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The Bakamjian-Thomas relativistic quark model, describing hadrons with a fixed number of
constituents, yields in the heavy quark limit of QCD covariant Isgur-Wise functions and satisfies the
whole tower of lowest moment sum rules (Bjorken-Uraltsev type sum rules). We first recall, as well as
earlier results, the new formalism presented in our recent papers on Lorentz representations, which provides
an elegant framework for the analysis of this model in the heavy quark limit and stress the results which
have been already obtained in this direction. Then, we give some very explicit demonstrations of the fact
that the Bakamjian-Thomas framework satisfies the sum rules by considering simple cases of Isgur-Wise
functions. In addition to the specific Bjorken and Uraltsev sum rules, an important sum rule that involves
only heavy mesons with light cloud jP ¼ 1

2
− and their radial excitations is demonstrated. This latter sum

rule is phenomenologically interesting because it constrains the derivatives of the radially excited Isgur-
Wise functions at zero recoil. On the other hand, we recall the limitations of the Bakamjian-Thomas
scheme. At finite mass, current matrix elements with the current coupled to the heavy quark are no longer
covariant, and higher moment sum rules that hold in the heavy quark limit of QCD are not satisfied.
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I. INTRODUCTION

We give a rather extended introduction, in order to make
understand the motivation of the calculations we are
presenting.

A. OPE sum rules in the heavy quark limit of QCD

The heavy quark limit of QCD implies powerful con-
straints on form factors. In the elastic case for transitions
1
2
− → 1

2
− for the light cloud B̄ → Dð�Þlν, this limit implies

that all form factors are given in terms of a single function,
the famous Isgur-Wise (IW) function ξðwÞ [1].
The operator product expansion (OPE) leads, in general,

to sum rules, which take a simple form in the heavy quark
limit. A sum rule (SR) formulated by Bjorken [2] in the
heavy quark limit of QCD implies the lower limit
ρ2 ¼ −ξ0ð1Þ ≥ 1

4
. This SR was formulated in a transparent

way by Isgur and Wise, in terms of IW functions τ1=2ðwÞ,
τ3=2ðwÞ for inelastic transitions 1

2
− → 1

2
þ, 3

2
þ at zero

recoil [3].
Ten years later, a new SR was discovered by Uraltsev [4],

making use of the nonforward amplitude B̄ðviÞ →
DðnÞðv0Þ → B̄ðvfÞ (vi ≠ vf). Uraltsev SR combined with
Bjorken’s yields the much more powerful lower bound for
the elastic slope, ρ2 ≥ 3

4
.

At this stage, it is important to make precise which type
of sum rules we consider. Indeed, we have to point out that

we are dealing here with the lowest moment SR of a more
general class of SR that also hold in the heavy quark limit
of QCD. We do not consider SR that involve IW functions
with powers of level spacings ΔEðnÞ, i.e., sums of the formP

nðΔEðnÞ
j ÞkjτðnÞj ð1Þj2 (j ¼ 1

2
, 3
2
) where k > 0 is an integer.

For k ¼ 1, one has at zero recoil Voloshin SR for the heavy
quark effective theory (HQET) parameter Λ̄ [5] and the
counterpart for k ¼ 1 of Uraltsev SR [4,6], while for k ¼ 2
there are the SR at zero recoil for the important HQET
parameters μ2G and μ2π formulated by I. Bigi et al. [7]. The
general case for any value of k has been formulated by
Grozin and Korchemsky [8]. In the present paper we are
concerned with the lowest moment case k ¼ 0.
In a number of papers we generalized Bjorken and

Uraltsev SR, and we obtained a whole tower of SR that
allow us to constrain the higher derivatives of the elastic IW
function ξðwÞ. In particular, we found lower bounds on the
successive derivatives [9,10], and also an improved lower
bound of the curvature in terms of the slope [11]. Similar
results were also formulated for the baryon case jP ¼
0þ [12].

B. Overview of our recent work

Then, our research shifted to study a possible physical
insight into these powerful results of the SR method. To this
aim, we started from a general idea formulated very early
by Falk [13], namely, that the IW functions, leaving spin
complications aside, originate in the possibility of a
factorization of the current matrix elements into a free*Unité Mixte de Recherche UMR 8627-CNRS.
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heavy quark current and a part relative only to light
quarks and which bears the QCD interaction, that within
factorization is then a soft strong interaction. Then the IW
functions correspond to the latter, and have roughly the
simplified form, e.g., for a scalar ground state

ξðwÞ ¼ hUðΛfÞφðv0ÞjUðΛiÞφðv0Þi ¼ hφðv0ÞjUðΛÞφðv0Þi
ð1Þ

where UðΛÞ is a boost, the state jφðv0Þi with v0 ¼
ð1; 0; 0; 0Þ represents the light cloud at rest (eigenstates
of angular momentum), and the Lorentz transformation Λ
satisfies Λv0 ¼ v with v0 ¼ w.
An important hypothesis has been done in writing

expression (1), namely, the neglect of hard gluon radiative
corrections. We comment shortly on this assumption at the
end of the article.
These overlaps are covariant. With this ansatz of Falk, the

light cloud belongs to a distinct Hilbert space and transforms
itself according to a unitary representation of the Lorentz
group. This corresponds to the covariance property of the
overlap. One can then decompose these representations
with the help of Lorentz group representation theory [14] in
terms of irreducible representations of the Lorentz group,
which must themselves be decomposed further into irre-
ducible representations of SUð2Þ to obtain definite j states.
The decomposition of the representation of the hadron

light quark state leads to a parallel description of the IW
function as an integral over “irreducible IW functions” with
a positive measure. The integration is over a parameter ρ
introduced by Naïmark [14], which labels the irreducible
unitary Lorentz group representations

