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Two-body charmed meson decays D → VP are studied within the framework of the diagrammatic
approach. Under flavor SU(3) symmetry, all the flavor amplitude sizes and their associated strong phases
are extracted by performing a χ2 fit. Thanks to the recent measurement of Dþ

s → πþρ0, the magnitudes
and the strong phases of the W-annihilation amplitudes AP;V have been extracted for the first time. As a
consequence, the branching fractions of all the D → VP decays are predicted, especially those modes that
could not be predicted previously due to the unknown AP;V . Our working assumption, the flavor SU(3)
symmetry, is tested by comparing our predictions with experiment for the singly and doubly Cabibbo-
suppressed decay modes based on the flavor amplitudes extracted from the Cabibbo-favored decays using
the current data. The predictions for the doubly Cabibbo-suppressed channels are in good agreement with
the data, while those for the singly Cabibbo-suppressed decay modes are seen to have flavor SU(3)
symmetry breaking effects. We find that the inclusion of SU(3) symmetry breaking in color-allowed and
color-suppressed tree amplitudes is needed in general in order to have a better agreement with experiment.
Nevertheless, the exact flavor SU(3)-symmetric approach alone is adequate to provide an overall
explanation for the current data.

DOI: 10.1103/PhysRevD.93.114010

I. INTRODUCTION

Recently, there were some new measurements of the D
meson decaying into a pseudoscalar meson P and a vector
meson V, such as the branching fractions of Dþ → πþω,
D0 → π0ω and several doubly Cabibbo-suppressed decay
modes. Such information enables us to test how well flavor
SU(3) symmetry holds in the system. The D → VP decays
have been studied in the diagrammatic approach [1–3] as
well as in the perturbative approach [4–6]. Under the
assumption of SUð3ÞF flavor symmetry, quark diagrams
of the same topology, including the associated strong
phases, are identical to one another, modulo the obvious
different Cabibbo-Kobayashi-Maskawa (CKM) matrix ele-
ments. We adopt this symmetry as our working assumption
in this paper. In particular, we extract information of the
flavor diagrams through a χ2 fit to the Cabibbo-favored
decay modes.
In our previous work [2], we showed that the

W-annihilation amplitudes AP;V could not be completely
determined based on the data available at that time.
Consequently, many of the Dþ and Dþ

s decays that involve
the AP;V amplitudes could not be predicted within the
framework of SUð3ÞF symmetry.

In this work, we not only update the analysis based
on the latest data, but, in particular, extract information
(the magnitudes and associated strong phases) of the AP;V

amplitudes for the first time, thanks to the recent meas-
urement of the Dþ

s → πþρ0 branching fraction. As a result,
we are able to make predictions for all the decay rates
without additional assumptions. More explicitly, we deter-
mine all tree-level flavor amplitudes from the Cabibbo-
favored decay modes through a χ2 fit. Based on several
comparable fit solutions, we then make predictions for the
singly and doubly Cabibbo-suppressed decay modes using
the SUð3ÞF symmetry. We observe again flavor SU(3)
symmetry breaking effects in certain singly Cabibbo-
suppressed modes. We then study whether such effects
can be accounted for by considering factorization for
color-allowed and color-suppressed tree amplitudes TP;V

and CP;V and including ratios of decay constants, and form
factors among modes of different Cabibbo factors. The
result is also compared with the effective Wilson coeffi-
cients a1;2 calculated by perturbation.
This paper is organized as follows. In Sec. II, we present

the current experimental data of all the D → VP decay
channels. We discuss how to extract those observables that
we are interested in from experiment. In Sec. III, we review
flavor amplitude decomposition of all the decay modes and
the convention used in this work, based on the SUð3ÞF
symmetry. In Sec. IV, we perform a χ2 fit to the data of the
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Cabibbo-favored modes, thereby extracting the central
values and 1σ ranges of the magnitude and strong phase
for each flavor amplitude. Solutions of similar fit quality are
all presented. Based on these solutions, we make predictions
for all theD → VP branching fractions in Sec. V. In Sec. VI,
we discuss possible SUð3ÞF symmetry breaking effects from
the differences in decay constants, and form factors for color-
allowed and color-suppressed tree amplitudes. Finally, the
conclusions are given in Sec. VII.

II. EXPERIMENTAL DATA

Before presenting the data of all the D → VP decay
modes, we note that some of them are extracted from three-
body decays through a vector-meson resonance; that is,
D → P1P2P3 through V → P1P2 with V being K� or ϕ.
Under the narrowwidth approximation,BðD → P1P2P3Þ ¼
BðD → VP3ÞBðV → P1P2Þ. The branching fractions of
such modes are given in Table I. To obtain the experimental
branching fractions of the associated D → VP decays, we
make use of the following branching fractions:

BðK�− → K−π0Þ ¼ 1

3
;

BðK�− → KSπ
−Þ ¼ 1

3
;

BðK̄�0 → K−πþÞ ¼ 2

3
;

BðK̄�0 → KSπ
0Þ ¼ 1

6
;

Bðϕ → KþK−Þ ¼ ð48.9� 0.5Þ%: ð1Þ

Under the assumption that BðK� → KπÞ ¼ 100%, the first
four relations in Eq. (1) follow from isospin symmetry. Note
that a factor of 2 should be multiplied when going from the
branching fractions ofmodes withKS to those ofmodes with
K0 or K̄0. For those channels whosevectormesons can decay
intomore than one channel, we take their weighted averages.
Along with the other modes, all available averaged exper-
imental branching fractions are listed in Tables II–IV for
Cabibbo-favored, singly Cabibbo-suppressed and doubly
Cabibbo-suppressed decay modes, respectively. Unless

TABLE I. Branching fractions of some D → P1P2P3 decays through a vector-meson resonance.

BðD → VPÞBðV → PPÞ BðD → VPÞ
ð%Þ

BðD0 → K�−πþÞBðK�− → KSπ
−Þ ¼ 1.68þ0.15

−0.18
BðD0 → K�−πþÞBðK�− → K−π0Þ ¼ 2.28þ0.40

−0.23

�
BðD0 → K�−πþÞ ¼ 5.43� 0.44

BðD0 → K̄�0π0ÞBðK̄�0 → K−πþÞ ¼ 1.93� 0.26
BðD0 → K̄�0π0ÞBðK̄�0 → KSπ

0Þ ¼ 0.79� 0.07

�
BðD0 → K̄�0π0Þ ¼ 3.75� 0.29

BðDþ → K̄�0πþÞBðK̄�0 → K−πþÞ ¼ 1.05� 0.12
BðDþ → K̄�0πþÞBðK̄�0 → KSπ

0Þ ¼ 0.259� 0.031

�
BðDþ → K̄�0πþÞ ¼ 1.57� 0.13

BðD0 → KSρ
0Þ ¼ 0.64þ0.07

−0.08 BðD0 → K̄0ρ0Þ ¼ 1.28þ0.14
−0.16

BðD0 → K̄�0ηÞBðK̄�0 → KSπ
0Þ ¼ 0.16� 0.05 BðD0 → K̄�0ηÞ ¼ 0.96� 0.30

BðD0 → KSωÞ ¼ 1.11� 0.06 BðD0 → K̄0ωÞ ¼ 2.22� 0.12
BðD0 → KSϕÞBðϕ → KþK−Þ ¼ 0.207� 0.016 BðD0 → ϕK0Þ ¼ 0.847þ0.066

