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We present a comprehensive comparison of the available experimental data for the Drell-Yan lepton
angular coefficients λ and ν to calculations at leading and next-to-leading order of perturbative QCD.
To obtain the next-to-leading order corrections, we make use of publicly available numerical codes that allow
us to compute the Drell-Yan cross section at second order in perturbation theory and from which the
contributions we need can be extracted. Our comparisons reveal that perturbative QCD is able to describe the
experimental data overall rather well, especially at colliders, but also in the fixed-target regime. On the basis of
the angular coefficients alone, there appears to be little (if any) convincing evidence for effects that go beyond
fixed-order collinear factorized perturbation theory, although the presence of such effects is not ruled out.
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I. INTRODUCTION

It has been known for a long time [1,2] that leptons
produced in the Drell-Yan process H1H2 → ll̄X may
show nontrivial angular distributions. We denote the
momentum of the intermediate virtual boson V ¼ γ�; Z
that decays into the lepton pair by q. In a specific rest frame
of the virtual boson (for our purposes, the Collins-Soper
frame [1]) we can define polar and azimuthal lepton decay
angles θ and ϕ, respectively. Considering, for simplicity, a
situation where contributions by Z-bosons are negligible
and only the exchange of an intermediate virtual photon is
relevant, one can show that the cross section differential in
d4q and dΩ≡ d cos θdϕ may be written as

dσ
d4qdΩ

¼ α2

2πNcQ2s2
ðWTð1þ cos2θÞ þWLð1 − cos2θÞ

þWΔ sin 2θ cosϕþWΔΔsin2θ cos 2ϕÞ; ð1Þ
where α is the fine structure constant, Nc ¼ 3 the number
of colors in QCD, Q2 ¼ q2 and s the c.m.s. energy

squared of the incoming hadrons H1 and H2. The structure
functions WT;WL;WΔ;WΔΔ are functions of q. They
parametrize the hadronic tensor as

Wμν ¼ −ðgμν − TμTνÞðWT þWΔΔÞ − 2XμXνWΔΔ

þ ZμZνðWL −WT −WΔΔÞ − ðXμZν þ ZμXνÞWΔ;

ð2Þ
where X, Y, Z and T are a set of orthonormal axes that one
introduces in the Collins-Soper frame. If also Z-bosons
contribute, there are additional angular terms and structure
functions in the cross section formula. For details of the
derivation of the cross section (also for discussion of other
related reference frames), see Refs. [1–5].
From the differential cross section one easily derives an

expression for the normalized decay angle distribution

dN
dΩ

≡
�
dσ
d4q

�
−1 dσ

dΩd4q
ð3Þ

in terms of the structure functions. Using Eq. (1) we obtain

dN
dΩ

¼ 3

8π

WTð1þ cos2θÞ þWLð1 − cos2θÞ þWΔ sin 2θ cosϕþWΔΔsin2θ cos 2ϕ
2WT þWL

: ð4Þ

One usually writes this as

dN
dΩ

¼ 3

4π

1

λþ 3

×

�
1þ λcos2θ þ μ sin 2θ cosϕþ ν

2
sin2θ cos 2ϕ

�
;

ð5Þ

where

λ ¼ WT −WL

WT þWL
; μ ¼ WΔ

WT þWL
; ν ¼ 2WΔΔ

WT þWL
:

ð6Þ

Much effort has gone into studies of these angular
coefficients λ, μ, ν, both experimentally and theoretically.
On the experimental side, measurements of the coefficients
are by now available over a wide range of kinematics, from
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fixed-target energies [6–9] all theway to theTevatron [10]pp̄
and the LHC pp colliders [11]. In the fixed-target regime
various combinations of beams and targets are available; data
have been taken with pion beams off nuclear (tungsten)
targets [6,7] and also for pp and pd collisions [8,9]. The
experimental results are typically given as functions of the
transverse momentum qT of the virtual boson, in a certain
range of the lepton pair mass,Q≡ ffiffiffiffiffiffi

