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We consider the calculation of the pion-photon transition form factor Fγ�γπ0ðQ2Þ within light-cone sum
rules focusing attention to the low-mid region of momenta. The central aim is to estimate the theoretical
uncertainties which originate from a wide variety of sources related to (i) the relevance of next-to-next-to-
leading order radiative corrections (ii) the influence of the twist-four and the twist-six term (iii) the
sensitivity of the results on auxiliary parameters, like the Borel scale M2, (iv) the role of the
phenomenological description of resonances, and (v) the significance of a small but finite virtuality of

the quasireal photon. Predictions for Fγ�γπ0ðQ2Þ are presented which include all these uncertainties and
found to comply within the margin of experimental error with the existing data in the Q2 range between 1
and 5 GeV2, thus justifying the reliability of the applied calculational scheme. This provides a solid basis
for confronting theoretical predictions with forthcoming data bearing small statistical errors.

DOI: 10.1103/PhysRevD.93.114018

I. INTRODUCTION

During the last years, several experimental groups have
reported data on the pion-photon transition form factor
(TFF). Typically, these B factory experiments are single-tag
γ�ðq1Þγðq2Þ → π0ðPÞ measurements in which one of the
two photons has a very small virtuality q22 → 0, inherited by
the untagged electron, while the other photon is highly off
shell. Therefore, the TFF measured in such an experimental
setup is a function of one—the large q21 ¼ −Q2—photon
virtuality, FγπðQ2Þ. The recent theoretical interest focused
primarily on the BABAR experiment (2009) [1] because of
two reasons. First, because it extended the range of data to
quite high Q2 values of the order of 40 GeV2 and, second,
because just these high-Q2 data were found to increase with
the momentum Q2—an unexpected result within the
collinear factorization scheme of quantum chromodynam-
ics (QCD) [2,3]. The subsequent Belle experiment (2012)
[4] covered the same domain of momenta with similar
precision, but did not confirm the rising trend of the scaled
πγ TFF at high Q2, with most data points being in
agreement with the hard-scattering limit of QCD.
Several theoretical groups have attempted to provide

explanations for the auxetic1 behavior of the high-precision
BABAR data presuming that these are also accurate, i.e.,
true values and not the result of a false measurement. These

efforts range from approaches with the sole aim to provide
after-the-fact rationalizations of such an anomalous increase
of the scaled form factor [6–9]—to name just a few—to
analyses arguing that the auxetic behavior of the BABAR
data above∼10 GeV2 is incompatiblewithQCD and cannot
be reproduced by predictions obtained herewith see, for
example, [5,10–15]. Under this particular perspective, the
high-Q2 BABAR data are—in the statistical sense—precise
but not accurate because they fail to cluster around the
ultraviolet (UV) limit, Q2Fγ�γπ0ðQ2→∞;0Þ¼ ffiffiffi

2
p

fπGeV,
which is an exact result of QCD [3,16]. Still other theorists
[17,18] argue that a best-fit to all high-Q2 data (Belle and
BABAR), being somewhere in between (see [12] for a
classification scheme of theoretical predictions), would only
show a moderate increase of the scaled TFF at currently
accessible momenta so that this enhancement could still be
accommodated within the standard framework of QCD
based on collinear factorization without the need to invoke
unconventional nonperturbative mechanisms. This treat-
ment, they say, is justifiable, given that the relative deviation
between the Belle and the BABAR data fits does not exceed
1.5σ − 2σ [4].Moreover, it is not aprioriknownatwhichQ2

values the TFF should reach the asymptotic limit either from
below or from above. The issue around the incongruent
trends of the high-Q2 measurements may be resolved after
2018 when the BelleII experiment at the SuperKEKB
collider in Japan will start collecting high-precision data
on two-photon physics, see, e.g., [19], so that the correct
behavior of the TFF at large momenta Q2Fγ�γπ0ðQ2 ≫
1 GeV2; 0Þ can be estimated more rigorously, eventually
reducing the range of multilayered theoretical predictions to
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1The term auxetic was introduced and explained in [5]. In the

following it is used to describe the deviation from the hard-
scattering limit of QCD following from collinear factorization.
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a single reliable curve within a comparably small margin of
systematic theoretical error [12].
Despite this debate at the high-end of the probed

momentum values in the measurement of the pion-photon
TFF also the mid-low-Q2 region is of particular impor-
tance. The reason is that the available data sets obtained in
the range ½1–5� GeV2 nearby the modern normalization
scale μ0 ¼ 2 GeV, used in lattice simulations and other
calculations [20–22], have rather large errors so that they
cannot be used to fine-tune theoretical predictions in this
domain. This applies to the CELLO [23] data and partially
also to the CLEO [24] data. The situation is expected to
improve significantly when the data of the BESIII
Collaboration, taken with the single-tag technique at

ffiffiffi
s

p ¼
3.770 GeV with the BESIII detector at the BEPCII collider,
will become available. The process under study is
eþe− → eþe−hadronðsÞ, where either the electron or posi-
tron in the final state is detected. However, for the time
being, only simulated data in the range Q2 ∈ ½0.5–3� GeV2

have been publicized which mainly serve to demonstrate
the small size of the experimental errors in the event
analysis [25]. Assuming as a pretext that the BESIII
Collaboration will indeed provide real data with very small
statistical errors in the spacelike region Q2 ≲ 4 GeV2, we
may attempt to quantify how the existence of such data
might be used to confront in more detail the theoretical
systematic uncertainties, pertinent to the employed calcula-
tional method in this momentum regime. Such dedicated
theoretical investigations have been carried out before
within particular approaches. These include soft QCD
modeling based on a set of Dyson-Schwinger equations
(DSE) truncated to the ladder-rainbow level [26], or employ
ideas related to the vector-meson dominance and the Padé
approximation [27]. In a more recent work, the pion TFF
was calculated by means of a dispersive approach in terms
of the most important intermediate states [28]. The small to
medium Q2 region was also addressed within AdS/QCD
using a holographic confining model in terms of an
effective interaction in light-front time [14]. In the context
of the light-cone sum-rule (LCSR) method such analysis
has not yet been carried out and is part of the present
investigation.
Several challenging questions arise: (i) How significant

is the inclusion of higher twists, e.g., twist-four and twist
six, at scales around 1–2 GeV2 relative to the leading twist-
two term? (ii) Are radiative corrections at the next-to-next-
to-leading order (NNLO) level relevant at such low
momentum scales? (iii) How reliable are light-cone sum
rules for the calculation of FγπðQ2Þ in the Q2 ∼ 1 GeV2

region? (iv) How strong is the influence of the finite
virtuality of the quasireal photon at such scales? This work
seeks quantitative answers to these questions.
The plan of the paper is the following. In the next

section, we will examine the pion-photon TFF making use
of QCD factorization to be followed in Sec. III by its

formulation in the framework of LCSRs. To incorporate the
nonperturbative input of the pion bound state of twist two,
the BMS2 distribution amplitudes (DAs) and the platykurtic
DA [21,22] will be used. The main radiative corrections (up
to the NNLO level) and the key higher-twist contributions
(twist-four and twist six) to the TFF will be considered in
Sec. IV. Section V is devoted to the comparison of the
obtained predictions with the low-Q2 data, the particular
emphasis being placed on the new elements of our upgraded
theoretical framework and the estimation of the most crucial
systematic uncertainties. A summary of our findings and our
conclusions will be given in Sec. VI. Some important
technical ingredients of the approach are provided in two
appendices.