ξðwÞ ¼
Z

ξρðwÞdνðρÞ ð2Þ
with ξρðwÞ the irreducible IW functions and dνðρÞ the
positive measure. This integral representation in turn leads
to a set of powerful bounds on the IW function. We have
developed in detail the above Lorentz group analysis in two
papers, that, in the following, we will quote as Lorentz I
[15] and Lorentz II [16].
The formulation of IW functions as overlaps (i.e. scalar

products) of light quark states also leads to a transparent
presentation of sum rules, just using closure for products of
such overlaps.
In the case of ground state heavy baryons jP ¼ 0þ or

mesons jP ¼ 1
2
− (for the light cloud), we have demonstrated

that the constraints on the IW function that one has
obtained from the sum rules of Bjorken and Uraltsev
and their generalizations—which in certain cases require
many steps—can be derived quite directly from the above
analysis of the elastic IW function by the Lorentz group
method (2). In addition, many other bounds are found.
The integral representation (2) has been inverted in

Ref. [16], obtaining the measure in terms of the physical
IW function ξðwÞ in the case jP ¼ 1

2
−,

dνðρÞ
dρ

¼ 1

2π

Z þ∞

−∞
eiτρdτ

1

2 coshðτ
2
Þ
d
dτ

½ðcoshðτÞ þ 1Þ

× sinhðτÞξðcoshðτÞÞ� ð3Þ

where τ is such that w ¼ coshðτÞ. This integral should be
positive.
One notes that the measure is given by a Fourier

transform, where τ is related to the momentum transfer
w − 1, and ρ is conjugate to it. It is then a sort of relativistic
generalization of the relation holding in the nonrelativistic
case [17], where the definite positive charge density in ~r is
the Fourier transform of the form factor, which plays the
role of ξðwÞ, and that leads to similar bounds on the
derivatives to this form factor.
The positivity condition on the rhs of Eq. (3) has allowed

us to test the consistency of quite a number of models given
in the literature for the elastic meson IW function, checking
the explicit formula of ξðwÞ for each of these models. We
have considered a number of phenomenological formulas
and also some quark models for ξðwÞ.
Among the few quark models in the literature for the IW

function that we have been able to examine, only two have
passed these tests: the Bakamjian-Thomas (BT) relativistic
quark model [18–23], and the Bauer, Stech, and Wirbel
(BSW) model [24]. As we emphasize below, we do not
pretend to have been exhaustive in this study of relativistic
quark models for the elastic IW function.
Here, one can formulate an observation which may be

useful for future analysis. For any general approach that
formulates the matrix elements in terms of an arbitrary set
of rest frame wave functions, eigenstates of the generic
spectroscopic mass operator, the above test on positivity of
the inverted measure [Eq. (3)] should be satisfied for any
wave function describing the ground state, or equivalently,
the HQET constraints on the derivatives of the ground state
IW function should be satisfied for any wave function.
We have then applied the same techniques to give a new

formulation of the Bakamjian-Thomas relativistic quark
model in its heavy quark limit, in Sec. 11 of Lorentz II [16].

C. The sum rules and the HQET constraints in the
Bakamjian-Thomas relativistic quark model

Let us indeed return to the sum rules and consider
whether Bakamjian-Thomas relativistic quark models sat-
isfy the HQET sum rules and the above constraints.
First let us recall that previously, in our early studies, we

have demonstrated in a rather general manner, in the form
of quark-hadron duality, that the Bjorken and Uraltsev sum
rules are satisfied [25,26].
We think now that a somewhat new demonstration can be

presented, by passing through the Falk factorization ansatz.
Indeed, this postulate can be demonstrated very simply in
the BT approach, in the original approach with Wigner
rotations (see for example [22]). The overlaps are given by
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a very simple expression in terms of the internal wave
functions for the light quarks, valid for any number of
quarks, and the sum rules derive straightforwardly. It
remains then to establish the covariance of these overlaps.
On the other hand, we believe also that one can construct

in full generality a manifestly covariant general version of
these BT overlaps, which would then represent the BT
model in the heavy quark limit in a simple covariant form.
We have explicitly shown this point in Lorentz II [16],
Sec. 11, for two simple cases: the elastic ground state
overlap, and the one for transitions from the ground
state to the L ¼ 1, j ¼ 1=2, j ¼ 3=2 orbital excitations.
One recovers indeed our old covariant expressions for
BT [27,28].
Having represented the ξðwÞ of BT in the form of Eq. (1),

this implies that it satisfies all the HQET constraints we
have derived from it, and which are in accordance with
what we have derived from the sum rules. Moreover, in
Sec. 11 of Lorentz II [16], we give an explicit demon-
stration of the positivity of the rhs of Eq. (3) in the BT class
of models, which is a confirmation of the validity of these
constraints in the model.
Now, in face of all the demonstrations, it is also advisable

to ascertain the validity of the sum rules in BT by a direct
and completely explicit calculation, using our early estab-
lished expressions of IW functions for these states or their
radial excitations, for the transitions 1

2
− → 1

2
− [22] and for

the parity changing transitions 1
2
− → 1

2
þ, 3

2
þ [27,28].

Therefore, after recalling for pedagogical purposes the
demonstration of the particular Bjorken and Uraltsev sum
rules at w ¼ 1 by this method [25,26], we perform a
completely explicit demonstration of another important
sum rule that involves only heavy mesons with jP ¼ 1

2
− and

their radial excitations. This latter sum rule can be
phenomenologically useful because it constrains the deriv-
atives of the radially excited Isgur-Wise functions at zero
recoil. This demonstration, which requires a large set of
calculations, is one of the of main objects of the rest of
the paper.

D. Comments on other relativistic quark models

Concerning the BSW quark model [24], we have
demonstrated numerically [16] that the IW function in this
model yields, through Eq. (3), a measure that is indeed
positive, which suggests also that this model is consistently
satisfying the sum rule requirements. However, we did not
provide an analytic demonstration of this feature. On the
other hand, to our knowledge, excited states have not been
studied in this model, and we do not have for the moment
the possibility of testing directly the SR of the Bjorken-
Uraltsev type for this model. Also, it is worth pointing out
that the BSW model exhibits a positive discrete δ-function
contribution to the measure (3) that cannot occur in the BT
scheme.

