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We introduce the use of the Weibull distribution as a simple parametrization of charged particle
multiplicities in hadron-hadron collisions at all available energies, ranging from ISR energies to the most
recent LHC energies. In statistics, the Weibull distribution has wide applicability in natural processes that
involve fragmentation processes. This provides a natural connection to the available state-of-the-art models
for multiparticle production in hadron-hadron collisions, which involve QCD parton fragmentation and
hadronization. The Weibull distribution describes the multiplicity data at the most recent LHC energies
better than the single negative binomial distribution.
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I. INTRODUCTION

Inclusive charged particle multiplicity distribution had
been extensively studied in hadronic collisions. The
multiplicity distribution characterizes the hadronic final
state and provides important insights on the production
mechanism of multiparticle final states. In particular, they
are sensitive to the underlying quantum chromodynamics
(QCD) in hadron-hadron collisions. The previous phe-
nomenological studies of multiplicity distributions at
various energies have been done in terms of parameters
of the negative binomial distribution (NBD) function.
Although the interpretation of the NBD function in terms
of particle production is not fully understood, it remark-
ably described the data at lower energies [1]. However,
deviations from the NBD function were observed at
higher energies [1–3], which puts constraints on its
universal applicability for a wider range of energies.
The use of single NBD function was followed by the
two-component model of particle production, where one
component was interpreted to be soft and the other as
semihard [4]. This led to the description of the data by the
weighted combination of two NBD functions. The multi-
plicity distributions at LHC energies and for all pseudor-
apidity intervals were well described by this approach
[2,5]. However, it was pointed out that the excellent
description of multiplicity distributions of hard QCD
events in forward rapidity of pp collisions at 7 TeV
contradicts the very concept of the two-component model
[5]. The framework of a weighted superposition of
distributions to explain various classes of events has also
been extended to the three-component model in order to
explain the multiplicity distributions at LHC energies for
pp collisions at 14 TeV [6]. Recently, models based on
glasma flux tubes have reproduced the multiplicity dis-
tribution in pp collisions at LHC energies in midrapidity
using the superposition of many NBD functions [7].

However, one should note that with the superposition
of two or more NBD functions, one increases the number
of free parameters in the resultant function and, hence,
fitting the experimental distribution becomes mathemati-
cally easier. A detailed discussion on multiplicity mea-
surements and various approaches can be found in [8].
In this work, we introduce a statistical distribution—

namely, the Weibull distribution [9] based on an appealing
physical interpretation. Our objective is to provide a single
two-parameter function that can broadly describe the
principal feature of the multiplicity distribution for most
of the available experimental measurements in ppðpp̄Þ
systems at all available energies from intersecting storage
rings (ISR) to LHC.

II. WEIBULL DISTRIBUTION

Many evolving systems in nature exhibit skewed dis-
tributions; among them, Weibull and log-normal distribu-
tions commonly appear in a variety of systems [9,10]. In
particular, the Weibull-like distribution is widely used to
describe size distribution obtained in diverse fields such as
material fragmentation [11], cloud droplets [12], biological
systems [13,14], wind speeds [15], extreme-value statistics
[16,17], and so forth. Since final-state particle multiplicity
can be seen as having evolved from initial hadron-hadron
collisions, one can expect to use the Weibull-like distri-
bution to describe the probability of producing charged
particles.
The probability distribution of a continuous random

variable n in terms of a two-parameter Weibull distribution
is given by

Pðn; λ; kÞ ¼ k
λ

�
n
λ

�
k−1

e−ðn=λÞk ; ð1Þ

where k is the shape parameter and λ is the scale parameter
of the distribution. The mean of the distribution is given in
terms of λ and k as*sadhana@phy.iitb.ac.in
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hni ¼ λΓ
�
1þ 1

k

�
: ð2Þ

The description of a physically based derivation of the
Weibull distribution with respect to fragmentation proc-
esses can be found in [11]. In Ref. [11], it was shown that
the result of a single event fragmentation leading to a
branching tree of cracks in the material that show fractal
behavior can be described by a Weibull-like distribution.
This can be related to the mass distribution or particle
number distribution developed by the fragmentation proc-
ess. It was also shown that a particular mass distribution
closely resembles the log-normal distribution, which has
been commonly used for describing fragmentation distri-
butions [11]. The log-normal distribution also described
well the particle multiplicities at ISR energies [18].
The underlying mechanism of particle production in

