufficiently large.

DOI: 10.1103/PhysRevD.93.114028

I. INTRODUCTION

In the naive quark model, mesons are made up of a
quark-antiquark pair while baryons consist of three quarks.
Before 2000, most hadrons could be easily understood
within such a picture, with the exception of only a few
cases, e.g., the lowest lying scalar nonet, the Λð1405Þ, and
the Roper resonances [1]. The situation changed dramati-
cally in 2003 with the discovery of the Xð3872Þ by the
BELLE collaboration [2], that was the first of many others,
so-called XYZ states, which could not be easily accom-
modated into standard models of constituent quarks.
Indeed, some of them apparently contain more than the
minimum quark content dictated by the naive quark model,
such as the Zcð4430Þ [3] and Zcð3900Þ [4]. The latest Pc

states discovered by the LHCb collaboration [5] are the first
exotic states of such type in the baryonic sector. Various
theoretical interpretations of these resonances have been
proposed, ranging from weakly bound molecular or com-
pact multiquark states to quark-gluon hybrids. As many of
these exotic states are located close to the two- or even
three-body strong decay thresholds, coupled–channel
effects are widely believed to play an important role.
Unitarized approaches and their extensions, which take

into account various important constraints, such as chiral
and heavy quark symmetries, or unitarity, provide a useful
framework to study coupled–channel effects. In certain
cases, the interactions among the coupled channels can be
strong enough to generate the so-called dynamically
generated states, which are customarily referred to as
molecular states as well. It is found that, somehow
unexpectedly, not only the exotic states, but also some*lisheng.geng@buaa.edu.cn
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states long believed to be conventional hadrons, which can
be explained by the constituent quark models, turn out to
contain large hadron-hadron components. Some of the
prominent examples are the axial vector mesons [6–9]
and the low-lying tensor states [8–11]. Many studies of
these states in various decays and reactions have been
performed and all the results seem to be consistent with
such a molecular picture.
In the heavy-flavor baryon sector, the 1=2− Λcð2595Þ

and its heavy quark symmetry (HQS) partners have been
proposed to be of molecular nature as well, although there
is debate about its most important components [12–18].
More specifically in Refs. [12,13], it is claimed that πΣc
channel plays the dominant role, while DN is found to
be the most important ingredient in Ref. [14].1 After
including the DN and D�N channels, as required by heavy
quark spin symmetry (HQSS) arguments, the authors of
Refs. [15,16,18] conclude that both of themmay be needed.
In principle, wave functions are not observables them-

selves. As a result, it is difficult to pin down the exact nature
of a hadronic state. The claims regarding the largest Fock
components in hadron wave functions are often model
dependent. In recent years, the compositeness condition,
first proposed by Weinberg to explain the deuteron as a
neutron-proton bound state [20,21], has been advocated as
a model independent way to determine the relevance of
hadron-hadron components in a molecular state. With
renewed interests in hadron spectroscopy, this method
has been extended to more deeply bound states, resonances,
and higher partial waves [22–35]. For the particular case
of the Λcð2595Þ, the situation is a bit unclear. For instance,
it was shown in Ref. [36] that the Λcð2595Þ is not
predominantly a πΣc molecular state using the effective
range expansion. A similar conclusion was reached in
Ref. [37], using a generalized effective range expansion
including Castillejo-Dalitz-Dyson pole contributions.
In this latter work, the effects of isospin breaking correc-
tions are also taken into account and the extended com-
positeness condition for resonances developed in Ref. [38]
has been applied to calculate the compositeness coeffi-
cients. Furthermore, although in the unitary approaches
[12–16,18] the Λcð2595Þ is found to be of molecular nature,
there is no general agreement on its dominant meson-
baryon components yet.
Another approach2 to probe the dominant component of

a hadronic state is to study the Nc dependence of the poles
associated to resonances that appear in the unitarized

meson-meson [45–54] or meson-baryon [55–58] scattering
amplitudes, being Nc the number of colors of quarks. The
1=Nc expansion [59–64] is valid for the whole energy
region and makes specific predictions for qq and qqq
states. A genuine qq state becomes bound as Nc → ∞ with
its mass scaling as Oð1Þ and its width as Oð1=NcÞ.
Mesonic states of other nature may show different behavior
[65]. The mass of a generic qqq state with two or three
flavors evolves as OðNcÞ while its width scales as Oð1Þ at
leading order [60,66,67].
In the present work, we utilize both the compositeness

condition and the large Nc behavior to examine the nature
of the Λcð2595Þ aiming to test the molecular scenario. This
paper is organized as follows. In Sec. II, we briefly
introduce the unitarized models used in Refs. [12,15,18].
In Sec. III, we discuss the compositeness condition and, in
particular, the effects due to the number of coupled
channels considered and to the specific regularization
scheme adopted. In Sec. IV, we formulate the large Nc
expansion within the model of Ref. [12], and show that in
this scheme, and for a moderately large number of colors,
the Nc dependence of the Λcð2595Þ mass and width
deviates from that of a genuine qqq state. We will also
discuss the Nc ≫ 3 behavior of the Λcð2595Þ pole position
within the dynamical model established in [15], using the
findings of Refs. [55,56], where the chiral Weinberg-
Tomozawa (WT) interaction is extended to an arbitrary
number of flavors and colors. This latter study hints at the
possible existence of a (perhaps) subdominant qqq com-
ponent in the Λcð2595Þ resonance wave function, which
would become dominant when the number of colors gets
sufficiently large. Finally, the most relevant conclusions of
this work are collected in Sec. V.

II. UNITARIZED APPROACHES

The key ingredients of unitary approaches are kernel
potentials and the procedures adopted to restore exact two-
body unitarity in coupled channels. In practice, the kernel
potentials, which represent the strong interactions among
the participating hadrons, are generally constructed using
either effective field theories, such as chiral perturbation
theory, or phenomenological Lagrangians, such as the
hidden gauge ones. Symmetry arguments play an important
role in constructing the potentials and in fixing the
unknown parameters. All of the unitarization procedures
respect coupled–channel two-body unitarity above thresh-
olds, but may differ in their treatment of off-shell, left-hand
cut effects, etc., which, in most cases, induce subdominant
corrections that are partially accounted for by the unde-
termined low energy constants. In the present work, we
focus on the Bethe-Salpeter equation method based on the
so-called on-shell approximation [68–70]. For a discussion
of the off-shell effects, see, e.g., Refs. [71,72] and Ref. [73].
In the latter reference, the off-shell effects are explicitly
demonstrated to be small.

1A similar conclusion was reached in the Jülich meson-
exchange model [19].

2In recent years, it has been stressed that the quark mass
dependence of a hadronic state, which can be accessed by present
lattice QCD simulations, can also be used to distinguish its
nature. In the present work, we are not going to approach the
problem from this perspective. Interested readers can see, e.g.,
Refs. [39–44] and references therein.