As to other models, we do not claim to be exhaustive on
the main problem of the present paper since we are quite
aware that there are other relativistic quark models that are
important in the literature. We cannot presently answer, in
general, the question as towhether they satisfy the sum rules.
Among these other models, one can underline first the

P ¼ ∞ approach and the connected Melikhov dispersion
relation approach to constituent relativistic quark model of
form factors [29] in meson decays and its heavy quark
expansion [30]. We have argued that, because of its
covariance in the heavy quark limit, the BT approach
should be, roughly speaking, equivalent to the P ¼ ∞
approach in this limit. Moreover, we have demonstrated
that for a number of observables (IW functions, decay
constants), both schemes give the same result. Therefore,
one expects them to satisfy the sum rules.
As to other relativistic quark models, we must emphasize

the following:
(1) The Faustov and Galkin relativistic quark model in

the heavy quark limit, and their heavy quark 1=mQ

expansion of weak meson decay form factors [31].
Within this scheme, a great variety of phenomena in
heavy meson decays, in the heavy quark limit and at
finite mass, have been studied. These studies involve
the ground state heavy mesons, and also orbitally
and radially excited states as well.

(2) The Krutov, Shro, and Troitsky relativistic quark
model of constituent quarks [32], in which proper-
ties of the elastic Isgur-Wise function have been
investigated.

(3) The Ivanov, Kalinovsky, and Roberts model for
heavy meson decays, based on the Dyson-Schwinger
equation [33].

Whether these models share the same good properties
of the BT class is a problem beyond our present scope.
It would require a serious, and explicit and detailed
study. Moreover, the last theoretical scheme [33], being
based on the Dyson-Schwinger equation, presents a differ-
ent structure.

E. Outline of the present paper

The rest of the paper is organized as follows. In Sec. II
we recall the general OPE sum rules in heavy quark limit,
and derive the relevant specific sum rules we are interested
in here. In Sec. III we write down the explicit expressions

for the BT model of the IW functions ξðnÞðwÞ, τðnÞ1=2ðwÞ,
τðnÞ3=2ðwÞ corresponding respectively to the transitions 1

2
−;→

1
2
−; 1

2
þ; 3

2
þ and their radial excitations. In Sec. IV, we then

demonstrate within the BT model the sum rules that we
have chosen as examples. In Sec. V we point out weak-
nesses of the BT scheme, namely, the lack of covariance of
the form factors at finite mass and the related fact that sum
rules with moments involving powers ðΔEðnÞÞk with k > 0
do not hold in the model. Finally, in Sec. VI we conclude.

SUM RULES OF THE BJORKEN-URALTSEV TYPE IN THE … PHYSICAL REVIEW D 93, 114020 (2016)

114020-3



II. GENERALIZED BJORKEN-URALTSEV
SUM RULES

Some years ago [9,10] we set a systematic method to
obtain sum rules in the heavy quark limit of QCD, that
relate the derivatives of the elastic Isgur-Wise function ξðwÞ
to sums over inelastic IW functions to excited states. The
method is based on the OPE applied to heavy hadrons, and
one of its key elements is the consideration, following
Uraltsev [4], of the nonforward amplitude, i.e., BðviÞ →
DðnÞðv0Þ → BðvfÞ with, in general, vi ≠ vf. Then, the OPE
side of the SR contains the elastic IW function ξðwifÞ and
the SR depends, in general, on three variables, wi ¼ vi:v0,
wf ¼ vf:v0, and wif ¼ vi:vf, which lie within a certain
domain. By differentiation relatively to these variables
within the domain and taking the limit to its boundary,
one finds a very general class of SR that implies interesting
consequences on the shape of ξðwÞ.
To be more precise, as shown in [9,10], using the OPE as

formulated, for example, in [6] and generalized to vi ≠ vf
[4,9,10], the trace formalism [13] and arbitrary heavy quark
currents

J1 ¼ h̄ðcÞv0 Γ1h
ðbÞ
vi ; J2 ¼ h̄ðbÞvf Γ2h

ðcÞ
v0 ð4Þ

the following sum rule can be written in the heavy quark
limit [9]:

� X
D¼P;V

X
n

Tr½B̄fðvfÞΓ̄2DðnÞðv0Þ�

× Tr½D̄ðnÞðv0ÞΓ1BiðviÞ�ξðnÞðwiÞξðnÞðwfÞ

þ Other excited states

�

¼ −2ξðwifÞTr½B̄fðvfÞΓ̄2P0þΓ1BiðviÞ�: ð5Þ

In this formula v0 is the intermediate meson four-
velocity, the projector

P0þ ¼ 1

2
ð1þ v 0Þ ð6Þ

comes from the residue of the positive energy part of the c-
quark propagator, and ξðwifÞ is the elastic IW function that
appears because one assumes a nonforward direction
vi ≠ vf. Bi and Bf are the 4 × 4 matrices of the ground
state B or B� meson and DðnÞ those of all possible ground
state or excited state D mesons [13] coupled to Bi and Bf

through the currents. In formula (5) we have made explicit
the j ¼ 1

2
− D and D� mesons and their radial excitations,

leaving implicit the sum over higher states.
The variables wi, wf, and wif are defined as [9,10]

wi ¼ vi · v0; wf ¼ vf · v0; wif ¼ vi · vf: ð7Þ

Their domain is

wi; wf ≥ 1;

wiwf −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw2

i − 1Þðw2
f − 1Þ

q
≤ wif ≤ wiwf

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw2

i − 1Þðw2
f − 1Þ

q
ð8Þ

and there is a subdomain for wi ¼ wf ¼ w:

w ≥ 1; 1 ≤ wif ≤ 2w2 − 1: ð9Þ
Calling now Lðwi; wf; wifÞ the lhs and Rðwi; wf; wifÞ the

rhs of (5), this SR writes

Lðwi; wf; wifÞ ¼ Rðwi; wf; wifÞ ð10Þ
where Lðwi; wf; wifÞ is the sum over the intermediate D
states and Rðwi; wf; wifÞ is the OPE side. Within the
domain (8) one can differentiate relatively to any of the
variables wi, wf, and wif,