Q2
p

. For the fixed-target
data, qT is limited to a few GeVand Q is usually around 5–
10 GeV. This is very different for the high-energy collider
measurements which are carried out aroundQ ¼ mZ, where
mZ is the Z-boson mass. The range in qT explored here is
much larger and reaches to almost 100 GeV at the Tevatron
and even much beyond that at the LHC.
The lowest-order (LO) partonic channel qq̄ → Vð→ ll̄Þ

with collinear incoming partons leads to the prediction λ ¼ 1,
μ ¼ ν ¼ 0. However, for this process the virtual photon has
vanishing transverse momentum, qT ¼ 0, so it cannot con-
tribute to the cross section at finite qT . The situation changes
when “intrinsic” parton transverse momenta are taken into
account. The coefficient ν, especially, which corresponds to a
cos 2ϕ dependence in azimuthal angle, has received a lot of
attention in this context since it was discovered [12] that it
may probe interesting novel parton distribution functions of
the nucleon, known as Boer-Mulders functions [13]. These
functions represent a transverse-polarization asymmetry of
quarks inside an unpolarized hadron and are “T-odd” and
hence related to nontrivial (re)scattering effects in QCD (see
[14]). Detailed phenomenological [15,16] or model-based
[17] studies have been presented that confront the fixed-target
experimental data with theoretical expectations based on the
Boer-Mulders functions.
Already the early theoretical studies [18–22] revealed

that also plain perturbative-QCD radiative effects lead to
departures from the simple prediction λ ¼ 1, μ ¼ ν ¼ 0,
starting from OðαsÞ with the processes qq̄ → Vg and
qg → Vq. At qT ≠ 0 in fact the latter processes become
the LO ones. A venerable result of [2,23] obtained on the
basis of these LO reactions is the Lam-Tung relation,

1 − λ − 2ν ¼ 0; ð7Þ

which holds separately for both partonic channels in the
Collins-Soper frame [1]. Next-to-leading order (NLO)
corrections to the cross sections relevant for the angular
coefficients have first been derived in Refs. [24,25]. These
suggest overall modest Oðα2sÞ effects on λ, μ, ν, so that
also the Lam-Tung relation, although found to be
violated at NLO, still holds to fairly good approximation.
The data from the fixed-target experiment E615 [6] indicate
a violation of the Lam-Tung relation, while the other
fixed-target sets are overall consistent with it, as are the
Tevatron data [10]. A clear violation of the Lam-Tung
relation, on the other hand, was observed recently at the
highest energies, in pp collisions at the LHC [11].

In the present paper, we take a fresh look at the Drell-Yan
angular dependences in the framework of perturbative QCD.
Specifically, we present an exhaustive comparison of the LO
and NLO QCD predictions for the parameters λ and ν with
the experimental data, over the whole energy range available.
Rather than attempting to retrieve the results of [24,25], we
determine new NLO predictions. For this purpose, we use
the publicly available codes FEWZ (version 3.1) [26] and
DYNNLO [27]. These allow us to compute the full Drell-Yan
cross section at next-to-next-to-leading (NNLO) order of
QCD, when qq̄ → V is the LO process. As discussed above,
the contributions to the angular coefficients that we are
interested in are at nonvanishing qT , so that the order α2s in
this case is only NLO. Since all Oðα2sÞ contributions are
included in the FEWZ and DYNNLO codes, we can therefore
use these codes to extract the angular coefficients λ, μ, ν at
NLO, providing a new and entirely independent calculation.
To our knowledge, such a comprehensive analysis has

never been performed in the past. Our study was very much
inspired by the recent work [28], in which the LHC results
for the angular coefficients were analyzed on general
theoretical grounds, attributing the observed violation of
the Lam-Tung relation to a “noncoplanarity” of the axis of
the incoming partons with respect to the hadron plane,
which may be constrained by the combined Tevatron and
LHC data. As the authors of [28] pointed out, the most
likely physical explanation for the LHC result on the
violation of the Lam-Tung relation is QCD radiative effects
at NLO (or beyond). We indeed confirm this in our study.
We push the purely perturbative framework also to