hadronic collisions as given by current models is based on
the fragmentation of partons into observed hadrons.
Irrespective of particular details, most of the models of
multiparticle production contain an evolution composed of
various steps that are based on previous intermediate steps
and are influenced by the same. The steps involving hard
and semihard processes are well explained by perturbative
QCD [19–21], whereas models for soft interactions involve
a large class of string fragmentation models [22,23]. The
cascade nature of models involving fragmentation of
partons is apparent and, thus, one can use the Weibull
distribution to model the basic multiplicity distribution in
hadron-hadron collisions. This also corroborates to the clan
model that involves particle cascades as a mechanism of
particle production [2,4].
Because the multiplicity in a collision is a result of

the fragmentation of the energy (invariant mass of initial
partons) involved in the initial scattering into masses (or
packets of energy), we are more interested in the distribu-
tion of this fragmented energy or mass. Alternatively, one
can use the weight-size distribution in the fragmentation of
bulk matter, resulting in macroscopic mass distribution
[11]. If nðϵÞ describes the number of particles produced
with fragmented energy (or mass) between ϵ and ϵþ dϵ,
and each of the particles has an energy ϵ, then the energy
distribution is simply ϵnðϵÞ. Its distribution follows [11]

ϵnðϵÞ ¼ k
λ

�
ϵ

λ

�
k−1

e−ðϵ=λÞk : ð3Þ

The above distribution is a Weibull distribution in
energy, where the λ parameter is related to the average
value of the fragmented energy (and can be related to the
mean multiplicity) in the collision, while the value of k
parameter is associated to the dynamics of the fragmenta-
tion process. We can relate the distribution of the number
of particles produced in a collision as the distribution of
fragments of initial energy and, thus, can effectively use the

Weibull distribution to describe the multiplicity in hadron-
hadron collisions.

III. MULTIPLICITY DISTRIBUTION
AND WEIBULL PARAMETERS

In the present scenario, where we have experimental data
on multiplicity distributions in widest range of energies
and pseudorapidity intervals, it is worth trying to determine
whether one can parametrize the data in terms of Weibull
parameters. We identify the variable n with the charged
particle multiplicity and perform fits to the data points
using the chi-square minimization method.
The multiplicity distributions were fitted with a Weibull

function in pp̄ and pp collisions as measured by the UA5
experiment at super proton synchrotron energies [1] and by
CMS experiments [24] at LHC energies, respectively.
Figure 1 shows the Weibull fits to the multiplicity dis-
tribution at jηj < 0.5 for the pp̄ collisions as measured by
UA5 experiment at 200 GeV, 540 GeV, and 900 GeV
center-of-mass energies. The Weibull fits to the multiplicity
distribution in pp collisions at jηj < 0.5 as measured by
CMS experiment at various energies are depicted in Fig. 2.
Table I lists all the parameters obtained from the Weibull

fits together with χ2=NDF and extracted mean multiplicity
for different collision systems studied.
The multiplicity distributions measured by the CMS

experiment at three LHC energies, i.e., 0.9 TeV, 2.36 TeV,
and 7 TeV, for wider pseudorapidity intervals and for the
same class (non-single-diffractive class) were also ana-
lyzed. The multiplicity distribution was earlier analyzed
with a single NBD distribution; this resulted in poor
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FIG. 1. UA5 measurement of charged particle multiplicity
distributions in pp̄ collisions for jηj < 0.5 at

ffiffiffi
s

p ¼200GeV,
540 GeV, and 900 GeV [1]. The solid lines represent the Weibull
fits to the data points. The data points for a given energy are
appropriately scaled for better visibility.
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agreement with the data, specifically in wider pseudor-
apidity intervals. It was followed by a description with a
weighted superposition of two NBD functions, which
described the data successfully [2]. However, we are not
comparing the Weibull distribution with the double NBD
function, as the number of parameters in the latter is higher.
We are also not discussing two- (or more) component
particle production in theWeibull parametrization. Wewant
to emphasize that a single distribution is able to describe the
global feature of the particle production. The fits to the
recent multiplicity distributions in pp collisions as mea-
sured by the CMS experiment at various energies (for
different η intervals) are shown in Figs. 3, 4, and 5,
respectively. The fits from the single NBD function are
also shown for comparison. As can be seen from the
figures, the Weibull fits give a better description of the data
at all energies and at all pseudorapidity intervals compared
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FIG. 2. CMS measurement of charged particle multiplicity in
pp collisions for jηj < 0.5 at

ffiffiffi
s

p ¼ 0.9 TeV, 2.36 TeV, and
7 TeV [24]. The solid lines represent the Weibull fits to the data
points. The data points for a given energy are appropriately scaled
for better visibility.