II. PION-PHOTON TRANSITION FORM FACTOR
USING QCD FACTORIZATION

Let us begin our analysis by considering the process
γ�ðq21Þγðq22Þ → π0, with q21 ¼ −Q2 for the far-off shell
photon and q22 ¼ −q2 ≳ 0 for the quasireal photon,
described by the pion-photon transition form factorZ

d4ze−iq1·zhπ0ðPÞjTfjμðzÞjνð0Þgj0i

¼ iϵμναβqα1q
β
2F

γ�γ�π0ðQ2; q2Þ; ð1Þ
where jμ is the quark electromagnetic current. Employing
perturbative QCD (pQCD) in connection with collinear
factorization, the leading-twist two TFF for two highly off-
shell photons, Fγ�γ�π0ðQ2; q2; μ2FÞ, can be cast in convolu-
tion form at the factorization scale μ2F to read

Fγ�γ�π0ðQ2; q2; μ2FÞ ¼ TðQ2; q2; μ2F; xÞ ⊗ φð2Þ
π ðx; μ2FÞ: ð2Þ

Here, ⊗ ≡ R
1
0 dx and φð2Þ

π ðx; μ2FÞ denotes the pion distri-
bution amplitude of leading twist two. It describes the
partition of longitudinal-momentum fractions between the
valence quark (xq ¼ x ¼ ðk0 þ k3Þ=ðP0 þ P3Þ ¼ kþ=Pþ)
and antiquark (xq̄ ¼ 1 − x≡ x̄) at the scale μF. The hard-
scattering amplitude T can be expressed as a power-series
expansion in the running strong coupling as ≡ αsðμ2RÞ=4π
to obtain

TðQ2; q2; μ2F; xÞ ¼ TLO þ asTNLO þ a2sTNNLO þ…; ð3Þ

where we have adopted the so-called default scale setting in
which the renormalization scale μR is set equal to the
factorization scale μF, i.e., asðμ2RÞ ¼ asðμ2FÞ. We have also
used for convenience the following abbreviations:
LO—leading order, NLO—next-to-leading order, and
NNLO—next-to-next-to-leading order. The corresponding
contributions will be labeled by the superscripts (0), (1),

2The acronym BMS is a reference to the authors of Ref. [29].
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and (2), respectively; they indicate the power of the strong
coupling as.
The various terms in (3) are given by the following

expressions

TLO ¼ T0; ð4aÞ

TNLO ¼ CFT0 ⊗ ½T ð1Þ þ LVð0Þ
þ �; ð4bÞ

TNNLO ¼ CFT0 ⊗
�
T ð2Þ þ LVð1Þ

þ =CF − Lβ0T ð1Þ

−
L2

2
β0V

ð0Þ
þ þ L2

2
CFV

ð0Þ
þ ⊗ Vð0Þ

þ

þ LCFT ð1Þ ⊗ Vð0Þ
þ

�
; ð4cÞ

in which we have introduced the convenient abbreviation
L≡ ln ½ðQ2yþ q2ȳÞ=μ2F�, see [30]. Each term of the hard-
scattering amplitude comprises several contributions origi-
nating from different sources. A common factor is the
lowest-order (Born) term, viz., T0ðQ2; q2; yÞ, while
T ð1Þðy; xÞ and T ð2Þðy; xÞ represent the coefficient functions
of the considered partonic subprocess. The NLO contri-
bution TNLO in Eq. (4b) is completely known [30,31]. On
the other hand, the NNLO correction TNNLO [see Eq. (4c)]
contains the quantities Vð0Þðy; xÞ and Vð1Þðy; xÞ, which
denote, respectively, the one- and two-loop kernels of the
Efremov-Radyushkin–Brodsky-Lepage (ERBL) [2,3] evo-
lution equation. Their structures are displayed explicitly in

Appendix A, using for Vð1Þ
þ a new more compact repre-

sentation, derived in this work, which is given by Eq. (A1).
Note that β0 is the first coefficient of the QCD β-function
displayed in Eq. (A8). Furthermore, we isolate the impor-
tant term Tβ [10], which accumulates all terms proportional
to β0 on the right-hand side (RHS) of Eq. (4c), to obtain

β0Tβ ¼ β0

�
T ð2Þ

β þ LðVð1Þ
βþ − T ð1ÞÞ − L2

2
Vð0Þ
þ

�
; ð5Þ

where on the RHS we used the known decompositions of
the kernel [10,32] and the NNLO coefficient function
determined in [30]:

Vð1Þ=CF ¼ β0V
ð1Þ
β þ ΔVð1Þ; ð6aÞ

T ð2Þ ¼ β0T
ð2Þ
β þ T ð2Þ

c : ð6bÞ

With the help of these expressions, TNNLO can be recast in
the more compact form

TNNLO ¼ CFT0 ⊗ ½β0Tβ þ TΔV þ TL þ T ð2Þ
c �; ð7Þ

where

TΔV ¼ LΔVð1Þ
þ ; ð8aÞ

TL ¼ CFL

�
L
2
Vð0Þ
þ ⊗ Vð0Þ

þ þ T ð1Þ ⊗ Vð0Þ
þ

�
: ð8bÞ

It is useful to express the elements in Eqs. (4), (6), (8) in
convolution form by employing the eigenfunctions ψnðxÞ
of the LO ERBL evolution equation. This leads to simpler
expressions, e.g., (8b) becomes (arguments suppressed)

TL ⊗ ψn ¼ 2CFLvðnÞ½LvðnÞψn þ T ð1Þ ⊗ ψn�;

where the quantities vðnÞ denote the eigenvalues of the

ERBL evolution kernel Vð0Þ
þ ⊗ ψn ¼ 2vðnÞψn, while the

eigenfunctions ψn can be expressed in terms of
the conformal basis of the Gegenbauer harmonics: ψnðxÞ ¼
6xx̄Cð3=2Þ

n ðx − x̄Þ. This representation will be further used
in Sec. IV B in connection with the construction of the
spectral density.
At the NNLO level we note the following. The main

contribution β0T
ð2Þ
β to TNNLO in (7) has been calculated in

[30], whereas the terms TΔV and TL in the form they enter
the corresponding contributions to the spectral density are
derived here and are presented in Appendix B. Finally, the

term T ð2Þ
c represents the still uncalculated part of TNNLO.

The physics of nonperturbative interactions in the TFF is

included by means of the leading-twist pion DA φð2Þ
π ðx; μ2FÞ

which is defined by the following gauge-invariant matrix
element

h0jq̄ðzÞγμγ5½z; 0�qð0ÞjπðPÞijz2¼0

¼ ifπPμ

Z
1

0

dxeixðz·PÞ × φð2Þ
π ðx; μ2Þ; ð9Þ

where the light-cone gauge Aþ ¼ 0 is to be imposed so that
½z; 0� ¼ 1, i.e., the gauge link reduces to the identity
operator.