−0.034
BðDþ → KSρ

þÞ ¼ 6.04þ0.60
−0.34 BðDþ → K̄0ρþÞ ¼ 12.08þ1.20

−0.68

BðDþ
s → K̄�0KþÞBðK̄�0 → K−πþÞ ¼ 2.61� 0.09 BðDþ

s → K̄�0KþÞ ¼ 3.92� 0.14

ð×10−3Þ
BðD0 → KþK�−ÞBðK�− → K−π0Þ ¼ 0.54� 0.05 BðD0 → KþK�−Þ ¼ 1.62� 0.15

BðD0 → K−K�þÞBðK�þ → Kþπ0Þ ¼ 1.50� 0.10 BðD0 → K−K�þÞ ¼ 4.50� 0.30

BðD0 → KSK̄�0ÞBðK̄�0 → K−πþÞ < 0.5 BðD0 → K0K̄�0Þ < 1.5
BðD0 → KSK�0ÞBðK�0 → Kþπ−Þ < 0.18 BðD0 → K̄0K�0Þ < 0.54
BðD0 → π0ϕÞBðϕ → KþK−Þ ¼ 0.66� 0.05 BðD0 → π0ϕÞ ¼ 1.35� 0.10
BðDþ → πþϕÞBðϕ → KþK−Þ ¼ 2.77þ0.09

−0.10 BðDþ → πþϕÞ ¼ 5.66þ0.19
−0.21

BðDþ → KþK̄�0ÞBðK̄�0 → K−πþÞ ¼ 2.56þ0.09
−0.15 BðDþ → KþK̄�0Þ ¼ 3.84þ0.14

−0.23
BðDþ → KSK�þÞ ¼ 17� 8 BðDþ → K̄0K�þÞ ¼ 34� 16

BðDþ
s → πþK�0ÞBðK�0 → Kþπ−Þ ¼ 1.42� 0.24 BðDþ

s → πþK�0Þ ¼ 2.13� 0.36
BðDþ

s → KþϕÞBðϕ → KþK−Þ ¼ 0.089� 0.020 BðDþ
s → KþϕÞ ¼ 0.164� 0.041

ð×10−4Þ
BðD0 → K�þπ−ÞBðK�þ → KSπ

þÞ ¼ 1.15þ0.60
−0.34 BðD0 → K�þπ−Þ ¼ 3.45þ1.80

−1.02
BðDþ → K�0πþÞBðK�0 → Kþπ−Þ ¼ 2.6� 0.4 BðDþ → K�0πþÞ ¼ 3.9� 0.6
BðDþ

s → K�0KþÞBðK�0 → Kþπ−Þ ¼ 0.60� 0.34 BðDþ
s → K�0KþÞ ¼ 0.90� 0.51
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specified, meson masses, lifetimes, and all the branching
fraction data are taken from the Particle Data Group (PDG)
[7]. Any asymmetric uncertainties are averaged for
simplicity.
It has long been conjectured that the observed large

branching fraction of Dþ
s → ρþη0 at the value of ð12.2�

2.0Þ% by the CLEO experiment [8] was overestimated and
problematic (see, e.g., Ref. [2]). The updated measurement
of this mode by BES-III is ð5.80� 1.46Þ% [9], signifi-
cantly smaller than the previous one.

III. FORMALISM

Our conventions of the quark contents for light
pseudoscalar mesons are πþ ¼ ud̄, π0 ¼ ðdd̄ − uūÞ= ffiffiffi

2
p

,
π− ¼ −dū, Kþ ¼ us̄, K0 ¼ ds̄, K̄0 ¼ sd̄, K− ¼ −sū
while those for light vector mesons are ρþ ¼ ud̄,
ρ0 ¼ ðdd̄ − uūÞ= ffiffiffi

2
p

, ρ− ¼ −dū, K�þ ¼ us̄, K�0 ¼ ds̄,
K̄�0 ¼ sd̄, K�− ¼ −sū, ω ¼ ðuūþ dd̄Þ= ffiffiffi

2
p

and ϕ ¼ ss̄.
The physical states of η and η0 in terms of the quark-flavor
ones ηq ¼ 1ffiffi

2
p ðuūþ dd̄Þ and ηs ¼ ss̄ are given by

�
η

η0

�
¼

�
cosϕ − sinϕ

sinϕ cosϕ

��
ηq

ηs

�
; ð2Þ

with the mixing angle ϕ ranging from 39° to 49°. We use
the recent LHCb measurement [12] to fix ϕ at 43.5° in our
numerical calculations.
The partial decay width of theDmeson into a vector and

a pseudoscalar meson can be expressed in two different
ways,

ΓðD → VPÞ ¼ p3
c

8πm2
D
j ~Mj2; ð3Þ

and

ΓðD → VPÞ ¼ pc

8πm2
D

X
pol

jMj2; ð4Þ

where mD is the D meson mass, and pc is the center-of-
mass momentum of either meson in the final state. Note
that the partial widths and thus the branching fractions
throughout this paper are CP averaged. The summation in
Eq. (4) is over the polarizations of the vector meson. The
branching fraction for a specific decay process can be
obtained by multiplying the partial width with theDmeson
lifetime. The relation between the amplitudes ~M andM is
~Mðϵ · pDÞ ¼ ðmD=mVÞM, where ϵμ and mV denote

TABLE II. Flavor amplitude decompositions, experimental branching fractions, and predicted branching fractions for the Cabibbo-
favored D → VP decays. Here sϕ ≡ sinϕ, cϕ ≡ cosϕ and Ysd ≡ V�

csVud. The columns of BtheoryðA1Þ and BtheoryðS4Þ give our
predictions based on solutions (A1) and (S4) shown later in Tables Vand VI. For comparison, the columns of BðpoleÞ and BðFAT½mix�Þ
are predictions made in Ref. [5] based on the pole model and the factorization-assisted topological-amplitude (FAT) approach with the
ρ-ω mixing, respectively. All branching fractions are quoted in units of %.