∂pþqþrL
∂wp

i ∂wq
f∂wr

if
¼ ∂pþqþrR

∂wp
i ∂wq

f∂wr
if

ð11Þ

and obtain different SR by taking limits to the frontiers of
the domain.
Let us parametrize the elastic Isgur-Wise function ξðwÞ

near zero recoil,

ξðwÞ ¼ 1 − ρ2ðw − 1Þ þ σ2

2
ðw − 1Þ2 − � � � ð12Þ

where ξ0ð1Þ ¼ −ρ2 and ξ00ð1Þ ¼ σ2 are the slope and the
curvature.
From the SR (5), we gave in [9,10] a simple and

straightforward demonstration of Bjorken SR [2] and of
another SR, which, combined with the former, implied
Uraltsev SR [4].
Bjorken and Uraltsev SR imply the lower bound on the

elastic slope

ρ2 ¼ −ξ0ð1Þ ≥ 3

4
ð13Þ

and the generalized SR imply the following lower bound on
the curvature:

σ2 ¼ ξ00ð1Þ ≥ 15

16
: ð14Þ

A crucial simplifying feature of the calculation was to
consider for the currents (4), vector or axial currents aligned
along the initial and final velocities vi and vf.
In Ref. [11], exploiting a complete set of sum rules at a

given order in the derivatives, we did obtain an improved
new bound on the curvature
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σ2 ≥
1

5
½4ρ2 þ 3ðρ2Þ2� ð15Þ

that reduces to (14) for the lower bound for the slope (13).

A. General sum rules

As explained in detail in [9–11], if one uses in (4), (5) the
vector currents

J1 ¼ h̄ðcÞv0 vih
ðbÞ
vi ; J2 ¼ h̄ðbÞvf vfh

ðcÞ
v0 ð16Þ

one obtains the so-called vector sum rule

ðwi þ 1Þðwf þ 1Þ
X
l≥0

lþ 1

2lþ 1
Slðwi; wf; wifÞ

×
X
n

τðlÞðnÞlþ1=2ðwiÞτðlÞðnÞlþ1=2ðwfÞ þ
X
l≥1

Slðwi; wf; wifÞ

×
X
n

τðlÞðnÞl−1=2ðwiÞτðlÞðnÞl−1=2ðwfÞ

¼ ð1þ wi þ wf þ wifÞξðwifÞ ð17Þ
while choosing instead the axial currents

J1 ¼ h̄ðcÞv0 viγ5h
ðbÞ
vi ; J2 ¼ h̄ðbÞvf vfγ5h

ðcÞ
v0 ð18Þ

one finds the axial sum rule

X
l≥0

Slþ1ðwi; wf; wifÞ
X
n

τðlÞðnÞlþ1=2ðwiÞτðlÞðnÞlþ1=2ðwfÞ

þ ðwi − 1Þðwf − 1Þ
X
l≥1

l
2l − 1

Sl−1ðwi; wf; wifÞ

×
X
n

τðlÞðnÞl−1=2ðwiÞτðlÞðnÞl−1=2ðwfÞ

¼ −ð1 − wi − wf þ wifÞξðwifÞ: ð19Þ

In the preceding expressions, following the formulation
of heavy-light states for arbitrary jP given by Falk [13], we

have defined in [9–11] the IW functions τðlÞðnÞlþ1=2ðwÞ and

τðlÞðnÞl−1=2ðwÞ, which correspond to the orbital angular momen-

tum l of the light quark relative to the heavy quark, j ¼
l� 1

2
being the total angular momentum of the light cloud,

and Snðwi; wf; wifÞ is a Laguerre polynomial [9]

Snðwi; wf; wifÞ
¼

X
0≤k≤n

2

Cn;kðw2
i − 1Þkðw2

f − 1Þkðwiwf − wifÞn−2k ð20Þ

with the coefficients

Cn;k ¼ ð−1Þk ðn!Þ
2

ð2nÞ!
ð2n − 2kÞ!

k!ðn − kÞ!ðn − 2kÞ! : ð21Þ

The precedent sums go over all the radial excitations,
indicated by the index n.

B. Bjorken and Uraltsev sum rules

One obtains Bjorken SR from the vector SR for
p ¼ q ¼ 0:

ρ2 ¼ 1

4
þ 2

3

X
n≥0

jτð1ÞðnÞ3=2 ð1Þj2 þ 1

4

X
n

jτð1ÞðnÞ1=2 ð1Þj2; ð22Þ

which, using the traditional notation [3]

τðnÞ1=2ð1ÞðwÞ ¼ 2τðnÞ1=2ðwÞ; τð1ÞðnÞ3=2 ðwÞ ¼
ffiffiffi
3

p
τðnÞ3=2ðwÞ ð23Þ

writes

ρ2 ¼ 1

4
þ 2

X
n≥0

jτðnÞ3=2ð1Þj2 þ
X
n≥0

jτðnÞ1=2ð1Þj2: ð24Þ

From the vector SR p ¼ 2, q ¼ 0 and p ¼ q ¼ 1, or the
axial SR for p ¼ q ¼ 0 one gets

