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The chiral phase transition of the strongly interacting matter is investigated at nonzero temperature and
baryon chemical potential (μB) within an extended (2þ 1) flavor Polyakov constituent quark-meson model
that incorporates the effect of the vector and axial vector mesons. The effect of the fermionic vacuum and
thermal fluctuations computed from the grand potential of the model is taken into account in the curvature
masses of the scalar and pseudoscalar mesons. The parameters of the model are determined by comparing
masses and tree-level decay widths with experimental values in a χ2-minimization procedure that selects
between various possible assignments of scalar nonet states to physical particles. We examine the
restoration of the chiral symmetry by monitoring the temperature evolution of condensates and the chiral
partners’ masses and of the mixing angles for the pseudoscalar η − η0 and the corresponding scalar
complex. We calculate the pressure and various thermodynamical observables derived from it and compare
them to the continuum extrapolated lattice results of the Wuppertal-Budapest collaboration. We study the
T − μB phase diagram of the model and find that a critical endpoint exists for parameters of the model,
which give acceptable values of χ2.
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I. INTRODUCTION

We investigate properties of the strongly interacting
matter at high temperature and/or density. Currently, the
strong matter can be accessed experimentally at low
density (RHIC/Brookhaven and LHC/CERN) and at
normal nuclear density (ordinary nuclear physics). Its
properties at high densities, where the critical endpoint
(CEP) probably sits, are not known, neither experimen-
tally nor theoretically. The theory of the strongly inter-
acting matter (QCD) can be solved perturbatively only at
very high energies, not relevant for the problems here.
Lattice computations based on importance sampling face
serious difficulties at finite, especially large, density.
Therefore, we are left with effective models, in which
certain aspects of the strongly interacting matter can be
studied. The underlying principle in the construction of
such models is that they share the same global symmetries
as the QCD. There are different ways in which the chiral
symmetry can be realized. At large temperatures and
densities, one expects the chiral symmetry of QCD to be
restored. Then, chiral partners have to become degenerate
in mass, e.g., the sigma meson and the pions. To inves-
tigate the mechanism of chiral symmetry restoration,
effective theories with linearly realized chiral symmetry
are most appropriate.

In [1] an extended linear sigma model (ELσM) with
Uð3ÞL ×Uð3ÞR global symmetry was developed, which
incorporates the vector and axial vector mesons. The
parametrization of the ELσM performed at vanishing
temperature shows that the scalar states are preferred as
q̄q states only if their masses are above 1 GeV with an
opposite ordering ma0 < mK⋆

0
compared to the correspond-

ing experimental values. QCD sum rule analyses based on
Borel transformed two-point correlation functions of q̄q

currents also predict the masses of σ ≡ fLðowÞ0 (the scalar
particle with nonstrange quark content)1 and a0 to be
around 1.2 GeV and larger masses for K⋆

0 and the other

f0—the fHðighÞ0 —of the nonet, due to the strange quark
content of the latter (for details see [3] and references
therein). Only when the above QCD sum rule analysis is
done with tetraquark currents are the masses of scalar
mesons obtained in the region 0.6–1.0 GeV with the
ordering mfL

0
< mK⋆

0
< mfH

0
;a0 [3–5].

Since the mass of the fL0 , the excitation of the vacuum
with quantum numbers JPC ¼ 0þþ, is intimately related to
the nonstrange condensate, one could expect in the context
of the ELσM that a parametrization leading to a large fL0
mass will result in a high pseudocritical temperature.
This is because in the case of a smooth crossover phase
transition the larger the fL0 mass compared to the mass
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1From now on we always use fL0 instead of σ, as in the Particle
Data Group (PDG) [2].
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of its chiral partner, that is, the pion, the larger is the
temperature at which mfL

0
approaches mπ in the process of

the chiral symmetry restoration during which the value of
the nonstrange condensate diminishes. Another problem
with a large fL0 mass when the thermodynamics of the
ELσM is studied comes from the fact that usually the first
order phase transition, which occurs at T ¼ 0 as the baryon
chemical potential is increased, weakens with increasing
values of the fL0 mass and eventually becomes a crossover
at a high enough value of mfL

0
[6,7]. All this suggests that

even if a zero temperature analysis, which excludes the fL0
and fH0 scalar mesons from the parametrization process,
favors the heavy scalars as q̄q states, the combined zero and
finite temperature analysis can give a different result in a
given approximate solution of the model. To completely
clarify this issue, it seems necessary to include in the model
all the physical scalar states below 2 GeV, which is a task
we plan to do in a later work along the line of [8].
Beside the restoration of the chiral symmetry, the

liberation of quarks also occurs in QCD at high temper-
ature and/or density. The order parameter of this decon-
finement phase transition in the pure gauge theory is the
Polyakov loop. It is therefore reasonable to include it in
our model in the hope (supported by existing results in
the literature) that in this way a better phenomenological
description of the strongly interacting matter can be
achieved.
We shall study the thermodynamics of the (2þ 1) flavor

Polyakov quark meson model in which, beyond the vector
and axial vector mesons included alongside the scalar and
pseudoscalar ones, we take into account, as fermionic
degrees of freedom, the constituent quarks propagating
on a constant gluon background in the temporal direction,
which naturally leads in a mean-field treatment to the
appearance of the Polyakov loop. The influence of the
fermionic vacuum fluctuations on the thermodynamics of
the Polyakov loop extended quark meson (PQM) model
proved to be very important. In the case of two flavors
(Nf ¼ 2) it was shown in [9] that their inclusion can change
the order of the phase transition at vanishing baryon
chemical potential μB and that renormalization is required
to guarantee the second order nature of the temperature
driven phase transition in the chiral limit. In the PQM
model the effect of the fermionic vacuum fluctuations on
the T − μB phase diagram was investigated, e.g., in [10] for
Nf ¼ 2 and in [7,11] for Nf ¼ 2þ 1. We shall incorporate
the vacuum fluctuations of the fermions in the grand
potential and study the effect of the inclusion of the (axial)
vector mesons by comparing thermodynamic quantities and
the T − μB phase diagram with those determined in the
literature in the context of the PQM model.
For Nf ¼ 2 and without the inclusion of fermions,

the restoration of chiral symmetry at high temperature
was studied within the ELσM in Ref. [12], using the

functional renormalization group approach, and in the
gauged version of the model in [13], using the Cornwall-
Jackiw-Tomboulis formalism [14]. An application of the
(2þ 1)-flavor ELσM to an in-medium study was reported
in [15]. In contrast to this latter reference, in which it is
also rather obscure how thermal corrections are included
in the mass of the (axial) vectors, in the present work we
properly take into account the wave function renormal-
ization factors (neglected in [15]), which are related to
the redefinition of the (axial) vector fields and use a
complete set of parameters obtained from a consistent
parametrization of the model.
The paper is organized as follows. In Sec. II we introduce

the model, giving the Lagrangian and the Polyakov loop
potentials considered in this study. In Sec. III we introduce
the grand potential, the approximation used for its compu-
tation, summarize the determination of the curvature
masses and of the renormalization of the fermion vacuum
fluctuations, and present the field equations to be solved
numerically. The determination of the model parameters,
which is based on a χ2-minimization procedure, is
described in detail in Sec. IV. In Sec. V we present our
results concerning the medium mass variation of the model
constituents, the thermodynamics quantities derived from
the pressure, and the T − μB phase diagram. We conclude
in Sec. VI.

II. FORMULATION OF THE MODEL

In this section we give the Lagrangian of the model,
introduce the Polyakov loop, and present the different
forms of the Polyakov loop potential we shall use later. We
work with a modified version of the chiral Lagrangian
rather than the one employed in [1] at zero temperature
(more details on the construction of chiral Lagrangians can
be found in [16–18]). We consider now a different UAð1Þ
anomaly term (term with c1), because this term contains the
fields with lower powers than the one used in [1], while it
does not affect the zero temperature properties much
(see [19]). Moreover, we introduce additional kinetic and
Yukawa coupling terms for the constituent fermions
Ψ ¼ ðqu; qd; qsÞT . Another important modification is the
presence of the gluon field in the covariant derivative of the
quark field. In the mean-field approximation, this will give
rise in the grand potential of Sec. III to the appearance of
the Polyakov loop, which mimics some properties of the
quark confinement. Moreover, since 2 → 2 (axial) vector
scattering processes will not be considered here, the purely
four field (axial) vector self-interaction terms are left out
(see [1] for the complete Lagrangian).

A. Lagrangian of the PQM with (axial) vector mesons

According to the considerations above, the Lagrangian
we shall use has the following form:
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L ¼ Tr½ðDμMÞ†ðDμMÞ� −m2
0TrðM†MÞ − λ1½TrðM†MÞ�2 − λ2TrðM†MÞ2 þ c1ðdetM þ detM†Þ þ Tr½HðM þM†Þ�

−
1

4
TrðL2

μν þ R2
μνÞ þ Tr

��
m2

1

2
þ Δ

�
ðL2

μ þ R2
μÞ
�
þ i

g2
2
ðTrfLμν½Lμ; Lν�g þ TrfRμν½Rμ; Rν�gÞ

þ h1
2
TrðM†MÞTrðL2

μ þ R2
μÞ þ h2TrðjLμMj2 þ jMRμj2Þ þ 2h3TrðLμMRμM†Þ þ Ψ̄½iγμDμ −M�Ψ: ð1Þ

The covariant derivatives appearing in (1) are written in terms of the electromagnetic field Aμ
e, the left- and right-handed

vector fields Lμ, Rμ and the gluon fields Gμ
i as

DμM ¼ ∂μM − ig1ðLμM −MRμÞ − ieAμ
e½T3;M�; DμΨ ¼ ∂μΨ − iGμΨ; ð2Þ

where Gμ ¼ gsG
μ
i Ti, with Ti ¼ λi=2 (i ¼ 1;…; 8) denoting the SUð3Þ group generators given in terms of the Gell-Mann

matrices λi. The field strength tensors

Lμν ¼ ∂μLν − ieAμ
e½T3; Lν� − f∂νLμ − ieAν

e½T3; Lμ�g; Rμν ¼ ∂μRν − ieAμ
e½T3; Rν� − f∂νRμ − ieAν

e½T3; Rμ�g; ð3Þ

are constructed from the left- and right-handed vector fields Lμ and Rμ which contain the nonets of vector (Vμ
a) and axial

vector (Aμ
a) meson fields as follows:

Lμ ≡ Vμ þ Aμ ≡X8
a¼0

ðVμ
a þ Aμ

aÞTa ¼
1ffiffiffi
2

p

0
BBB@

ωNþρ0ffiffi
2

p þ f1Nþa0
1ffiffi

2
p ρþ þ aþ1 K⋆þ þ Kþ

1

ρ− þ a−1
ωN−ρ0ffiffi

2
p þ f1N−a01ffiffi

2
p K⋆0 þ K0

1

K⋆− þ K−
1 K̄⋆0 þ K̄0

1 ωS þ f1S

1
CCCA

μ

; ð4Þ

Rμ ≡ Vμ − Aμ ≡X8
a¼0

ðVμ
a − Aμ

aÞTa ¼
1ffiffiffi
2

p

0
BBB@

ωNþρ0ffiffi
2

p − f1Nþa0
1ffiffi

2
p ρþ − aþ1 K⋆þ − Kþ

1

ρ− − a−1
ωN−ρ0ffiffi

2
p − f1N−a01ffiffi

2
p K⋆0 − K0

1

K⋆− − K−
1 K̄⋆0 − K̄0

1 ωS − f1S

1
CCCA

μ

; ð5Þ

where the assignment to physical fields is made explicit with the exception of the mixing sector. The index a ¼ 0;…; 8 runs

over the generators of the Uð3Þ group which includes also T0 ¼ λ0=2 with λ0 ¼
ffiffi
2
3

q
13×3. The matrix M in the Lagrangian

collects the nonets of scalar (Sa) and pseudoscalar (Pa) meson fields,

M ≡MS þMPS ≡
X8
a¼0

ðSa þ iPaÞTa ¼
1ffiffiffi
2

p

0
BBB@

ðσNþa0
0
ÞþiðηNþπ0Þffiffi

2
p aþ0 þ iπþ K⋆þ

0 þ iKþ

a−0 þ iπ− ðσN−a00ÞþiðηN−π0Þffiffi
2

p K⋆0
0 þ iK0

K⋆−
0 þ iK− K̄⋆0

0 þ iK̄0 σS þ iηS

1
CCCA; ð6Þ

while the external fields related to the scalar and vector
fields are introduced with the following parametrization:

H ¼ H0T0 þH8T8 ¼
1

2
diagðh0N; h0N;

ffiffiffi
2

p
h0SÞ; ð7Þ

Δ ¼ Δ0T0 þ Δ8T8 ¼ diagðδN; δN; δSÞ: ð8Þ

The first line in the Lagrangian (1) contains the kinetic
and self-interaction terms of the (pseudo)scalars together
with a UAð1Þ anomaly term and an explicit symmetry

breaking term. The second line consists of the kinetic terms
for the (axial) vectors, altogether with explicit symmetry
breaking terms for the (axial) vectors and the (axial)
vector–electromagnetic interaction terms. In the third line
one finds the (pseudo)scalar–(axial) vector interaction
terms, the kinetic terms of the constituent quarks, and their
Yukawa-type interaction with the (pseudo)scalar mesons.
The quark mass matrix appearing there is defined as

M ¼ gFð14×4MS þ iγ5MPSÞ; ð9Þ
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and has the structure of a block matrix in flavor, Dirac, and
color space.
For convenience, in the matrices above and throughout

the article, we use the N − S (nonstrange–strange) basis
instead of the 0–8 basis, which for a generic field
ξa ∈ ðSa; Pa; V

μ
a; A

μ
a; Ha;ΔaÞ is defined as

ξN ¼ 1ffiffiffi
3

p ð
ffiffiffi
2

p
ξ0 þ ξ8Þ; ξS ¼

1ffiffiffi
3

p ðξ0 −
ffiffiffi
2

p
ξ8Þ: ð10Þ

Since in the present work we neglect the isospin breaking,
we have to deal with only two nonzero condensates (field
expectation values), the ϕN ≡ hσNi nonstrange and the
ϕS ≡ hσSi strange scalar condensates. In the broken
symmetry phase, the model Lagrangian is obtained with
the usual procedure in which the nonstrange and strange
scalar fields are shifted by their expectation values,
σN=S → σN=S þ ϕN=S, which will generate the tree-level
masses and decay widths.

B. The Polyakov loop potential

The introduction of the Polyakov loop operator and
its application in the present context can be found, for
instance, in [20–22]. For the sake of completeness, how-
ever, let the key steps be presented here as well.
To go to finite temperature, analytic continuation to

imaginary time should be performed, t → −iτ. The tem-
poral component of the gluon gauge field, which is entering
in the definition of the Polyakov loop operator, is trans-
formed accordingly as G0ðt;xÞ → −iG4ðτ;xÞ, while we
assume that the spatial components of Gμ are vanishing.
The Polyakov loop operator itself—which is nothing other
than a path ordered Wilson loop of the gauge field in the
temporal direction—is defined as [7,23]

L ¼ P exp

�
i
Z

β

0

dτG4ðτ;xÞ
�
: ð11Þ

L and L† are matrices in the fundamental representation of
the color gauge group SUðNcÞ with Nc ¼ 3. Introducing
the color traced Polyakov loops as

ΦðxÞ ¼ 1

Nc
TrcLðxÞ; Φ̄ðxÞ ¼ 1

Nc
TrcL†ðxÞ; ð12Þ

the Polyakov loop variables are defined as the thermal
expectation values hΦi and hΦ̄i. In the pure gauge case they
are related to the free energy of infinitely heavy static quark
and antiquarks.
As a next step, the so-called Polyakov gauge is chosen,

in which G4ðτ;xÞ ¼ G4ðxÞ is time independent and
diagonal in color space; that is, it belongs to the Cartan
subalgebra. Furthermore, we approximate G4ðxÞ to be
homogeneous, and thus it can be written as

G4 ¼ ϕ3λ3 þ ϕ8λ8; ð13Þ

with ϕ3 and ϕ8 being real. Consequently, with these
simplifications the Polyakov loop operator can be cast into
the following form:

L ¼ diagðz1; z2; z−11 z−12 Þ; ð14Þ

with z1 ¼ eiβðϕ3þϕ8=
ffiffi
3

p Þ, z2 ¼ eiβð−ϕ3þϕ8=
ffiffi
3

p Þ. When the
constant diagonal G4, given in (13), is substituted into
the kinetic term of the constituent quarks (2), the second
term of the covariant derivative can be considered as a color
dependent imaginary chemical potential. This observation
is used for the calculation of the grand canonical potential
in Sec. III.
The Polyakov loop potential describes the temperature

driven deconfinement phase transition occurring in the pure
gauge theory; therefore, the potential is constructed using
terms which are invariant under the Zð3Þ symmetry, and
some coefficients of these terms depend on the temperature
in order to assure a nonzero expectation value of Φ at large
temperature [24,25]. The potential is constructed in such a
way as to reproduce some thermodynamical quantities of
the pure gauge theory computed on the lattice. For the
functional form there are still various possibilities. The
simplest polynomial potential introduced in [24] leads in
Polyakov Nambu-Jona-Lasinio (PNJL) or PQM models to
some unwanted properties, such as negative susceptibilities
[26]. Therefore, we shall use a potential with a logarithmic
form which is coming from the SUð3Þ Haar measure of the
group integration [27] and is free from the negative
susceptibility problem. Moreover, as observed in [28],
the trace anomaly calculated with the logarithmic para-
metrization of the Polyakov loop potential shows a better
agreement with the corresponding quantity in the pure
SUð3Þ gauge theory computed recently on the lattice in
[29], compared to the case when a polynomial Polyakov
loop potential is used.
Although in thermodynamical applications the potential

is a function of the expectation values hΦi and hΦ̄i, we
use for simplicity Φ and Φ̄ for its arguments. Then the
logarithmic Polyakov loop potential can be written as

β4UlogðΦ; Φ̄Þ ¼ −
1

2
aðTÞΦΦ̄þ bðTÞ

× lnð1 − 6ΦΦ̄þ 4ðΦ3 þ Φ̄3Þ − 3ðΦΦ̄Þ2Þ;
ð15Þ

with coefficients

aðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2

; bðTÞ ¼ b3

�
T0

T

�
3

;

ð16Þ
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where the values of the constants are a0 ¼ 3.51,
a1 ¼ −2.47, a2 ¼ 15.22, and b3 ¼ −1.75.
The above parametrization of the Polyakov loop poten-

tial does not include the backreaction of the dynamical
quarks on the gauge sector and therefore the influence of
the quarks on the deconfinement phase transition. This
effect was discussed in [30] and in [28], where the
dependence of T0 on the number of quark flavors and
the baryon chemical potential was estimated. This led to
T0 ¼ 187 MeV for ms ¼ 150 MeV and T0 ¼ 182 MeV
for ms ¼ 95 MeV. In the present study we shall use this
latter value of T0. A refinement of this estimation was
achieved in [28], where a quark-improved Polyakov loop
potential was constructed by comparing the SUð3Þ Yang-
Mills (YM) effective potential with the gluonic effective
potential computed with the functional renormalization
group method by including the quark polarization in the
gluon propagator. It was observed that the two potentials
have the same shape and that they can be mapped into each
other by relating the temperatures of the two systems, TYM
and Tglue, respectively. The use of the improved Polyakov
loop potential Uglue was proposed in [28], which, denoting
by UYM the potentials in (15), was constructed based on
the relation

1

T4
glue

½UglueðΦ; Φ̄Þ�jtglue ¼
1

T4
YM

½UYMðΦ; Φ̄Þ�jtYMðtglueÞ; ð17Þ

where the mapping between the reduced temperatures
tYM ¼ TYM=TYM

c − 1 and tglue¼Tglue=T
glue
c −1 was deter-

mined to be tYMðtglueÞ ≈ 0.57tglue, with the critical temper-

atures TYM
c ¼ 270 MeV and Tglue

c ∈ ½180; 270� MeV. In
practice this amounts to using in the right-hand side of (15),
where T0 means TYM

c , the replacement T→TYM
c ð1þ

0.57ðT=Tglue
c −1ÞÞ (on the left side of the arrow T≡TYM,

while on the right side T ≡ Tglue). In Sec. V we shall

choose several values of Tglue
c in the range given above and

study the sensitivity of the results to this parameter.
Before closing this section we mention that a gluonic

potential with possible phenomenological applicability is
also calculated in [31] in terms of the Polyakov loop
variables hΦi and hΦ̄i, using background field methods in
the massive extension of the Landau-deWitt gauge.

III. THE GRAND POTENTIAL

To study the thermodynamics of a symmetric quark
matter (μu ¼ μd ¼ μs ≡ μq ¼ μB=3), we shall use the
grand potential ΩðT; μqÞ obtained from the partition
function of a three-dimensional spatially uniform system
of volume V in thermal equilibrium at temperature
T ¼ 1=β. Following Ref. [32] the partition function can
be given the following representation in terms of path
integrals:

Z ¼ e−βVΩðT;μqÞ ¼ Tr exp

�
−β

�
Ĥ −

X
f¼u;d;s

μfQ̂f

��

¼
Z
PBC

Y
a

Dξa

Z
APBC

Y
f

DqfDq†f

× exp

�
−
Z

β

0

dτ
Z
V
d3x

�
Lþ μq

X
f

q†fqf

��
; ð18Þ

where (A)PBC stands for (anti)periodic boundary condi-
tion, Q̂f is the conserved charge operator, and ξ denotes
here all the mesonic fields. Since the Polyakov loop is
treated at mean-field level, there is no integration over the
gluons [G4 in (13) is a background field] and in this case
the Polyakov loop potential (15) is simply added to the
grand potential.
The simplest approximation for the evaluation of the

grand potential frequently used in the literature takes into
account the (pseudo)scalar mesons at mean-field level only.
In the present case the vacuum and thermal fluctuations
for the fermions are taken into account, while the mesonic
vacuum fluctuations are neglected and the effects of the
lightest mesonic thermal fluctuations (π, K, fL0 ) are
included only in the pressure and the thermodynamical
quantities derived from it. Therefore, the meson potential is
classical (tree-level) and the fermion determinant obtained
after performing the functional integration over the quark
fields is evaluated for vanishing mesonic fluctuating fields.
Since we would like to assess how the parametrization
using vector and axial vector mesons influences the
thermodynamics in this approximation, we shall also
neglect the fluctuations of the vector and axial vector
mesons. In this approximation, which we shall call hybrid
(H) approximation, the grand potential reads

ΩHðT; μqÞ ¼ UðhMiÞ þ UðhΦi; hΦ̄iÞ þΩð0Þ
q̄q ðT; μqÞ; ð19Þ

where UðhMiÞ is the tree-level meson potential,

UðhΦi; hΦ̄iÞ is the Polyakov loop potential, and Ωð0Þ
q̄q is

the contribution of the fermions for nonvanishing scalar
backgrounds ϕN and ϕS and vanishing mesonic fluctuating
fields, the case in which the quark mass matrixM given in
(9) is diagonal in flavor space. Note thatM has a nontrivial
dependence on the scalar and pseudoscalar fluctuating
fields, when they are nonvanishing.
The tree-level mesonic potential

UðhMiÞ ¼ m2
0

2
ðϕ2

N þ ϕ2
SÞ −

c1
2

ffiffiffi
2

p ϕ2
NϕS − hSϕS − hNϕN

þ λ1
4
ðϕ2

N þ ϕ2
SÞ2 þ

λ2
8
ðϕ4

N þ 2ϕ4
SÞ

þ δm2
0

2
ðϕ2

N þ ϕ2
SÞ þ

δλ2
8

ðϕ4
N þ 2ϕ4

SÞ ð20Þ
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is obtained from the first line of (1) with the replacementM,
M† → hMi≡ TNϕN þ TSϕS, where TN=S ¼ λN=S=2 with