Meson Mode Representation Bexp BtheoryðA1Þ BtheoryðS4Þ BðpoleÞ BðFAT½mix�Þ
D0 K�−πþ YsdðTV þ EPÞ 5.43� 0.44 5.45� 0.64 5.43� 0.70 3.1� 1.0 6.09

K−ρþ YsdðTP þ EVÞ 11.1� 0.9 11.3� 2.70 11.4� 2.78 8.8� 2.2 9.6
K̄�0π0 1ffiffi

2
p YsdðCP − EPÞ 3.75� 0.29 3.72� 0.49 3.72� 0.50 2.9� 1.0 3.25

K̄0ρ0 1ffiffi
2

p YsdðCV − EVÞ 1.28þ0.14
−0.16 1.30� 0.78 1.31� 0.23 1.7� 0.7 1.17

K̄�0η Ysdð 1ffiffi
2

p ðCP þ EPÞcϕ − EVsϕÞ 0.96� 0.30 0.92� 0.36 0.82� 0.34 0.7� 0.2 0.57

K̄�0η0 −Ysdð 1ffiffi
2

p ðCP þ EPÞsϕ þ EVcϕÞ <0.11 0.003� 0.002 0.006� 0.002 0.016� 0.005 0.018

K̄0ω − 1ffiffi
2

p YsdðCV þ EVÞ 2.22� 0.12 2.24� 0.84 2.24� 0.29 2.5� 0.7 2.22

K̄0ϕ −YsdEP 0.847þ0.066
−0.034 0.848� 0.050 0.850� 0.050 0.80� 0.2 0.800

Dþ K̄�0πþ YsdðTV þ CPÞ 1.57� 0.13 1.57� 0.25 1.57� 0.25 1.4� 1.3 1.70
K̄0ρþ YsdðTP þ CVÞ 12.08þ1.20

−0.68 12.15� 11.69 12.03� 41.92 15.1� 3.8 6.0
Dþ

s K̄�0Kþ YsdðCP þ AVÞ 3.92� 0.14 3.92� 1.13 3.93� 1.00 4.2� 1.7 4.07
K̄0K�þ YsdðCV þ APÞ 5.4� 1.2 4.38� 1.19 3.11� 1.49 1.0� 0.6 3.1
ρþπ0 1ffiffi

2
p YsdðAP − AVÞ � � � 0.021� 0.087 0.022� 0.082 0.4� 0.4 0

ρþη −Ysdð 1ffiffi
2

p ðAP þ AVÞcϕ − TPsϕÞ 8.9� 0.8 8.85� 1.69 8.93� 3.12 8.3� 1.3 8.8

ρþη0 Ysdð 1ffiffi
2

p ðAP þ AVÞsϕ þ TPcϕÞ 5.80� 1.46a 2.75� 0.46 2.89� 0.86 3.0� 0.5 1.6

πþρ0 1ffiffi
2

p YsdðAV − APÞ 0.020� 0.012 0.021� 0.087 0.022� 0.082 0.4� 0.4 0.004

πþω 1ffiffi
2

p YsdðAV þ APÞ 0.24� 0.06 0.24� 0.15 0.24� 0.14 0 0.26

πþϕ YsdTV 4.5� 0.4 4.49� 0.40 4.51� 0.43 4.3� 0.6 3.4
aData from Ref. [9].
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respectively the polarization vector and mass of V meson,
and pμ

D is the momentum of D meson.
The flavor amplitude decompositions for all the D →

VP decay modes are shown in Tables II–IV, in which we
have defined the CKM factors Ysd ≡ V�

csVud ∼Oð1Þ,
Yd ≡ V�

cdVud ∼OðλÞ, Ys ≡ V�
csVus ∼OðλÞ, and Yds ≡

V�
cdVus ∼Oðλ2Þ for simplicity. To a very good approxi-

mation, the involved four CKM matrix factors only depend
on the Wolfenstein parameter λ, which is fixed to 0.22543
[13] by neglecting its small uncertainty.
With the SUð3ÞF symmetry in the diagrammatic approach,

we only need four types of amplitudes for all the D → VP
decays: the color-allowed amplitude T, the color-suppressed
amplitude C, the W-exchange amplitude E, and the W-
annihilation amplitude A. We associate a subscript P or V to

each flavor amplitude, e.g., TP;V , to denote the amplitude in
which the spectator quark goes to the pseudoscalar or vector
meson in the final state. These two kinds of amplitudes do
not have any obvious relation a priori.
Here we briefly comment on the branching fraction of

the Dþ
s → ρþη0 mode recently reported by the BES-III

Collaboration [9]. Its central value, seen to deviate from
theory predictions, can be constrained using two related
modes. From the flavor decompositions in Table II, one
derives a sum rule,

1

sϕ
AðDþ

s → πþωÞ ¼ cϕ
sϕ

AðDþ
s → ρþηÞ þAðDþ

s → ρþη0Þ;

ð5Þ

TABLE III. Same as Table II except for the singly Cabibbo-suppressed decays, Yd ≡ V�
cdVud and Ys ≡ V�

csVus. All branching
fractions are quoted in units of 10−3.

Meson Mode Representation Bexp BtheoryðA1Þ BtheoryðS4Þ BðpoleÞ BðFAT½mix�Þ
D0 πþρ− YdðTV