ρ2 ¼
X
n≥0

jτð1ÞðnÞ3=2 ð1Þj2: ð25Þ

Using Bjorken SR (22), relation (25) implies Uraltsev
SR

1

3

X
n≥0

jτð1ÞðnÞ3=2 ð1Þj2 − 1

4

X
n≥0

jτð1ÞðnÞ1=2 ð1Þj2 ¼ 1

4
ð26Þ

which, using the notation (23), writes [4]

X
n≥0

jτðnÞ3=2ð1Þj2 −
X
n≥0

jτðnÞ1=2ð1Þj2 ¼
1

4
: ð27Þ

C. Sum rule involving only IW functions of jP = 1
2
− heavy

mesons and their radial excitations

From (11), differentiating the vector SR if pþ q ¼ 2 and
the axial SR if pþ q ¼ 3 one finds a whole set of rather
involved SR, which reduce to the following linearly
independent relations [11]:

ρ2 ¼ − 4

5

X
n≥0

τð1ÞðnÞ3=2 ð1Þτð1ÞðnÞ03=2 ð1Þ þ 3

5

X
n≥0

τð1ÞðnÞ1=2 ð1Þτð1ÞðnÞ01=2 ð1Þ

ð28Þ

σ2 ¼ −X
n≥0

τð1ÞðnÞ3=2 ð1Þτð1ÞðnÞ03=2 ð1Þ ð29Þ

σ2 ¼ 2
X
n≥0

jτð2ÞðnÞ5=2 ð1Þj2 ð30Þ

ρ2 − 4

5
σ2 þ

X
n≥0

jτð2ÞðnÞ3=2 ð1Þj2 ¼ 0 ð31Þ
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4

3
ρ2 − 5

3
σ2 þ

X
n≥0

jξðnÞ0 ð1Þj2 ¼ 0: ð32Þ

The last relation (32) depends on quantities involving
only 1

2
− states, namely, the slope ρ2 and curvature σ2 of the

elastic IW function ξðwÞ and the sum
P

n≥0½ξðnÞ0 ð1Þ�2
depends on the derivatives of the IW to all the 1

2
− states,

where n ¼ 0 corresponds to the ground state, and n ≠ 0 to
its radially excited states. Equation (32) was the main result
obtained in [11] that, isolating the ground state, can be
written in the form

4

3
ρ2 þ ðρ2Þ2 − 5

3
σ2 þ

X
n≥1

jξðnÞ0 ð1Þj2 ¼ 0: ð33Þ

This last relation implies the improved lower bound (15)
on the curvature.

III. BAKAMIAN-THOMAS RELATIVISTIC
QUARK MODELS

The Bakamjian-Thomas relativistic scheme [18–22] is a
class of models with a fixed number of constituents in
which the states are covariant under the Poincaré group.
The model relies on an appropriate Lorentz boost of the
eigenfunctions of a mass operator or Hamiltonian describ-
ing the hadron spectrum at rest.
Unfortunately, the matrix elements of the usual one-body

additive current operators are not covariant. However, for
the meson ground state [22] we found the important feature

that, in the heavy quark limit, the current matrix elements,
when the current is coupled to the heavy quark, are Lorentz
covariant. Therefore, the IW function can be computed
without any ambiguity. We have extended this result to the
matrix elements between the ground state and P-wave
excited states [27,28].
Moreover, these matrix elements in the heavy quark limit

exhibit Isgur-Wise scaling [1]. Given a mass operator M
describing the spectrum at rest, with the only constraint of
being rotationally invariant, the model provides an unam-
biguous result for the Isgur-Wise functions, e.g., in par-
ticular the elastic ξðwÞ [22] and the inelastic to P-wave
states τ1=2ðwÞ, τ3=2ðwÞ [27].
On the other hand, the SR in the heavy quark limit of

QCD, like Bjorken and Uraltsev SR are analytically
satisfied in the model [25,26].
The BT framework is a class of relativistic quark models,

since there is a great arbitrariness in the mass operatorM. In
[28], we have chosen the Godfrey-Isgur Hamiltonian [34],
which gives a very complete description of the light qq̄ and
heavy Qq̄ meson spectra in order to predict within the BT
scheme the corresponding IW functions for the ground state
and the excited states.

A. Isgur-Wise functions within the BT model

Let us use the following notation: the three-momentum
of the light quark is ~p and its energy p0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
, with

p ¼ j~pj. The expression of the 1
2
− → 1

2
− IW functions in the

BT model is given by the integral [22]

ξðnÞðv:v0Þ ¼ 1

1þ v:v0

Z
d~p

ð2πÞ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp:vÞðp:v0Þp

p0

mðv:v0 þ 1Þ þ p:ðvþ v0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp:vþmÞðp:v0 þmÞp φðnÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp:v0Þ2 −m2

q ��
φ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp:vÞ2 −m2

q �
ð34Þ

where the superscript ðnÞ labels the radial excitations. The elastic IW function corresponds to ξðwÞ ¼ ξð0ÞðwÞ, with the wave
function φ ¼ φð0Þ.
On the other hand, the IW functions for the transitions 1

2
− → 1

2
þ and 1

2
− → 3

2
þ are, respectively, given by [27,28]

τðnÞ1=2ðwÞ ¼ − 1

2ðw − 1Þ
Z

d3 ~p
p0

φðnÞ
1=2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp:v0Þ2 −m2

q ��
φ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp:vÞ2 −m2

q �

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp:vþmÞðp:v0 þmÞp 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp:v0Þ2 −m2
p ½ðp:v0Þ þm�½ðp:v0Þ − ðp:vÞ þmðw − 1Þ� ð35Þ

τðnÞ3=2ðwÞ ¼ − 1

2ðw − 1Þðwþ 1Þ2
Z

d3 ~p
p0

φðnÞ
3=2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp:v0Þ2 −m2

q ��
φ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp:vÞ2 −m2

q �

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp:vþmÞðp:v0 þmÞp 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp:v0Þ2 −m2
p ½−3ðp:vÞ2 þ ð2w − 1Þðp:v0Þ2

þ 2ð2w − 1Þðp:vÞðp:v0Þ þ 2ðwþ 1Þðwðp:v0Þ − ðp:vÞÞm − ðw2 − 1Þm2�: ð36Þ

The radial wave functions for the 1
2
− states φðnÞðj~pjÞ and for the orbitally excited states 1

2
þ and 3

2
þ, φðnÞ

1=2ðj~pjÞ and φðnÞ
3=2ðj~pjÞ,

are normalized according to
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Z
d~p

ð2πÞ3 jφðj~pjÞj
2 ¼ 1: ð37Þ

Notice that for the P-wave states this normalization is
different from the ones used in Refs. [16,27,28].