the fixed-target regime, where there have been hardly any
phenomenological analyses of the Drell-Yan angular
coefficients in the context of hard-scattering QCD.
Reference [29] presents results at the energy of the NA10
experiment; however the kinematics relevant at NA10 was
not properly implemented. Of course, in the fixed-target
regime qT can become quite small, smaller than, say, 1 GeV
or so. For such low values one does not expect fixed-order
perturbation theory to provide reliable results for cross
sections, even if Q is relatively large. Intrinsic transverse
momenta of the initial partons may become relevant, among
them precisely the Boer-Mulders functions mentioned ear-
lier. The possible role of higher-twist contributions has been
discussed as well [30,31]. Furthermore, as is well known,
large logarithmic perturbative corrections of the form
αks logmðQ2=q2TÞ=q2T (m ¼ 1;…; 2k − 1) appear in calcula-
tions at fixed perturbative order k, as a result of soft-gluon
emission. In order to describe the cross sections, one needs to
resum these corrections to all orders in the strong coupling
and also implement nonperturbative contributions (see
especially [32], and references therein). As was discussed
in Refs. [3,4], such corrections will likely cancel to a
significant degree in the angular coefficients λ and ν, since
the same type of leading logarithms occur in the numerator
and denominator for both quantities. Also, it is expected [4]
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that the Lam-Tung relation will remain essentially untouched
by the soft-gluon effects.
Thus, although clearly collinear perturbation theory at

fixed-order (NLO) that we will use here cannot provide a
completely adequate framework for describing cross sections
in all kinematic regimes of interest for the angular coeffi-
cients, our results to be presented below yield important
benchmarks, in our view. In the light of the observations
concerning the soft-gluon effects mentioned above, it appears
likely that fixed-order perturbation theory will work much
better for ratios of cross sections than for the cross sections
themselves. In fact, we will find that we can describe all data
sets quite well, and that we do not find any clear-cut evidence
for nontrivial additional contributions to be attributed to
parton intrinsic momenta.We stress again that QCD radiative
effects are typically not considered at all when for example
Boer-Mulders functions are extracted from data for ν
(although the conceptual framework for such a combined
analysis is available [33]). At the very least, our results

establish the relevance of the radiative effects for phenom-
enological studies of the Drell-Yan angular dependences.
Our paper is organized as follows. In Sec. II we explain

how we extract the angular coefficients from the available
Drell-Yan NNLO codes. Section III shows our phenom-
enological results, and in Sec. IV we conclude our work.

II. EXTRACTION OF ANGULAR
COEFFICIENTS AT NLO

It is actually relatively straightforward to use the FEWZ

[26] and DYNNLO [27] codes to determine the angular
coefficients λ, μ, ν. The programs allow us to compute cross
sections over suitable ranges of any kinematic variable,
providing full control over the four-momenta of the
produced particles. As already pointed out in [2], the
structure functions WT;WL;WΔ;WΔΔ may be projected
out by computing the following combinations of cross
sections:

2WT þWL ¼ N
dσ
d4q

;

WT −WL ¼ 8

3
N
�
dσ
d4q

�
j cos θj > 1

2

�
−

dσ
d4q

�
j cos θj < 1

2

��
;

WΔ ¼ π

2
N
�
dσ
d4q

ðsin 2θ cosϕ > 0Þ − dσ
d4q

ðsin 2θ cosϕ < 0Þ
�
;

WΔΔ ¼ π

2
N
�
dσ
d4q

ðcos 2ϕ > 0Þ − dσ
d4q

ðcos 2ϕ < 0Þ
�
; ð8Þ

whereN ¼ 12π3ðQs=αÞ2. Using Eq. (6), the angular coefficients follow immediately from these expressions. We note that
Eqs. (8) are valid both for exchanged photons and Z bosons. As mentioned earlier, in cases where Z bosons contribute the
cross section has additional angular pieces; however these do not survive the integrations in Eqs. (8).
The remaining task is to determine the kinematical variables that appear in Eqs. (8) from the momenta of the outgoing

leptons given in the Monte Carlo integration codes of [26,27]. To this end, we use that the momentum of one lepton, written

in the Collins-Soper frame as lμ
CS ¼ Q

2
ð1; sin θ cosϕ; sin θ sinϕ; cos θÞ, becomes in the hadronic c.m.s. [34]