0 þ EP
0Þ 5.09� 0.34 3.61� 0.43 4.76� 0.61 3.5� 0.6 4.66

π−ρþ YdðT 0
P þ EV

0Þ 10.0� 0.6 8.73� 2.09 8.82� 2.15 10.2� 1.5 10.0
π0ρ0 1

2
YdðCP

0 þ CV
0 − EP

0 − EV
0Þ 3.82� 0.29 3.06� 0.63 3.90� 1.62 1.4� 0.6 3.83

KþK�− YsðT 0
V þ E0

PÞ 1.62� 0.15 1.84� 0.22 1.83� 0.24 1.6� 0.3 1.73
K−K�þ YsðT 0

P þ E0
VÞ 4.50� 0.30 4.44� 1.07 3.39� 0.83 4.7� 0.8 4.37

K0K̄�0 YsE0
P þ YdE0

V <1.5 1.374� 0.361 1.028� 0.430 0.16� 0.05 1.1
K̄0K�0 YsE0

V þ YdE0
P <0.54 1.374� 0.361 1.028� 0.430 0.16� 0.05 1.1

π0ω 1
2
YdðC0

V − C0
P þ E0

P þ E0
VÞ 0.117� 0.035a 0.043� 0.156 0.272� 1.509 0.08� 0.02 0.18

π0ϕ 1ffiffi
2

p YsC0
P 1.35� 0.10 0.77� 0.14 0.66� 0.11 1.0� 0.3 1.11

ηω Yd
1
2
ðC0

VþC0
PþE0

VþE0
PÞcϕ−Ys

1ffiffi
2

p C0
Vsϕ 2.21� 0.23b 2.09� 0.49 2.67� 2.54 1.2� 0.3 2.0

η0ω −Yd
1
2
ðC0

VþC0
PþE0

VþE0
PÞsϕ−Ys

1ffiffi
2

p C0
Vcϕ � � � 0.012� 0.012 0.046� 0.067 0.0001� 0.0001 0.02

ηϕ Ysð 1ffiffi
2

p C0
Pcϕ − ðE0

V þ E0
PÞsϕÞ 0.14� 0.05 0.29� 0.12 0.29� 0.08 0.23� 0.06 0.18

ηρ0 −Yd
1
2
ðC0

V−C0
P−E0

V−E0
PÞcϕþYs

1ffiffi
2

p C0
Vsϕ � � � 0.60� 0.40 0.80� 2.63 0.05� 0.01 0.45

η0ρ0 Yd
1
2
ðC0

V−C0
P−E0

V−E0
PÞsϕþYs

1ffiffi
2

p C0
Vcϕ � � � 0.055� 0.021 0.105� 0.075 0.08� 0.02 0.27

Dþ πþρ0 1ffiffi
2

p YdðT 0
V þ C0

P − A0
P þ A0

VÞ 0.84� 0.15 0.51� 0.28 0.68� 0.35 0.8� 0.7 0.58

π0ρþ 1ffiffi
2

p YdðT 0
P þ C0

V þ A0
P − A0

VÞ � � � 4.35� 5.01 4.27� 16.51 3.5� 1.6 2.5

πþω 1ffiffi
2

p YdðT 0
V þ C0

P þ A0
P þ A0

VÞ 0.279� 0.059a 0.165� 0.269 0.208� 0.240 0.3� 0.3 0.80

πþϕ YsC0
P 5.66þ0.19

−0.21 3.92� 0.69 3.37� 0.59 5.1� 1.4 5.65
ηρþ −Yd

1ffiffi
2

p ðT 0
PþC0

VþA0
VþA0

PÞcϕþYsC0
Vsϕ <6.8c 1.43� 4.60 0.95� 10.05 0.4� 0.4 2.2

η0ρþ Yd
1ffiffi
2

p ðT 0
PþC0

VþA0
VþA0

PÞsϕþYsC0
Vcϕ <5.2c 0.964� 0.168 0.958� 0.507 0.8� 0.1 0.8

KþK̄�0 YdA0
V þ YsT 0

V 3.84þ0.14
−0.23 4.00� 0.82 3.86� 0.78 4.1� 1.0 3.60

K̄0K�þ YdA0
P þ YsT 0

P 34� 16 14.45� 2.45 10.03� 2.62 12.4� 2.4 11
Dþ

s πþK�0 YdT 0
V þ YsA0

V 2.13� 0.36 3.51� 0.72 3.76� 0.76 1.5� 0.7 2.35
π0K�þ 1ffiffi

2
p ðYdC0

V − YsA0
VÞ � � � 1.47� 0.45 1.04� 0.48 0.1� 0.1 1.0

Kþρ0 1ffiffi
2

p ðYdC0
P − YsA0

PÞ 2.5� 0.4 1.58� 0.38 2.07� 0.57 1.0� 0.6 2.5

K0ρþ YdT 0
P þ YsA0

P � � � 11.25� 1.90 11.45� 2.99 7.5� 2.1 9.6
ηK�þ − 1ffiffi

2
p ðYdC0

VþYsA0
VÞcϕþYsðT 0

PþC0
VþA0

PÞsϕ � � � 0.59� 2.26 0.64� 6.09 1.0� 0.4 0.2

η0K�þ 1ffiffi
2

p ðYdC0
VþYsA0

VÞsϕþYsðT 0
PþC0

VþA0
PÞcϕ � � � 0.42� 0.15 0.32� 0.14 0.6� 0.2 0.2

Kþω 1ffiffi
2

p ðYdC0
P þ YsA0

PÞ <2.4 1.05� 0.34 2.15� 0.56 1.8� 0.7 0.07

Kþϕ YsðT 0
V þ C0

P þ A0
VÞ 0.164� 0.041 0.111� 0.060 0.112� 0.068 0.3� 0.3 0.166

aData from Ref. [10].
bData from Ref. [11].
cData from Ref. [8].
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where sϕ ≡ sinϕ and cϕ ≡ cosϕ. Taking the current
data of BðDþ

s → πþωÞ and BðDþ
s → ρþηÞ and noting

a simple triangular inequality, we obtain the bounds
ð2.19� 0.27Þ% < BðDþ

s → ρþη0Þ < ð4.51� 0.38Þ%,
consistent with the current data within the 1σ level.
The decay Dþ

s → ρ0πþ plays a crucial role in determin-
ing the annihilation amplitudes AP;V in the current analysis.
It is so because this is the only observed mode whose AP
and AV have opposite signs, while others involve their sum.
Without this observable, both the magnitudes and the
strong phases of AP;V cannot be settled. Before 2010, this
mode was quoted by the PDG as “not seen.” A Dalitz-plot
analysis of Dþ

s → πþπþπ− by BABAR yielded the fit
fraction ΓðDþ

s →ρ0πþÞ=ΓðDþ
s →πþπþπ−Þ¼ð1.8�0.5�

1.0Þ% [14]. Given the branching fraction BðDþ
s →

πþπþπ−Þ¼ð1.09�0.05Þ% [7], the BABAR result leads
to BðDþ

s → ρ0πþÞ ¼ ð2.0� 1.2Þ × 10−4.

IV. DATA FITTING

Since the measured CP asymmetries are consistent with
0 for most of the D → VP channels, we only take into
account the branching fractions in our fit. We start
exclusively with the Cabibbo-favored decay modes, and
will test the flavor SU(3) symmetry by using the fit results
to predict the branching fractions of Cabibbo-suppressed
decays. There are 16 observables with 15 theory parameters
in total as shown in Table II. We assume no correlations
among the theory parameters. By performing a χ2 fit to

data, we extract the magnitude and strong phase of each
flavor diagram. We have found many possible solutions
with local χ2 minima. Some of them are not well separated
by sufficiently high “χ2 barriers” to render good 1σ ranges.
In Tables V and VI, we only present those whose predicted
branching fractions for singly Cabibbo-suppressed modes
have better agreement with data. In particular, in the effort
of discarding irrelevant solutions, the D0 → π0ω mode
plays a major role. To obtain the 1σ range of each theory
parameter, we enable the other parameters to vary freely
around their best-fit values and minimize the χ2 value until
the change in χ2, Δχ2, reaches 1. In some rare cases when
the χ2 barrier is not sufficiently high to separate two local
minima, we stop the 1σ range scan at the obvious boundary.
Solutions (A) and (S) are obtained when the invariant

decay amplitude of D → VP is extracted using Eqs. (3)
and (4), respectively. Note that although the amplitudes
derived from them are related to each other, corresponding
solutions in set (A) and set (S) have similar but not exactly
the same strong phases, as they contain different factors
of final-state meson mass [as seen from the relation
~Mðϵ · pDÞ ¼ ðmD=mVÞM]. Since what are fitted are the

branching fractions, there are degeneracies in the χ2 value
when all the strong phases simultaneously flip signs or
change by 180°. We list only one of them in the tables.
In general, the uncertainties associated with certain

strong phases are relatively large in some of the solutions.
Usually, the size of the associated amplitude uncertainty
is also bigger. Among all the theory parameters, the

TABLE IV. Same as Table II except for the doubly Cabibbo-suppressed decays and Yds ≡ V�
cdVus. All branching fractions are quoted

in units of 10−4.