LU, CHEN, GUO, NIEVES, XIE, and GENG PHYSICAL REVIEW D 93, 114028 (2016)

114028-2



The Bethe-Salpeter equation reads, symbolically,

Tij ¼ Vij þ ðVGTÞij; ð1Þ

where i, j denote the channel index, V is the kernel
potential, T stands for the unitarized amplitude, and G is
the two-point one-loop function.
In the study of the Λcð2595Þ, the relevant kernel

potentials V have been explicitly calculated in the frame-
work of chiral [12] and the extended hidden gauge [18]
Lagrangians, and in the SUð6Þ × HQSS model of Ref. [15].
They differ in the number of included coupled channels and
how chiral symmetry and HQSS are taken into account. We
refer to Refs. [12,15,16,18] for more details. (A brief
revision of the SUð6Þ × HQSS model is presented in
Sec. IV C 2).
In addition to the potential, the loop function G in the

Bethe-Salpeter equation also plays an important role. It has
the following simple form in 4 dimensions:

G ¼ i
Z

d4q
ð2πÞ4

2M
½ðP − qÞ2 −m2 þ iϵ�½q2 −M2 þ iϵ� ; ð2Þ

with M and m the baryon and meson masses, respectively.
This loop function is logarithmically divergent and needs to
be properly regularized. Two different methods can be
found in the literature: the dimensional regularization
scheme and the other in which an ultraviolet hard cutoff
is used. In the modified minimal subtraction scheme, the
loop function reads

GMSðs;M2; m2Þ ¼ 2M
16π2

�
m2 −M2 þ s

2s
log

�
m2

M2

�

−
qffiffiffi
s

p ðlog½2q ffiffiffi
s

p þm2 −M2 − s�

þ log½2q ffiffiffi
s

p
−m2 þM2 − s�

− log½2q ffiffiffi
s

p þm2 −M2 þ s�
− log½2q ffiffiffi

s
p

−m2 þM2 þ s�Þ

þ
�
log

�
M2

μ2

�
− 2

��
; ð3Þ

where s is the invariant mass squared of the meson-baryon
system. To take into account nonperturbative effects, the
constant −2 in the above equation is often replaced by the
so-called subtraction constant a, which can be slightly fine-
tuned to achieve better agreement with experimental data,
in terms of masses and widths of the dynamically generated
resonances. An alternative way to fix a is to require that at a
certain energy scale, μ20, the unitarized amplitude reduces to
that of the tree level, such as Gðμ20Þ ¼ 0. This has been
referred to as the naturalness requirement [14]. In the
following, we refer to this regularization method as

“DR-naturalness.” It should be noted that this is the method
adopted in Refs. [14,15].
In Ref. [41], a so-called HQS inspired regularization

scheme has been suggested, which is manifestly consistent
with both the chiral power counting and heavy-quark spin-
flavor (SF) symmetry, up to ΛQCD=MH corrections, where
MH is a generic heavy-hadron mass. In this scheme,
referred to as “DR-HQS” in the present work, the loop
function G reads:

GHQS ¼ GMS −
2M

∘

16π2

�
log
�
M
∘ 2

μ2

�
− 2

�

þ 2msub

16π2

�
log

�
M
∘ 2

μ2

�
þ a

�
; ð4Þ

where msub is a generic pseudoscalar meson mass, which
can take the value ofmπ in the u, d flavor case or an average
of the pion, kaon, and eta masses in the u, d, and s three

flavor case. M
∘
is the chiral limit value of the charmed or

bottom baryon masses. The apparent renormalization scale
dependence originates from that of the dimensional regu-
larization and has little to do with the“HQS” description
(for more details, please see Ref. [12]). Note that in the
present case, this scheme is equivalent to the modified
minimal subtraction one discussed above. In the numerical

calculations, we use M
∘ ¼ 2.5349 GeV, which is the

average of the sextet charmed baryon masses,
msub ¼ 0.368 GeV, average of the masses of the pseudo-
scalar mesons, and μ ¼ 1 GeV. In principle, one could use

a different value for M
∘
in the light baryon sector, but this

would be equivalent to the use of different subtraction
constants for different channels, which we would like to
avoid. Natural values for the subtraction constant, consid-

ering the range of baryon masses (i.e., M
∘
) involved in the

present study, lie in the ½−6;−2� interval, using a ¼ −2 as a
reference in the modified minimal subtraction scheme.
The loop function can also be regularized with an

ultraviolet hard cutoff, Λ, i.e.,

Gcut ¼
Z

Λ

0

q2dq
2π2

EM þ Em

2EMEm

2M
s − ðEM þ EmÞ2 þ iϵ

; ð5Þ

with EM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þM2

p
, and Em ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

p
. Taking into

account the typical size of the hadrons, values around
1 GeV are natural for Λ, although its exact value is in most
cases determined from a fit to data.
One of themain objectives of this work is, using potentials

constructed in different frameworks [12,15,18], to study how
the so-called compositeness or the dominance of a certain
channel varieswith the scheme adopted to regularize the loop
function G.
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III. THE COMPOSITENESS CONDITION

As mentioned previously, the compositeness analysis
proposed by Weinberg in Refs. [20,21] is only valid for
bound states. For resonances, it involves complex numbers
and, therefore, a strict probabilistic interpretation is lost. The
generalization of the compositeness study for resonances has
been put forward by different groups. Theweight of a hadron-
hadron component in a composite particle is defined as [29]

Xi ¼ Re ~Xi; ð6Þ

with

~Xi ¼ −g2i

�∂GII
i ðsÞ

∂ ffiffiffi
s

p
�
s¼s0

; ð7Þ

where s0 is the pole position in the complex s plane,GII
i is the

loop function evaluated on the second Riemann sheet (SRS),
and gi is the coupling of the resonance to the channel i, which
can be obtained as

g2i ¼ limffiffi
s

p
→
ffiffiffi
s0

p ð ffiffiffi
s

p
−

ffiffiffiffiffi
s0

p ÞTII
ii ; ð8Þ

whereTII
ii is the ii element of theT amplitude on the SRS. For

bound states, the quantity ~Xi is real and it is related to the
probability of finding the state in the channel i. For reso-
nances, ~Xi is still related to the squared wave function of the
channel i, in a phase prescription that automatically renders
the wave function real for bound states [29], and so it might
still be used as a measure of the weight of that hadron-hadron
channel in the composition of the resonant state [29,33].
The deviation of the sum of Xi from unity is related to the

energy dependence of the s-wave potential,X
i

Xi ¼ 1 − Z; ð9Þ

where

Z ¼ Re ~Z

¼ Re

�
−
X
ij

�
giGII

i ð
ffiffiffi
s

p Þ ∂Vijð
ffiffiffi
s

p Þ
∂ ffiffiffi

s
p GII

j ð
ffiffiffi
s

p Þgj
�
s¼s0

�
:

ð10Þ

Note that the Eqs. (9) and (10) get support from the sum
rule [31–33,35]

−1 ¼
X
ij

gigj

�
δij

�∂GII
i ðsÞ

∂ ffiffiffi
s

p
�
s¼s0

þ
�
GII

i ð
ffiffiffi
s

p Þ ∂Vijð
ffiffiffi
s

p Þ
∂ ffiffiffi

s
p GII

j ð
ffiffiffi
s

p Þ
�
s¼s0

�
; ð11Þ

which is also satisfied in the case of bound states located in
the first Riemann sheet, and guarantees that the imaginary
parts of

P
i
~Xi and ~Z must cancel. The field renormalization

constant ~Z itself is well-defined even for resonances, since
it corresponds to the residue of the renormalized two-point
function [31]. Thus, there is no fundamental problem in
calculating ~Z using Eq. (10), but the probabilistic inter-
pretation of the obtained result is not straightforward. The
field renormalization constant ~Z measures the effect of the
elementary contribution as the deviation from unity, and it
is in general a complex number. Therefore one should be
aware that ~Z cannot directly be interpreted as the “prob-
ability” of the elementary component [32]. Conversely,
strictly speaking, ~Xi cannot be interpreted as a probability
of finding a two-body component. Nevertheless, because it
represents the contribution of the channel wave function to
the total normalization, the compositeness ~Xi will have an
important piece of information on the structure of the
resonance. In general, however, all ~Xi and ~Z can be
arbitrary complex numbers constrained by Eq. (11). The
probabilistic interpretation of the structure of a resonance
from ~Xi and ~Z is not possible when the imaginary parts are
sizable [33] or when there is a large cancellation among the
real parts of

P
i
~Xi and ~Z to meet the sum rule of Eq. (11),

but with one of them exceeding the unity. T. Hyodo,
following the ideas of T. Berggren [74] in the 1970s, has
proposed to look at the parameter P, defined as

P ¼ j ~Zjþ
����X

i

~Xi

���� − 1 ¼ j ~Zj þ j1 − ~Zj − 1

¼
����1 −X

i

~Xi

����þ
����X

i

~Xi

���� − 1; ð12Þ

and try to give a “probabilistic” interpretation to ~Z andP
i
~Xi only for those cases where P is much smaller than