lμ
cm ¼ 1

2

0
BBBBB@

q0ð1þ sin α sin θ cosϕÞ þ qL cos α cos θ

qT cosφþQ sin θ
cos α ðcosϕ cosφ − cos α sinϕ sinφÞ

qT sinφþQ sin θ
cos α ðcosϕ sinφþ cos α sinϕ cosφÞ

qLð1þ sin α sin θ cosϕÞ þ q0 cos α cos θ

1
CCCCCA
;

where

sin α≡ qT=Qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðqT=QÞ2

p ;

cos α≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðqT=QÞ2

p ; ð9Þ

and where q0 and qL are the energy and the longitudinal
component (with respect to the collision axis) of the

virtual boson in the hadronic c.m.s., so that qμcm ¼
ðq0; qT cosφ; qT sinφ; qLÞ. To project out the combinations
of trigonometric functions we need, we introduce

Pμ
1 ≡

0
BBB@

qL
0

0

q0

1
CCCA; Pμ

2 ≡ qT

0
BBB@

0

cosφ

sinφ

0

1
CCCA; Pμ

3 ≡ qT

0
BBB@

0

sinφ

− cosφ

0

1
CCCA:

ð10Þ
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We then have

cos θ ¼ −
2lcm · P1

ðQ2 þ q2TÞ cos α
;

sin 2θ cosϕ ¼ 4lcm · P1

Q2 þ q2T

�
qT
Q

þ 2lcm · P2

qTQ

�
;

cos 2ϕ ¼ 1 −
2ðlcm · P3Þ2

q2T
h
Q2

4
− ðlcm·P1Þ2

Q2þq2T

i : ð11Þ

The four-momentum of the lepton in the hadronic c.m.s. is
provided in the Monte Carlo integration codes, while that
of the virtual boson is fixed by the external kinematics.
Writing lμ

cm ¼ ðl0
cm;l1

cm;l2
cm;l3

cmÞ, we have

lcm · P1 ¼ qLl0
cm − q0l3

cm;

lcm · P2 ¼ −qTðl1
cm cosφþ l2

cm sinφÞ;
lcm · P3 ¼ qTðl2

cm cosφ − l1
cm sinφÞ: ð12Þ

Inserting these expressions into Eqs. (11), one can now
easily implement the appropriate cuts in the codes so that
the structure functions WT;WL;WΔ;WΔΔ can be extracted
via Eqs. (8).

III. COMPARISON TO DATA

We now present comparisons of the theoretical pre-
dictions at LO and NLO to the available experimental
data for the angular coefficients λ and ν. We do not show
any results for the coefficient μ which comes out always
extremely small and in fact usually consistent with zero
both in the theoretical calculation and in experiment,
within the respective uncertainties. We first note that we
have validated our technique for extracting the Drell-Yan
angular coefficients from the FEWZ (version 3.1) [26] and
DYNNLO [27] codes by writing a completely independent
LO code. We have found perfect agreement between this
code and the LO results we extracted from FEWZ and
DYNNLO. In the figures below, the LO curves will always
refer to those from our own code. We also note that the
NLO results we show in the following have all been
obtained with the FEWZ code. We have compared to the
results of DYNNLO and found excellent consistency of the
two codes both at LO and NLO.
Although the implementation of Eqs. (8) and the relevant

kinematics into the FEWZ or DYNNLO codes is relatively
straightforward, the computational load for performing a
comprehensive comparison of the data with NLO theory is
very large. To obtain the NLO results presented below, we
have run an equivalent of one 3.20 GHz Intel Quad-Core
i5-3470 CPU using all of its cores for about 2 years. In
order to collect sufficiently high statistics at very high
values of qT , where the cross section drops very rapidly, we
have performed dedicated runs for which we have imple-
mented cuts on the low-qT region, forcing the Monte Carlo

integration to sample high qT . We also note that typically
the result for the lowest-qT bin is unreliable, since this bin
contains the (NNLO) contributions at qT ¼ 0. Nonetheless,
our results are sufficiently accurate in all regions of interest
and thus allow us to derive solid conclusions. We mention
that we also had to modify the codes to accommodate
pion beams and nuclear (deuteron/tungsten) targets. This
implementation was always checked against our own
LO code.
Throughout this paper, we use the parton distribution