III. LIGHT-CONE SUM RULES
FOR THE PION-PHOTON TFF

As mentioned in the Introduction, the existing exper-
imental data at low Q2 values are not precise enough to
allow for reliable information extraction on the detailed
behavior of the TFF in terms of magnitude and slope. This,
however, would be extremely valuable given that theoreti-
cal calculations are only approximations and one needs
some quantitative etalon to estimate more precisely their
range of reliability that is intimately related to various
perturbative and nonperturbative contributions with their
own sources of uncertainties. The publication of the BESIII
data may change this situation significantly. Our particular
aim in this paper is to work out the applicability limits
of our LCSR-based approach for the calculation of the
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pion-photon TFF in the low-Q2 regime in anticipation of
this set of data. To this end, let us now consider the pion-
photon TFF in more detail within the method of LCSRs,
which is based on the operator product expansion on the
light cone and enables the systematic computation of QCD
radiative corrections and higher-twist contributions.
Within this approach, the form factor for the π → γ

transition is described in terms of a dispersion integral
which employs the spectral density

ρ̄ðQ2; xÞ ¼ ðQ2 þ sÞρpertðQ2; sÞ: ð10Þ

The quantity ρpertðQ2; sÞ is given by

ρpertðQ2; sÞ ¼ 1

π
ImFγ�γ�π0

pert ðQ2;−s − iεÞ ð11Þ

and can be calculated in fixed-order QCD perturbation
theory. Then, taking into account that s ¼ x̄Q2=x, the TFF
assumes the following form

Q2Fγ�γπðQ2Þ

¼
ffiffiffi
2

p

3
fπ

�
Q2

m2
ρ

Z
1

x0

exp

�
m2

ρ −Q2x̄=x

M2

�
ρ̄ðQ2; xÞ dx

x

þ
Z

x0

0

ρ̄ðQ2; xÞ dx
x̄

�
: ð12Þ

The expression on the RHS of Eq. (12) depends on
various parameters and is bounded in the region
x0 ¼ Q2=ðQ2 þ s0Þ. In our present analysis, the Borel
parameter M2 is taken to vary in the interval
½0.7–1.0� GeV2 as in our previous works [5,11,12]. But
in order to estimate the uncertainty due to the variation of
this parameter, we also consider the larger value M2 ¼
1.5 GeV2 employed in [17,18]. The duality interval in the
vector channel is assumed to be s0 ≃ 1.5 GeV2, whereas
mρ ¼ 0.77 GeV [33], and the pion decay constant has the
value fπ ¼ 132 MeV. Expression (12) represents a sum
rule which makes use of a simple δ-function ansatz to
model the ρ-meson resonance. In the real calculation
carried out here, the ρ and ω resonances are taken into
account in terms of the Breit-Wigner (BW) form, as done
before in [10].

The leading-twist pion DA φð2Þ
π is expanded in terms of

the eigenfunctions ψnðxÞ to read

φð2Þ
π ðx; μ2Þ ¼ ψ0ðxÞ þ

X∞
n¼2;4;…

anðμ2ÞψnðxÞ ð13Þ

and satisfies the normalization condition
R
1
0 dxφ

ð2Þ
π ðx;

μ2Þ ¼ 1, so that ψ0ðxÞ ¼ φasy
π ¼ 6xx̄ is the asymptotic

(asy) DA. The conformal coefficients anðμ2Þ encode the
nonperturbative information and are not calculable within

pQCD. In our analysis we will consider various model DAs
for the pion pertaining to different nonperturbative
approaches from which these coefficients are determined.
For the sake of definiteness, the numerical uncertainty
estimation procedure in our analysis will be based on the
set of the BMS DAs, determined in [29] using QCD sum
rules with nonlocal condensates (NLC)s. This choice
introduces some bias but it is not conflicting with obser-
vations [12] and does not lead to an underestimation of
the size and influence of the theoretical uncertainties.
Moreover, it should not be understood as the result of
a priori justification of these DAs. The low-Q2 data alone
are not sufficient to draw definite conclusions about the
shape of the pion DA.
Turning our attention to the spectral density, we first note

that each contribution of definite twist (tw) to ρpert in
Eq. (11), can be obtained from the convolution of the
associated hard part with the corresponding pion DA of the
same twist [34] so that one gets

ρpertðQ2; sÞ ¼ ρtw-2 þ ρtw-4 þ ρtw-6 þ…: ð14Þ

We then express the twist-two part of ρ̄ðQ2; xÞ as a sum
over the partial spectral densities ρ̄n each related to a
particular harmonic ψn. In this way, we obtain (a0 ¼ 1)

ρ̄ðQ2; xÞ ¼
X

n¼0;2;4;…

anðQ2Þρ̄nðQ2; xÞ

þ ρ̄tw-4ðQ2; xÞ þ ρ̄tw-6ðQ2; xÞ; ð15Þ

where

ρ̄nðQ2; xÞ ¼ ρ̄ð0Þn ðxÞ þ asρ̄
ð1Þ
n ðQ2; xÞ þ a2s ρ̄

ð2Þ
n ðQ2; xÞ þ…;

ρ̄ð0Þn ðxÞ ¼ ψnðxÞ; as ¼ asðQ2Þ: ð16Þ

The various terms of the spectral density in (16) are the key
computational ingredients in our dispersion-relation-based
LCSR analysis and are therefore given explicitly in
Appendix B.
The second term in Eq. (14) is the twist-four contribution

to the spectral density which reads [34]

ρ̄tw-4ðQ2; xÞ ¼ δ2tw-4ðQ2Þ
Q2

x
d
dx

φð4ÞðxÞ; ð17Þ

with the twist-four coupling parameter being given by
δ2tw-4 ≈ ð1=2Þλ2q ¼ ð1=2Þð0.4� 0.05Þ GeV2 at Q2≈1GeV2

[31], where λ2q denotes the average virtuality of vacuum
quarks [35]. The full twist-four pion DA—which origi-
nates from the contributions of the two- and three-particle
twist-four DAs—is approximated here by its asymptotic
form [34]
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φð4Þ
π ðxÞ ¼ 80

3
x2ð1 − xÞ2; ð18Þ

see [17] (Sec. 3 C there) for further discussion.
The twist-six term ρ̄tw–6ðQ2; xÞ ¼ ðQ2 þ sÞρtw–6ðQ2; sÞ

in Eq. (14) was first computed in [17] [Eq. (58) there] and is
given by the following expression

ρ̄tw-6ðQ2;xÞ¼8π
CF

Nc

αshq̄qi2
f2π

x
Q4

�
−
�

1

1−x

�
þ

þð2δðx̄Þ−4xÞþð3xþ2x logxþ2x log x̄Þ
�
;

ð19Þ

where αs ¼ 0.5 and hq̄qi2 ¼ ð0.242� 0.01Þ6 GeV6 [36].
We have independently verified and confirmed this expres-
sion, which may be considered as an inverse power
correction to the coefficient function. It is important to
make a remark on the structure of Eq. (19) in conjunction
with the diagrams in Fig. 4 in [17]: The first term in the
square brackets originates from diagram (a), while the
second one stems from diagram (b), and the third one
derives from diagrams (c) and (d). To discuss the structure
of the LCSR in Eq. (12), it is useful to do it in comparison
with the pQCD factorization formula, looking more closely
and critically at the behavior of the TFF in the low to
intermediate Q2 region, say, between 1 and 5 GeV2. As we
will make more explicit below, the main effect in using the
LCSR instead of the pQCD expression is the possibility of
a successive inclusion into the TFF of the higher harmonics
ψn>0ðxÞ asQ2 grows. This effect can be revealed already at
the level of the leading-order approximation of both
expressions.
To this end, consider the contribution of a given

harmonic to the expression in the square brackets in
Eq. (12) and approximate the perturbative part of the

spectral density by ρ̄ðQ2; xÞ → ρ̄ð0Þn ðxÞ ¼ ψnðxÞ, cf. (16).
This way, we obtain a physical correspondence between the
LCSR on the left below

LCSR ⇔ pQCD;

Q2FLCSR
n ðQ2Þ ¼ Q2

m2
ρ
e

m2
ρ

M2

Z
1

x0

e−
Q2 x̄

M2xψnðxÞ
dx
x

þ
Z

x0

0

ψnðxÞ
dx
x̄

⇔Q2FpQCD
n ðQ2Þ ¼

Z
1

0

ψnðxÞ
dx
x̄

¼ 3: ð20Þ

and the lowest-order leading-twist contribution from
pQCD, shown on the right, which amounts to the inverse

moment of ψn on account of 6
R
1
0 dxxC

ð3=2Þ
n ðx − x̄Þ ¼ 3 for

any n.