1=2 [75,76].
In the picture advocated in Ref. [29] imaginary parts are

neglected. The quantity 1 − Z is taken to represent the
compositeness of the hadronic state in terms of all the
considered channels, and Z is referred to as its elementa-
riness. Within this picture, a nonvanishing Z takes into
account that ultimately the model is an effective one. The
energy dependent interaction effectively accounts for other
possible interaction mechanisms not explicitly included in
the s-wave hadron-hadron description. These could be
other hadron-hadron interactions, or even genuine hadron
components not of the molecular type (hence the appella-
tive elementariness). Thus, a small value of Z indicates that
the state is well described by the contributions explicitly
considered, namely, s-wave hadron-hadron channels.
Conversely, a large value of Z indicates that, for that state,
significant pieces of information are missing in the model,
and this information is being included through an effective
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interaction, to the extent that the experimental hadronic
properties are reproduced by the model. However, it is not
clear how to interpret Z obtained from the smooth energy
dependence of the chiral potential V [30]. In addition, it
should be emphasized that, for processes involving short
distances, it is the wave function at the origin that matters
(giGi for the s wave) [25,77].3

On the other hand, in Ref. [38], it was claimed that one
can formulate a meaningful compositeness relation with
only positive coefficients thanks to a suitable unitary
transformation of the S matrix. This in practice amounts
to take the absolute value of ~Xi in Eq. (7) to quantify the
probability of finding a specific component in the wave
function of a hadron. Notice that the recipe advocated in
Ref. [38] is not applicable to all types of poles. In particular
the arguments of this reference exclude the case of virtual
states or resonant signals which are an admixture between a
pole and an enhanced cusp effect by the pole itself. More
specifically, the probabilistic interpretation given in [38] to
j ~Xij is only valid when

ffiffiffiffiffiffiffiffiffiffi
Res0

p
> Mi;th, with Mi;th the

corresponding threshold of the ith channel.4

In what follows, we will examine how the number of
coupled channels and the particular regularization scheme
affect the predicted (calculated) compositeness of the
Λcð2595Þ. For such a purpose, we first fix the number
of coupled channels and therefore the kernel potentials, and
then compare the resulting compositeness coefficients. The
meson and baryon masses employed in the numerical
analysis are the same as those used in Ref. [35] and are
compiled here in Table I.
According to the PDG, the Λcð2595Þ has a mass of

2592.25� 0.28 MeV and a width of 2.6� 0.6 MeV [1].
Therefore, the only parameter in each of the three regulari-
zation schemes discussed in Sec. II is fixed in such away that
themass of theΛcð2595Þ is reproduced.We do not attempt to
fix the width because we only consider here two-body
coupled channels and work at the isospin symmetric limit,
both approximations can have an effect larger on the width
than on the mass (see an elaborate discussion in Ref. [37]).

A. Sixteen channels

First, we consider the sixteen channels considered in
Refs. [15,16], making also use of the kernel potentials

provided by the SUð6Þ × HQSS model derived in these
references, and examine the dependence of the compos-
iteness condition on the renormalization/regularization
scheme employed to render the loop function ultraviolet-
finite.
The SUð6Þ × HQSS model used in Refs. [15,16] is

basically a SU(8) SF extension5 of the SU(3) chiral WT
leading order meson-baryon interaction term, including
ground state vector meson and JP ¼ 3=2þ baryon degrees
of freedom. This is actually strictly correct only when
coupled channels involving ccc components (e.g., doubly
charmed baryons and Dð�Þ antimesons) are neglected as
done in Refs. [15,16]. These channels are Okubo-Zweig-
Iizuka (OZI) disconnected from those involving just one
heavy quark. Note that in the heavy-quark limit, the OZI rule
becomes exact because the number of charm quarks and the
number of charm antiquarks are separately conserved. (For a
more detailed discussion see Ref. [78]). In this framework,
there appear two Λcð2595Þ states, resemblance of the two
Λð1405Þ resonances found in chiral unitarity approaches,
with one of them narrower than the other [15,16].
To make a reliable comparison, we adjust the only

parameter in each of the regularization schemes discussed
above to fix the real part of the narrower pole to the
Λcð2595Þ resonance mass quoted in the PDG [1]. This
yields the following parameters,

ffiffiffi
α

p ¼ 0.97952 for the
DR-naturalness scheme,6 qmax ¼ 0.67898 GeV for the cut-
off scheme, and a ¼ −3.37865 for the DR-HQS scheme.
Compositeness results for the Λcð2595Þ and its broader

partner are shown in Tables II and III, respectively. Among
the 16 coupled channels, in general the most relevant ones
are πΣc, DN and D�N. In the case of the narrow state
(Table II) and for the DR-naturalness scheme, the first of

TABLE I. Meson and baryon masses used in the present work.

Meson mass(GeV) Baryon mass(GeV)

π 0.13804 N 0.93892
K 0.495645 Λ 1.11568
η 0.54786 Σ 1.19315
ρ 0.77549 Ξ 1.31829
K� 0.89388 Σ� 1.38280
ω 0.78265 Ξ� 1.53180
ϕ 1.01946 Λc 2.2865
η0 0.95778 Ξc 2.46934
D 1.86723 Σc 2.4535
D� 2.00861 Σ�

c 2.51807
Ds 1.96830 Ξ0

c 2.57675
D�

s 2.11210 Ξ�
c 2.64590

3For an extensive discussion on this issue, see Ref. [30], where
it was concluded that to judge the relevance of each channel one
has to study different physical processes.

4In this situation the convergence region of the Laurent series
of the S matrix around the pole incorporates some intervals of the
physical real axis around the pole mass MRð≡ ffiffiffiffiffiffiffiffiffiffi

Res0
p Þ, and in

these circumstances it follows j ~Xij ≤ 1. Actually, it can be proved
that

P
ij ~Xij ≤ 1, where the sum is only over the channels

fulfilling
ffiffiffiffiffiffiffiffiffiffi
Res0

p
> Mi;th [38]. Thus, the so-called effective

elementariness is then defined as 1 −
P

ij ~Xij, which accounts
for the contributions of the heavier channels that do not enter into
the sum.

5This corresponds to treating the eight states of a quark (u, d, s
or c with spin up, ↑, or down, ↓) as equivalent, and leads to the
invariance group SU(8). Because SU(8) SF symmetry is strongly
broken in nature, mass and weak decay constant breaking effects
are taken into account in Refs. [15,16].

6This is defined for instance in Eq. (17) of Ref. [15].
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these channels is suppressed, and the dominant components
turn out to be DN and D�N.
For the sibling state of the Λcð2595Þ, it seems that the

πΣc channel plays the dominant role, except in the cutoff

scheme, where it appears as a bound state andDN andD�N
channels are more important. For the state that we assign to
the Λcð2595Þ, different regularization schemes yield some-
how different results. TheD�N channel plays a leading role
in the DR-naturalness scheme of Refs. [15,16]. In the cutoff
scheme, πΣc is the dominant channel, with D�N the next
component in importance. In the DR-HQS scheme, all
three mentioned channels seem to be similarly important,
with a large imaginary part for ~XπΣc

. On the other hand,
when interpreting the compositeness using the prescription
of Ref. [38], we find that the weights of πΣc inside the
Λcð2595Þ are 0.11, 0.71 and 0.97 for the DR-naturalness,
cutoff and DR-HQS schemes, respectively. Since the
DN;D�N and other heavier channels do not meet the
criterion of Ref. [38], no definite conclusions can be made
separately for each of these channels. Besides, 1 − j ~XπΣc

j
would be the effective elementariness, which get contri-
butions from all of the other heavier channels. Similar
conclusions can be also made for the broader state in
Table III.
We pay now attention to the uncertainty parameter

introduced in Eq. (12). It is significantly smaller than
1=2, which allows for an approximate “probabilistic”
interpretation of Xi and Z as advocated in Ref. [29], only
in the DR-naturalness and cutoff schemes for the Λcð2595Þ
and its broader partner, respectively. With larger uncertain-
ties, the DR-HQS scheme for both resonances and the
DR-naturalness one for the wider state might also allow for