functions of the proton of Ref. [35], adopting their NLO
(LO) set for the NLO (LO) calculation. The choice of
parton distributions has a very small effect on the Drell-Yan
angular coefficients. When dealing with nuclear targets
(tungsten was used for all of the pion scattering experi-
ments and deuterons for one set of E866 measurements)
we compute the parton distributions of the nucleus just by
considering the relevant isospin relations for protons and
neutrons, averaging over the appropriate proton and neu-
tron number. We do not add any other nuclear effects. For
the parton distributions of the pion, we use the set in [36];
the set in [37] would give very similar results. Finally,
our choice for the factorization and renormalization scales
will always be μ ¼ Q. We have checked that other possible
scale choices such as μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ q2T

p
do not change the

results for the angular coefficients significantly even at LO,
making an impact of at most a few percent, and only at high
values of qT . Here we have simultaneously varied the scales
in the cross sections appearing in the numerators and in
the denominators of the angular coefficients; relaxing this
condition one would likely be able to generate a larger
dependence on the choice of scale. On the other hand, as is
known from previous calculations [26,27], the scale
dependence of the Drell-Yan cross section is overall much
reduced at higher orders anyway.
We present our results essentially in the order of

decreasing energy, starting with a comparison to the
high-energy collider data from the LHC [11] and
Tevatron [10]. The reason is that for these data sets Q is
very large, Q ∼mZ, so that perturbative methods should be
well justified. The transverse momentum qT varies over a
broad range, taking low values as well as values of orderQ.
At the lower end, where qT ≪ Q, it may well be necessary
to perform an all-order resummation of perturbative
double logarithms in qT=Q in order to describe the
Drell-Yan cross section properly. However, as mentioned
in the Introduction, such logarithms are expected to cancel
to a large extent in the angular coefficients [3,4]. Thus, if
ever fixed-order perturbative QCD predictions are able to
provide an adequate description of the angular coefficients,
it should be in the kinematic regimes explored at the LHC
and Tevatron.
Figures 1 and 2 show our results for λ and ν compared to

the CMS data [11], for two separate bins in the rapidity of
the virtual boson,
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η≡ 1

2
log

q0 þ qL
q0 − qL

: ð13Þ

We note that CMS presents their data in terms of a different
set of angular coefficients termed A0, A1, A2, A3, which are
directly related to the coefficients we use here. In particular,
we have λ ¼ ð2 − 3A0Þ=ð2þ A0Þ and ν ¼ 2A2=ð2þ A0Þ.
As in Ref. [28], in order to present a full comparison in
terms of λ and ν, we transform the experimental data
correspondingly. Here we have propagated the experimen-
tal uncertainties, albeit without taking into account any
correlations. The lines in the figures show our LO results
for the coefficients. As one can see, they qualitatively
follow the trend of the data, but for the coefficient ν a clear
deviation between data and LO theory is observed. This is
precisely the finding also emphasized in Ref. [28] where it
was argued (without explicit NLO calculation) that the

discrepancy ought to be related to higher-order QCD
effects. Indeed, this is what we find. The NLO results
(histograms) show a markedly better agreement with the
data, which in fact is nearly perfect. The coefficient λ, on
the other hand, changes only marginally from LO to NLO.
As is visible in the figures, the results at very high values of
qT are numerically less accurate, as shown by the somewhat
erratic behavior of the histograms. In order to collect higher
statistics, we have also performed runs for which we
integrated over only eight qT bins, choosing exactly the
ones used in the experimental analysis. The corresponding
results are shown in Fig. 3 for the range 1 < jηj < 2.1. Our
goal was to make sure that the numerical uncertainty for
these bins is much smaller than the experimental one even
in the bin at highest qT . The figure once more impressively
shows how NLO theory leads to an excellent description of
the CMS data.

FIG. 1. Comparison of LO (lines) and NLO (FEWZ [26], histograms) theoretical results to the CMS data [11] for the angular
coefficients λ and ν taken at

ffiffiffi
s

p ¼ 8 TeV. We have integrated over 81 ≤ Q ≤ 101 GeV and over a midrapidity interval jηj < 1 of the
virtual boson.