λN ¼ diagð1; 1; 0Þ and λS ¼ diagð0; 0; ffiffiffi
2

p Þ. In the last line
of (20) we explicitly added the counterterms which are
needed to renormalize the fermionic vacuum fluctuations
(see Sec. III A).
The contribution of the fermions to the grand potential

in the approximation described above is obtained as

Zð0Þ
q̄q ¼ e−βVΩ

ð0Þ
q̄q ¼

Z
APBC

Y
f

DqfDq†f exp

�Z
β

0

dτ
Z
V
d3x

× q†f

��
iγ0~γ · ~∇ −

∂
∂τ þ ~μq

�
δfg − γ0Mfgjξa¼0

�
qg

�
;

ð21Þ

where summation over repeated indices f; g ∈ fu; d; sg is
understood, the superscript (0) reminds one that the
mesonic fluctuating fields ξa are set to zero in the quark
mass matrixM defined in (9), and we introduced the color-
dependent chemical potential ~μq ¼ μq − iG4, different for
each color.
Evaluating the path integral in (21) as in [32] one obtains

Ωð0Þ
q̄q ðT; μqÞ ¼ Ωð0Þv

q̄q þ Ωð0ÞT
q̄q ðT; μqÞ; ð22Þ

where the vacuum and thermal parts are, respectively,

Ωð0Þv
q̄q ¼ −2Nc

X
f¼u;d;s

Z
d3p
ð2πÞ3 EfðpÞ; ð23Þ

Ωð0ÞT
q̄q ðT; μqÞ ¼ −2T

XNc

j¼1

X
f¼u;d;s

Z
d3p
ð2πÞ3

× ½lnð1þ e−βðEfðpÞ−~μjqÞÞ
þ lnð1þ e−βðEfðpÞþ ~μjqÞÞ�: ð24Þ

Here ~μjq ¼ μq − iðG4Þjj, EfðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

f

q
with p ¼ jpj

and, in the nonstrange–strange basis, the constituent quark
masses are given by

mu;d ¼
gF
2
ϕN and ms ¼

gFffiffiffi
2

p ϕS: ð25Þ

Writing

XNc

j¼1

lnð1þ e−βðEfðpÞ∓~μjqÞÞ ¼ Trc lnð1þ e∓iβG4e−βE
�
f ðpÞÞ;

ð26Þ
one recognizes the appearance of L ¼ eiβG4 and L† ¼
e−iβG4 , given explicitly in (14). Using the properties
detL ¼ detL† ¼ 1 and L†L ¼ 1 one expresses (26) in
terms of Φ ¼ TrcL=3 and Φ̄ ¼ TrcL†=3. We obtain

Ωð0ÞT
q̄q ðT; μqÞ ¼ −2T

X
f

Z
d3p
ð2πÞ3 ½ln g

þ
f ðpÞ þ ln g−f ðpÞ�;

ð27Þ

where Φþ ¼ Φ̄ and Φ− ¼ Φ were introduced for conven-
ience in order to write in a compact form

g�f ðpÞ ¼ 1þ 3ðΦ� þ Φ∓e−βE
�
f ðpÞÞe−βE�

f ðpÞ þ e−3βE
�
f ðpÞ;

ð28Þ

with E�
f ðpÞ ¼ EfðpÞ∓μf.

A. Renormalization of the fermionic
vacuum contribution

Using a three-dimensional cutoff Λ in the fermionic
vacuum term (23), one obtains with the help of the mass
formulas in (25)

− 6
X

f¼u;d;s

Z
d3p
ð2πÞ3 EfðpÞθðΛ − pÞ

¼ −
9Λ4

4π2
−
3g2F
8π2

Λ2ðϕ2
N þ ϕ2

SÞ

þ 3g4F
64π2

ln

�
2Λ

M0e
1
4

�
ðϕ4

N þ 2ϕ4
SÞ

−
3

8π2
X

f¼u;d;s

m4
f ln

mf

M0

þO
�
m6

f

Λ2

�
: ð29Þ

The first term on the right-hand side, quartic in Λ, is
uninteresting and can be removed from the potential by
considering a subtracted potential such that the value of the
potential at ϕN ¼ ϕS ¼ 0 is subtracted. The quadratic and
logarithmic divergences can be removed with the help of
the counterterms in the tree-level mesonic potential (20) by
choosing

δm2
0 ¼

3g2F
4π2

Λ2 and δλ2 ¼ −
3g4F
8π2

ln
2Λ

M0e
1
4

: ð30Þ

Therefore, the renormalized fermionic vacuum contribution
reads

Ωð0Þv
q̄q;R ¼ −

3

8π2
X

f¼u;d;s

m4
f ln

mf

M0

: ð31Þ

It was shown in Refs. [7,33] that the grand potential is
independent of the renormalization scale, which means
that dΩH=dM0 ≡ 0. The reason behind this is that after
renormalization λ2 becomes a quantity that depends on
the renormalization scale M0 and its β function is

βλ2 ¼ dλ2
d lnM0

¼ − 3g4F
8π2

, so that the M0 dependence of λ2
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compensates for the explicit dependence on M0 of the
renormalized vacuum term (31). As a consequence, we
could freely choose the renormalization scale M0 and
maintainM0 independency as long as we take into account
the M0 dependence of λ2 (which means we cannot change
M0 and λ2 independently). However, during the para-
metrization we scan through the parameter space uniformly
treating all parameters independently; thus we do not use
the M0 dependence of λ2, but instead, we consider M0 as
one of the parameters (see Sec. IV for additional details).

B. The curvature meson masses

The squaredmasses of the scalar andpseudoscalarmesons,
used later to determine the parameters of the model, are
calculated from the elements of the corresponding curvature
matrix, that is, the second derivative of the grand potential
with respect to the mesonic fields, generally denoted by φi;a
in some appropriate basis indexed by a, with i ¼ S for scalar
and i ¼ P for pseudoscalarmesons. These curvaturematrices
are symmetric and nondiagonal in the 0–8 or nonstrange–
strange basis and can be decomposed as

m2
i;ab ¼

∂2ΩðT; μqÞ
∂φi;a∂φi;b

				
min

¼ m2
i;ab þ Δm2

i;ab þ δm2
i;ab; ð32Þ

where the three terms on the right-hand side are as follows:
m2

i;ab is the tree-levelmassmatrix,2 andΔm2
i;ab and δm

2
i;ab are

the contributions of the fermionic vacuum and thermal

fluctuations, respectively. We note that the mesonic fields
are set to their expectation value only after the differentiation
is performed.
In the case of three flavors, δm2

i;ab was first calculated
without the inclusion of the Polyakov loop in [6] and in the
presence of the Polyakov loop in [34] at μ ¼ 0 and in [33]
at μ ≠ 0, while Δm2

i;ab was first computed in [7]. We shall
review below the expressions of Δm2

i;ab and δm2
i;ab, and in

Table I we explicitly give their contributions to the tree-
level masses, which are also listed there. Note that in the
N − S basis there are no off-diagonal contributions to the
curvature matrix coming from the fermionic fluctuations.
In the respective mixing sector, the eigenvalues m2

η0=η and

m2
fH
0
=fL

0

can be computed with the following formulas:

m2
η0=η ¼

1

2

h
m2

ηN þm2
ηS �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

ηN −m2
ηSÞ2 þ 4m4

ηNS

q i
; ð33Þ

m2
fH
0
=fL

0

¼ 1

2

h
m2

σN þm2
σS �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

σN −m2
σSÞ2þ4m4

σNS

q i
: ð34Þ

The fermionic vacuum contribution to the curvature
mass is given by

Δm2
i;ab ¼

∂2Ωð0Þv
qq̄

∂φi;a∂φi;b

				
min

¼ −
3

8π2
X

f¼u;d;s

��
3

2
þ log

m2
f

M2
0

�
m2ðiÞ

f;a m
2ðiÞ
f;b

þm2
f

�
1

2
þ log

m2
f

M2
0

�
m2ðiÞ

f;ab

�
; ð35Þ

TABLE I. The components of the pseudoscalar and scalar tree-level mass squared matrices and the corresponding contribution of the
fermionic vacuum and thermal fluctuations given in the N − S basis. We introduced Λ1 ¼ λ1 þ λ2=2, Λ2 ¼ λ1 þ λ2, Λ3 ¼ λ1 þ 3λ2=2,
A ¼ 3g4F=ð64π2Þ,C ¼ 6g2F, and following [7] X ¼ 1þ 4 ln gFϕN

2M0
and Y ¼ 1þ 4 ln gFϕSffiffi

2
p

M0

, withM0 being the renormalization scale. Tf, the

thermal part of the tadpole integral, is defined in (42) and Bf ¼ −dTf=ðdm2
fÞ.

Tree-level meson squared masses Fermionic vacuum correction Fermionic thermal correction

m2
π ¼ Z2

πðm2
0 þ Λ1ϕ

2
N þ λ1ϕ

2
S − c1ϕS=

ffiffiffi
2

p Þ Δm2
π ¼ −AZ2

πϕ
2
NX δm2

π ¼ CZ2
πTu

m2
K ¼ Z2

K½m2
0 þ Λ1ϕ

2
N þ Λ2ϕ

2
S − ðc1 þ

ffiffiffi
2

p
λ2ϕSÞϕN=2� Δm2

K ¼ −AZ2
K

ϕ3
NXþ2

ffiffi
2

p
ϕ3
SY

ϕNþ
ffiffi
2

p
ϕS

δm2
K ¼ CZ2

K
ϕNTuþ

ffiffi
2

p
ϕSTs

ϕNþ
ffiffi
2

p
ϕS

m2
ηN ¼ Z2

ηN ðm2
0 þ Λ1ϕ

2
N þ λ1ϕ

2
S þ c1ϕS=

ffiffiffi
2

p Þ Δm2
ηN ¼ −AZ2

ηNϕ
2
NX δm2

ηN ¼ CZ2
ηNTu

m2
ηS ¼ Z2

ηSðm2
0 þ λ1ϕ

2
N þ Λ2ϕ

2
SÞ Δm2

ηS ¼ −2AZ2
ηSϕ

2
SY δm2

ηS ¼ CZ2
ηSTs

m2
ηNS

¼ ZηNZηSc1ϕN=
ffiffiffi
2

p
Δm2

ηNS
¼ 0 δm2

ηNS
¼ 0

m2
a0 ¼ m2

0 þ Λ3ϕ
2
N þ λ1ϕ

2
S þ c1ϕS=

ffiffiffi
2

p
Δm2

a0 ¼ −Aϕ2
Nð4þ 3XÞ δm2

a0 ¼ CðTu −
g2Fϕ

2
s

2
BuÞ

m2
K⋆

0
¼ Z2

K⋆
0
½m2

0 þ Λ1ϕ
2
N þ Λ2ϕ

2
S þ ðc1 þ

ffiffiffi
2

p
λ2ϕSÞϕN=2� Δm2

K⋆
0
¼ −AZ2

K⋆
0

ϕ3
NX−2

ffiffi
2

p
ϕ3
SY

ϕN−
ffiffi
2

p
ϕS

δm2
K⋆

0
¼ CZ2

K⋆
0

ϕNTu−
ffiffi
2

p
ϕSTs

ϕN−
ffiffi
2

p
ϕS

m2
σN ¼ m2

0 þ 3Λ1ϕ
2
N þ λ1ϕ

2
S − c1ϕS=

ffiffiffi
2

p
Δm2

σN ¼ −Aϕ2
Nð4þ 3XÞ δm2

σN ¼ CðTu −
g2Fϕ

2
N

2
BuÞ

m2
σS ¼ m2

0 þ λ1ϕ
2
N þ 3Λ2ϕ

2
S Δm2

σS ¼ −2Aϕ2
Sð4þ 3YÞ δm2

σS ¼ CðTs −
g2Fϕ

2
S

2
BsÞ

m2
σNS

¼ 2λ1ϕNϕS − c1ϕN=
ffiffiffi
2

p
Δm2

σNS
¼ 0 δm2

σNS
¼ 0

2Compared to the case of the conventional LσM, some
elements of this matrix contain the wave-function renormaliza-
tion constants Zπ ¼ ZηN , ZK , ZηS , ZK⋆