TABLE II. Compositeness ~Xi of each of the 16 coupled channels for the narrow state corresponding to the
Λcð2595Þ. The potentials V are those of the SUð6Þ × HQSS model of Refs. [15,16]. The finite (renormalized)
meson-baryon loop function is fitted to the Λcð2595Þ mass. This leads to the following parameters:

ffiffiffi
α

p ¼ 0.97952,
qmax ¼ 0.67898 GeV, a ¼ −3.37865 in the DR-naturalness, cutoff and the DR-HQS schemes, respectively. The
real parts of the ~Xi coefficients, calculated within the DR-naturalness renormalization scheme, were already given in
Table IV of Ref. [35]. According to Ref. [38], it is only meaningful to give a probabilistic interpretation to j ~XπΣc

j.
coupled channels DR-naturalness cutoff DR-HQS

Pole position (MeV) 2592.25 − i0.16 2592.25 − i9.18 2592.25 − i3.83
πΣc −0.024þ i0.107 0.319þ i0.637 −0.137þ i0.960
DN 0.292 − i0.026 0.025þ i0.018 0.343 − i0.277
ηΛc 0.009 − i0.001 0.004 − i0.001 0.040 − i0.042
D�N 0.451 − i0.055 0.155 − i0.044 0.243 − i0.302
KΞc 0.001 − i0.000 0.000 − i0.000 0.001 − i0.001
ωΛc 0.001 − i0.000 −0.000 − i0.001 0.014 − i0.012
KΞ0

c 0.000þ i0.000 0.000 − i0.001 0.002 − i0.001
DsΛ 0.026 − i0.003 0.004 − i0.000 0.018 − i0.019
D�

sΛ 0.057 − i0.006 0.008 − i0.001 0.051 − i0.054
ρΣc 0.005 − i0.000 −0.000 − i0.002 0.007 − i0.004
η0Λc 0.018 − i0.002 0.003 − i0.000 0.018 − i0.019
ρΣ�

c 0.006 − i0.001 0.003 − i0.002 0.006 − i0.008
ϕΛc −0.000 − i0.000 −0.000 − i0.000 0.000 − i0.000
K�Ξc 0.000þ i0.000 0.000 − i0.000 0.001 − i0.001
K�Ξ0

c 0.000 − i0.000 −0.000 − i0.000 −0.000 − i0.000
K�Ξ�

c 0.000 − i0.000 0.000 − i0.000 0.000 − i0.000P
i
~Xi 0.843þ i0.012 0.521þ i0.602 0.607þ i0.219

P [Eq. (12)] 0.001 0.565 0.095

TABLE III. Same as in Table II, but for the broader sibling of
the Λcð2595Þ resonance.
coupled channels DR-naturalness cutoff DR-HQS

Pole position
(MeV)

2606.7 − i32.4 2572.2 2627.9 − i37.4

πΣc 0.307þ i0.429 0.041 0.494þ i0.109
DN 0.005 − i0.044 0.254 −0.115þ i0.001
ηΛc 0.000þ i0.000 0.009 0.014þ i0.024
D�N 0.048þ i0.024 0.278 0.322þ i0.172
KΞc −0.000þ i0.000 0.001 −0.000þ i0.001
ωΛc 0.001 − i0.006 0.001 −0.005þ i0.002
KΞ0

c 0.001 − i0.005 0.000 −0.001 − i0.004
DsΛ −0.000þ i0.001 0.012 0.006þ i0.011
D�

sΛ 0.001þ i0.002 0.021 0.016þ i0.029
ρΣc 0.013 − i0.027 0.002 0.000 − i0.012
η0Λc 0.000þ i0.001 0.007 0.007þ i0.011
ρΣ�

c 0.007 − i0.006 0.002 0.015þ i0.001
ϕΛc −0.000 − i0.000 −0.000 0.000þ i0.000
K�Ξc 0.002 − i0.004 0.000 0.000 − i0.002
K�Ξ0

c 0.000 − i0.002 0.000 0.001 − i0.001
K�Ξ�

c 0.000 − i0.001 0.000 −0.000 − i0.001P
i
~Xi 0.388þ i0.363 0.616 0.755þ i0.339

P [Eq. (12)] 0.243 0. 000 0.246
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an approximate “probabilistic” interpretation of the results
obtained for the different components.
Thus we see the regularization scheme plays a relevant

role in the compositeness even with the same number of
coupled channels and identical kernel potentials. In other
words, the so-called compositeness used in the present way
cannot be taken as a model-independent quantity. This is
not a surprise, but it reflects the scheme-dependent nature
of the field renormalization constant, ~Z. Similar conclu-
sions have also been reached in Refs. [32,34].
To finish this subsection, we should note that in the

present approach, we have only fitted the mass of the
Λcð2595Þ, while the compositeness coefficients ~Xi in
Eq. (7) depend also on the couplings, which are in turn
related to the width. Note that except in the naturalness
scheme, the predicted width for the Λcð2595Þ turns out to
be much larger than its experimental value. A dedicated
study including the isospin breaking effects, together with
other channels, may provide further insight into the
problem (see, e.g., Ref. [37]), which is however beyond
the scope of the present study.

B. Two channels

In the unitarized chiral approach of Ref. [12], the
Λcð2595Þ resonance is dynamically generated from the
coupled–channel interaction between only the πΣc and

KΞ0
c meson-baryon pairs. As shown in Table IV, all three

regularization schemes considered in this work yield con-
sistent values for the compositeness coefficients, although all
with large imaginary parts and leading to values of the
uncertainty parameter P well above 1=2. Moreover the
values for ~XπΣc

listed in Table IV significantly differ from
those obtained in the 16 channel case of Table II.
The cutoff and the DR-HQS subtraction-constant needed

to fit the Λcð2495Þmass turn out to be rather natural (see the
discussion in Sec. II), while the α parameter in the
DR-naturalness scheme deviates appreciably from 1.
Similar conclusions are drawn in the single channel case,

πΣc, independently of the value used for the decay
constant.

C. Three channels

In the local hidden gauge approach of Ref. [18], three
channels are considered, namely πΣc,DN, and ηΛc. Taking
the kernel potentials from Ref. [18], we calculate the
compositeness coefficients ~Xi using the three regularization
schemes introduced in the previous subsections. Results are
shown in Table V. We can see that in the DR-naturalness
scheme, the DN channel dominates, while in the DR-HQS
method, the πΣc component is the most significant. The
renormalization method has an important impact on the
compositeness coefficients, despite all renormalization

TABLE IV. Compositeness ~Xi for the Λcð2595Þ obtained when only the πΣc and KΞ0
c channels are considered, as

in the chiral approach of Ref. [12]. For all renormalization schemes, the coupled–channel matrix potential V is taken
from this reference (note the approaches of Refs. [15,16,18] provide the same interaction, since it is fixed by SU(3)
chiral symmetry). The finite (renormalized) meson-baryon loop function is fitted to the Λcð2595Þmass. This leads to
the following parameters:

ffiffiffi
α

p ¼ 0.8268, qmax ¼ 0.7969 GeV, and a ¼ −5.3768 in the DR-naturalness, cutoff and
DR-HQS schemes, respectively.

coupled channels DR-naturalness cutoff DR-HQS

Pole position (MeV) 2592.25 − i12.7 2592.25 − i15.6 2592.25 − i13.5
πΣc 0.215þ i0.731 0.196þ i0.770 0.225þ i0.720
KΞ0

c 0.003 − i0.006 0.001 − i0.002 0.003 − i0.007P
i
~Xi 0.218þ i0.725 0.196þ i0.768 0.228þ i0.713