TABLE I. List of parameters and χ2=NDF values of the Weibull
fits to the data for various collision systems at different energies
for jηj < 0.5.

Collision
systems

ffiffiffi
s

p
(TeV) k λ χ2=NDF hni

pp̄ 0.2 1.27� 0.04 3.17� 0.17 0.54 2.93� 0.29
pp̄ 0.54 1.26� 0.01 3.58� 0.14 1.66 3.32� 0.15
pp̄ 0.9 1.11� 0.01 4.07� 0.18 0.33 3.91� 0.15
pp 0.9 1.18� 0.03 4.17� 0.16 0.03 3.98� 0.18
pp 2.36 1.14� 0.03 5.41� 0.15 0.22 5.15� 0.36
pp 7 1.15� 0.01 7.35� 0.16 0.85 6.98� 0.26
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FIG. 3. CMS measurement [24] of charged particle multi-
plicity distributions in pp collisions for different pseudorapid-
ity intervals at

ffiffiffi
s

p ¼ 0.9 TeV. The solid lines represent the
Weibull fits to the data points while the dashed lines represent
the standard single NBD fits. The data points for a given
pseudorapidity interval are appropriately scaled for better
visibility.
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FIG. 4. CMS measurement [24] of charged particle multi-
plicity distributions in pp collisions for different pseudorapid-
ity intervals at

ffiffiffi
s

p ¼ 2.36 TeV. The solid lines represent the
Weibull fits to the data points while the dashed lines represent
the standard single NBD fits. The data points for a given
pseudorapidity interval are appropriately scaled for better
visibility.
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to the single NBD function. The values of the parameters
and the χ2=NDF of the fit are tabulated in Tables II, III,
and IV.
At LHC energies, the multiplicity distribution as mea-

sured by LHCb experiment covers the widest range of

pseudorapidity intervals in pp collisions at 7 TeV [25]. The
LHCb experiment has measured multiplicity distributions
of charged particles produced for two classes of events: the
minimum bias and the hard QCD events. The hard QCD
events were selected from the minimum bias events by
identifying events with at least one particle with transverse
momentum greater than 1 GeV=c. The distributions were
analyzed for both the event classes in forward rapidity
(2.0 < η < 4.5) using the Weibull function. The single
NBD distribution could not give a good description of the
data in the forward rapidity for both the event classes [5].
Figure 6 shows the Weibull fits to the LHCb data in forward
rapidity (2.0 < η < 4.5) for both the event classes. The data
is nicely described by the Weibull distribution for minimum
bias and the hard QCD events. The applicability was also
checked at lower energies measured by the ISR experiment
[26], as shown in Fig. 7. This figure provides an excellent
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FIG. 5. CMS measurement [24] of charged particle multiplicity
distributions in pp collisions for different pseudorapidity inter-
vals at

ffiffiffi
s

p ¼ 7.0 TeV. The solid lines represent theWeibull fits to
the data points while the dashed lines represent the standard
single NBD fits. The data points for a given pseudorapidity
interval are appropriately scaled for better visibility.

TABLE IV. List of parameters and χ2=NDF values of the
Weibull fits to the data at

ffiffiffi
s

p ¼ 7.0 TeV for different pseudor-
apidity intervals.

η interval k λ χ2=NDF hni
−0.5–0.5 1.15� 0.015 7.35� 0.15 1.13 6.99� 0.12
−1.0–1.0 1.20� 0.013 14.56� 0.23 1.02 13.69� 0.18
−1.5–1.5 1.23� 0.011 21.89� 0.29 1.08 20.45� 0.22
−2.0–2.0 1.27� 0.011 30.02� 0.16 1.09 27.85� 0.09
−2.4–2.4 1.30� 0.017 36.44� 0.18 1.25 33.65� 0.06

TABLE III. List of parameters and χ2=NDF values of the
Weibull fits to the data at

ffiffiffi
s

p ¼ 2.36 TeV for different pseudor-
apidity intervals.

η interval k λ χ2=NDF hni
−0.5–0.5 1.14� 0.03 5.41� 0.16 0.22 5.16� 0.11
−1.0–1.0 1.25� 0.02 10.86� 0.22 0.69 10.11� 0.17
−1.5–1.5 1.27� 0.02 16.23� 0.19 0.37 15.07� 0.13
−2.0–2.0 1.29� 0.03 21.54� 0.25 0.53 19.92� 0.14
−2.4–2.4 1.33� 0.02 25.96� 0.28 0.54 23.87� 0.19

TABLE II. List of parameters and χ2=NDF values of the
Weibull fits to the data at

ffiffiffi
s

p ¼ 900 GeV for different pseudor-
apidity intervals.