Meson Mode Representation Bexp BtheoryðA1Þ BtheoryðS4Þ BðpoleÞ BðFAT½mix�Þ
D0 K�þπ− YdsðT 00

P þ E00
VÞ 3.45þ1.80

−1.02 3.77� 0.90 2.88� 0.70 2.7� 0.6 4.72
K�0π0 1ffiffi

2
p YdsðC00

P − E00
VÞ � � � 0.49� 0.23 0.47� 0.12 0.8� 0.3 0.9

ϕK0 −YdsE00
V � � � 0.04� 0.03 0.01� 0.01 0.20� 0.06 0.2

ρ−Kþ YdsðT 00
V þ E00

PÞ � � � 1.34� 0.16 1.76� 0.23 0.9� 0.3 1.5
ρ0K0 1ffiffi

2
p YdsðC00

V − E00
PÞ � � � 1.06� 0.38 1.30� 1.80 0.5� 0.2 0.3

ωK0 − 1ffiffi
2

p YdsðC00
V þ E00

PÞ � � � 0.40� 0.37 0.61� 1.74 0.7� 0.2 0.6

K�0η Ydsð 1ffiffi
2

p ðC00
P þ E00

VÞcϕ − E00
PÞsϕ � � � 0.53� 0.10 0.46� 0.08 0.08 0.2

K�0η0 Ydsð 1ffiffi
2

p ðC00
P þ E00

VÞsϕ þ E00
PcϕÞ � � � 0.001� 0.0004 0.002� 0.001 0.004� 0.001 0.005

Dþ K�0πþ YdsðC00
P þ A00

VÞ 3.9� 0.6 2.94� 0.85 2.66� 0.68 2.2� 0.9 3.33
K�þπ0 1ffiffi

2
p YdsðT 00

P − A00
VÞ � � � 5.76� 0.85 3.98� 1.17 4.0� 0.9 3.9

ϕKþ YdsA00
V � � � 0.02� 0.02 0.02� 0.01 0.2� 0.2 0.02

ρþK0 YdsðC00
V þ A00

PÞ � � � 2.81� 0.76 2.39� 1.14 0.5� 0.4 3.3
ρ0Kþ 1ffiffi

2
p YdsðT 00

V − A00
PÞ 2.1� 0.5 1.66� 0.24 2.09� 0.44 0.5� 0.4 2.4

ωKþ 1ffiffi
2

p YdsðT 00
V þ A00

PÞ � � � 0.95� 0.20 1.90� 0.42 1.8� 0.5 0.7

K�þη −Ydsð 1ffiffi
2

p ðT 00
P þ A00

VÞcϕ − A00
PsϕÞ � � � 1.89� 0.40 1.33� 0.33 1.4� 0.2 1.0

K�þη0 Ydsð 1ffiffi
2

p ðT 00
P þ A00

VÞsϕ þ A00
PcϕÞ � � � 0.02� 0.01 0.02� 0.01 0.020� 0.007 0.01

Dþ
s K�þK0 YdsðT 00

P þ C00
VÞ � � � 1.55� 1.49 1.29� 4.48 2.3� 0.6 1.1

K�0Kþ YdsðT 00
V þ C00

PÞ 0.90� 0.51 0.17� 0.03 0.19� 0.03 0.2� 0.2 0.23
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uncertainties associated with jEPj, δEP
and δCP

are much
smaller than the others. In addition, their best-fit values are
quite stable across different solutions. The D0 → K̄0ϕ and
Dþ

s → πþϕ decays are solely governed by EP and TV ,
respectively. They hence play a dominant role in fixing the
sizes of these two flavor amplitudes and their associated
errors. As alluded to earlier, the recently measured branch-
ing fraction of Dþ

s → πþρ0 helps fix the magnitudes and
strong phases of the annihilation amplitudes AP;V for the
first time, although their uncertainties, especially in the
strong phases, are still large.
The flavor amplitudes generally respect the following

hierarchy pattern: jTPj> jTV j∼jCP;V j> jEPj> jEV j∼jAP;V j.
Because of the different momentum pc dependence in
Eqs. (3) and (4), the amplitude sizes in solution (A) are
larger than the counterparts in solution (S). Both

solutions (A) and (S) can be divided into two different
groups. The first one includes solutions (A1)–(A4)
[or solutions (S1)–(S4)] with δCP

≃ −158° and positive
δEP

, while the second group includes solution (A5)
[or (S5)–(S6)] with δCP

≃ −165° and negative δEP
. As a

correlation, the values of jTPj, jCPj and jAV j increase when
going from the first group to the second one, while those of
jTV j, jEPj and jAPj decrease. From Table II, it is seen that
jTPj has to be large in order to account for the measured
large rates of Dþ → K−ρþ and Dþ → K̄0ρþ. The relation
EV ≈ −EP advocated in Ref. [15] is disfavored by the data.
Rather, we observe that jEV j is significantly smaller than
jEPj. Though the uncertainties are still large, AP and AV are
generally 1 order of magnitude smaller than the tree and
color-suppressed amplitudes. Moreover, in some solutions,
the A’s are comparable to EV in magnitude. Therefore, the

TABLE VI. Same as Table V except that Eq. (4) is employed for the fit. The amplitude sizes are quoted in units of 10−6ðϵ · pDÞ.
jTV j jTPj δTP