P [Eq. (12)] 0.823 0.904 0.799

TABLE V. Compositeness ~Xi for the Λcð2595Þ resonances obtained considering three, πΣc,DN and ηΛc, channels
as in the extended hidden gauge approach of Ref. [18]. For all renormalization schemes, the coupled–channel matrix
potential V is taken from this reference. The finite (renormalized) meson-baryon loop function is fitted to the
Λcð2595Þ mass. This leads to the following parameters:

ffiffiffi
α

p ¼ 0.96048, qmax ¼ 0.67535 GeV, and a ¼ −5.6365 in
the DR-naturalness, cutoff and DR-HQS schemes, respectively.

coupled channels DR-naturalness cutoff DR-HQS

Pole position (MeV) 2592.25 − i0.86 2592.25 − i11.4 2592.25 − i12.1
πΣc −0.060þ i0.483 0.057þ i1.002 0.212þ i0.729
DN 0.815 − i0.390 0.136 − i0.355 0.001 − i0.001
ηΛc 0.017 − i0.008 0.002 − i0.006 0.001 − i0.001P

i
~Xi 0.772þ i0.085 0.195þ i0.641 0.214þ i0.727

P [Eq. (12)] 0.020 0.699 0.829
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constants have been adjusted to reproduce the mass of the
Λc resonance.
We would like to make a further remark here. In

the DR-naturalness scheme, the consideration of the DN
channel has led to a value for α quite close to 1,
and an uncertainty parameter P [Eq. (12)] very small,
enabling for a “probabilistic” interpretation. Note that,
however, the P-values obtained in the other two renorm-
alization schemes are larger than 1=2, since in both cases
the imaginary parts of

P
i
~Xi are much larger than the

real ones.

IV. LARGE Nc EVOLUTION

The Nc counting rules for ordinary qqq baryons
lead to scaling laws ΓR ∼Oð1Þ, MR ∼OðNcÞ and
△E≡MR −MB −m ∼Oð1Þ, with MBðmÞ the ground-
state baryon (meson) mass, for the resonance decay width,
mass and excitation energy, respectively [60,66,67]. For an
ordinary qq state, its mass, width and decay constant
scale as Oð1Þ, Oð1=NcÞ and Oð ffiffiffiffiffiffi

Nc
p Þ, respectively. For

dynamically generated states, the Nc-evolution can deviate
strongly from such a scenario [45,47,50,53,54]. Compared
to the dynamically generated mesons, a study of dynami-
cally generated baryonic states is complicated because
baryon flavor representations change with Nc, when the
number of flavors is larger than two [79–81]. Such
corrections have been taken into account in the SU(3)
chiral study of the Λð1405Þ in Refs. [57,58], as well as in
the study of negative parity s-wave resonances carried out
in [55,56], where a SUð2NFÞ SF extension of the chiral
SU(3) WT interaction for an arbitrary number of flavors
and colors is derived. In the present exploratory work on
the Λcð2595Þ, we will present Nc > 3 results for the chiral
two coupled–channel scenario [12], and only in the strict
Nc → ∞ limit, in the case of the SUð6Þ × HQSS
model [15,16].
To obtain the large Nc evolution of the dynamically

generated states in unitarized approaches, one needs to
know how the masses of the interacting hadrons, the two
body loop function, and the interactions evolve as a
function of Nc. The latter evolution is partially a conse-
quence of the change of the flavor representation of the
baryons. In what follows, we examine the Nc dependence
of all these inputs.

A. Baryon and meson masses

Ground-state heavy flavor baryon masses in the 1=mQ
and 1=Nc expansions have been studied in Refs. [82–84].
Up to leading order in 1=Nc, one has

Mi ¼ mQ þM0

Nc

3
þ δi; ð13Þ

where mQ is the Nc independent heavy quark mass,
M0=3 the contribution of the light u, d, s quarks, and δi

the flavor SU(3) breaking contributions. For the present
study, we take mQ ¼ mc ¼ 1.275 GeV, M0 ∼ 0.9 GeV,
and δi is chosen such that Mi equals to its physical value
for Nc ¼ 3. The pseudoscalar meson masses scale as
Oð1Þ and are taken as constants, while the pseudoscalar
decay constant scales as Oð ffiffiffiffiffiffi

Nc
p Þ, namely,

fðNcÞ ¼ f0

ffiffiffiffiffiffi
Nc

3

r
; f0 ¼ fðNc ¼ 3Þ: ð14Þ

B. Loop function

As already mentioned, the meson-baryon loop function
in Eq. (2) is logarithmically divergent and should be
regularized. For that purpose in this work we have used
either the dimensional regularization method or have
included a momentum cutoff to render the ultraviolet
contributions finite. This latter scheme, Eq. (5), is particu-
larly useful, because its extension to arbitrary Nc might be
more transparent.
For Nc ¼ 3, the cutoff takes values of the order of

1 GeV. Although the Nc behavior of the cutoff is not
known from QCD, it is, however, clear that within the
chiral approach used in Ref. [12], it cannot grow faster
than the cutoff of the effective theory itself, which is of
the order of the scale of symmetry breaking Λχ ∼ 4πf.
Otherwise, we would have the absurd situation that we
can extend the validity of the loop integral beyond the
applicability of the theory. Therefore, a natural integral
cutoff, as is the case here, could scale as

ffiffiffiffiffiffi
Nc

p
, but not

faster [49]. We will also consider the possibility that the
cutoff may scale slower than

ffiffiffiffiffiffi
Nc

p
, since it would be

Oð1Þ, if it were determined by the existence of heavier
qqq states, which cannot be generated from low-energy
baryon-meson dynamics, and therefore have been inte-
grated out. We will present results for both scenarios,
which yield consistent conclusions, as it will be
shown below.
In the dimensional regularization scheme, the major

problem arises from the unknown Nc dependence of the
subtraction constant, a. However, in the DR-naturalness
scheme, it is given in terms of the meson and baryon
masses [14,15], which in turn fix the full dependence of
the loop function on Nc. This scheme was employed in
Ref. [55] to study the properties of the negative parity s-
wave resonances in the large Nc limit, starting from a
SU(6) spin–light flavor extension of the chiral WT
interaction for Nc ¼ 3. Indeed, some expressions given
in that reference were more general, and can be applied to
the SUð2NFÞ group symmetry for an arbitrary Nc. We will
take advantage of these findings and will use the
framework set up in Refs. [55,56] to discuss the strict
Nc → ∞ limit of the SUð6Þ × HQSS model used in
Refs. [15,16].
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C. Nc dependence of the meson-baryon interaction

1. KΞ0
c − πΣc chiral interaction

In the unitary approach of Ref. [12], the Λcð2595Þ
resonance is dynamically generated from the chiral inter-
action between the pseudoscalar octet of Goldstone bosons
and the sextet (Σc;Ξ0

c) of charmed baryons.7 In the
strangenessless (S ¼ 0) isoscalar (I ¼ 0) sector the inter-
action reads [12]

VI¼0;S¼0ðsÞ ¼ CI¼0;S¼0

4f2
ðEm þ E0

mÞ; ð15Þ

with Em and E0
m the center of mass energies of the initial

and final mesons, respectively and the coupled–channel
matrix is given by

CI¼0;S¼0 ¼
KΞ0

c πΣc�
−2 −

ffiffiffi
3

p

−
ffiffiffi
3

p −4
�

KΞ0
c

πΣc

: ð16Þ

In the SU(3) group theory language we have:

8 ⊗ 6 ¼ 3 ⊕ 6 ⊕ 15 ⊕ 24: ð17Þ

Although the decomposition involves four SU(3) irreducible
representations, only the 3 and 15 appear in the I ¼ 0, S ¼ 0

sector. Thus, the coupled–channel matrix CI¼0;S¼0 becomes
diagonal in the fj3;I¼ 0;S¼ 0i; j15;I¼ 0;S¼ 0ig SU(3)
basis. The meson-baryon and the SU(3) bases are related by
means of an orthogonal matrix U obtained from the
appropriate SU(3) Clebsch-Gordan coefficients [85]