This correspondence can be completely vindicated by
the following observations:

(i) For Q2 ≫ s0; x0 ¼ ð1þ s0=Q2Þ−1 → 1 and, em-
ploying the values of mρ, s0 and M2 given farther
above, the first term in the LCSR on the left, which
models the hadronic content of the quasireal photon,
becomes suppressed with Q2. Hence, the whole
expression tends to the pQCD result, shown on the
right of (20), establishing also a mathematical
correspondence between the LCSR and the pQCD
expression. In this latter result, all harmonic con-
tributions of expansion (13) appear at once—see the
horizontal uppermost line in Fig. 1.

(ii) In the opposite kinematic region Q2 ≲ s0, x0 ≲ 1=2,
both terms on the left are of the same order of
magnitude and hence the result differs strongly from
that on the right, implying that LCSRs and pQCD
lead to different predictions for the TFF. This is,
mainly because higher twists, contributing via the
first term in the LCSR, are not accounted for in the
pQCD expression. This difference ensues from
the treatment (in the LCSR) of the quasireal photon
by means of the vector-meson dominance model.
This model has been used to construct the phenom-
enological spectral density and effectively takes into
account long-distance gluon interactions pertaining
to this photon vertex [34]. The key parameter to
manage these long-distance (nonperturbative) ef-
fects is s0, the duality interval, and encompasses
the masses of the vector-meson family mρ;… enter-
ing the first term on the left in (20).

Q2

Fn Q2

n 0

n 2

n 4
n 6 n 8

0 1 2 3 4
0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

FIG. 1. Contributions of FLCSR
n ðQ2Þ to the TFF entering the left

side of (20) and originating from the successive inclusion of
Gegenbauer harmonics of increasing order n. The harmonics with
n ¼ 0, 2, 4, 6, 8 are shown explicitly using the following
designations from top to bottom: n ¼ 0—upper solid blue line,
n ¼ 2—middle solid red line, n ¼ 4—solid green line, n ¼ 6—
dashed black line, n ¼ 8—dotted pink line. All harmonics,
except ψ0, have a zero crossing in the vicinity of
Q2 ≈ 0.8 GeV2. The topmost solid horizontal line corresponds
to the FpQCD

n result in (20) (right side).
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On the other hand, the Gegenbauer harmonics are
included into the TFF sequentially, i.e., term by term with
increasing index n, in correspondence with the growth of
Q2, giving rise to an oscillatory behavior. These zero
crossings of the harmonics accumulate in the vicinity of
1 GeV2 to build a knot (see Fig. 1.) The contributions
stemming from different harmonics vanish near the first
knot at Q2 ≈ 0.8 GeV2, so that only the term with n ¼ 0
survives which does not oscillate but grows uniformly. This
leads for momentum values Q2 ≲ 1.4 GeV2 to the domi-
nance of the zero harmonic (ψ0) contribution to the TFF. At
higher Q2 values, the contributions stemming from higher
harmonics, beginning with ψ2, succeeded by ψ4, and so
forth, start gradually to increase. On the contrary, the
suppression of higher harmonics at low momenta renders

the “spectral content” of the DA φð2Þ
π less important. The

certain impact of importance and uncertainties of the
different contributions will be discussed in the next section.

IV. LCSR PREDICTIONS FOR Fγπ AND
THEIR UNCERTAINTIES

In this section we identify the main sources of the various
theoretical uncertainties and estimate their effects on the
computation of the pion-photon TFF within the LCSR
approach.

A. Leading twist DA models and
their uncertainties

The key nonperturbative input in the computation of the
TFF is the pion distribution amplitude of twist two, i.e.,
Eq. (13), which depends on the conformal coefficients
anðμ2Þ. In our approach fanðμ2Þg are obtained from QCD
sum rules with NLCs [29], first proposed in [35,37]. The
method in [29] allows us to extract at the typical hadronic
scale μ2 ≈ 1.35 GeV2 (emerging naturally in the approach)
a whole family of DAs. This is done by fitting the sum rules
for the first ten moments

hξNiπ ≡
Z

1

0

dxð2x − 1ÞNφð2Þ
π ðx; μ2Þ; ð21Þ

where ξ ¼ x − x̄, together with their uncertainties. The DAs
are then expressed in terms of a two-parametric model of
the generic form

φBMS
π ðx; μ2Þ ¼ 6xx̄½1þ a2C

ð3=2Þ
2 ðξÞ þ a4C

ð3=2Þ
4 ðξÞ�: ð22Þ

This parametrization is defacto justified because all higher
conformal coefficients anðμ2Þ were found by calculating
the moments hξNiπ (N ¼ 2; 4;…; 10) to be negligible but
bearing a large margin for error, see [29,38] for details. The
admissible region of the first two moments hξ2iπ and hξ4iπ
is shown graphically in Fig. 2 in the form of an upward
pointing slanted (green) rectangle, with its center being

marked by the symbol ✖ and denoting the BMS DA [29].
The associated pairs of ða2; a4Þ values fit best all moments
hξNi with N ¼ 2; 4;…; 10 within the estimated errors.
These moments were determined by employing the non-
locality parameter λ2q ¼ 0.4 GeV2.
One can compute the values of the moments and the

conformal coefficients at any desiredmomentum scale using
the ERBL evolution equation. The symbol ✜ in this figure
denotes the position of the recently proposed [21] platy-
kurtic (pk) pion DA, obtained within the BMS approach but
using the still admissible value λ2q ¼ 0.45 GeV2. A whole
region of such platykurtic DAs was determined sub-
sequently by two of us in [22] and is shown in this figure
in terms of the shorter rectangle in light-green color on
the left of the previous one. It is worth mentioning that
the platykurtic DA is a unimodal curve with a flat peak at
x ¼ 1=2 and suppressed tails at x ¼ 0, 1. The numerical
values of the second and fourth moments of these two
sets of DAs have been calculated at the momentum scale
μ ¼ 2 GeV after NLO evolution using the MS scheme to
obtain

✖hξ2iBMS ¼ 0.251þ0.018
−0.015 ; hξ4iBMS ¼ 0.110þ0.009

−0.008 ;

ð23Þ

2

4

0.20 0.22 0.24 0.26 0.28 0.30
0.08

0.10

0.12

0.14

0.16

FIG. 2. Locations of various pion DAs projected onto the plane
spanned by the moments hξ2i and hξ4i at the momentum scale
μ ¼ 2 GeV. For those DAs which were originally determined at a
lower normalization scale, NLO evolution has been employed.
Upward pointing stretched green rectangle—BMS admissible
region with λ2q ¼ 0.4 GeV2, including the BMS DA ✖; ✜—
platykurtic DA [21] within the admissible region of similar DAs
determined in [22] with λ2q ¼ 0.45 GeV2; ○—Light-Front DA
[39]; ♦—asymptotic DA; ▴—DSE-DB π DA [20];▽—DSE-RL
π DA [20]; △—AdS/QCD π DA [13]. The vertical lines denote
the constraints extracted for hξ2i from various lattice simulations:
solid red lines—[40]; dashed blue lines—[41]; dashed-dotted
lines—[42]. 1σ (solid line) and 2σ (dashed line) error ellipses
obtained with a LCSR-based fit to the CELLO [23], CLEO [24],
BABAR (≤ 9 GeV2) [1], and Belle [4] data.
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✜hξ2ipk ¼ 0.220þ0.009
−0.006 ; hξ4ipk ¼ 0.098þ0.008