0
, which are needed in order

to maintain the canonical normalization of the fields in the
presence of axial and vector mesons (see [1] for details).
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where we introduced, as in [6], shorthands for the first and
second derivatives of the constituent quark mass squared

with respect to the meson fields: m2ðiÞ
f;a ≡ ∂m2

f=∂φi;a and

m2ðiÞ
f;ab ≡ ∂2m2

f=∂φi;a∂φi;b.
The correction to the curvature matrix due to the

fermionic thermal fluctuations in the presence of the
Polyakov loop reads

δm2
i;ab ¼

∂2Ωð0ÞT
qq̄

∂φi;a∂φi;b

				
min

¼ 6
X

f¼u;d;s

Z
d3p
ð2πÞ3

1

2EfðpÞ

×

�
ðfþf ðpÞ þ f−f ðpÞÞ

�
m2ðiÞ

f;ab −
m2ðiÞ

f;a m
2ðiÞ
f;b

2E2
fðpÞ

�

þ ðBþ
f ðpÞ þ B−

f ðpÞÞ
m2ðiÞ

f;a m
2ðiÞ
f;b

2TEfðpÞ
�
; ð36Þ

where

f�f ðpÞ ¼
Φ�e−βE

�
f ðpÞ þ 2Φ∓e−2βE

�
f ðpÞ þ e−3βE

�
f ðpÞ

g�f ðpÞ
ð37Þ

is the modified Fermi-Dirac distribution functions for
quarks (þ) and antiquarks (−) and, following Ref. [34],
we also introduced B�

f ðpÞ ¼ 3ðf�f ðpÞÞ2 − C�
f ðpÞ with

C�
f ðpÞ¼

Φ�e−βE
�
f ðpÞ þ4Φ∓e−2βE

�
f ðpÞ þ3e−3βE

�
f ðpÞ

g�f ðpÞ
: ð38Þ

To obtain the mass squares, whose first and second
derivatives appear in Eqs. (35) and (36), we have to find
the eigenvalues of the square of the γ0M matrix from
Eq. (21), which is a 12 × 12 matrix in the Dirac and
flavor space, or, equivalently, of the matrix NN †, where
N ¼ σaλa þ iπaλa, which is a 3 × 3 matrix. An easy way
to do the calculation of a given derivative is to set to zero
all the fluctuating fields not used in the differentiation.
The calculation is straightforward and as noted in [6],
some cancellations occur in the isospin symmetric case,
where the mass squared of the two light quarks can be
combined. The result is given in the N − S basis in
Table II which, in the case of the LσM, appeared first in
the 0–8 basis in [6].
For Φ̄ ¼ Φ ¼ 1, the distribution functions f�f ðpÞ goes

over into the usual Fermi-Dirac distributions for quarks
and antiquarks, f�f ðpÞ → f�f;FDðpÞ ¼ 1=ðeβðEfðpÞ∓μfÞ þ 1Þ.
In this limit, which is expected to be reached at high
temperature, B�

f ðpÞ → −f�f;FDðpÞð1 − f�f;FDðpÞÞ, and one
recovers the expression of Ref. [6] for the curvature mass,
obtained in the linear sigma model without the inclusion
of the Polyakov loop. When Φ̄ ¼ Φ ¼ 0, which is reached
for vanishing temperature, the so-called “statistical confine-
ment” occurs, as f�f ðpÞ → 1=ðeβð3EfðpÞ∓μfÞ þ 1Þ, which

means that at small temperature three quark states, that
is, excitations with zero triality, represent the effective
degrees of freedom [21].

C. Field equations

Up to this point we were quite formal in dealing with the
consequence of the quark’s propagation on a constant gluon
background field in the temporal direction. Now we have to
face the situation that, sinceΦ and Φ̄ are complex, the grand
potential we arrived at is, in fact, a complex function of

complex variables. It is easy to see that Ωð0ÞT
q̄q ðT; μqÞ in (24)

has an imaginary part for μq ≠ 0, which is the manifestation
of the sign problem in the present context, and the question
is how to extract physical information from the grand
potential (see also the discussion in [35]). In the mean-field
approximation of Ref. [22] (see also [36]) the traced
Polyakov loops Φ and Φ̄ introduced in (12) are replaced
by their thermal expectation values hΦi and hΦ̄i, that is, by
the Polyakov loop variables, which at μB ≠ 0 are treated as
two real and independent quantities (at μB ¼ 0 they are
equal). Adopting this approach and using for simplicity the
notation Φ and Φ̄ for the Polyakov loop variable, it is
understood that from now on in Eqs. (28), (37), and (38) the
fields Φ and Φ̄ are real and independent. In this approach
the grand potential Ω is real and the physical point
(extremum of Ω) is a saddle point. Working with real
Polyakov loop variables Φ and Φ̄ seems to be supported by
the study performed in the massive extension of the
Landau-DeWitt gauge, where the self-consistent gauge
fixing condition imposes constraints on the background
gauge fields Ā3 and Ā8 [which correspond to ϕ3 and ϕ8 of
(13)]. As the study in [37] reveals, for real values of μB the
constraints are obeyed by real Ā3 and imaginary Ā8 gauge
fields, and these field configurations correspond to real

TABLE II. The first and second derivatives of the quark squared
masses with respect to the scalar (S) and pseudoscalar (P) meson
fields, evaluated in the N − S basis at the extremum of the grand
potential. All entries of the omitted ab ¼ NS rows are vanishing.
The result holds in the isospin symmetric case, and a summation
over l ∈ fu; dg is understood in the first two columns.

i ab m2ðiÞ
l;a m2ðiÞ

l;b =g4F m2ðiÞ
l;ab=g

2
F m2ðiÞ

s;a m
2ðiÞ
s;b =g

4
F m2ðiÞ

s;ab=g
2
F

S 11 1
2
ϕ2
N 1 0 0

S 44 0 Z2
K⋆
0

ϕN

ϕN−
ffiffi
2

p
ϕS

0 −
ffiffi
2

p
Z2
K⋆
0

ϕS

ϕN−
ffiffi
2

p
ϕS

S NN 1
2
ϕ2
N 1 0 0

S SS 0 0 ϕ2
S 1

P 11 0 Z2
π 0 0

P 44 0 Z2
KϕN

ϕNþ
ffiffi
2

p
ϕS

0
ffiffi
2

p
Z2
KϕS

ϕNþ
ffiffi
2

p
ϕS

P NN 0 Z2
ηN

0 0
P SS 0 0 0 Z2

ηS
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and independent Polyakov loop variables Φ and Φ̄.3 We
mention that in some cases, another approach is preferred in
the PLσM, in which the imaginary part of the potential is
neglected [35]. In this case the physical point is a minimum,
which makes possible the investigation of the nucleation
occurring during a first order phase transition, but has
the drawback that the difference between the expectation
values of the traced Polyakov loop and its conjugate
vanishes at μB ≠ 0.
In view of the above discussion, the field equations,

which determine the dependence on T and μB ¼ 3μq of the

chiral condensates ϕN and ϕS and the Polyakov loop
variables Φ and Φ̄, are obtained by extremizing the grand
potential,

∂ΩH

∂ϕN
¼ ∂ΩH

∂ϕS
¼ ∂ΩH

∂Φ ¼ ∂ΩH

∂Φ̄ ¼ 0: ð39Þ

In our hybrid approach we include in the field equations
only the vacuum and thermal fluctuations of the constituent
quarks and leave out the corresponding mesonic fluctua-
tions. In this case, the explicit field equations read

−
d
dΦ

�
UðΦ; Φ̄Þ

T4

�
þ 6

T3

X
f¼u;d;s

Z
d3p
ð2πÞ3

�
e−βE

−
f ðpÞ

g−f ðpÞ
þ e−2βE

þ
f ðpÞ

gþf ðpÞ
�

¼ 0; ð40aÞ

−
d

dΦ̄

�
UðΦ; Φ̄Þ

T4

�
þ 6

T3

X
f¼u;d;s

Z
d3p
ð2πÞ3

�
e−βE

þ
f ðpÞ

gþf ðpÞ
þ e−2βE

−
f ðpÞ

g−f ðpÞ
�

¼ 0; ð40bÞ

m2
0ϕN þ

�
λ1 þ

1

2
λ2

�
ϕ3
N þ λ1ϕNϕ

2
S −

1ffiffiffi
2

p c1ϕNϕS − h0N þ 3

2
gFðhq̄uquiT þ hq̄dqdiTÞ ¼ 0; ð40cÞ

m2
0ϕS þ ðλ1 þ λ2Þϕ3

S þ λ1ϕ
2
NϕS −

ffiffiffi
2

p

4
c1ϕ2

N − h0S þ
3ffiffiffi
2

p gFhq̄sqsiT ¼ 0; ð40dÞ

where UðΦ; Φ̄Þ is the Polyakov loop potential (15) and,
by matching the renormalization of the effective potential
done in Sec. III A, we defined the renormalized expectation
value4 as

hq̄fqfiT ¼ 4mf

�
−

m2
f

16π2

�
1

2
þ ln

m2
f

M2
0

�
þ Tf

�
; ð41Þ

with the thermal part of the fermion tadpole integral
given by

Tf ¼
Z

d3p
ð2πÞ3

1

2EfðpÞ
ðf−f ðpÞ þ fþf ðpÞÞ: ð42Þ

IV. DETERMINATION OF THE MODEL
PARAMETERS

There are altogether 16 unknown parameters, 15 param-
eters found in the Lagrangian given in Eq. (1) and the

renormalization scale M0 (see Sec. III A). For the renorm-
alization scale we choose three different initial values,
namely M0 ¼ 0.3; 0.9; 1.5 GeV, and run the parametriza-
tion for them. After finding a good solution—which
includes a particular M0 value—we take it as an initial
condition and minimize for M0 around that solution. From
the remaining 15 Lagrangian parameters δN can be incor-
porated (without loss of generality) into m1—the bare
(axial) vector mass, while the external fields h0N and h0S
are replaced by the scalar condensates ϕN and ϕS with the
help of the field equations (40c) and (40d) at zero temper-
ature. Consequently, there are 14 parameters left to be
determined, which are the following: the bare (pseudo)
scalar massm0; the (pseudo)scalar self-couplings λ1 and λ2;
the UAð1Þ anomaly coupling c1; the bare (axial) vector
mass m1; the (axial) vector–(pseudo)scalar couplings h1,
h2, and h3; the external field δS which explicitly breaks the
chiral symmetry in the (axial) vector sector; the scalar
condensates ϕN and ϕS; the Yukawa coupling gF; and two
(axial) vector couplings g1 and g2.
In the parametrization procedure we use alongside

29 vacuum quantities, that is 15 masses, 12 tree-level
decay widths, 2 partially conserved axialvector current
(PCAC) relations fπ¼ϕN=Zπ and fK ¼ ðϕN þ ffiffiffi

2
p

ϕSÞ=
ð2ZKÞ, and also the pseudocritical temperature Tc (see the
next paragraph for explanation). The masses used are the
following: the curvature masses of the pseudoscalars mπ ,

3We thank Urko Reinosa for explaining to us the relevance of
his works in the present context and for sharing with us the ideas
and subtleties related to the construction of a physically mean-
ingful potential.