ðj3i; j15iÞ ¼ ðjKΞ0
ci; jπΣciÞ ×U;

U ¼
 

− 1
2

−
ffiffi
3

p
2

−
ffiffi
3

p
2

1
2

!
: ð18Þ

In the SU(3) basis, the interaction of Eq. (15) reads

CI¼0;S¼0
SUð3Þ ¼ U†CI¼0;S¼0U ¼

�−5 0

0 −1

�
: ð19Þ

While in the meson sector, the flavor representation remains
the same with the increase of Nc, the situation in the baryon
sector ismore complicated because of the nontrivial variation
of the flavor representation of the baryons withNc, when the
number of flavors is larger than 2 [79,80].Weuse the notation
½p; q� for an irreducible representation of SU(3), whose
corresponding Young tableau has pþ q and q boxes in the
first and second rows, respectively. To extend the irreducible

flavor representation from Nc ¼ 3 to arbitrary Nc, we adopt
the prescription8

½p; q� →
�
p; qþ Nc − 3

2

�
; ð20Þ

For arbitrary Nc, the 6, 3, and 15 irreducible representations
become (we use the notation that an Nc-representation “R”
reduces to R at Nc ¼ 3 [79–81]),

“6” ¼
�
2;
Nc − 3

2

�
;

“3” ¼
�
0;
Nc − 1

2

�
;

“15” ¼
�
1;
Nc þ 1

2

�
: ð21Þ

From group theory the SU(3) basis coupling strengths
(eigenvalues) for arbitrary Nc turn out to be (see Table III
of Ref. [86]):

CI¼0;S¼0
SUð3Þ ðNcÞ ¼

�−5 0

0 − 5−Nc
2

�
; ð22Þ

which reduces to Eq. (19) at Nc ¼ 3. Note that the “15”
eigenvalue becomes repulsive for Nc > 5, while the inter-
action in the “3” subspace is always attractive and indepen-
dent of Nc, besides the scaling of the decay constant and
masses in Eq. (15).
The transformation matrix U will now depend on Nc as

well. It can be obtained from the appropriate Nc dependent
SU(3) Clebsch-Gordan coefficients. Using the recursion
relations of Ref. [87] or the results of Ref. [88], one can
easily obtain the explicit form of UðNcÞ for the decom-
position 8 ⊗ “6” ¼ “3” ⊕ “15” ⊕ “6” ⊕ “24”.
Following the usual convention, the SU(3) Clebsch-

Gordan (CG) coefficients can be expressed as the products
of isoscalar factors and ordinary SU(2) CGCs.

 
R1 R2 Rγ

I1; I1z; Y1 I2; I2z; Y2 I; Iz; Y

!

¼
 

R1 R2 Rγ

I1; Y1 I2; Y2 I; Y

! 
I1 I2 I

I1z I2z Iz

!
ð23Þ

7In the heavy quark limit, the spin-parity of the light degrees of
freedom in these baryons is 1þ.

8There are two other alternative ways to perform the extension.
The one used in the present work, referred to as the standard one
in Ref. [80], has the advantage of keeping the spin, isospin,
strangeness and charm quantum numbers of the original repre-
sentation at Nc ¼ 3, while the baryons have different charge and
hypercharge from those at Nc ¼ 3.
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where the label R indicates the SU(3) representation, which
can be denoted using the usual weight diagram notation
ðλ; μÞ, and γ labels degenerate representations occurring in
a given product.
With the formula given in Table 4 of Ref. [88], the

transformation matrix U can be obtained straightforwardly.
The first element, for instance, should be

U11¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ1Þðλ−1−pÞqðλþμþ1−qÞðλþμþ2−qÞ

λðλþ1Þðμþ1Þðλþμþ2Þðμþp−qþ2Þ

s

ð24Þ

with

p ¼ Y
2
þ I þ λ0 − μ0

3
; q ¼ Y

2
− I þ λ0 þ 2μ0

3
; ð25Þ

and Y is related with the ϵ of Ref. [88] via Y ¼ −ϵ=3. For
the present case, Y ¼ ðNc − 1Þ=3 and I ¼ 0. (λ0, μ0) refer to
the representation labeled by “3” and “15” and their values
are given in Eq. (21). Keeping in mind that the formula
above is used to calculate the isoscalar factors of “6” ⊗ 8,
an extra step is needed to obtain the U matrix for 8 ⊗ “6”.
Finally, the U matrix can be written as

UðNcÞ ¼

0
B@−

ffiffiffiffiffiffiffiffiffi
2

5þNc

q
−

ffiffiffiffiffiffiffiffiffi
3þNc
5þNc

q
−

ffiffiffiffiffiffiffiffiffi
3þNc
5þNc

q ffiffiffiffiffiffiffiffiffi
2

5þNc

q
1
CA: ð26Þ

With all these ingredients, we finally obtain the
KΞ0

c − πΣc coupled–channel interaction for an arbitrary
number of colors Nc

CI¼0;S¼0ðNcÞ ¼ UðNcÞ½CI¼0;S¼0
SUð3Þ ðNcÞ�U†ðNcÞ

¼

0
B@

Nc−7
2

−
ffiffiffiffiffiffiffiffiffi
Ncþ3
2

q
−

ffiffiffiffiffiffiffiffiffi
Ncþ3
2

q
−4

1
CA: ð27Þ

It is interesting to note that the πΣc → πΣc interaction is
attractive and does not change with Nc, while the KΞ0

c
self-interaction, which is attractive at Nc ¼ 3, becomes
repulsive for Nc > 7. On the other hand, the strength of the
off-diagonal transition increases with Nc.

2. SUð6Þ ×HQSS

To better understand the Nc ≫ 3 limit of the SUð6Þ ×
HQSS model, we need to give some further details on its
main features. The 16 coupled–channel model imple-
mented in Refs. [15,16] has its origin in the compatibility
between SF and chiral symmetries, which implies that the
WT interaction can be extended to enjoy SF invariance
[SUð2NFÞ]. Actually this can be done in a unique way, as it

was demonstrated in [89]. The model respects SF
symmetry in the light sector and HQSS in the heavy
one, and it reduces to SU(3) WT in the light sector
respecting chiral symmetry. HQSS connects vector and
pseudoscalar mesons containing charmed quarks. On the
other hand, chiral symmetry fixes the lowest-order inter-
action between Goldstone bosons and other hadrons in a
model-independent way; this is the WT interaction.
As required by SF symmetry, the model of Refs. [15,16]

incorporates ground state vector meson and JP ¼ 3=2þ
baryon degrees of freedom, in addition to the ground state
pseudoscalar mesons and JP ¼ 1=2þ baryons. In the large
Nc limit, SF becomes exact for the baryon sector
[90]. As for mesons, the lowest-lying states can also be
classified quite naturally according to SF multiplets.
Though for charmed mesons SF symmetry reduces to
HQSS, the symmetry works worse for the light meson
spectrum.
SF guarantees HQSS except when there are simulta-

neously c quarks and c antiquarks. This is because SF
implies invariance under equal rotations for c and c, but
HQSS also requires invariance when the two spin rotations
are different. Thus, SF does not guaranty HQSS in sectors
with hidden charm, regardless of whether they have net
charm or not. As mentioned in Sec. III A, in the study of the
CðcharmÞ ¼ 1 sector carried out in Refs. [15,16] the WT
SU(8) interaction kernel was modified, besides using
physical masses and weak decay constants, by neglecting
the hidden charm ccc channels to accomplish HQSS. The
model was quite successful and it naturally led to the
dynamical generation of the JP ¼ 1=2− Λcð2595Þ and
JP ¼ 3=2− Λcð2625Þ resonances, among others.
Moreover, it could be used to classify the predicted states
in SUð6Þ × HQSS multiplets [16]. Its extension to the
bottom sector [17] easily accommodated two narrow
baryon resonances with beauty recently observed by the
LHCb Collaboration [91], that should be intimately related
to the charmed Λcð2595Þ and Λcð2625Þ states.
We do not have the mathematical tools to extend the