FIG. 2. Same as Fig. 1, but for a more forward/backward rapidity interval 1 < jηj < 2.1.
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It is interesting to note that NLO FEWZ results were also
shown in the CMS paper [11]. However, the agreement
with the data for the coefficient A2 (which multiplies the
cos 2ϕ dependence of the cross section) reported there
appears to be not quite as good as the one we find for our
coefficient ν. It is conceivable that our computation of the
coefficients via Eqs. (8) is numerically more stable.
We next turn to the comparison to the CDF data [10]

taken in pp̄ collisions at
ffiffiffi
s

p ¼ 1960 GeV at the Tevatron.
The results are shown in Fig. 4. We observe that both the
LO and the NLO results are in good agreement with the
data, NLO doing a bit better overall. Both coefficients λ
and ν decrease slightly when going to NLO. For ν, this
effect is less pronounced than for the LHC case, which may

be attributed to a much stronger contribution by the qq̄
channel in the present pp̄ case, which receives smaller
radiative corrections. Again, this feature was predicted
phenomenologically in Ref. [28].
We now consider the fixed-target regime, where we

start with a comparison to the Fermilab E866/NuSea data
taken with an 800 GeV proton beam in pp [9] and pd [8]
scattering. The comparisons to the two data sets are shown
in Figs. 5 and 6. We first note that the pp data are overall in
much better agreement with the theoretical curves than
the pd ones. For pp scattering, the coefficient λ is well
described, given the relatively large experimental uncer-
tainties. There is a slight trend in the data for the coefficient
ν to be lower than the theoretical prediction. The NLO

FIG. 3. Same as Fig. 2, but with the NLO theoretical results integrated over the eight qT bins used by CMS. In this figure, the
dashed histograms show the LO results and the solid ones the NLO results. To guide the eye, we also show the LO results from
Fig. 2 as smooth lines.

FIG. 4. Comparison of LO (lines) and NLO (FEWZ [26], histograms) theoretical results to the CDF data [10] for the angular
coefficients λ and ν taken in pp̄ scattering at

ffiffiffi
s

p ¼ 1960 GeV. We have integrated over 66 ≤ Q ≤ 116 GeV and over jηj < 3.6 of the
virtual boson.
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corrections in fact provide a slight improvement here. For
pd scattering, the two data points for ν at the highest qT are
clearly below theory even at NLO. The coefficient λ is not
well described, neither at LO nor at NLO. An important
point to note in this context is the positivity constraint [2]

WL ≥ 0; ð14Þ

which immediately implies

λ ≤ 1: ð15Þ

This condition is completely general and relies only on
the hermiticity of the neutral current. It is interesting to

observe that the pd data shown in Fig. 5 are only in
borderline agreement with this positivity constraint.
Going further down in energy, we finally discuss the data

from the π þ tungsten scattering experiments NA10 [6] and
E615 [7]. NA10 used three different energies for the incident
pions, Eπ ¼ 286, 194, 140 GeV, while E615 operated a pion
beam with energy 252 GeV. Figures 7–9 show the compar-
isons of our LO and NLO results for λ and ν to the NA10
data. The NLO corrections are overall small for ν, but for λ
they become more pronounced toward larger qT. We note
that NLO results for one of the NA10 energies were also
reported in Ref. [29], where however not the appropriate
kinematical regime in Q was chosen, leading to an under-
estimate of ν which has unfortunately given rise to the

FIG. 5. Comparison of LO (lines) and NLO (FEWZ [26], histograms) theoretical results to the pp scattering data from E866 [9] taken
with an 800 GeV beam. Error bars are statistical only. We have integrated over the mass range 4.5 ≤ Q ≤ 15 GeV, excluding the
bottomonium region 9 ≤ Q ≤ 10.7 GeV. We have also integrated over 0 ≤ xF ≤ 0.8, where xF ¼ 2qL=

ffiffiffi
s

p
is the Feynman variable and

is counted as positive in the forward direction of the beam.

FIG. 6. Same as Fig. 5, but for pd scattering. Data are from Ref. [8].
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general notion in the literature that perturbative QCD cannot
describe the Drell-Yan angular coefficients.We also note that
for the kinematics used in [29] the NLO corrections appear
to be somewhat smaller than the ones we find here. The three
cases shown in Figs. 7–9 have in common that the data for ν
are well described, perhaps slightly less so for the pion
energy 194 GeV. The experimental uncertainties for the
coefficient λ are very large, and it is not possible to draw
solid conclusions from the comparison. We note that
wherever there are tensions between data and theory con-
cerning λ, the data tend to lie uncomfortably close to (or even
above) the positivity constraint λ ≤ 1.