−0.005 : ð24Þ

The corresponding conformal coefficients are given by

aBMS
2 ¼ 0.149þ0.052

−0.043 ; aBMS
4 ¼ −0.096þ0.063

−0.058 ; ð25Þ

apk2 ¼ 0.057þ0.024
−0.019 ; apk4 ¼ −0.013þ0.022

−0.019 : ð26Þ

Note that the numerical values provided above for the
moments of the BMS DA are slightly different from those
quoted in Table 1 of [22]. The reason for this discrepancy is
that here we use a more advanced code for the NLO
evolution than that employed in [43] and quoted in [22].
The new code takes into account the quark-mass thresholds
in more accurate way and yields less suppression due to
evolution. We present these results at the momentum scale
μ ¼ 2 GeV because this scale is commonly used in lattice
calculations of hξ2i anda2, as those indicated in the figure by
the vertical lines. The solid red lines furthest to the left
display themost recent constraints determined in [40], while
the dashed blue lines show the older results of the same
group [41], and the dashed-dotted lines reproduce the
regions of values computed in [42]. The corresponding
numerical values of the secondmoment, in the same order of
appearance, are

hξ2i ¼ 0.2361ð41Þð39Þ ½40� ð27aÞ

hξ2i ¼ 0.269ð39Þ ½41� ð27bÞ

hξ2i ¼ 0.28ð2Þð1Þ ½42�: ð27cÞ

Note that the total error shown in Fig. 2 with reference to
Eq. (27a) is the linear sum of the errors in parentheses.
Assuming instead that these errors are statistically inde-
pendent and obey normal distributions, we would obtain by
the sum in quadrature a somewhat narrower range of
constraints on hξ2i than the vertical solid (red) lines. A
detailed treatment of the extraction of the conformal
coefficients from these lattice constraints is given in
[11,22,43]. On the other hand, the symbol ○ denotes
the model DA from [39] extracted within a light-front-
based framework. This DA has a single broad peak and
suppressed tails like the platykurtic DA.
In Fig. 2 the asymptotic DA is also shown in terms of the

symbol ♦, while ▴ and▽ represent, respectively, the DSE-
DB and DSE-RL π DAs [20], where the abbreviations are
labels for the most advanced kernel—DB—and the rain-
bow ladder (RL) approximation in the use of Dyson-
Schwinger equations (DSE)—[15]. In this figure, we also
include the LCSR-based [cf. Eq. (12)] 1σ (solid black line)
and 2σ (dashed black line) error regions of the CELLO
[23], CLEO [24], and Belle [4] data in terms of two
parameters, viz., hξ2i and hξ4i. The BABAR [1] data below
Q2 ≤ 9 GeV2 have also been taken into account. One

observes that there is a sizeable overlap between the
BMS region of bimodal DAs (larger green strip) and the
data. This overlap is also compatible with the lattice
constraints. The platykurtic region has a small overlap
with the 1σ and 2σ error ellipses, being at the same time just
on the lower boundaries of the lattice constraints on hξ2i.
On the other hand, the broad, endpoint-enhanced DSE DAs
(▴ and ▽) conform within errors with the older lattice
constraints but disagree with the data up to the level of 2σ.
It is fair to notice here that the authors of [15] argue that
their predictions for Q2FγπðQ2Þ, computed with a QCD-
based framework in terms of Dyson-Schwinger equations,
agree with the CELLO, CLEO, and Belle sets of data and
thus belong to the green band of predictions described in
[12]. However, the truncation scheme in this approach
cannot systematically connect Eq. (2) with the twist
expansion. The incompatibility between these DSE-based
results and our findings in Fig. 2, obtained with a LCSR-
based data fit, demands further examination.
A similarly broad pion DA ð8=πÞ ffiffiffiffiffi

xx̄
p

, based on the AdS/
QCD and light-front holography, is displayed in this figure
by the symbol△ [13]. This DA appears to be just inside the
upper boundary of the 2σ error ellipse of the experimental
data. The predictions for Q2FγπðQ2Þ obtained with this
pion DAwere found [13,14] to agree well with the CELLO
and CLEO data, but to disagree with BABAR’s large Q2

data. They belong to the green band of theoretical pre-
dictions in the classification scheme of Ref. [12] (see Fig. 2
there) and conform with the Belle data as well. As a final
remark, we note that a faithful conformal expansion of such
broad DAs, like the DSE DAs and the holographic one,
should include a much larger number of terms of the order
of 50. Thus, the projection on the (hξ2i, hξ4i) plane in Fig. 2
is a rather crude approximation for such DAs, see [22,43]
for further discussion.

B. Higher-order radiative corrections

In this subsection we discuss the uncertainties entailed by
the NNLO radiative corrections, entering the spectral
density in (16). To start with, recall Eq. (7) in conjunction
with the equations in (5) and (8). To continue, we reduce the

full spectral density ρ̄ð2Þ to the expression a2s ρ̄
ð2Þ
n ðQ2; xÞ →

a2sβ0ρ̄
ð2βÞ
n ðQ2; xÞ, cf. Eq. (5), ignoring this way all other

terms in Eq. (7). This β0 part of the spectral density is given
in Appendix B and has already been used to obtain the
NNLOcontribution to the TFFwithin the LCSR framework,
see [5,10,21,44,45]. It turns out that this contribution is
negative with a magnitude of the order of 0.01 GeV to be
compared with 0.1 GeVof the total magnitude of the TFF at
the generic hadronic boundary Q2 ¼ 1 GeV2 of the pQCD
applicability. To increase the accuracy of the LCSR, we
improve the treatment of the NNLO contribution by taking
into account in the spectral density further terms related to
expressions (8a) and (8b) of the hard-scattering amplitude.
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This is a novelty of the present work and allows us fuller
treatment of the NNLO contribution and finer analysis of its
uncertainties.
The uncertainty of the NNLO coefficient function

T ð2Þ ¼ β0T
ð2Þ
β þ T ð2Þ

c is induced by the yet uncalculated

term T ð2Þ
c , whereas all other elements in TNNLO given by

Eq. (7) are now known. Lacking knowledge of the
complete structure of the NNLO term, it seems prudent

to assume that the missing term T ð2Þ
c may have a compa-

rable magnitude as β0T
ð2Þ
β which in turn implies that the

supposed uncertainty ensuing from our approximate treat-
ment will be rather overestimated. In any case, each term in
expression (7) for the TNNLO hard-scattering amplitude
entails an associated contribution to the spectral density

ρ̄ð2Þn , notably,

ρ̄ð2Þn ¼ CFðβ0ρ̄ð2βÞ þ ρ̄ð2ΔVÞ þ ρ̄ð2LÞ þ T ð2Þ
c Þn: ð28Þ

Here ρ̄ð2βÞ, ρ̄ð2ΔVÞ, and ρ̄ð2LÞ stem from Eqs. (5), (8a), and
(8b), respectively, so that

ρ̄ð2kÞn ¼ C−1
F ImðT0 ⊗ Tk ⊗ ψnÞ ðk ¼ β;ΔV; LÞ; ð29Þ

while the term T ð2Þ
c enters autonomously as in (7).