SUð6Þ × HQSSmodel to an arbitrary number of colors, and
this is beyond the scope of this work. However, some
results for the SUð2NFÞ WT interaction and an arbitrary
number of colors were obtained in Refs. [55,56]. The
SUð2NFÞ WT interaction for each JISC sector9 reads as
that in Eq. (15), but replacing the coupled–channel matrix
there by the appropriate one, CJISC, in each sector. Thus for
instance, in the Λcð2595Þ sector, the dimension of the
coupled–channel space is 21: the sixteen channels enu-
merated in Tables II and III plus the hidden charm channels,
Λcηc, ΛcJ=Ψ, ΞccD, ΞccD� and Ξ�

ccD�. These latter five
channels were neglected in Refs. [15,16] to restore HQSS

9Here J stands for the total spin of the meson-baryon pair, and
for NF > 4, additional flavor quantum numbers would need to be
specified.
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symmetry. As discussed in Refs. [15,16], the SU(8) group
reduction10

63 ⊗ 120 ¼ 120 ⊕ 168 ⊕ 2520 ⊕ 4752; ð28Þ

shows that in the SU(8) basis, there exist only four
eigenvalues, associated to each of the irreducible repre-
sentations that appear on the right-hand side of
Eq. (28). Note that the SU(4) 15-plet of pseudoscalar
(Ds, D, K, π, η, ηc, K, D, Ds) and the 16-plet of
vector (D�

s , D�, K�, ρ, ω, J=Ψ, K�, D�, D�
s , ϕ) mesons

are placed in the 63 representation. The lowest–lying
baryons are assigned to the 120 of SU(8). This is
appropriate because in the light sector it can accommodate
an octet of spin–1=2 baryons and a decuplet of
spin–3=2 baryons which are precisely the SU(3)–spin
combinations of the low–lying baryon states (N, Σ, Λ,
Ξ and Δ, Σ�, Ξ�, Ω). The remaining states in the 20J¼1=2

and 200J¼3=2 are completed with the charmed baryons: Λc,
Σc, Ξc, Ξ0

c, Ωc, Ξcc, Ωcc and Σ�
c, Ξ�

c, Ω�
c, Ω�

cc, Ξ�
cc, Ωccc,

respectively.
The eigenvalues associated to the decomposition of

Eq. (28) were calculated in [55,56], for an arbitrary
number of colors and not only for SU(8), but for
SUð2NFÞ in general, and are compiled here in Table VI.
Independently of Nc, in the group reduction that general-
izes Eq. (28), there only appear four irreducible repre-
sentations [55]. For four flavors, the Λcð2595Þ state
belongs to the attractive 168 representation [16], whose
attraction linearly grows with Nc. In this subspace, and
keeping in mind the 1=f2 factor, the WT is always
attractive and it scales as Oð1Þ, in the large Nc limit.

However in the subspaces associated to the other three
representations, the WT interaction is either repulsive or
suppressed, Oð1=NcÞ, when Nc ≫ 3.
In the SU(8) basis, the coupled–channel interaction

matrix CJISC
SUð2NFÞ is diagonal, however we do not know,

for arbitrary Nc, the orthogonal matrix USUð8ÞðNcÞ that
would transform this diagonal matrix into CJISC, the matrix
expressed in the meson–baryon basis. It would be obtained
from the appropriate Nc dependent SU(8) Clebsch-Gordan
coefficients.11 This prevents us from obtaining the evolu-
tion of the Λcð2595Þ pole for moderate values of Nc > 3,
but however as we will discuss in the next subsection, we
will be able to address its behavior for Nc ≫ 3, where we
could consider the loop function diagonal in the meson-
baryon basis, as it was done in Ref. [55].

D. Λcð2595Þ mass and width for large Nc

From the findings of the previous subsections it is
straightforward to study the Nc dependence of the
Λcð2595Þ mass and width, when it is dynamically gen-
erated from the coupled–channel KΞ0

c − πΣc chiral inter-
action. We use an ultraviolet cutoff to renormalize the loop
function, and examine two different Nc scaling laws,
Oð ffiffiffiffiffiffiffiffiffiffiffi

Nc=3
p Þ or Oð1Þ, for this parameter of the effective

theory.
Results are displayed in Figs. 1 and 2, where imaginary

and real parts of the Λcð2595Þ pole position, together with
the expected behavior of a conventional qqq baryon, are
shown as a function of Nc. We pay attention to moderately
large number of colors, up to Nc ¼ 25. For both scaling
laws of the cutoff, we find that both mass and width of the
resonance grow with Nc, more rapidly when the cutoff is
taken as constant. Indeed, the resonance tends to disappear
since it becomes quite wide (width of hundreds of MeV)
and located also hundreds of MeVabove the πΣc threshold.
This behavior significantly deviates from that expected for

TABLE VI. Dimensions (D) and WT eigenvalues (λD) associated to the SUð2NFÞ irreducible representations that
appear in the group decomposition that generalizes Eq. (28) [NF ¼ 4 and Nc ¼ 3], for arbitrary number of flavors
and colors. It corresponds to the reduction of the product of the SU(8) adjoint (mesons) and the Nc-quark fully
symmetric (baryons) representations (see Eq. (27) of Ref. [55]). Note also a misprint in the expression given in
Ref. [56] for the dimension of the “2520” representation.

D λD “D” λ“D”

[NF ¼ 4, Nc ¼ 3]
120 −16 dðNF; NcÞ ¼ ð2NFþNc−1Þ!

ð2NF−1Þ!Nc!
−4NF

168 −22 ð2NF−1ÞðNc−1Þ
ð2NFþNc−1Þ × dðNF; NcÞ −2ðNc þ 2NFÞ

2520 6 ð2NF−1Þð2NFþNcþ1Þ
ðNcþ1Þ × dðNF;NcÞ 2Nc

4752 −2 2NFNcð2NFþNcÞð2NF−2Þ
ðNcþ1Þð2NFþNc−1Þ × dðNF; NcÞ −2

10For any NF, there always appears four irreducible repre-
sentations in the group reduction of Eq. (28). Obviously, the
dimensions of them, as well as those of the representations where
ground state baryons and mesons are included depend on NF.
These latter ones are always the adjoint and the three quark fully
symmetric representations, respectively.

11These coefficients can be found in Ref. [85] only for the
Nc ¼ 3 case.
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a genuine qqq state. Thus, the Nc evolution supports the
conjecture that the meson-baryon component in the wave-
function of the Λcð2595Þ plays a relevant role.
The above analysis is not consistent with the spin

symmetry in the baryon sector, though it only becomes
exact in the large Nc limit [90], and thus one should be
cautious about the consequences extracted in such a
scheme. This has motivated us to study the Nc-evolution
of the Λcð2595Þ-pole position from a different perspective,
implementing exact SU(8) SF symmetry.
As discussed in Sec. IV C 2, we cannot accurately study

moderatevalues ofNc > 3 in this context, becausewe donot
know the orthogonal matrixUSUð8ÞðNcÞ, which implements
the change of basis between the SU(8) one and that
constructed out of the meson-baryon pairs. Yet, even if
we knew such rotation, the obtained results for moderateNc
values would not be physical because SF symmetry does not
guaranty HQSS in this intermediate regime. However, for
sufficiently large values of Nc, all meson masses become

negligible as compared to those of the baryons, all of which
in turn, to a good approximation, have a common mass M̂,
proportional to Nc, as inferred from Eq. (13),