η interval k λ χ2=NDF hni
−0.5–0.5 1.18� 0.03 4.17� 0.16 0.035 4.14� 0.09
−1.0–1.0 1.28� 0.02 8.60� 0.17 0.362 7.97� 0.13
−1.5–1.5 1.31� 0.02 12.70� 0.17 0.333 11.71� 0.16
−2.0–2.0 1.34� 0.02 16.88� 0.23 0.332 15.50� 0.18
−2.4–2.4 1.38� 0.02 20.33� 0.26 0.444 18.57� 0.20
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FIG. 6. LHCb measurement [20] of charged particle multiplic-
ity distributions in pp collisions for two different event classes in
forward rapidity (2.0 < η < 4) regions at
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p ¼ 7 TeV. The solid
lines represent the Weibull fits to the data points. The data points
for a given energy are appropriately scaled for better visibility.
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comparison, in which we observe that the Weibull distri-
bution successfully explains the data at two diverse energy
regimes.
The energy dependence of the mean charged multiplicity

reflects the underlying particle production mechanism.
Feynman scaling predicts that the total mean number of

particles produced obeys an energy dependence propor-
tional to lnð ffiffiffi

s
p Þ [27]. Figure 8 shows the mean multiplicity

as a function of the center-of-mass energy. As can be
observed from the figure, the mean multiplicity increases
with an increase of collision energy, and the variation of
mean multiplicity with beam energy can be quantified by
the expression

hni ¼ AþB lnð ffiffiffi
s

p Þ þC ln2ð ffiffiffi
s

p Þ: ð4Þ

We also observe that the scale parameter, λ, shows an
energy dependence similar to that of the mean multiplicity.
This is shown in Fig. 9. The observed variation of the λ
parameter is expected, as λ is related to mean multiplicity.
Figure 10 shows the variation of λ as a function of η for
various LHC energies. The value of λ increases with
increasing η intervals and energy. The observed behavior
is expected, as the number of particles produced increases
with increase in collision energy and η intervals.
It can be seen from Table I that the values of the shape

parameter k do not vary significantly with the center-of-
mass energy. However, there is a slight decrease in the k
value with an increase in collision energy. This is also
shown in Fig. 11 for different η intervals for different
available LHC energies. It should be also noted that the k
value has an increasing trend with an increase in η intervals.
One can interpret that the k value becomes higher with an
enhanced contribution of particle production from soft
processes. As the k parameter is related to the nature of
the fragmentation process, one can say that the dynamics
associated with the fragmentation process in hadron-hadron
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FIG. 7. ISR measurement of topological cross sections as a
function of multiplicity in pp collisions (for jηj < 4.0) at various
center-of-mass energies [21]. The solid lines represent the
Weibull fits to the data points. The data points for a given
energy are appropriately scaled for better visibility.
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function of center-of-mass energy. The solid line represents the fit
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collisions do not vary significantly with the center-of-mass
energy in similar η intervals.
Taking this into account, as well as the extrapolated

values of the λ parameter, we predict the multiplicity
distributions in pp collisions at the recent LHC run at
13.0 TeV (λ ¼ 8.75� 2.78, k ¼ 1.15� 0.012). Figure 12

depicts the predicted multiplicity distributions at
ffiffiffi
s

p ¼
13.0 TeV for jηj < 0.5. The shaded band on the data points
shows a systematic error band that is due to various sources
including variation in fitting parameters, ranges, and so
forth. The mean multiplicity, hni, at 13.0 TeV turns out to
be 8.30� 2.96. The measurement of multiplicity distribu-
tions at larger

ffiffiffi
s

p
at LHC will be a first test of the further

applicability of the Weibull distribution and will add
credibility to the extrapolation.

IV. SUMMARY

We have demonstrated that the Weibull distribution
provides an excellent description of the multiplicity dis-
tributions of inclusive charged particles in hadronic colli-
sions at all available energies and at all pseudorapidity
intervals. This is particularly significant because the
Weibull distribution arises in cascade processes that involve
the fragmentation of the source. This leads to a very
interesting physics interpretation in terms of current
dynamical models of multiparticle production. The λ
parameter can be related to mean multiplicity. The k
parameter does not vary significantly with energy in similar
pseudorapidity intervals, indicating the universal nature of
parton fragmentation and subsequent hadronization. We
observe that the Weibull distribution provides more appro-
priate descriptions of multiplicity distributions compared to
the existing statistical functions used in multiparticle
production processes.
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FIG. 10. The variation of the λ parameter as a function of η for
various energies.
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