jCV j δCV
jCPj δCP

jEV j δEV

jEPj δEP
jAPj δAP

jAV j δAV χ2min quality

(S1) 2.19� 0.09 3.40þ0.17
−0.18 57þ30

−53 1.76þ0.05
−0.09 −94þ36

−28 2.09þ0.11
−0.17 −159� 1 0.27þ0.34

−0.07 −116þ77
−58

1.67� 0.05 108� 4 0.26þ0.06
−0.11 −31þ65

−59 0.20þ0.10
−0.07 −1þ68

−58 5.558 0.0184

(S2) 2.19� 0.09 3.40þ0.16
−0.19 64þ30

−60 1.76þ0.05
−0.09 −88þ35

−26 2.10þ0.11
−0.17 −159� 1 0.28þ0.33

−0.07 −114þ78
−61

1.67� 0.05 108� 4 0.26þ0.05
−0.12 −23þ63

−68 0.20þ0.10
−0.07 6þ71

−66 5.564 0.0183

(S3) 2.17þ0.09
−0.10 3.47þ0.11

−0.34 33þ47
−28 1.75þ0.06

−0.10 −172þ26
−37 2.03þ0.18

−0.17 −159� 1 0.39þ0.29
−0.17 −123þ46

−117
1.67� 0.05 107þ5

−4 0.23þ0.07
−0.09 109þ46

−51 0.23þ0.07
−0.09 77þ47

−50 5.90 0.0152

(S4) 2.18þ0.11
−0.10 3.38þ0.27

−0.28 9þ83
−82 1.77� 0.05 −142þ81

−147 2.06þ0.17
−0.19 −159þ1

−2 0.25þ0.18
−0.05 −146þ65

−114
1.67� 0.05 108� 5 0.19þ0.10

−0.07 100þ51
−79 0.26þ0.05

−0.10 72þ45
−38 8.08 0.0045

(S5) 1.81� 0.11 3.50þ0.10
−0.11 −32þ34

−25 1.73þ0.06
−0.09 125þ35

−26 2.25þ0.04
−0.05 −162þ2

−3 0.46þ0.24
−0.17 −179þ35

−33
1.65� 0.05 −86� 4 0.17þ0.05

−0.03 30þ28
−31 0.31þ0.03

−0.04 20þ18
−17 33.78 0.0000

(S6) 1.81þ0.12
−0.11 3.50þ0.10

−0.11 −34þ37
−23 1.73þ0.06

−0.09 122þ33
−24 2.25þ0.04

−0.05 −162þ2
−3 0.46þ0.24

−0.17 179þ37
−31

1.64� 0.05 −86� 4 0.17þ0.05
−0.03 29þ29

−31 0.31þ0.03
−0.04 19þ19

−16 33.79 0.0000

TABLE V. Fit results using Eq. (3) and ϕ ¼ 43.5°. The amplitude sizes are quoted in units of 10−6, and the strong phases in units of
degrees. Only those solutions which can sufficiently well accommodate the singly Cabibbo-suppressed modes are shown.

jTV j jTPj δTP
jCV j δCV

jCPj δCP
jEV j δEV

jEPj δEP
jAPj δAP

jAV j δAV χ2min quality

(A1) 4.21þ0.18
−0.19 8.46þ0.22

−0.25 57þ35
−41 4.09þ0.16

−0.25 −145þ29
−39 4.08þ0.37

−0.36 −157� 2 1.19þ0.64
−0.46 −85þ42

−39
3.06� 0.09 98� 5 0.64þ0.14

−0.27 152þ48
−50 0.52þ0.24

−0.19 122þ70
−42 5.22 0.0223

(A2) 4.26þ0.18
−0.19 8.13þ0.61

−0.47 69þ30
−56 4.20� 0.12 −82þ36

−26 4.34þ0.41
−0.40 −158� 2 0.61þ0.78

−0.12 −90þ78
−60

3.06� 0.09 100� 5 0.71þ0.08
−0.36 −32þ64

−82 0.40þ0.35
−0.10 −42þ99

−55 6.23 0.0126

(A3) 4.26þ0.17
−0.18 8.43þ0.24

−0.53 34þ87
−40 4.07þ0.22

−0.42 −168þ154
−26 4.36þ0.32

−0.34 −158� 2 1.26þ0.92
−0.72 −106þ43

−37
3.06� 0.09 100� 5 0.53þ0.25

−0.21 −79þ64
−32 0.62þ0.16

−0.30 −48þ60
−31 7.25 0.0071

(A4) 4.21þ0.18
−0.19 8.01þ0.52

−0.58 31þ26
−57 4.20þ0.13

−0.16 −119þ34
−107 4.06þ0.44

−0.50 −157� 2 0.66þ0.51
−0.17 −96� 79

3.06� 0.09 98þ5
−6 0.61þ0.16

−0.25 156þ55
−50 0.54þ0.21

−0.22 123þ125
−48 7.98 0.0047

(A5) 3.84� 0.17 8.48þ0.21
−0.25 −54þ28

−23 4.09þ0.17
−0.27 104þ28

−23 5.00þ0.10
−0.12 −165þ2

−3 1.22þ0.66
−0.47 164þ25

−27
3.03� 0.09 −85� 4 0.43þ0.13

−0.09 30þ29
−34 0.76þ0.07

−0.10 18� 19 14.24 0.0002
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contributions of the W-annihilated amplitudes AP;V are not
negligible.
For both solutions (A) and (S), the major χ2 contribution

comes from the Dþ
s → ρþη0 mode as the predicted branch-

ing fractions for this mode are significantly smaller than
the current data. For solutions (A5), (S5) and (S6), the
predicted BðDþ

s → πþϕÞ shows a large deviation from the
data, resulting in larger χ2 values. Hence, the Dþ

s → πþϕ
decay helps distinguish solutions in the first group [i.e.,
(A1)–(A4) and (S1)–(S4)] from those in the second group.
Measurements of singly Cabibbo-suppressed decay

modes are useful in distinguishing different solutions. In
solution (A1), the predicted BðD0 → π0ϕÞ, BðD0 → πþρ−Þ
and BðDþ

s → πþK�0Þ deviate from the data more signifi-
cantly than the other modes. Solutions (A2) and (A3) are
strongly disfavored by the measurements of D0 → π0ω
and Dþ → πþω as the predicted branching fractions are
considerably larger. Among all these decay modes, the
predicted BðDþ → πþϕÞ has the largest deviation from
the data in solution (A4). On the other hand, solution (A5)
is disfavored by the measurements of D0 → π0ω and
Dþ → KþK̄�0. In general, solution (A1) can explain the
current data much better than all the other solutions in (A).
The predicted branching fraction of Dþ → πþω

(Dþ → πþϕ) in solutions (S1) and (S2) is much larger
(smaller) than the measurement. Hence, these two solutions
are disfavored by the current data. The measurements of
BðD0 → π0ωÞ and BðDþ → πþϕÞ can be used to rule
out solution (S3). As for solution (S4), the predicted
BðDþ → πþϕÞ deviates from the data the most. For
solutions (S5) and (S6), the predicted BðDþ → KþK̄�0Þ
has the largest deviation from the data among all the decay
modes. Overall, though solution (S4) cannot explain
BðDþ → πþϕÞ very well, the predicted branching fractions
for all the other decay modes are much closer to the current
data than the rest of solutions in (S).
We note in passing that a fit to only singly Cabibbo-

suppressed decay modes has been tried. Not only did we
obtain many more solutions, but we also could not obtain
results with small χ2 values. This reflects the fact that these
data present inconsistency within this framework. This also
explains why we choose to use solution (S4) rather than
(S1) although the latter has a lower χ2 value and is closer to
solution (A1) as far as the strong phases are concerned.
In contrast to singly Cabibbo-suppressed decay modes,