In case of E615, we find the results shown in Fig. 10.
We observe that neither the description of λ nor that of ν
is good. The NLO corrections are overall small and thus
do not change this picture. It is clear that on the basis
of the data one would derive a significant violation of
the Lam-Tung relation (7), since λ and ν both enter the
relation with the same sign, and the data for both λ and ν
are higher than theory (the latter satisfying the relation at
LO). It is worth pointing out, however, that the exper-
imental uncertainties are large and, more importantly, again
the data show a certain tension with respect to the positivity
limit (15).

FIG. 7. Comparison of LO (lines) and NLO (FEWZ [26], histograms) theoretical results to the π þ tungsten scattering data from
NA10 [6] taken with pion beam energy Eπ ¼ 286 GeV. Error bars are statistical only. We have integrated over the mass range
Q ≥ 4 GeV, excluding the bottomonium region 8.5 ≤ Q ≤ 11 GeV. We have also implemented the cut 0 ≤ xπ ≤ 0.7, where
xπ ¼ 1

2
ðxF þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2F þ 4Q2=s

p
Þ with xF ¼ 2qL=

ffiffiffi
s

p
the Feynman variable, which is counted as positive in the forward direction of the

pion beam.

FIG. 8. Same as Fig. 7, but at pion energy Eπ ¼ 194 GeV and integrated over Q ≥ 4.05 GeV.
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IV. CONCLUSIONS

We have presented detailed and exhaustive comparisons
of data for the Drell-Yan lepton angular coefficients λ and ν
to LO and NLO perturbative-QCD calculations. To obtain
NLO results, we have employed public codes that allow us
to compute the full Drell-Yan cross section at NNLO, and
in which the angular pieces we are interested in are
contained.
Our numerical results show that overall perturbative

QCD is able to describe the experimental data quite well.
For the recent LHC data the agreement is very good, when
the NLO corrections are taken into account. This finding is
in line with arguments made in the recent literature [28].
Also the Tevatron data are very well described at NLO.

Toward the fixed-target regime, we again find an overall
good agreement, with possible exceptions for the E866 pd
data set for ν at high qT and for the E615 data. We remark
that the latter data set carries large uncertainties and also
hints at tensions with the positivity constraint λ ≤ 1.
To be sure, the description of the cross sections that enter

the angular coefficients requires input beyond fixed-order
QCD perturbation theory, notably in terms of resummations
of logarithms in qT=Q and of transverse-momentum
dependent parton distributions. On the other hand, based
on the angular coefficients alone, in our view there is no
convincing evidence for any effects other than the ones we
have considered here. In particular, we argue that one
should dispel the myth that perturbative QCD is not able to

FIG. 9. Same as Fig. 7, but at pion energy Eπ ¼ 140 GeV.

FIG. 10. Comparison of LO (lines) and NLO (FEWZ [26], histograms) theoretical results to the π þ tungsten scattering data from E615
[7] taken with pion beam energy Eπ ¼ 252 GeV. We have integrated over the mass range 4.05 ≤ Q ≤ 8.55 GeV. We have also
implemented the cuts 0 ≤ xF ≤ 1 and 0.2 ≤ xπ ≤ 1, where xπ ¼ 1

2
ðxF þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2F þ 4Q2=s

p
Þ with xF ¼ 2qL=

ffiffiffi
s

p
the Feynman variable,

which is counted as positive in the forward direction of the pion beam.
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describe the Drell-Yan angular coefficients, which in fact
has been iterated over and over in the literature. While we
most certainly do not wish to exclude the presence of
contributions by the Boer-Mulders effect in the cos 2ϕ part
of the angular distribution, it is also clear from our study
that future phenomenological studies of the effect should
incorporate the QCD radiative effects.
We finally stress that our results clearly make the case for

new precision data for the Drell-Yan angular coefficients
that would allow us to convincingly establish whether there
are departures from the “plain” QCD radiative effects we
have considered here. We hope that such data will be

forthcoming from measurements at the COMPASS [38] or
E906 [39] experiments, or possibly at RHIC.
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