According to our conjecture above, we will replace the

unknown term T ð2Þ
c by �β0T

ð2Þ
β inducing this way the

discussed uncertainty Δρ̄ð2Þn ¼ �β0ρ̄
ð2βÞ in the spectral

density ρ̄ð2Þn . The final effect of these uncertainties on the
TFF in the low-mid Q2 region will be addressed later
in Sec. V.
To clarify the role of the partial NNLO radiative

corrections, we present in Fig. 3 the NNLO-β0 contribution
to the TFF, i.e., FNNLO

n , for the first few terms up to n ¼ 6 of
the Gegenbauer-harmonics expansion in comparison with
the NNLO-ΔV contribution for the zero harmonic. Taking
into account that the NNLO-L contribution is equal to zero
for the zero harmonic, we conclude from this figure that the
additional NNLO-L- and NNLO-ΔV terms can be safely
ignored.
The main (negative in sign) contribution is provided by

the ψ0-harmonic and is denoted by the lowest solid (blue)
curve in Fig. 3. The higher harmonic contributions are
smaller than this and oscillate. Remarkably, they become
positive but with a small delay inQ2 relative to the LO case
shown in Fig. 1. Also the first knot is slightly shifted to the
right and appears at ∼1.4 GeV2. The explicit expressions

for the elements of ρ̄ð1Þn and ρ̄ð2Þn are outlined in Appendix B.

V. NUMERICAL RESULTS FOR Fγπ IN THE
LOW-Q2 SPACELIKE DOMAIN

Let us now discuss our LCSR-based calculation of the
TFF in terms of Fig. 4 which effects graphically our core
predictions together with their various theoretical uncer-
tainties worked out in the previous section. This analysis is
bounded from below by the applicability limit of the pQCD
approach at the generic hadronic scale 1 GeV2 which we
indicated in this figure by a vertical line. Although the
obtained predictions are mathematically correct also below
this boundary, one cannot estimate their reliability from the
physical point of view. Therefore, the displayed predictions
below 1 GeV2 only serve to indicate the possible trend of
the TFF in this momentum region. The proper exploitation
of the low-energy domain would demand additional means,
e.g., use of the axial anomaly exploited in [46–48] and
recently connected to the LCSRs in [49].
The considered uncertainties illustrated in Fig. 4 include

(i) the range of the admissible Gegenbauer conformal
coefficients a2 and a4 for the BMS DAs determined via
QCD sum rules with nonlocal condensates and using the
nonlocality parameter λ2q ¼ 0.40ð5Þ GeV2 [29] (narrow
central green strip), (ii) the result obtained by employing
the platykurtic DAs derived with the same method but with
the slightly larger virtuality λ2q ¼ 0.45 GeV2 [21] (thick
dashed line slightly below the central strip), (iii) the effect

attributed to the unknown term T ð2Þ
c in the NNLO con-

tribution that has been approximated by �β0T
ð2Þ
β (wide

violet bands just above and below the central green strip),
(iv) the variation of the twist-four parameter δ2 ¼ 0.19�
0.038 GeV2 in the range δ2 ∈ ½0.152 − 0.228� GeV2 (light
brown strips above and below the previous ones), (v) the
errors induced by the variation of the prefactor
ð1þ0.28

−0.23Þh
ffiffiffiffiffi
αs

p
q̄qi2 related to the uncertainty of the value

Q2

Q2F Q2

n 0

n 2

n 4 n 6

0 1 2 3 4 5

0.020

0.015

0.010

0.005

0.000

0.005

0.010

FIG. 3. Partial contributions FNNLO
n ðQ2Þ to the TFF originating

from the NNLO-β0 term. Only the results for the first Gegenbauer
harmonics with n ¼ 0, 2, 4, 6 are shown using the same notations
as in Fig. 1. The additional dashed-dotted (light-blue) flat line
represents the zero-harmonic contribution related to the NNLO −
ΔV term.
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of the quark condensate in front of the twist-six expression
in (19) (red strips on the boundaries), (vi) the effect of a
small but finite virtuality of the quasireal photon (strip in
grey color below all the others)—to be discussed separately
below, (vii) the ambiguities in selecting the auxiliary Borel
parameter M2 ∈ ½0.7 − 1.5� GeV2 (green band narrowing
at 2 GeV2 at the bottom), (viii) the influence of the
phenomenological description of the resonance in the
LCSR (narrow blue strip at the bottom) which displays
the difference between the results obtained from the

Breit-Wigner and the δ-function resonance models.
These sources of systematic uncertainties have been col-
lected for convenience in Table I together with their partial
uncertainties (%) at Q2 ¼ 3 GeV2.
Focusing attention on the TFF in the vicinity of 1 GeV2,

we recall our discussion of the correspondence of the two
sides of Eq. (20) to notice that in this momentum region
mainly the ψ0-harmonic contributes, as illustrated in Fig. 1.
This makes it evident that the contributions from different
harmonics in the vicinity of the knot at Q2 ∼ 1 GeV2

vanish.
A possible small virtuality q2 of the quasireal photon

affects the TFF and leads to an additional uncertainty of the
predictions which however is not universal but has to be
estimated for each specific experiment. Theoretically, this
effect can be expressed in terms of the susceptibility ΔðQ2Þ
(linear response) which was invented in [5] (Sec. III there).
One has

~FðQ2; q2Þ ≈ FðQ2Þ½1þ ΔðQ2Þq2�;

ΔðQ2Þ≡
~F0
q2ðQ2; q2 ¼ 0Þ

FðQ2Þ : ð30Þ

The susceptibility for the considered interval of Q2 in
Fig. 4 is approximately ΔðQ2Þ≃ −1 GeV−2 as one can see
from Fig. 3 in [5]. To get a qualitative estimate of
this uncertainty and its influence on the TFF, we use
q2 ≈ 0.04 GeV2, which represents the maximal virtuality
of the quasireal photon allowed in the Belle experiment [5].
The result of the calculation is illustrated in Fig. 4 in terms
of the lowest (grey) strip and has the tendency to reduce the
magnitude of the form factor in the whole range ofQ2 up to
asymptotic values, see [5].
Thus, from Fig. 4 and Table I one may conclude that for a

given DA, the largest uncertainties in the low-to-mid Q2 ∈
½1–5� GeV2 range originate from the NNLO radiative
correction and the twist-four and twist-six contributions.

BESIII simulated

CELLO

CLEO

Q2F Q2

Q2

Tw 2, BMS DA
T2

Tw 4
Tw 6
M2

Res.Model

0 1 2 3 4 5

0.00

0.05

0.10

0.15

FIG. 4. Upgraded LCSR calculation of the pion-photon TFF
using as nonperturbative input the twist-two pion DAs obtained in
[29] with λ2q ¼ 0.40 GeV2 and taking into account NLO ERBL
evolution. The central wide (green) strip represents the result
obtained with the whole family of the BMS pion DAs, varying the
conformal coefficients ða2; a4Þ within the appropriate region
cf. (26) which corresponds to the slanted (green) rectangle in the
plane spanned by the associated moments hξ2iBMS, hξ4iBMS in
Fig. 2. The central line inside the green strip shows the result for
the BMS model. The uncertainties ensuing from different
contributions are identified in the graphics and are discussed
in the text. Taking into account the NNLO uncertainties gives rise
to the violet band next to the central green strip, whereas the
variation of the twist-four (Tw-4) and the twist-six (Tw-6)
parameters generates (from the inside to the outside) the orange
and red outer strips, respectively. The two bands at the bottom of
the figure show the additional uncertainties originating from the
variation of the Borel parameter in the interval M2 ∈ ½0.7 −
1.5� GeV2 (wide light-green band) and the dependence on the
modeling of the effective pion resonance in the LCSR narrow
blue strip), the latter being estimated as the difference of the
results obtained by using the BW model vs. the δ-function
resonance model for the ρ and ω resonances. These two
uncertainties have to be added to the “rainbow” band shown
on the top of the figure. We also show in the graphics the
influence of a nonvanishing small virtuality of the quasireal
photon in terms of the light-grey strip below all others (see text
for explanations). The thick dashed line (close to the BMS solid
line) corresponds to the platykurtic model [21,22] and serves as a
rough measure of the uncertainty induced by using λ2q ¼
0.45 GeV2 inside the BMS approach. The vertical line at
1 GeV2 marks the typical applicability boundary of our frame-
work below which its reliability may become questionable.