IV. EXPLICIT PROOF OF SOME IMPORTANT
SUM RULESWITHIN THE BAKAMJIAN-THOMAS

SCHEME

In this section we demonstrate very explicitly a number
of SR within the BT scheme, namely, (24), (27), and (32),
just to consider some important examples. To this aim, we
will deduce rather cumbersome expressions. We think that
it is worth writing down these formulas in order to illustrate
the fact that a powerful theorem, based on the Lorentz
group representation underlying the BT scheme, is at the
basis of the satisfaction of the SR in the BT approach.
Indeed, switching off hard gluon radiative corrections,

we have assumed in Lorentz I [15] and Lorentz II [16] that a
current matrix element factorizes, in general, and also
within the BT scheme, into a heavy quark part and a light
cloud overlap. Completeness in this Hilbert space implies
the Bjorken-Uraltsev sum rules. In Sec. 11 of [16] we have
described the Lorentz group representation that acts on the
light cloud Hilbert space within the Bakamjian-Thomas
framework.
Of course, it would be a further very direct check of these

results to start from the current matrix element within the
BT model and to demonstrate that it factorizes into a heavy

quark current matrix element and a light cloud overlap, and
that the result is covariant in the heavy quark limit. This will
be the object of further investigation.

A. Relevant quantities at zero recoil

With the IW functions in the BT framework (34), (35),
and (36) at hand, we are now in the position of verifying
that the BT scheme explicitly satisfies Bjorken SR (24),
Uraltsev SR (27) and also the relation (32), that involves
only 1

2
− states. These relations depend on the IW functions

(34), (35), and (36), while (30) and (31) involve l ¼ 2 IW
functions, not given here explicitly in the BT model. Of
course, it is immediate to demonstrate the other SR (28) and
(29) as well.
The IW functions of the BT model are covariant, as we

can see by inspection of the particular cases (34), (35), and
(36), and therefore we can make the calculations in any
reference frame. For our purposes, we chose the following
frame:

v ¼ ðw; 0; 0;−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
Þ; v0 ¼ ð1; 0; 0; 0Þ ð38Þ

which will be convenient to compute the sum over radial
excitations in the sums over n in (24), (27), and (32).
Let us first consider the elastic IW function ξðwÞ.

Performing an expansion of (34) in powers of w − 1,
one finds of course ξð1Þ ¼ 1 and the following expressions
for the slope:

ξ0ð1Þ ¼ 1

24π2

Z
∞

0

dpφðpÞ� p

ðm2 þ p2Þðmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
Þ
fmpð5m2 þ 4p2 þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
ÞφðpÞ

þ 4ðm2 þ p2Þðmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
Þ½2ðm2 þ 2p2Þφ0ðpÞ þ pðm2 þ p2Þφ00ðpÞ�g ð39Þ

and the curvature

ξ00ð1Þ ¼ − 1

480π2

Z
∞

0

dpφðpÞ� p

ðm2 þ p2Þ2ðmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
Þ
fmpð127m4 þ 208m2p2 þ 96p4 þ 23m3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q

þ 8mp2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
ÞφðpÞ þ 8ðm2 þ p2Þ2½2mðm2 − 6p2 þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
Þφ0ðpÞ − pð49m3 þ 64mp2

þ 45m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
þ 60p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
Þφ00ðpÞ − 2ðm2 þ p2Þðmþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
Þð4ðm2 þ 3p2Þφð3ÞðpÞ

þ pðm2 þ p2Þφð4ÞðpÞÞ�g: ð40Þ

For the transitions to the positive parity excited states we find, at zero recoil, from (35) and (36)

τðnÞ1=2ð1Þ ¼
1

12π2

Z
∞

0

dpφðnÞ
1=2ðpÞ�

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p ½ð2m2 þ 3p2 − 2m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
ÞφðpÞ þ 2pðp2 þm2Þφ0ðpÞ� ð41Þ
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τðnÞ3=2ð1Þ ¼
1

12π2

Z
∞

0

dpφðnÞ
3=2ðpÞ�

p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
ðmþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
Þ
h
mpφðpÞ þ 2ðp2 þm2Þ

�
mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
Þφ0ðpÞ

i
: ð42Þ

In the preceding expressions φðpÞ, φðnÞ
1=2ðpÞ and φðnÞ

3=2ðpÞ are the radial wave functions for the states 1
2
−, 1

2
þ and 3

2
þ,

normalized according to (37), or

1

2π2

Z
∞

0

p2dpjφðpÞj2 ¼ 1

2π2

Z
∞

0

p2dpjφðnÞ
j ðpÞj2 ¼ 1

�
j ¼ 1

2
;
3

2

�
: ð43Þ

In consistency with this normalization, the completeness relation reads, in each of the considered sectors,

X
n≥0

φðnÞðp0ÞφðnÞðpÞ� ¼
X
n≥0

φðnÞ
j ðp0ÞφðnÞ

j ðpÞ� ¼ 2π2
δðp − p0Þ

p2

�
j ¼ 1

2
;
3

2

�
: ð44Þ

B. Bjorken and Uraltsev sum rules in the BT model

Let us now compute the sums over n in expressions (24) and (27)