4It is worth noting that the expectation value hq̄fqfi is
calculated within the framework of the present model containing
constituent quarks and it is not directly related to hq̄qi appearing
in the QCD.
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mK , mη, mη0 and the scalars ma0 , mK⋆
0
, mfL

0
, mfH

0
listed in

Table I, where the fermionic corrections to the tree-level
masses are also given [see also Eqs. (33) and (34)]; the
tree-level masses of the vector mesons mρ ¼ mω, mK⋆ , mΦ,
the axial vector mesonsma1 ¼ mfL

1
,mfH

1
to be found in [1];

the tree-level constituent quark masses mu;d, ms given in
(25).5 The decay widths used are the vector decays Γρ→ππ ,
ΓK⋆→Kπ , ΓΦ→KK , the axial vector decays Γa1→ρπ, Γa1→πγ ,
Γf1→K⋆K , and the scalar decays Γa0 , ΓK⋆

0
, ΓfL

0
→ππ, ΓfL

0
→KK ,

ΓfH
0
→ππ, ΓfH

0
→KK given in [1] and Appendix A. The value of

the masses and decay constants are compared with the
corresponding experimental value taken from the PDG [2]
through the χ2 minimization method of Ref. [38] similarly
as in [1], but with some important differences listed below.
One such difference, mentioned already and detailed more
latter, is the inclusion of the pseudocritical temperature Tc
in the minimization process. We take the mean value given
in the PDG (in case of charged particles, the neutral and
charged masses are averaged) and for the error we allow for
a 20% variation with respect to the PDG value for the
masses and decay widths of the scalar sector, 10% for
the constituent quark masses, and 5% for all the other
quantities. We use this large error in case of the scalars
mainly because they mix with each other and our fields do
not correspond to pure physical particles, while in case of
the constituent quarks, their dynamically generated mass
depends on how it is defined and calculated. All other
errors of the masses and decay widths of the pseudoscalars,
vectors, and axial vectors are much smaller experimentally;
however, we used 5% for them due to model limitations and
approximations (e.g., isospin symmetry). All the data used
for the parametrization are listed in Appendix B.
Compared to [1], the modifications in the parametriza-

tion of the model are the following:
(i) Since here we use a different anomaly term [see (1)],

the terms proportional to c1 are different in the
expressions of the tree-level pseudo(scalar) masses
and the scalar decay widths, which are listed
explicitly in the first column of Table I and in
Appendix A, respectively. The expressions of the
(axial) vector meson masses and decay widths are
unchanged.

(ii) A small modification in the present case is that for
the a0ð980Þ particle we fit to the value of the total
width found in [2], instead of fitting to the value of
the two amplitudes jMa0ð980Þ→KKj and jMa0ð980Þ→ηπj
found in [39].

(iii) We now include the f0 masses and decay widths
into the global fit, as opposed to [1], where we first
did a global fit without using the properties of the f0

mesons and only after that we analyzed the conse-
quences of the fit on the f0’s.

(iv) We consider here the effects of the fermion vacuum
fluctuations, a case in which the expression of the
(pseudo)scalar masses are modified, as shown in the
second column of Table I.

(v) Working in the isospin symmetric limit, we use
now the two additional tree-level equations for the
constituent quark masses given in (25). Their
explicit expression contains the Yukawa coupling
gF, and the values mu;d ¼ 308 MeV and ms ¼
483 MeV were used for the fit. These values are
obtained from a nonrelativistic mass formula for
the light mesons in which spin-spin interaction is
taken into account, as presented in Chap. 5.5
of Ref. [40].

As was discussed in [1], the scalar sector below 2 GeV
contains more physical particles than states in one qq̄ nonet
(consisting of a0, K⋆

0 , f
L
0 , f

H
0 ), since in nature there are two

a0, two K⋆
0 , and five f0 particles in the considered energy

range. These particles are the a0ð980Þ and a0ð1450Þ, which
will be denoted by a10 and a20; the K

⋆
0ð800Þ and K⋆

0ð1430Þ,
which will be denoted by K⋆1

0 and K⋆2
0 ; and the f0ð500Þ

[previously called as σ or f0ð600Þ], f0ð980Þ, f0ð1370Þ,
f0ð1500Þ, and f0ð1710Þ, which will be denoted by
f10;…; f50, respectively. Consequently, there are 40 pos-
sibilities to assign the existing scalar physical particles to
the corresponding scalar nonet states.
Since compared to [1] our parametrization considerably

changed due to the inclusion of the f0 masses, decay
widths, and fermionic vacuum fluctuations, we reran the
fitting procedure for all 40 cases and for every M0 value
mentioned earlier and retained only those solutions of the
χ2 minimization, which gave the lowest χ2 values.
However, by using only zero temperature quantities
(PCAC relations, masses, and decay widths) in the para-
metrization we would end up with lots of possible solutions
with very close χ2 values, which could produce various,
even physically unacceptable, thermodynamical behaviors.
More specifically, the Tc pseudocritical temperature at
zero baryon chemical potential, which should be around
150 MeV,6 can reach very high values (⪆350 MeV) in case
of some solutions. Thus we chose to include the physical
value of Tc in the parametrization with a 10% error.
Additionally, we only considered solutions that had
Tc < 180 MeV. For the determination of the Tc we solved
the four coupled field equations Eqs. (40a)–(40d) at μB ¼ 0
and defined Tc as the temperature for which the value of the
so-called subtracted chiral condensate is 0.5. This quantity,
defined in [43] as

5Note that the relations mρ ¼ mω and ma1 ¼ mfL
1
hold at tree

level in our model and that we do not use mK1
. For the latter see

the discussion in [1].

6Continuum extrapolated lattice results give Tc ¼ 151 MeV
from the peak of the chiral susceptibility [41] and Tc ¼ 157 MeV
if the inflection point of the subtracted chiral condensate is
used [42].
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Δl;sðTÞ ¼
ðϕN − h0N

h0S
ϕSÞjT

ðϕN − h0N
h0S

ϕSÞjT¼0

; ð43Þ

can be measured on the lattice, and it takes values between
0 and 1.
The χ2 and χ2red ≡ χ2=Ndof values

7 for the first ten best
solutions are shown in Table III along with the correspond-
ing particle assignments. Interestingly, in the case of the ten
best solutions the value of M0 was always 0.3 GeV (from
the three possibilities 0.3,0.9, and 1.5 GeV). In these
solutions we used the logarithmic Polyakov loop potential
(15) with T0 ¼ 182 MeV. Considering that we would
like to carry out the thermodynamical analysis with one
particular set of parameters (which means one particular
assignment of the scalar states), we could simply choose the
first one. However, since the first couple of solutions are not
very far from each other in χ2 values, it is better if we take a
closer look at the details of the fits and see how well they
describe the spectrum physically. The detailed fit results
of the first two best solutions are shown in Table V of
Appendix B together with the result taken from [1]. In the
case of the two best solutions the majority of the 30
physical quantities listed there are in good agreement with
the experimental values. However, there are some quan-
tities that are not well described, like the mass of a1, which
we find in any current fit smaller than its experimental
value, and which consequently result in too small values
for the a1 decays as well. Considering the first assignment
a10K

⋆1
0 f10f

2
0 we cannot see any inconsistency; on the

other hand, in case of the second assignment (right
“Fit” column), a10K

⋆1
0 f10f

3
0, the fH0 should correspond to

f0ð1370Þ, while the fitted values of its mass and ΓfH
0
→KK

decay—which are 802.4 MeV and 0 MeV, respectively—
are much closer to the data of f0ð980Þð≡f20Þ. Though
its other decay turns out to be ΓfH

0
→ππ ¼ 249.5 MeV, this

value indeed belongs to f0ð1370Þ. This means that this
assignment can be excluded even on the grounds of
physical inconsistency. With the same argument all ele-
ments of the list in Table III can be excluded except one,
which is indeed the best solution with assignment
a10K

⋆1
0 f10f

2
0 (middle “Fit” column). Thus we choose the

parameter set belonging to the a10K
⋆1
0 f10f

2
0 assignment for

the thermodynamical investigations of the next section and
minimize for M0, which reduces the χ2 slightly to 18.53.
The corresponding values of the parameters are given in
Table IV. Using Eqs. (40c) and (40d) at T ¼ 0 one obtains
for the value of the external fields h0N ¼ ð108.488 MeVÞ3
and h0S ¼ ð287.832 MeVÞ3.
It is worth noting that according to [1] without fitting the

fL=H0 mesons the best solution is the combination a20K
⋆2
0 ,

and we argued that with that solution the most favorable
fL=H0 assignment is the f3=50 . For a general investigation
the procedure followed in [1] is the right strategy, since the
physically observed f0 states are probably mixtures of
elementary diquark, tetraquark, and glueball states (from
which the latter ones are not included in the present model);
therefore, our fL=H0 states cannot be identified directly with
any of the fi0 states. Since we could not quantify that mixing,
we left out the f0’s from the fit. However, in this study, the
thermodynamical properties of the system depend on fL0
very strongly, and thus we had to identify it with one of the
fi0 states and include it in the parametrization.

V. RESULTS

In this section we present the dependence on the
temperature and chemical potential of various physical

TABLE III. χ2 and χ2red ¼ χ2=Ndof values (Ndof ¼ 16, because
M0 is kept fixed) for the first ten best solutions of the fit together
with the corresponding physical scalar meson particle assign-
ment. See the text for the meaning of the superscript in the
particle assignment.

Particle assignment χ2 χ2red

a10K
⋆1
0 f10f

2
0

18.57 1.16

a10K
⋆1
0 f10f

3
0

21.38 1.34

a10K
⋆2
0 f10f

3
0

27.80 1.74

a10K
⋆2
0 f10f

2
0

28.42 1.77

a10K
⋆1
0 f20f

3
0

29.37 1.83

a20K
⋆1
0 f10f

2
0

31.65 1.98

a20K
⋆1
0 f10f

3
0

33.41 2.09

a10K
⋆2
0 f20f

3
0

35.99 2.25

a10K
⋆1
0 f10f

5
0

38.87 2.43

a20K
⋆1
0 f20f

3
0

41.54 2.60

TABLE IV. Parameter values in the case of the a10K
⋆1
0 f10f

2
0

particle assignment obtained using the logarithmic Polyakov loop
potential (15) with T0 ¼ 182 MeV.

Parameter Value Parameter Value

ϕN [GeV] 0.1411 g1 5.6156
ϕS [GeV] 0.1416 g2 3.0467

m2
0½GeV2� 2.3925E−4 h1 27.4617

m2
1½GeV2� 6.3298E−8 h2 4.2281

λ1 −1.6738 h3 5.9839
λ2 23.5078 gF 4.5708
c1 [GeV] 1.3086 M0 [GeV] 0.3511

δS½GeV2� 0.1133

7The number of the degrees of freedom, Ndof is the difference
between the number of fitted quantities and the number of fitting
parameters that are 30 and 14, respectively. Note that M0 is kept
fixed.
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quantities determined with the best set of parameters found
with our parametrization procedure. We compare the
variation of the condensates and that of the pressure and
the quantities derived from it, like the energy density, the
interaction measure, and the speed of sound, with recent
continuum extrapolated lattice results. In doing so, we vary
the parameter Tglue

c of the improved Polyakov loop poten-
tial (17) in the range of [182, 270] MeV, in an attempt to see
whether the lattice result could restrict its value. Changing
Tglue
c affects the value of Tc, but it does not affect the

vacuum value of the quantities used for parametrization.
We also study the μB − T phase diagram and the existence
of the CEP.

A. Temperature variation of condensates and
meson masses at μB = 0

In Fig. 1 we study at μB ¼ 0 the temperature variation
of the nonstrange and strange chiral condensates,
Polyakov loop expectation value, scalar and pseudoscalar
curvature masses, and the corresponding mixing angles.