TABLE I. Sources and percentage estimates atQ2 ¼ 3 GeV2 of
the systematic theoretical uncertainties in the LCSR-based
calculation of the pion-photon TFF illustrated in Fig. 4.

Source Uncertainty (%)

Unknown NNLO term T 2
c ∓ 4.8

Range of Tw-2 BMS DAs −3.4 ÷ 4.1
Tw-4 coupling δ2 ¼ ½0.152–0.228� GeV2 �3.0
Tw-6 parameter variation −2.4 ÷ 3.0

Total −13.6 ÷ 14.9
Borel parameter M2 ∈ ½0.7–1.5� GeV2 −1.6 ÷ 7.2
Resonance description δ vs. BW −3.6 ÷ 0
Small virtuality of quasireal photon −5.4 ÷ 0
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VI. CONCLUSIONS

The work presented here constitutes a systematic analy-
sis of the theoretical uncertainties entering the calculation
of the pion-photon transition form factor within the
framework of LCSRs. This method represents a very
effective theoretical tool for the study of this pion observ-
able because it enables the sequential inclusion of various
contributions with controlled theoretical accuracy. To be
specific, we estimated the following main uncertainties:
(i) the relevance of the NNLO radiative corrections, (ii) the

ambiguity induced by the still unknown NNLO term T ð2Þ
c ,

(iii) the influence of the twist-four and twist-six terms,
(iv) the sensitivity of the results on auxiliary parameters,
like the Borel scale M2, and (v) the role of the phenom-
enological description of resonances by using a Breit-
Wigner parametrization instead of a δ-function ansatz.
Moreover, we computed the generic uncertainty pertaining
to a small but finite virtuality of the quasireal photon, albeit
the precise magnitude of this effect depends on the
particular experimental setup. A full list of the considered
uncertainties and the estimation of their size in percentage
is given in Table I while a visualization of these contribu-
tions to the scaled TFF is provided in Fig. 4, focusing
attention to the low-mid Q2 region, where the BESIII
Collaboration is expected to publish high-statistics data in
the near future. The presented analysis complements and
upgrades our previous works in [5,11,12], in which
our interest was primarily concentrated on the high-Q2

regime. On the theoretical side, our study further
extends the knowledge of the NNLO contributions to the

hard-scattering amplitude by computing the terms TΔV and
TL in Eq. (7). Moreover, we independently reproduced
term-by-term all contributions to the twist-six correction
(19), originally computed in [17], and confirmed their
validity.
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APPENDIX A: NLO EVOLUTION KERNEL AND
COEFFICIENT FUNCTIONS

In this Appendix, the explicit expressions for the one-
and two-loop kernels of the ERBL evolution equation will
be supplied, supplemented by the coefficient functions. We

start by displaying the NLO evolution kernel Vð1Þ=CF ¼
β0V

ð1Þ
β þ ΔVð1Þ in Eq. (6a), which has been computed in

[50,51]. In order to reveal the origin of its individual
contributions, we employ the following new decomposition

Vð1Þ
þ ¼ CF

�
½β0Vð1Þ

βþ − CF
_Vð0Þ
þ ⊗ Vð0Þ

þ − CF½gþ;⊗ Vð0Þ
þ �� þ

�
−4

�
CF −

CA

2

��
2

3
Vð0Þ þ 2Va þH

�
þ
þ CFUþ

��
ðA1Þ

and discuss its structure term-by-term. The first term, proportional to β0, has the explicit form

Vð1Þ
βþ ¼

�
_Vð0Þ þ 5

3
Vð0Þ þ 2Va

�
þ

ðA2Þ

and is related to the one-loop renormalization of αs [10,32]. The second term −C2
F
_Vð0Þ
þ ⊗ Vð0Þ

þ results from the two-loop
renormalization of the composite operator [32] and can be expressed as a convolution of one-loop elements

_Vð0Þ
þ ⊗ Vð0Þ

þ ðx; yÞ ¼ 2Cθðy > xÞ
�
ðF − F̄Þ

�
lnðyÞ lnðȳÞ − Li2ðxÞ þ Li2ðyÞ þ

π2

6

�

þ F̄

�
Li2

�
1 −

x
y

�
− Li2

�
1 −

x̄
ȳ

�
þ lnðx̄Þ lnðxyÞ − lnðy − xÞ ln

�
x̄
ȳ

�
−
1

2
ln2ðȳÞ

�

þ F

�
3

2
ln

�
x
y

�
þ ln

�
x
y

�
lnðy − xÞ − 1

2
ln2ðxÞ

�
−
11

4
F þ 2Vb

þ xx̄ðln2ðx̄Þ − 2 lnðxÞ lnðyÞ þ ln2ðyÞÞ
yȳðx − yÞ − 2

�
x lnðyÞ

ȳ
þ x̄ lnðx̄Þ

y

��
; ðA3Þ

where Fðx; yÞ ¼ x
y ð1þ 1

y−xÞ with F̄ ¼ Fðx̄; ȳÞ. Next we show the kernels Vð0Þ and _Vð0Þ in explicit form
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Vð0Þ
þ ðx; yÞ ¼ 2

�
Cθðy > xÞ x

y

�
1þ 1

y − x

��
þ
≡ 2½Vaðx; yÞ þ Vbðx; yÞ�þ; ðA4aÞ

_Vð0Þ
þ ðx; yÞ ¼ 2

�
Cθðy > xÞ x

y

�
1þ 1

y − x

�
ln

�
x
y

��
þ
; ðA4bÞ

where

Vaðx; yÞ ¼ Cθðy > xÞ x
y
; Vbðx; yÞ ¼ Cθðy > xÞ x

y

�
1

y − x

�
; ðA4cÞ

and the symbol C means C ¼ 1þ fx → x̄; y → ȳg.
Finally, the commutator ½gþ;⊗ Vð0Þ

þ � in (A1), which gives rise to the breaking of the conformal symmetry [30,52],
contains the element

gþðx; yÞ ¼ −2
�
θðy > xÞ ln ð1 − x=yÞ

y − x
þ θðy < xÞ lnð1 − x̄=ȳÞ

x − y

�
þ
; ðA5Þ

so that with (A4a) we obtain

½gþ;⊗ Vð0Þ
þ �ðx; yÞ ¼ −2Cθðy > xÞ

�
ðF − F̄ÞðLi2ðyÞ − Li2ðxÞÞ þ F̄

�
Li2

�
1 −

x
y

�
− Li2

�
1 −

x̄
ȳ

�
þ ln

�
1 −

x
y

�
ln

�
xȳ
yx̄

�

þ 1

2
ln

�
x̄
ȳ

�
lnðx̄ ȳÞ

�
þ 1

2
F

�
ln

�
x
y

�
ln

�
xy
x̄ ȳ

�
− lnðxyÞ ln

�
x̄
ȳ

��
−
π2

6
ðF þ F̄Þ

−
2

yȳ
ðx̄ lnðx̄Þ − ðy − xÞ lnðy − xÞ þ y lnðyÞÞ

�
: ðA6Þ

To complete the structure of the NLO evolution kernel Vð1Þ
þ entering Eq. (6a), we also provide the expression for ΔVð1Þ:

ΔVð1Þ
þ ¼ 1

CF
Vð1Þ
þ − β0V

ð1Þ
βþ

¼ −CF
_Vð0Þ
þ ⊗ Vð0Þ

þ − CF½gþ;⊗ Vð0Þ
þ � − 4

�
CF −

CA

2

��
2

3
Vð0Þ þ 2Va þH

�
þ
þ CFUþ: ðA7Þ

Note that the leading-order coefficient of the β function used in the above equations is

β0 ¼
11

3
CA −

4

3
TRNf; ðA8Þ

with Nf being the number of active flavors (Nf ¼ 4 here) and TR ¼ 1=2, CA ¼ 4=3, TR ¼ 3 for SUð3Þc.
The elements collected in the second square bracket in (A1) are all diagonal with respect to the one-loop eigenfunctions

ψn by virtue of the symmetries Uðx; yÞyȳ ¼ xx̄Uðy; xÞ and Hðx; yÞyȳ ¼ xx̄Hðy; xÞ. These quantities are displayed below
for the convenience of the reader. Note that the function Hðx; yÞ has been computed before, e.g., [32], while the function
Uðx; yÞ was derived here.