X
n≥0

jτðnÞ1=2ð1Þj2 ¼
X
n≥0

�
1

12π2

�
2
Z

∞

0

dp0
Z

∞

0

dp
h�

2m2 þ 3p02 − 2m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p02 þm2

q �
φðp0Þ� þ 2p0ðp02 þm2Þφ0ðp0Þ�

i

×
p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p02 þm2
p

�X
n≥0

φðnÞ
1=2ðp0ÞφðnÞ

1=2ðpÞ�
�

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p

×
h�

2m2 þ 3p2 − 2m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q �
φðpÞ þ 2pðp2 þm2Þφ0ðpÞ

i
ð45Þ

X
n≥0

jτðnÞ3=2ð1Þj2 ¼
X
n≥0

�
1

12π2

�
2
Z

∞

0

dp0
Z

∞

0

dp
h
mp0φðp0Þ� þ 2ðp02 þm2Þ

�
mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p02 þm2

q �
φ0ðp0Þ�

i

×
p02ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p02 þm2
p

ðmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p02 þm2

p
Þ

�X
n≥0

φðnÞ
3=2ðp0ÞφðnÞ

3=2ðpÞ�
�

p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
ðmþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
Þ

×
h
mpφðpÞ þ 2ðp2 þm2Þ

�
mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q �
φ0ðpÞ

i
: ð46Þ

Using the completeness relation (43), the combination that appears in the Bjorken sum rule writes then

2
X
n≥0

jτðnÞ3=2ð1Þj2 þ
X
n≥0

jτðnÞ1=2ð1Þj2 ¼
1

24π2

Z
∞

0

dp
p2

ðp2 þm2Þðmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
Þ2

×
n
φðpÞ�

h�
p2ð4m2 þ 3p2 þ 2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q �
φðpÞ þ 2pðp2 þm2Þ

�
p2 þ 2m2 þ 2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q �
φ0ðpÞ

i

þ φ0ðpÞ�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q h
ðp2 þ 2m2Þ

�
mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q �
ðpφðpÞ þ 2ðp2 þm2Þφ0ðpÞÞ

io
: ð47Þ

To check Bjorken sum rule, we need to compare (47) with −ξ0ð1Þ − 1
4
¼ ρ2 − 1

4
, where −ρ2 is given by (39). Since in the

latter expression appears the second derivative φ00ðpÞ, to make the comparison we need to integrate by parts the term
proportional to φ0ðpÞ� in (47). After this operation is done, we find, taking into account the normalization (43) to transform
accordingly the numerical contribution 1

4
,

1

4
þ2

X
n≥0

jτðnÞ3=2ð1Þj2þ
X
n≥0

jτðnÞ1=2ð1Þj2¼− 1

24π2

Z
∞

0

dpφðpÞ� p

ðm2þp2Þðmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þp2

p
Þ
n
mp

�
5m2þ4p2þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þp2

q �
φðpÞ

ð48Þ

i.e., we find the expression for −ξ0ð1Þ (39), and Bjorken sum rule is demonstrated.
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The relevant expression for the Uraltsev sum rule is given by

X
n≥0

jτðnÞ3=2ð1Þj2 −
X
n≥0

jτðnÞ1=2ð1Þj2 ¼ − 1

24π2

Z
∞

0

dp
p3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
p

ðmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
Þ2
n
φðpÞ�

h
p
�
2mþ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q �
φðpÞ

þ 2ðp2 þm2Þ
�
mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q �
φ0ðpÞ

i
þ φ0ðpÞ�½2ðp2 þm2Þ

�
mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q �i
φðpÞ

o
: ð49Þ

Integrating again by parts the term proportional to φ0ðpÞ�, and taking into account the normalization (43), we find that
Uraltsev sum rule (27) is also satisfied in the BT model.

C. Sum rule involving radially excitated jP = 1
2
− heavy mesons in the BT model

Let us now compute the sum over the radial excitations appearing in the SR (32). Using expression (39) with the
necessary replacement for the nth radial excitation φðpÞ� → φðnÞðpÞ�, we have to deal with the expression

X
n≥0

jξðnÞ0 ð1Þj2 ¼
X
n≥0

�
1

24π2

�
2
Z

∞

0

dp0
Z

∞

0

dp
n
mp0

�
5m2 þ 4p02 þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p02

q �
φðp0Þ�

þ 4ðm2 þ p02Þðmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p02

q
Þ½2ðm2 þ 2p02Þφ0ðp0Þ� þ p0ðm2 þ p02Þφ00ðp0Þ��

o

×
p0

ðm2 þ p02Þðmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p02p

Þ

�X
n≥0

φðnÞðp0ÞφðnÞðpÞ�
�

p

ðm2 þ p2Þðmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
Þ

× fmpð5m2 þ 4p2 þm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
ÞφðpÞ þ 4ðm2 þ p2Þðmþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
Þ½2ðm2 þ 2p2Þφ0ðpÞ

þ pðm2 þ p2Þφ00ðpÞ�g: ð50Þ
Using now the completeness relation for the radial wave functions (43), one finds

X
n≥0

jξðnÞ0 ð1Þj2 ¼
X
n≥0

1

288π2

Z
∞

0

dp
1

ðm2 þ p2Þ2ðmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
Þ2
n
mp

�
5m2 þ 4p2 þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q �
φðpÞ�

þ 4ðm2 þ p2Þ
�
mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q �
½2ðm2 þ 2p2Þφ0ðpÞ� þ pðm2 þ p2Þφ00ðpÞ��g

×
n
mp

�
5m2 þ 4p2 þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q �
φðpÞ þ 4ðm2 þ p2Þ

×
�
mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q �
½2ðm2 þ 2p2Þφ0ðpÞ þ pðm2 þ p2Þφ00ðpÞ�

o
: ð51Þ

To be able to compare (51) with the expressions (39) and (40) for the slope and the curvature, we need to integrate twice
by parts the precedent formula. Doing this, one finds