These results are obtained using the improved Polyakov
loop potential Uglue of Eq. (17) with Tglue

c ¼ 182 MeV,8

as the value of the critical glue temperature. We see that
the chiral condensates stay close to their vacuum values
up to some quite high value of the temperature of order
100 MeV. This is the usual manifestation of the so-called
“Polyakov cooling mechanism” [44] already observed in
[45], namely, that when the Polyakov loop is coupled to
chiral quarks, any quark observable at small temperature
(deep in the hadronic phase) takes a value obtained in the
theory without the Polyakov loop at a lower temperature,
of the order T=Nc. When the value of the condensates
starts to drop, a bumpy behavior can be observed in both
the strange and nonstrange condensates. This behavior,
clearly shown by the temperature derivative of the
condensates, is reflected by the temperature evolution
of the masses.
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FIG. 1. Temperature dependence of various quantities obtained at μB ¼ 0 from the improved Polyakov loop potential Uglue (17)
proposed in [28] (here we used Tglue

c ¼ 182 MeV). Top left: nonstrange and strange chiral condensates along with their temperature
derivative and the Polyakov loop expectation value; top right: scalar and pseudoscalar mixing angles; and bottom left and right: scalar
and pseudoscalar curvature masses arranged according to chiral partners ðπ; fL0 Þ, ðη; a0Þ and ðK;K⋆

0Þ, ðη0; fH0 Þ, respectively. We also
show the masses of the strange and nonstrange components of the two mixing sectors.

8For other values of Tglue
c in the [182, 270] MeV interval the

curves show a very similar behavior.

P. KOVÁCS, ZS. SZÉP, and GY. WOLF PHYSICAL REVIEW D 93, 114014 (2016)

114014-12



Next, let us consider the restoration of chiral symmetry
from the parity doubling perspective [46], that is, by
checking the mass degeneracy of a scalar meson with its
opposite-parity partner. We see in Fig. 1 that in the
nonstrange sector the SUð2Þ chiral partners ðπ; fL0 Þ and
ðη; a0Þ become degenerate at T ≃ 190 MeV, which is
slightly above the inflection point (Tc ¼ 172 MeV) of
the nonstrange condensate ϕNðTÞ and subtracted chiral
condensate Δl;sðTÞ. In the strange sector the chiral sym-
metry is restored at a much higher temperature, as there is a
temperature range of around 200 MeV where the masses of
the chiral partners ðK;K⋆

0Þ are close, but they only become
degenerate above T ≃ 450 MeV. The masses of the η0 and
fH0 approach each other, but they never become degenerate.
This is the consequence of the fact that our anomaly
parameter c1 is temperature independent, and therefore
the Uð1ÞA symmetry is not restored in the explored
temperature region. The nonrestoration of the Uð1ÞA
symmetry is visible also in the nonstrange sector, where
the axial partners ðπ; a0Þ and ðη; fL0 Þ do not become
degenerate. We refer to the literature for the case when a
temperature-dependent anomaly parameter is considered
by using lattice results for the topological susceptibility.
Typically, following Ref. [47], an anomaly parameter
which decreases exponentially with the temperature or
density is considered, which results in a faster restoration of
the chiral symmetry and an effective restoration of the
Uð1ÞA symmetry [46,48].
We turn now to the scalar and pseudoscalar mixing

angles in relation with the masses of the fL0 − fH0 and η − η0
complexes. The big difference compared to previous results
obtained by computing the grand potential with the same
approximation we use here, but without the inclusion of the
(axial) vector mesons, is that in our case, for temperatures
below 0.9 GeV, one has mfL

0
≤ mσN < mσS ≤ mfH

0
and

similarly mη ≤ mηN < mηS ≤ mη0 in contrast to previous

studies, where mηN > mηS and mσN > mσS (see, e.g., [6]).
The temperature evolution of both mixing angles is such
that the situation of ideal flavor mixing is achieved at
temperatures which are 2–3 times larger than Tc; that is, fL0
and η mesons are pure nonstrange q̄q states, while fH0 and
η0 are pure strange ones.
Now we look more closely at the thermal evolution of the

subtracted chiral condensate Δl;s given in (43) and inves-
tigate, as in Ref. [28], whether by comparing to the lattice
result it is possible to restrict the values of some parameters
of the improved Polyakov loop potential. We have already
seen that our pseudocritical temperature is higher than the
continuum extrapolated lattice result; therefore, we plotΔl;s

as a function of the reduced temperature t ¼ T=Tc − 1. To
be able to compare with the lattice results of Ref. [42], we
have to assure that we use the same definition for the
pseudocritical temperature. During the parametrization we
used, as a reasonable and numerically easy to implement
approximation for Tc, the value of the temperature where
Δl;s ¼ 0.5. Now we define Tc as the inflection point of Δl;s

obtained by fitting fðTÞ ¼ aþ b arctanðcðπ − dTÞÞ to our
and the lattice results.9 Then, the value of the pseudocritical
temperature is given byTc ¼ π=d. Fitting the above function
to the lattice data in the range T ∈ ½145; 165� MeV we
obtain Tc ¼ 156.35 MeV, which is compatible with the
reported value 157(3)(3). In our case, regarding the loga-
rithmic Polyakov loop potential with T0 ¼ 182 MeV we
obtain Tc ¼ 172 MeV, and with the improved Polyakov
loop potential we get Tc ∈ ð168; 189Þ MeV, depending on
the Tglue

c value used.
In Fig. 2 we compare to lattice results the subtracted

chiral condensate (43) obtained by using the original
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FIG. 2. The subtracted chiral condensate Δl;s given in (43) (left panel) and the Polyakov-loop expectation values (right panel)
determined at μB ¼ 0 as a function of the reduced temperature t ¼ T=Tc − 1 for different parametrizations of the Polyakov loop
potential. We compare to the continuum extrapolated lattice result of the Wuppertal-Budapest Collaboration [42].

9This procedure, used in [49] in the context of the OðNÞ
model, is accurate in the present context only if the temperature is
restricted to a narrow range around the inflection point.
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Polyakov loop potential with the transition temperature
T0 ¼ 182 MeV and with the improved Polyakov loop
potential with various values of the transition temperature
Tglue
c . In agreement with the findings of Ref. [28], one

observes that the chiral transition is slightly smoother when
the improved Polyakov loop potential is used. The trend of
the lattice results is well reproduced above Tc, where the
difference between our results obtained with various
Polyakov loop potentials is the smallest. Comparison with
the lattice results at small values seems to favor the
improved Polyakov loop potential with a large value of
the Tglue

c parameter in the range between 210 MeV and
240 MeV. In contrast with the nice agreement of the
subtracted chiral condensate with the corresponding lattice
result, the thermal evolution of the Polyakov loop expect-
ation value shown in Fig. 2 is quite far from its lattice
counterpart, as was also the case in Ref. [28]. The
transition shown by the lattice result is much smoother,
and although, as explained in Ref. [28], the use of the
improved Polyakov loop potential makes the transition
smoother compared to the case when the original loga-
rithmic potential is used, the discrepancy from the lattice
results remains significant. It was argued in [50] that, as
the Polyakov loop requires renormalization, a temperature
dependent rescaling has to be applied to the Polyakov loop
expectation value calculated in an effective model when
comparing it to the lattice value. With this idea the lattice
result of two-color QCD was reproduced in a PNJL
model. Because of the big discrepancy with the lattice
data, we could not apply it in our case, where it seems that
the mean field approximation is rather crude, as far as the
expectation value of the Polyakov loop is concerned.

B. Thermodynamical quantities at μB = 0

In this subsection we present the thermodynamical
quantities derived from the pressure and compare them
to the corresponding continuum extrapolated lattice results
of Ref. [51]. The pressure is obtained from the grand
potential defined in (19) as

pðT; μqÞ ¼ ΩHðT ¼ 0; μqÞ −ΩHðT; μqÞ: ð44Þ

Based on the pressure, one can compute thermodynamical
observables like the entropy density s ¼ ∂p=∂T, the quark
number density ρq ¼ ∂p=∂μq, the quark number suscep-
tibility χq ¼ ∂2p=∂μ2q, the energy density ϵ¼−pþTsþ
μqρq, as well as the scaled interaction measure Δ ¼
ðϵ − 3pÞ=T4 and the square of the speed of sound defined
at μq ¼ 0 as c2s ¼ dp=dϵ ¼ s=ðTð∂s=∂TÞÞ.
So far we have not included any mesonic fluctuations in

the grand potential, and consequently we solved the field
equations without taking them into account. However,
the contribution of the pions has to be included in the

pressure, as at small temperature their mass is the smallest
among all constituents of the model. In fact, it is known
from textbooks that for small temperature the scaled
pressure behaves as p=T4 ∼ ðmπ=TÞ3=2 expð−mπ=TÞ.
With the curvature mass determined according to
Eq. (32) from a grand potential not containing mesonic
fluctuations, the additive partial contribution of a meson
b ∈ fπ; K; fL0g to the pressure is taken into account with
the formula

ΔpbðTÞ ¼ −nbT
Z

d3p
ð2πÞ3 lnð1 − e−βEbðpÞÞ; ð45Þ

where EbðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

b

q
, with mb being the meson

mass, and nb is the meson multiplicity (nπ ¼ 3, nK ¼ 4,
and nfL

0
¼ 1). Note that the fermion contribution to the

pressure is included using Eq. (27).
In the left panel of Fig. 3 we see that the constituent

quarks and the Polyakov loop potential give the major
part of the contribution to the pressure around and
beyond Tc and that at small temperature the pressure is
pion dominated. Any additional mesonic contribution
increases the pressure, and we see that with the
inclusion of K and fL0 , the pressure overshoots the
lattice data. The contribution of the kaons is significant
around Tc, while that of fL0 is quite small in the entire
temperature region. This has to do with the multiplicity
of the kaons, as nK ¼ 4nfL

0
. We included the contribu-

tion of fL0 in the pressure because in our approximation
it is rather light in the vacuum and its mass decreases
with the temperature roughly up to the pseudocritical
temperature Tc.
In the right panel of Fig. 3 one observes that with the

improved Polyakov loop potential the temperature
increase of the pressure is smoother than with the
original Polyakov loop potential (UYM), where the
Stefan-Boltzmann (SB) limit of the QCD (ideal gas of
massless fermions and gluons) is reached already for
T ≈ 1.5Tc. One also observes that the overshooting
of the pressure compared with the lattice data, when
additional mesonic contributions are included beyond
that of the pions, can be compensated to some degree
by increasing the value of Tglue

c in the improved Polyakov
loop potential. In the case of the pressure, we get close to
the lattice data by using the maximal value Tglue

c ¼
270 MeV. This means that one cannot reproduce equally
well all thermodynamical quantities with the same set of
model parameters, as the value for which Δl;s is the
closest to the lattice data is—according to Fig. 1—in the
range Tglue

c ∈ ð210; 240Þ MeV. This inconsistency could
be related to the inconsistent treatment of the mesonic
contributions which are not included in the field equa-
tions when the model is solved. It is seen in general that
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the inclusion of mesonic fluctuations smoothes the chiral
phase transition [52,53], and therefore with their con-
sistent inclusion we would expect a better agreement of
the pressure and the derived thermodynamical quantities
with the lattice results.
Some thermodynamical quantities derived from the

pressure, like the scale interaction measure Δ, the square
of the speed of sound c2s , and the equation of state
parameter p=ϵ (pressure over energy density), are presented
in Figs. 4, 5, and 6. With the original Polyakov loop
potential the maximum of the scaled interaction measure
ΔðtÞ in Fig. 4 and the minimum of the square of the speed

of sound c2sðtÞ in Fig. 6 (t ¼ T=Tc − 1 is the reduced
temperature) turn out to be too high and too low, respec-
tively. With the improved Polyakov loop potential the
trend of the corresponding continuum extrapolated lattice
results are fairly well reproduced by our results. As far as
the mesonic sector is concerned, the presented quantities
are basically pion dominated; however, the lattice results
are better reproduced if the contributions of kaons and
fL0 are taken into account. One observes in Figs. 5 and 6
that at high temperature both c2s and p=ϵ approach 1=3,
which is the value obtained in the Stefan-Boltzmann limit
of the QCD.
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logarithmic scale of the abscissa in the main plot. The inset zooms
into the region of small ϵ.
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We also studied the effect of the transition temperature
Tglue
c appearing in the improved Polyakov loop potential.