Hðx; yÞ ¼ Cfθðx > ȳÞ½2ðF − F̄ÞLi2ð1 − x=yÞ − 2F lnðxÞ lnðyÞ þ ðF − F̄Þln2ðyÞ� þ 2FLi2ðȳÞ½θðx > ȳÞ − θðy > xÞ�
þ θðy > xÞ2F̄ lnðyÞ lnðx̄Þ − 2FLi2ðxÞ½θðx > ȳÞ − θðx > yÞ�g; ðA9Þ
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Uðx; yÞ ¼ −
5

6
Vð0Þ þ 8Va − Cθðy > xÞ

�
4
ðy − xÞ
yȳ

lnðy − xÞ
�
þ Cθðy > xÞ

�
2
x̄
ȳ

�
3y − 1

y
lnðx̄Þ þ 2 lnðyÞ

�
− 2

x
ȳ
lnðyÞ

�
:

ðA10Þ

Finally, the coefficient functions of the partonic subprocess, described by T ð1Þ and T ð2Þ
β in Eqs. (4), (5) are

T ð1Þðx; yÞ ¼ ½−3Vb þ g�ðx; yÞþ − 3δðx − yÞ; ðA11Þ

T ð2Þ
β ðx; yÞ ¼

�
29

12
2Va þ 2 _Va −

209

36
Vð0Þ −

7

3
_Vð0Þ −

1

4
V̈ð0Þ þ 19

6
gþ _g

�
þ
ðx; yÞ − 6δðx − yÞ: ðA12Þ

The elements on the RHS of these equations were originally derived in [30], but are presented here in a different notation
following [10], where also the omitted elements V̈ð0Þ and _g can be found.

APPENDIX B: ELEMENTS OF THE SPECTRAL DENSITY ρ̄

Here we provide the contributions to the spectral density entering Eq. (16). They are identified by the labels (0)—LO

term ρ̄ð0Þn , (1)—NLO term ρ̄ð1Þn , and ð2…Þ—NNLO terms, where the dots … indicate particular contributions pertaining to
the set of equations in (4). For the default scale setting μ2R ¼ μ2F ¼ Q2, they read

ρ̄ð0Þn ðxÞ ¼ ψnðxÞ; ðB1Þ

ρ̄ð1Þn ðQ2 ¼ μ2F; xÞ
1

CF
¼

�
−3ð1þ vbðnÞÞ þ π2

3
þ 2vðnÞ ln

�
x̄
x

�
− ln2

�
x̄
x

��
ψnðxÞ

− 2

� Xn
l¼0;2;…

Gnlψ lðxÞ þ vðnÞ
� Xn

l¼0;1;…

bnlψ lðxÞ − 3x̄

��
; ðB2Þ

vbðnÞ ¼ 2ðψð2Þ − ψð2þ nÞÞ; vðnÞ ¼ 1=ðnþ 1Þðnþ 2Þ − 1=2þ 2ðψð2Þ − ψð2þ nÞÞ: ðB3Þ

The complete expression for ρ̄ð1Þn in Eq. (B2) was obtained in [10] and the content of the second square bracket was later
corrected in [17] in the form it appears here. The quantities vbðnÞ and vðnÞ are the eigenvalues of the elements Vbþ and
Vaþ þ Vbþ of the one-loop kernel in Eq. (A4a), respectively. Expressions Gnl and bnl denote the elements of calculable
triangular matrices (omitted here)—see [10,17]. On the other hand, the β0, ΔV, and L parts of the NNLO spectral density
have the following form

ρ̄ð2βÞn ðQ2;xÞ¼T ð2Þ
β ðx;yÞ⊗ψnðyÞþ ln

�
x̄
x

�
C1;nðxÞþC2;nðxÞ−vðnÞ

��
ln2

�
x̄
x

�
−
π2

3

�
ψnðxÞþ2 lnðxÞC3;nðxÞ−2C4;nðxÞ

�
;

ðB4Þ

ρ̄ð2ΔVÞn ðQ2; xÞ ¼ ln

�
x̄
x

�
C̄1;nðxÞ þ C̄2;nðxÞ; ðB5Þ

ρ̄ð2LÞn ðQ2; xÞ ¼ ln

�
x̄
x

�
~C1;nðxÞ þ ~C2;nðxÞ þ 2CFv2ðnÞ

��
ln2

�
x
x̄

�
−
π2

3

�
ψnðxÞ þ 2 lnðxÞC3;nðxÞ − 2C4;nðxÞ

�
; ðB6Þ

where we have introduced the auxiliary functions

C1;nðxÞ ¼ ðVð1Þ
βþðx; yÞ − T 1ðx; yÞÞ ⊗ ψnðyÞ; ðB7aÞ
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C2;nðxÞ ¼ −
Z

x̄

0

du
C1;nðuÞ − C1;nðx̄Þ

u − x̄
; ðB7bÞ

C3;nðxÞ ¼
Z

x̄

0

du
ψnðuÞ − ψnðx̄Þ

u − x̄
; ðB7cÞ

C4;nðxÞ ¼
Z

x̄

0

du
ψnðuÞ − ψnðx̄Þ

u − x̄
lnðx̄ − uÞ; ðB7dÞ

C̄1;nðxÞ ¼ ΔVð1Þ
þ ðx; yÞ ⊗ ψnðyÞ; ðB7eÞ

C̄2;nðxÞ ¼ −
Z

x̄

0

du
C̄1;nðuÞ − C̄1;nðx̄Þ

u − x̄
; ðB7fÞ

~C1;nðxÞ ¼ 2CFvðnÞT 1ðx; yÞ ⊗ ψnðyÞ; ðB7gÞ

~C2;nðxÞ ¼ −
Z

x̄

0

du
~C1;nðuÞ − ~C1;nðx̄Þ

u − x̄
: ðB7hÞ

To derive the set of equations in (B7), we have used the
relations between the amplitudes, which contain powers of
L, and the various elements of the spectral density. These
relations are given by

Im½T0 ⊗ ðfLÞ ⊗ ψn� ¼ ln

�
x̄
x

�
C1;nðf; xÞ þ C2;nðf; xÞ;

ðB8Þ

Im½T0 ⊗ L2 ⊗ ψn� ¼
�
ln2

�
x̄
x

�
−
π2

3

�
ψnðxÞ

þ 2 lnðxÞC3;nðxÞ − 2C4;nðxÞ; ðB9Þ
where

C1;nðf; xÞ ¼ fðx; yÞ ⊗ ψnðyÞ;

C2;nðf; xÞ ¼
Z

x̄

0

du
C1;nðf; x̄Þ − C1;nðf; uÞ

u − x̄
:
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