X
n≥0

jξðnÞ0 ð1Þj2 ¼ 1

288π2

Z
∞

0

dpφðpÞ� p

ðm2 þ p2Þ2ðmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
Þ2
f−mpð15m4 þ 15m3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q

− 8mðm2 þ p2Þ3=2 þ 32ðm2 þ p2Þ2ÞφðpÞ þ 8ðm2 þ p2Þ2½ð−30m3 − 18m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q

þ 44mðm2 þ p2Þ þ 32ðm2 þ p2Þ3=2Þφ0ðpÞ þ pð−15m3 − 15m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
þ 72mðm2 þ p2Þ

þ 68ðm2 þ p2Þ3=2Þφ00ðpÞ þ 2ðm2 þ p2Þðmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
Þðð−8m2 þ 12ðm2 þ p2ÞÞφð3ÞðpÞ

þ pðm2 þ p2Þφð4ÞðpÞÞ�g: ð52Þ
Gathering formulas (39), (40), and (52) one can check that the sum rule (32) is satisfied in the BT model.
The SR (33) can be phenomenologically useful since it gives an upper bound on the derivative at zero recoil of any

inelastic IW function between the ground state and a radial excitation ξðnÞðwÞ, which vanishes at zero recoil
ξðnÞð1Þ ¼ 0 ðn ≠ 0Þ

SUM RULES OF THE BJORKEN-URALTSEV TYPE IN THE … PHYSICAL REVIEW D 93, 114020 (2016)

114020-9



jξðnÞ0 ð1Þj2 ≤ 5

3
σ2 −

	
4

3
ρ2 þ ðρ2Þ2



ðn ≠ 0Þ: ð53Þ

The rhs of the precedent inequality is positive because of
the lower bound on the curvature (15). The physics
involved in this inequality will be examined elsewhere.

V. PROBLEMS OF THE BAKAMJIAN-THOMAS
SCHEME FOR CURRENT MATRIX ELEMENTS

AT FINITE MASS

The BT relativistic quark models [18–23] are a class of
models with a fixed number of constituents in which the
states are covariant under the Poincaré group. The model
relies on an appropriate Lorentz boost of the eigenfunctions
of a Hamiltonian describing the hadron spectrum at rest.
We have proposed a formulation of this scheme for the

meson ground states [22] and demonstrated the important
feature that, in the heavy quark limit, the current matrix
elements, when the current is coupled to the heavy quark,
are covariant. We have extended this scheme to P-wave
excited states [27].
As pointed out above, these matrix elements in the heavy

quark limit exhibit IW scaling. As demonstrated in [22,27],
given a Hamiltonian describing the spectrum, the model
provides an unambiguous result for the Isgur-Wise func-
tions, the elastic ξðwÞ and the inelastic to P-wave states
τ1=2ðwÞ, τ3=2ðwÞ.
However, these interesting and encouraging results do

not hold when including the 1=mQ corrections in the heavy
quark mass expansion. Indeed, the heavy meson current

matrix elements h ~P0; ϵ0jJj~P; ϵi, where the current J ¼
Q̄0ΓQ acts on the heavy quark, are only covariant in the
heavy quark limit. Moreover, in the BT scheme, current
conservation only holds in the heavy quark limit, and turns
out to be violated at finite mass.
The higher moments SR of the heavy quark limit of QCD

involve powers of level spacings ΔEðnÞ, i.e., sums, for

example, of the form
P

nðΔEðnÞ
j ÞkjτðnÞj ðwÞj2 (j ¼ 1

2
, 3

2
)

where k > 0 is an integer [4–8], follow from the application
of the OPE to the power corrections 1=mk

Q, i.e., the
identification of the sum over intermediate heavy hadrons
with the corresponding short distance counterpart beyond
the heavy quark limit of QCD. But since the BT scheme is

not covariant at finite mass, there is no hope of obtaining
these SR.
We have extended our study of form factors in the BT

approach to finite mass in a recent work [35], studying the
ground state decays 1

2
− → 1

2
−, namely, B̄ → DðD�Þlν, and

the decays 1
2
− → 1

2
þ, 3

2
þ to the positive parity excited states

B̄ → D��lν, and have exposed in detail the successes and
the problems that one encounters.

VI. CONCLUSIONS

The aim of this paper is well defined and relatively
simple, namely, to show explicitly that the Bakamjian-
Thomas scheme satisfies the sum rules of the Bjorken-
Uraltsev type of the heavy quark limit of QCD (lowest
moment SR).
In this paper we have illustrated this general statement by

the explicit demonstration of several physically significant
sum rules, namely, Bjorken and Uraltsev SR and another
one that involves only the 1

2
− states and their radial

excitations. In a similar way, one could demonstrate within
the BT approach any of the SR of the heavy quark limit
of QCD.
The SR involving transitions to radially excited states is

interesting, as it gives an upper bound on the derivative at
zero recoil jξðnÞ0 ð1Þj of any inelastic IW function between
the ground state and a radial excitation—the IW function
itself vanishes at zero recoil ξðnÞð1Þ ¼ 0 for n ≠ 0. At the
same time, for a given ground state IW function, it leads to
a useful bound on the magnitude of curvature.
One must finally keep in mind that what precedes and all

the construction described in this paper are only valid in a
particular approximation, namely, if one neglects the hard
gluon radiative corrections, as we have emphasized in
previous work [15,16].
Let us recall that taking into account hard gluons or UV

divergencies, the overlaps over light quark states and their
sums (given by HQET) become μ dependent, with the
matching Wilson coefficients CiðμÞ canceling this depend-
ence for physical matrix elements of currents [36,37].
On the other hand, we have recalled the problems of the

BT scheme at finite mass due to the fact that the covariance
of form factors, with the current coupled to the heavy
quark, holds only in the heavy quark limit.
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