As it is visible from the figures, a single value of Tglue
c

cannot reproduce equally well the values of all the
quantities determined on the lattice. In the case of the
interaction measure a large value of Tglue

c is favored
around Tc and a smaller one at large temperatures. The
minimum of c2sðtÞ and pðtÞ=ϵðtÞ is well described with
Tglue
c ≃ 270 MeV, while the minimum of p=ϵ plotted as a

function of ϵ is fairly well reproduced with a different
value, Tglue

c ≃ 210 MeV.

C. μB − T phase diagram and the critical endpoint

We turn now to the study of the chiral phase transition at
finite baryon chemical potential μB. As μB is increased from
zero, the chiral transition as a function of the temperature
becomes more and more rapid, although its crossover
nature is preserved for quite large values of μB. The
pseudocritical temperature decreases with increasing μB,
and one can determine at μB ¼ 0 the curvature κ of the
chiral crossover transition curve in the T − μB plane
through the following standard fit

TcðμBÞ
TcðμB ¼ 0Þ ¼ 1 − κ

�
μB

TcðμBÞ
�

2

: ð46Þ

We obtain κ ¼ 0.0193, which is very close to the
continuum extrapolated lattice result κ ¼ 0.020ð4Þ
reported in [54] for the case μu ¼ μd ¼ μs.

10 We mention

that when μu ¼ μd and μs ¼ 0, the lattice results are
significantly lower: κ ¼ 0.0135ð20Þ in [55] and κ ¼
0.0149ð21Þ in [56].
In the case of our best set of parameters determined in

Sec. IV, the crossover transition eventually turns with
increasing μB into a first order one, by passing through
the CEP of the phase boundary, where the transition is
second order. This is presented in Fig. 7, where we
show the phase diagram obtained with the improved
Polyakov loop potential (17) by using Tglue

c ¼ 210 MeV.
The crossover transition curve can be parametrized as
TcðμBÞ¼TcðμB¼0Þ−0.101μ2B−0.073μ4B with TcðμB¼0Þ¼
0.179GeV. Since it was argued in [57] that the chemical
freeze-out temperature is close to the critical temperature,
it is interesting to compare the above transition curve
with the chemical freeze-out curve deduced from particle
multiplicities in heavy ion collisions, to which the para-
metrization T ¼ 0.166 − 0.139μ2B − 0.053μ4B was given in
[58], with T and μB measured in GeV. One can see in
Fig. 7 that our TcðμBÞ phase transition curve lies farther
from the origin of the T − μB plane than the freeze-out
curve.
With the best set of parameters given in Table IV,

the location of the CEP in our model is given by
ðμCEPB ; TCEP

c Þ ¼ ð885; 52.7Þ MeV when the improved
Polyakov loop potential is used with Tglue

c ¼ 210 MeV.
We refer to [59] concerning the influence of the improve-
ment in the Polyakov loop potential on the location of the
CEP in the PLσM. The large value of μCEPB we obtained
is typical of a linear sigma model without (axial) vector
mesons in the case when the vacuum fluctuation of the
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FIG. 7. The phase diagram obtained by using the improved
Polyakov loop potential Uglue with Tglue

c ¼ 210 MeV. The inset
shows the dependence of the CEP’s location on mfL

0
. The dashed

curve denotes a crossover-type transition, the solid curves
represent the two spinodals limiting the metastable region
associated with a first order phase transition, while the dash-
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10We thank M. D’Elia for indicating the appropriate reference
to compare our result with.
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fermions is included. See, e.g., [7] where the value
μCEPB ¼ 849 MeV was reported, with a somewhat larger
value of temperature, TCEP

c ¼ 81 MeV, than is in our
case. Without the inclusion of the fermionic vacuum
fluctuations, as is the case of Refs. [6,60], the value of
μCEPB is smaller and TCEP

c higher, compared to the case
when they are properly taken into account. In Fig. 7 of
[7] one can see that the inclusion of the fermionic
vacuum fluctuations shifts the CEP found for mσ ¼
400 MeV at ðμCEPB ; TCEP

c Þ ¼ ð240; 177.5Þ MeV to the
location quoted above, that is μCEPB =TCEP

c increases from
1.35 to 10.5.
The continuum extrapolated lattice results of [56],

obtained using analytical continuation from imaginary
chemical potential, show no evidence of CEP up to
μB ≈ 350 MeV. Although there exist lattice estimates
on the location of the CEP, these are obtained at
fixed lattice spacing and temporal extent Nt ¼ 4
and at different numbers of flavors (Nf ¼ 2 and
Nf ¼ 2þ 1), value of the pion mass, and lattice volume
(see Table I of [61]). Opposed to these is the lattice
result [62] obtained at Nt ¼ 4, in which the shrinking of
the first order chiral transition region of the mu;d −ms

plane was observed as μB is increased from zero. The
result of Ref. [62] would suggest the absence of CEP,
unless the μcritB ðmu;d; msÞ surface of the second order
phase transition points behaves nonmonotonously with
increasing μB, similar to the situation observed, e.g., in
[63] in the Nambu–Jona-Lasinio model, using a μB-
dependent ’t Hooft coupling, or in [64], in the linear
sigma model.
Instead of comparing the location of the CEP found

in our model to lattice results obtained at fixed lattice
spacing, we compare it with values coming from the
solutions of truncated Dyson-Schwinger equations in
Landau gauge QCD obtained with Nf ¼ 2 [65–67] and
with Nf ¼ 2þ 1 [68,69], and also with an estimate
obtained by analyzing experimental data in heavy-ion
collisions [70]. Simple parametrizations of the gluon
propagator gives μCEPB =TCEP

c ≃ 3.3 in [65], which does
not seem to depend on the dressing of the quark-gluon
vertex, and μCEPB =TCEP

c ≃ 3.4 in [66]. On the other hand,
when a temperature dependent parametrization of the gluon
propagator is used in [67], based on which the T depend-
ence of the quark-antiquark condensate is reproduced at
μB ¼ 0, μCEPB =TCEP

c ≃ 6.8 is obtained, which is a factor of
2.5 smaller than our value and a factor of 2 larger than the
values in [65,66]. Compared to these values, μCEPB =TCEP

c ≃
4.4 was found in [68] (our value of μCEPB is 1.75 times larger
and our value of TCEP

c is 2 times smaller than there), which
increases slightly to 4.7 [69] with the inclusion of terms in
the quark-gluon interaction which are parametrized with
baryonic degrees of freedom. What is common in the
approach based on the Dyson-Schwinger equations and

also in the method of [71]11 using finite energy sum rules is
that they rely on the self-consistent propagator equation for
the quarks. It remains to be seen how self-energy correction
in the fermion propagator will affect in our model the value
of μCEPB =TCEP

c .
Recently the nonmonotonic pattern of some experimen-

tal observable obtained at various centralities as a function
of the collision energy was attributed in [70] to finite-
size scaling effects occurring near a second order phase
transition. The determined critical exponents governing
the growth of the correlation length and susceptibility
suggests the existence of a CEP that belongs to the
universality class of a three-dimensional Ising model
and has a small value of baryon chemical potential,
μCEPB ≈ 95 MeV, and a high value of critical temperature
TCEP
c ≈ 165 MeV.
In the inset of Fig. 7 we show the variation of the CEP’s

location with the value of the σ ≡ fL0 mass. Increasing
values of the mass push the position of the CEP to higher
values of μB and lower values of the temperature, as was
observed previously in the literature in cases when only the
scalar and pseudoscalar mesons were incorporated in the
model, both without or with the inclusion of the fermionic
vacuum fluctuations; see [6] and [7], respectively. In our
case, it turned out that there is no CEP when the value of
mfL

0
is pushed beyond ≈340 MeV. For changing the fL0

mass artificially we increased the weight of the fL0 mass in
the χ2 fit from 1 to 20, which forced the fit to reach the
desired mass value. We set multiple values in the 220–
500MeVmass range. Even if we increased the mass weight
to 20 the resulting fL0 mass could differ from its prescribed
value significantly. Finally, we ended up with two addi-
tional distinct mass values (256 MeV and 299 MeV) for
which the CEP exist, as shown in Fig. 7.

D. Thermodynamical quantities at μB ≠ 0

In the previous subsection we have located the CEP in
the T − μB phase diagram by monitoring the temperature
evolution of the nonstrange condensate at increasing
values of the baryon chemical potential μB. Now we
present in Fig. 8 the temperature evolution of various
thermodynamical observables at increasing values of
μq ¼ μB=3, as the CEP is approached from the region
of the phase diagram where the chiral transition is an
analytic crossover. Some of these observables have a
peculiar behavior in the vicinity of a second order phase
transition, some others increase and diverge at the CEP,
and therefore in principle they can be used in an
experimental setting to signal its presence.

11We thank the referee for bringing this reference and also
Ref. [67] to our attention. Note that in [71] no CEP was found for
μB ≤ 0.3 GeV, that is, in the range of μB where the approxima-
tion used is valid.
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We see in Fig. 8 that the presence of the CEP is signaled
by the nonmonotonic temperature dependence of the scaled
pressure p=T4. If the pressure is scaled with the pressure of
the QCD in the SB limit, namely, by

pSBðT; μqÞ ¼ ðN2
c − 1Þ π

2

45
T4

þ NcNf

�
7π2

180
T4 þ T2μ2q

6
þ μ4q
12π2

�
; ð47Þ

where Nc and Nf are, respectively, the number of colors
and flavors, then the presence of the CEP is hardly visible.
The effect of the CEP appears magnified in the scaled quark
number susceptibility χq=T2 and the scaled quark number
density ρq=T3. Note that by increasing μq from 270 MeV to
289 MeV, which is very close to the coordinate of the CEP,
the value of the scaled quark number susceptibility is
increased by a factor of 4 (for the sake of the presentation

we divided by this factor the value of χq=T2 obtained
at μq ¼ 289 MeV).
In the bottom row of Fig. 8 we show at several fixed

values of μq the temperature variation of p=ϵ and
ðdp=dϵÞμq ¼ s=ðTð∂s=∂TÞ þ μqð∂ρq=∂TÞÞ. This quantity,
derived at constant μq, connects at μq ¼ 0 with the square
of the speed of sound c2s . One sees that both p=ϵ and
ðdp=dϵÞμq decrease with increasing values of μq, and that
the minimum of the latter quantity approaches zero at CEP
and shows a very steep rise, as the temperature increases
above the critical value.