all the solutions can explain the available data of doubly
Cabibbo-suppressed decay modes sufficiently well, as is
discussed further in the next section. Thus, currently singly
Cabibbo-suppressed decays play an essential role in sin-
gling out preferred solutions.
Before closing the section, we make a comparison

between solutions (A1) and (A5) obtained in the current
work and solutions (A) and (A’) given in Table VII of
Ref. [2]. In the earlier analysis [2], the data preferred
solution (A) over solution (A’), primarily because the

former had a larger jCPj than that of the latter and hence
it fits the singly Cabibbo-suppressed modes πþ;0ϕ better. In
the current analysis, we notice that BðK̄�0π0Þ ¼ ð3.75�
0.29Þ% is significantly larger than the 2010 data of
ð2.82� 0.35Þ%. This change has the effect of enlarging
jCPj of solution (A’) to have a more constructive interfer-
ence with EP and giving the current solutions (A1)–(A4).
Such an identification can be seen by paying attention to
the strong phases of CP and EP. This also results in a better
fit to the πþ;0ϕ modes, which involve purely the CP
amplitude. In contrast, the previously favored solution (A)
evolves to the current solution (A5) with a smaller jCPj than
before. A comparison between solutions of type (S) can be
made analogously, and one would find the correspondence
between solutions (S1)–(S4) to solution (S’) and solutions
(S5) and (S6) to solution (S’).
It is also noted that jCPj and jCV j are comparable in

solutions (A1)–(A4), but have a small hierarchy in sol-
utions (S1)–(S4). As a way to tell whether the amplitudes
extracted using Eq. (3) or (4) show better flavor symmetry,
one can resort to the Ds → K̄�0Kþ decay, governed by CP,
and the K̄0K�þ decay, dominated by CV. Experimental
measurements of the ratio of their branching fractions will
help us determine which scheme is preferred. The current
data slightly favor (A1) over (S4). Since the former decay
has been measured several times with similar results before
and the latter was measured in 1989 [16], it is obvious that
the K̄0K�þ mode should be updated.

V. PREDICTIONS

As explained in the previous section, among all the
solutions listed in Tables Vand VI, solutions (A1) and (S4)
are favored by the current data with the former being
slightly preferred after considering all the decay modes,
including both singly and doubly Cabibbo-suppressed
ones. We therefore make predictions for all the branching
fractions based on solutions (A1) and (S4) by assuming
the SUð3ÞF symmetry, with the flavor amplitudes for
singly and doubly Cabibbo-suppressed decays being
exactly the same as those for Cabibbo-favored decays
(i.e., the unprimed, primed, and doubly primed amplitudes
of the same topology are all equal). In particular, informa-
tion of the sizes and strong phases of AP;V enables us to
predict the branching fractions of the decay modes involv-
ing these amplitudes within this framework for the first
time. The results are already given in the columns of
BtheoryðA1Þ and BtheoryðS4Þ in Tables II–IV. One purpose is
to test the SUð3ÞF symmetry. Predictions made in the pole
model and in the FAT approach with the ρ-ω mixing [5] are
also shown in the tables for comparison.
Consider the Dþ

s → ρþη and ρþη0 decays and solution
(A1). Since jTPj ≫ jAV j; jAPj, the color-allowed amplitude
TP is the dominant contribution to the flavor amplitude
of the decay mode Dþ

s → ρþηð0Þ. From Table II, once the
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W-annihilation amplitudes are neglected, the ratio of the
theoretical branching fraction BðDþ

s → ρþηÞ to BðDþ
s →

ρþη0Þ can simply be parametrized in terms of the mixing
angle ϕ and the center-of-mass momentum of either meson
in the final state

BðDþ
s → ρþηÞ

BðDþ
s → ρþη0Þ ≈

�
sinϕ
cosϕ

�
2
�
pcðDs → ρηÞ
pcðDs → ρη0Þ

�
3

; ð6Þ

which numerically is about 3.4. This is close to the value of
3.2, as the central value obtained using solution (A1) (see
Table II) when all the TP and AP;V contributions are
considered. This is due to the fact that the combination
AP þ AV is roughly perpendicular to TP in solution (A1),
so that the ratios with and without the W annihilations are
roughly the same. While the predicted BðDþ

s → ρþηÞ is
close to the CLEO measurement of ð8.9� 0.8Þ%, the
calculated branching fraction ofDþ

s → ρþη0 is substantially
below the recent BES-III result of ð5.80� 1.46Þ%.
Indeed, all the existing model calculations yield
around 3% [2–6]. If BðDþ

s → ρþη0Þ still remains to be
of order 6% in the future experiments, this may hint at a
sizable flavor-singlet contribution unique to the η0 pro-
duction. This issue should be clarified both experimentally
and theoretically.
Measurements of singly and doubly Cabibbo-suppressed

modes serve as a testing ground for our working
assumption of flavor SU(3) symmetry. The predicted
branching fractions for the singly Cabibbo-suppressed
modes are 1 order of magnitude smaller than those of
the Cabibbo-favored modes due to the suppression of the
CKM matrix elements. Many of the singly Cabibbo-
suppressed modes (e.g., Dþ → KþK̄�0 and D0 → ηω)
can be nicely explained in the framework of flavor SU(3)
symmetry. The decay amplitudes of D0 → K0K̄�0 and
K̄0K�0 both contain EV and EP, but with different CKM
matrix elements. As both Yd and Ys are around 0.2, their
predicted branching fractions turn out to be virtually the
same. We note that our prediction is close to the current
upper bound at 90% confidence level for K0K̄�0 and
exceeds the upper bound for the K̄0K�0 mode. Precise
determinations of these observables will determine whether
our picture is correct. The flavor amplitudes involved in
the modes π0ϕ and πþϕ are the same except the former is
suppressed by a factor 1=

ffiffiffi
2

p
. Also, the lifetime of D0 is

around 2.5 times shorter than Dþ. Thus, the branching
fraction of π0ϕ is expected to be about five times smaller
than πþϕ, as verified by the current data. The Dþ →
K̄0K�þ and Dþ

s → K0ρþ rates are expected to be larger
since they are dominated by TP whose fit value is the
largest among all flavor amplitudes. The current central
value of BðDþ → K̄0K�þÞ is somewhat too large in
comparison with theory predictions, although the error
bar is still big. The predicted BðD0 → πþρ−Þ, BðD0 → π0ϕÞ

and BðDþ
s → πþK�0Þ in solution (A1) deviate from the

data more significantly, while the predicted BðD → πϕÞ,
BðD0 → π0ωÞ, BðDþ

s → πþK�0Þ and BðD0 → K−K�þÞ
have larger deviations in solution (S4). For
BðDþ

s → πþK�0Þ, there is a constructive interference
between TV and AV , resulting in a larger theory prediction
in comparison with the measured value.
The predicted branching fractions for doubly Cabibbo-

suppressed modes are suppressed by another order of
magnitude with respect to those for singly Cabibbo-
suppressed ones because of the CKM matrix elements.
There are still many yet unobserved decays. However, for
those that have been observed, our predictions are con-
sistent with the data within the 1σ range, except for the
Dþ

s → K�0Kþ decay whose measured value is significantly
larger than theory predictions, though its error bar is also
large. The Dþ → K�0πþ and Dþ → ρ0Kþ modes involve
respectively AV and AP. Without the contributions of AP;V ,
their predicted branching fractions are smaller than the
measured values, clearly indicating the necessity of AP;V .
In general, the predicted branching fractions of the doubly
Cabibbo-suppressed modes under flavor SU(3) symmetry
are more consistent with the data than the singly Cabibbo-
suppressed modes.
For a comparison with our predictions, we have given