M̂ ¼ M0

Nc

3
þOð1=NcÞ: ð29Þ

In the charm sector C ¼ 1, there still appear only two types
of configurations involving either only a quark c or an
additional cc pair, since there is always at most only one
charm quark. Since the heavy quark mass is not much larger
than the typical scale associated to the cloud of light degrees
of freedom, and as Nc increases, the SU(8) SF symmetry
should become more and more accurate. Thus, the pole
positions could be obtained in each JIS sector and C ¼ 1
from (for simplicity, we drop out the label JISC)

det ½I − VðsÞGIIðsÞ�Nc≫3 ¼ 0 ð30Þ

withGIIðsÞ, the matrix loop function calculated in the SRS.
In the DR-naturalness renormalization scheme, GIIðsÞ
becomes diagonal in the meson-baryon coupled–channel
basis as it does the factor ðEm þ E0

mÞ=f2 ∼ 2ð ffiffiffi
s

p
− M̂Þ=f2

in the definition of the potential12 in Eq. (15). Under these
circumstances, the resonance position equation becomes

det ½I − VðsÞGIIðsÞ�Nc≫3 ¼ det

�
I −

ffiffiffi
s

p
− M̂

2f2
GIIðsÞUSUð8ÞðNcÞCSUð8ÞU

†
SUð8ÞðNcÞ

�
Nc≫3

¼ det

�
USUð8ÞU

†
SUð8Þ −

ffiffiffi
s

p
− M̂

2f2
GIIðsÞUSUð8ÞCSUð8ÞU

†
SUð8Þ

�
Nc≫3

¼
� ffiffiffi

s
p

− M̂
2f2

GIIðsÞ
�n

det ½βðsÞ − CSUð8Þ�Nc≫3
¼ 0 ð31Þ

FIG. 1. Imaginary part of the Λcð2595Þ pole position as a
function of the number of colors. Results have been obtained
using the Nc > 3 extended coupled–channel KΞ0

c − πΣc chiral
interaction constructed out of Eqs. (15) and (27), and employing
an ultraviolet-cutoff to render the loop function finite. Curves
denoted as “Scaling” and “No scaling” stand for the results
obtained with different Nc scaling laws for the cutoff, either
Oð ffiffiffiffiffiffiffiffiffiffiffi

Nc=3
p Þ or Oð1Þ, respectively.

FIG. 2. The same as in Fig. 1, but for the real part of the
Λcð2595Þ pole position, with respect to the πΣc threshold.

12We are also neglecting SF symmetry breaking effects in the weak decay constants.
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with βðsÞ ¼ 2f2=½ð ffiffiffi
s

p
− M̂ÞGIIðsÞ� and CSUð8Þ a diagonal

matrix constructed out of the four eigenvalues, λ“D”, given
in Table VI. Besides, n is the dimension of the space
(n ¼ 21 in the Λcð2595Þ sector). We see how in the large
Nc limit, we can determine the pole position independently
of the orthogonal transformation USUð8ÞðNcÞ. Thus, the
pole positions are determined by

βðsÞjs¼sR≡M2
R−iMRΓR

¼ λi;

i ¼ “120”; “168”; “2520”; “4752” ð32Þ

withMR > M and ΓR > 0. The loop function GIIðsÞ in the
fourth quadrant, neglecting the meson masses and using a
common mass M̂ for the baryons, can be found in Eq. (14)
of Ref. [55]. The equation (32) has solutions only for
negative eigenvalues, λ“120”, λ“168” and λ“4752”. As men-
tioned, the “168” irreducible representation of SU(8) leads
to the most attractive s-wave meson–baryon interaction,
and it becomes the only nonvanishing WT contribution in
the strict Nc → ∞ limit.
To understand the Nc evolution, the approximated

relations of Eqs. (15), (16) and (17) of Ref. [55],

δ2 log δ ∼
24π2f20
NcλiM2

0

; δ≡MR − M̂

M̂
ð33Þ

ΓR

M
∼ −

πδ

log 2δ
∼ −λi

Ncδ
3M2

0

24πf20
;

i ¼ “120”; “168”; “2520”; “4752” ð34Þ

are quite useful. There exist two different situations,
neglecting logarithmic corrections,

λi ∼Oð1Þ ⇒ ðMR − M̂Þ ∼
ffiffiffiffiffiffi
Nc

p
; ΓR ∼

ffiffiffiffiffiffi
Nc

p
ð35Þ

λi ∼OðNcÞ ⇒ ðMR − M̂Þ ∼Oð1Þ; ΓR ∼Oð1Þ: ð36Þ

From the results of Table III of Ref. [16], we can see that the
two Λcð2595Þ states predicted in Ref. [78] and the JP ¼
3=2− Λcð2625Þ resonance stem from the 168 representa-
tion, and thus one deduces that their widths and excitation
energies behave as Oð1Þ for Nc ≫ 3, as predicted by
Witten almost 30 years ago for genuine qqq states.
However, the width and excitation energy of the fourth
resonance in the table, located around13 2800 MeV and
associated to the 120 representation, grow as

ffiffiffiffiffiffi
Nc

p
in this

limit. That is, this resonance would disappear, since it
becomes wider and heavier as Nc increases. This behavior
would be similar to what we have seen earlier in Figs. 1
and 2. Note that the large 4752 is attractive and contains

many exotic states that would disappear in the large Nc
limit as deduced from the above discussion.
The fact that the Λcð2595Þ resonance survives in the

large Nc limit, contradicting the findings of Figs. 1 and 2, is
however quite natural. Indeed, it is natural to admit the
existence of a (perhaps) subdominant qqq component in
the resonance wave function. Indeed, this resonance has
been studied with some success using a constituent quark
model in Ref. [92]. Thus, one might expect the Nc behavior
close to the physical value Nc ¼ 3 of the resonance is non
qqq due to the unitarity logs, but this subdominant qqq
component would become dominant when the number of
colors gets sufficiently large [50,51]. One might think of
calling such a state as a qqq one even if it has a strong
meson-baryon component in the Fock space. However this
nomenclature might lead to some confusion. An example is
the scalar σ meson. It certainly has a qq component in its
wave function and thus such a component dominates in the
large Nc limit, but because of the chiral loops, its nature for
Nc not far away from 3 differs substantially from that of an
ordinary qq meson [45,47,50,51].
It is interesting to note that recently lattice QCD simu-

lations have started to probe the dependence on Nc of the
properties of mesonic [93] and baryonic [94,95] states. (See,
Ref. [63] for a comprehensive review.) Testing the Nc
dependence of the Λcð2595Þ and other proposed molecular
states can help to unravel their true nature. In this sense, the
present study should serve a motivation for such studies.

V. SUMMARY

Understanding the Fock components of a hadronic state
is a nontrivial task due to the nonperturbative nature of the
strong interactions at the relevant scales. Recent exper-
imental observation of the so-called XYZ and baryonic
pentaquark states have challenged the conventional wisdom
that baryons are composed of three quarks and mesons of a
quark-antiquark pair. More surprisingly, large hadron-
hadron components are predicted for certain well-
established hadrons, e.g., the Nð1535Þ. In the present
work, we have used two widely accepted approaches to
qualify the Λcð2595Þ as a dynamically generated state,
namely, the compositeness condition and the large Nc
evolution. Our results show that, although the relative
importance of a particular coupled channel cannot be
determined in a model independent manner, the basic
picture that the Λcð2595Þ has relevant meson-baryon
components emerges as a robust conclusion. We have also
shown that the commonly defined compositeness of the
state depends on the included coupled channels, and also
on the scheme adopted to renormalize the ultraviolet
divergent meson-baryon loop function, which appears in
the unitarized approaches. The importance of the molecular
picture is also corroborated by our study of the dependence
on the number of colors of the mass and width of the
Λcð2595Þ. It is shown that for moderate Nc > 3 values,

13This resonance, with large couplings to Λcη and ΞcK, is also
found in Ref. [12].
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they differ largely from those expected for a genuine qqq
state. We cannot however discard the existence of a
(perhaps) sub-dominant qqq component in the resonance
wave function, which would become dominant when the
number of colors gets sufficiently large.
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