VI. CONCLUSIONS

We have studied at finite temperature and baryonic
densities the thermodynamical properties of the
Polyakov loop extended quark meson model containing
also vector and axial vector mesons. These latter ingredients
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manifest themselves in a nontrivial way in the vacuum
parametrization of the model through their tree-level masses
and decay widths. The χ2-minimization procedure applied
earlier in [1] was modified by including the effect of the
fermion vacuum fluctuations in the scalar and pseudoscalar
meson curvature masses and also by considering as an input
thewell-established value of the chiral transition temperature
of the QCD at vanishing density.
With our parametrization procedure we have investigated

which scalar particles with mass below 2 GeV can be
assigned to the scalar states of the model, under the
assumption that these are qq̄ states. It turned out that the
smallest value of χ2 is reached when the states of the model
correspond to a0ð980Þ, K⋆

0ð800Þ, f0ð500Þ, and f0ð980Þ
particles. For this particular particle assignment we have
studied the thermodynamics of the model, by using an
improved Polyakov loop potential, recently proposed in the
literature, and found that a CEP of the crossover transition
line exists in the T − μB phase diagram at rather large
values of μB. We have computed various thermodynamical
observables and compared them with continuum extrapo-
lated lattice results. Based on the fairly good agreement
with the lattice data observed at vanishing density, it would
be interesting to use in astrophysical applications the finite
density equation of state of our model.
The inclusion of the pseudocritical temperature in the

parametrization procedure proved crucial, as it drastically
reduced the number of acceptable solutions of the χ2-
minimization procedure. It turned out that in order for the
model to provide a meaningful thermodynamics, f0ð500Þ
has to be part of the scalar multiplet, in contrast with the
parametrization based exclusively on mesonic vacuum
quantities [1], where, in the absence of fermionic vacuum
fluctuations, f0ð1370Þ and f0ð1710Þ were found to belong
to the scalar nonet states. This contradiction is most
probably a consequence of the fact that in both cases the
parametrization of the model was done as if the scalar states
were all q̄q excitations, which is more likely not the case in
nature. Therefore, it would be interesting to consider in the
future the mixing of the q̄q states with tetraquark states and
redo the parametrization of the model and the thermody-
namical investigation presented here. We mention that
additional details on the properties of some scalar particles
recently given in [72–75] can also be considered in a
future work. Moreover, beside the tetraquarks, the glueball
admixture presumably existing in some components of the
isoscalar sector [76,77] also has to be taken into account
because, as a result of the mixing of the isoscalar states, this
admixture can influence the results presented here.
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APPENDIX A: SCALAR DECAY WIDTHS

In this appendix the expressions of the scalar decays are
listed, which are used in the parametrization and have been
changed compared to [1] due to the change of the anomaly
term (∝ c1) in Eq. (1). The affected decays are Γa0 (this
is the sum of the following three decay widths: Γa0→ηπ,
Γa0→η0π , and Γa0→KK), ΓK⋆

0
→Kπ , ΓfL=H

0
→ππ, and ΓfL=H

0
→KK .

The tree-level a0 → ηπ as well as a0 → η0π decay widths
read

Γa0→ηπ ¼
1

8ma0π

�ðm2
a0 −m2

η −m2
πÞ2 − 4m2

ηm2
π

4m4
a0

�
1=2

× jMa0→ηπj2; ðA1Þ

Γa0→η0π ¼
1

8ma0π

�ðm2
a0 −m2

η0 −m2
πÞ2 − 4m2

η0m
2
π

4m4
a0

�1=2
× jMa0→η0πj2; ðA2Þ

with the following transition matrix elements:

Ma0→ηπ ¼ cos θπMa0→ηNπðmηÞ
þ sin θπMa0→ηSπðmηÞ; ðA3Þ

Ma0→η0π ¼ cos θπMa0→ηSπðmη0 Þ
− sin θπMa0→ηNπðmη0 Þ; ðA4Þ

where

Ma0→ηNπðmÞ ¼ Aa0ηNπ − Ba0ηNπ
m2

a0 −m2 −m2
π

2

þ Ca0ηNπm
2
a0 ; ðA5Þ

Ma0→ηSπðmÞ ¼ Aa0ηSπ; ðA6Þ

and

Aa0ηNπ ¼ −Z2
πλ2ϕN; ðA7Þ

Ba0ηNπ ¼ −2
g21ϕN

m2
a1

�
1 −

1

2

Z2
πϕ

2
N

m2
a1

ðh2 − h3Þ
�
; ðA8Þ

Ca0ηNπ ¼ g1Z2
πwa1 ; ðA9Þ

Aa0ηSπ ¼
1

2
c1ZπZηSϕ

2
NϕS: ðA10Þ
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The a0 → KK decay width is found to be

Γa0→KK ¼ 1

8ma0π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
2mK

ma0

�
2

s 				Aa0KK

−
1

2
Ba0KKðm2

a0 − 2m2
KÞ þ Ca0KKm

2
a0

				2; ðA11Þ

where

Aa0KK ¼ Z2
K

�
λ2

�
ϕN −

ϕSffiffiffi
2

p
�
þ 1

4
c1

�
; ðA12Þ

Ba0KK ¼ Z2
KwK1

�
g1 −

1

2
wK1

ððg21 þ h2ÞϕN

þ
ffiffiffi
2

p
ðg21 − h3ÞϕSÞ

�
; ðA13Þ

Ca0KK ¼ −
g1
2
Z2
KwK1

: ðA14Þ

It is worth noting that in the expressions above only the
forms of Aa0ηNπ and Aa0KK have changed.
Now turning to the scalar kaon, the decay width reads

ΓK⋆
0
→Kπ ¼

3

8πmK⋆
0

�ðm2
K⋆

0
−m2

π −m2
KÞ2 − 4m2

πm2
K

4m4
K⋆

0

�1=2

×

�
AK⋆

0
Kπ þ

1

2
ðCK⋆

0
Kπ þDK⋆

0
Kπ − BK⋆

0
KπÞðm2

K⋆
0
−m2

K −m2
πÞ þ CK⋆

0
Kπm2

K þDK⋆
0
Kπm2

π

�
; ðA15Þ

with

AK⋆
0
Kπ ¼ ZπZKZK⋆

0

�
λ2

ϕSffiffiffi
2

p þ c1
2

�
; ðA16Þ

BK⋆
0
Kπ ¼

ZπZKZK⋆
0

4
wa1wK1

�
2g1

wa1 þ wK1

wa1wK1

þð2h3 − h2 − 3g21ÞϕN −
ffiffiffi
2

p
ðg21 þ h2ÞϕSÞ

�
; ðA17Þ

CK⋆
0
Kπ ¼

ZπZKZK⋆
0

2
½−g1ðiwK⋆ þ wK1

Þ þ
ffiffiffi
2

p
iwK⋆

0
wK1

ðg21 − h3ÞϕS�; ðA18Þ

DK⋆
0
Kπ ¼

ZπZKZK0

4
½2g1ðiwK⋆

0
− wa1Þ þ iwK⋆

0
wa1ðð2h3 − h2 − 3g21ÞϕN þ

ffiffiffi
2

p
ðg21 þ h2ÞϕSÞ�; ðA19Þ

where only AK⋆
0
Kπ has changed.

The decay widths of the fL=H0 in the ππ channel are

ΓfL
0
→ππ ¼

3

32πmfL
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
2mπ

mfL
0

�
2

s
jMfL

0
→ππj2; ðA20Þ

ΓfH
0
→ππ ¼

3

32πmfH
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
2mπ

mfH
0

�
2

s
jMfH

0
→ππj2; ðA21Þ

where the matrix elements are

MfL
0
→ππ ¼ − sin θσMH

f0π
ðmfL

0
Þ þ cos θσML

f0π
ðmfL

0
Þ; ðA22Þ

MfH
0
→ππ ¼ cos θσMH

f0π
ðmfH

0
Þ þ sin θσML

f0π
ðmfH

0
Þ; ðA23Þ

ML
f0π

ðmÞ ¼ 2Z2
πϕN

�
g21
2

m2

m2
a1

�
1þ

�
1 −

2m2
π

m2

�
m2

1 þ h1ϕ2
S=2þ 2δN

m2
a1

�
−
�
λ1 þ

λ2
2

��
; ðA24Þ
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MH
f0π

ðmÞ ¼ 2Z2
πϕS

�
−
g21
4

m2

m2
a1

�
1 −

2m2
π

m2

�
h1ϕ2

N

m2
a1

− λ1 þ
c1

2
ffiffiffi
2

p
ϕS

�
: ðA25Þ

In the KK channel the decay widths read

ΓfH
0
→KK ¼ 1

8πmfH
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
2mK

mfH
0

�
2

s
jMfH

0
→KKj2; ðA26Þ

ΓfL
0
→KK ¼ 1

8πmfL
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
2mK

mfL
0

�
2

s
jMfL

0
→KKj2; ðA27Þ

where the matrix elements, using the notations HN ≡
1
4
ðg21 þ 2h1 þ h2Þ and HS ≡ 1

2
ðg21 þ h1 þ h2Þ, are

MfL
0
→KK ¼ − sin θσMH

f0K
ðmfL

0
Þ þ cos θσML

f0K
ðmfL

0
Þ;
ðA28Þ

MfH
0
→KK ¼ cos θσMH

f0K
ðmfH

0
Þ þ sin θσML

f0K
ðmfH

0
Þ;
ðA29Þ

ML
f0K

ðmÞ¼−Z2
K

�
ð2λ1þλ2ÞϕN−

λ2ffiffiffi
2

p ϕSþg1wK1
ðm2

K−m2Þ

þw2
K1

�
2HNϕN−

h3−g21ffiffiffi
2

p ϕS

�
m2−2m2

K

2
−
c1
2

�
;

ðA30Þ

MH
f0K

ðmÞ ¼ −Z2
K

�
2ðλ1 þ λ2ÞϕS −

λ2ffiffiffi
2

p ϕN

þ
ffiffiffi
2

p
g1wK1

ðm2
K −m2Þ

þ w2
K1

�
2HSϕS −

h3 − g21ffiffiffi
2

p ϕN

�
m2 − 2m2

K

2

�
:

ðA31Þ

In the fL=H0 decays only the ML
f0π

ðmÞ and ML
f0K

ðmÞ
expressions have changed.

APPENDIX B: EXPERIMENTAL DATA AND
FITTING RESULTS FOR THE

PARAMETRIZATIONS

In this appendix we give all the experimental data used
for the determination of the parameters. With the exception
of the constituent quark masses for which we use the values
from Chap. 5.5 of Ref. [40] (see Sec. IV as well), the data
are taken from the PDG [2] with some necessary

modifications explained in detail in [1]. Some of the data
were not used in [1] or were used differently there; these are
the following: ma0 , mf0ð500Þ, mf0ð980Þ, Γa0ð980Þ, Γf0ð500Þ→ππ ,
Γf0ð500Þ→KK , Γf0ð980Þ→ππ , and Γf0ð980Þ→KK , for which the
values are taken from the PDG. In general, we allowed for
larger errors than the ones in the PDG, namely, 20% for the
scalar sector, 10% for the constituent quarks, and 5% for
everything else. However, if for a quantity the PDG error
turned out to be larger, then we used the error value from
the PDG.
The value of different quantities in the pseudoscalar and

(axial) vector sector can be found in Table V. Since that
table contains only a few from the many possible assign-
ments of the scalar particles to the states of the scalar nonet,
we list below all the values of scalar masses and decay
widths used in the fit,

ma0ð980Þ ¼ ð980� 20Þ MeV;

Γa0ð980Þ ¼ ð75� 25Þ MeV;

ma0ð1450Þ ¼ ð1474� 19Þ MeV;

Γa0ð1450Þ ¼ ð265� 13Þ MeV;

mK⋆
0
ð800Þ ¼ ð682� 29Þ MeV;

ΓK⋆
0
ð800Þ→Kπ ¼ ð547� 24Þ MeV;

mK⋆
0
ð1430Þ ¼ ð1425� 50Þ MeV;

ΓK⋆
0
ð1430Þ→Kπ ¼ ð270� 80Þ MeV;

mf0ð500Þ ¼ ð475� 75Þ MeV;

Γf0ð500Þ→ππ ¼ ð550� 150Þ MeV;

Γf0ð500Þ→KK ¼ ð0� 100Þ MeV;

mf0ð980Þ ¼ ð990� 20Þ MeV;

Γf0ð980Þ→ππ ¼ ð70� 30Þ MeV;

Γf0ð980Þ→KK ¼ ð0� 20Þ MeV;

mf0ð1370Þ ¼ ð1350� 150Þ MeV;

Γf0ð1370Þ→ππ ¼ ð250� 100Þ MeV;

Γf0ð1370Þ→KK ≈ ð150� 100Þ MeV;

mf0ð1500Þ ¼ ð1505� 6Þ MeV;

Γf0ð1500Þ→ππ ¼ ð38� 2.6Þ MeV;

Γf0ð1500Þ→KK ¼ ð9.4� 1.9Þ MeV;

mf0ð1710Þ ¼ ð1722� 6Þ MeV;

Γf0ð1710Þ→ππ ¼ ð29.3� 5Þ MeV;

Γf0ð1710Þ→KK ¼ ð71.4� 18Þ MeV: ðB1Þ
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