BðpoleÞ and BðFAT½mix�Þ in the last two columns of
Tables II–IV, transcribed from Ref. [5] for the pole model
[17] and the FAT approach with the ρ-ω mixing, respec-
tively. The latter approach is preferred by the authors of
Ref. [5]. Although BðFAT½mix�Þ is generally in agreement
with ours, there do exist some discrepancies. For example,
the predicted rates for both singly Cabibbo-suppressed
Dþ → πþω and Dþ

s → Kþω decays in the FAT[mix]
approach are respectively much larger and smaller than
ours. As for the Cabibbo-allowed Dþ

s → ρ0πþ, ρþπ0
modes, the FAT approach leads to vanishing rates for both
of them [5], while it is not so in our case. To see this,
we notice that the topological amplitude expressions of
Dþ

s → πþρ0 and Dþ
s → πþω are given by

AðDþ
s → πþρ0Þ ¼ 1ffiffiffi

2
p V�

csVudðAV − APÞ;

AðDþ
s → πþωÞ ¼ 1ffiffiffi

2
p V�

csVudðAV þ APÞ: ð7Þ

Moreover, we decompose the annihilation amplitude into

AP;V ¼ aP;V þ Ar
P;V þ Ae

P;V; ð8Þ

where a is the short-distance W-annihilation amplitude,
Ar denotes the amplitude arising from resonant final-state
interactions and the superscript e indicates final-state
rescattering via quark exchange. As shown in Ref. [2],
the G-parity argument implies that aV ¼−aP. Furthermore,
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the Dþ
s → πþω decay does not receive any resonant

contribution, while rescattering via quark exchange is
prohibited to contribute to Dþ

s → πþρ0. Applying the
relation [18]

Ar
P;V ¼ 1

2
ðe2iδr − 1Þ

�
aP;V − aV;P þ 1

3
ðCP;V − CV;PÞ

�
ð9Þ

for the nearby resonant contributions to AP;V induced by
CP;V and

e2iδr ¼ 1 − i
ΓR

mD −mR þ iΓR=2
; ð10Þ

with mR being the resonance mass and ΓR its total decay
width, we obtain

AV − AP ¼ 2aV þ ðe2iδr − 1Þ
�
2aV þ 1

3
ðCV − CPÞ

�
;

AV þ AP ¼ Ae
V þ Ae

P: ð11Þ

Therefore, while Dþ
s → πþρ0 receives both short-

distance and resonance-induced W-annihilation contri-
butions, Dþ

s → πþω proceeds through long-distance
final-state rescattering effects [19]. Hence, even if the
short-distance annihilation amplitude is negligible, the
former mode generally does not vanish in our consid-
eration. The small branching fraction 0.004% quoted in
Table II for Dþ

s → πþρ0 from the FAT[mix] approach
comes from the Dþ

s → πþω decay followed by the
ρ-ω mixing.
In addition to the decay Dþ

s → ρþη0 as discussed in
passing, Tables II–IV also show that some experimental
measurements are probably overestimated in the
central values when compared with theory predictions,
such as Dþ

s → K̄0K�þ, D0→ K̄0K�0, Dþ→ K̄0K�þ and
Dþ

s → KþK�0. The first mode was measured two decades
ago [20], and it is likely that the quoted experimental
result for Dþ

s → K̄0K�þ was overestimated. The predicted
rates for D0 → K̄0K�0 and D0 → K0K̄�0 are the same,
while the current limit is slightly below the prediction
for the former. We should stress that even though the
central values of the current data for these modes may
well be too large, the uncertainties associated with some
of them are still quite big and await more precise
measurements.

VI. SU(3) BREAKING EFFECT

Supposing that the color-allowed and color-suppressed
amplitudes are factorizable, they read

~TV ¼ GFffiffiffi
2

p a1ðK̄�πÞ2fπmDADK�
0 ðm2

πÞ;

~CP ¼ GFffiffiffi
2

p a2ðK̄�πÞ2fK�mDFDπ
1 ðm2

K� Þ;

~TP ¼ GFffiffiffi
2

p a1ðK̄ρÞ2fρmDFDK
1 ðm2

ρÞ;

~CV ¼ GFffiffiffi
2

p a1ðK̄ρÞ2fKmDA
Dρ
0 ðm2

KÞ; ð12Þ

in the convention of Eq. (3), and

TV ¼ GFffiffiffi
2

p a1ðK̄�πÞ2fπmK�ADK�
0 ðm2

πÞðϵ · pDÞ;

CP ¼ GFffiffiffi
2

p a2ðK̄�πÞ2fK�mK�FDπ
1 ðm2

K� Þðϵ · pDÞ;

TP ¼ GFffiffiffi
2

p a1ðK̄ρÞ2fρmρFDK
1 ðm2

ρÞðϵ · pDÞ;

CV ¼ GFffiffiffi
2

p a1ðK̄ρÞ2fKmρA
Dρ
0 ðm2

KÞðϵ · pDÞ ð13Þ

in the convention of Eq. (4). The decay constants to be
used are fπ ¼ 130.41MeV, fK ¼ 156.2MeV [7], fK� ¼
220MeV and fρ ¼ 216 MeV [21]. We follow the defi-
nition of form factors in Ref. [22] and use the following
parametrization [23]:

Fðq2Þ ¼ Fð0Þ
ð1 − q2=m2�Þð1 − αq2=m2�Þ

; ð14Þ

where m� ¼ mD�
s
, mDs

, mD� and mD when the form factors

are FDK
1;0 , A

DK�
0 , FDπ

1;0 and ADρ
0 , respectively. Form factors at

q2 ¼ 0 and the parameter α are listed in Table VII (see [2]
for detail). With the magnitudes and strong phases of TP;V

and CP;V obtained in Sec. V, the Wilson coefficients a1;2
can be extracted via Eqs. (12) and (13). The extracted ja1;2j,
ja2=a1j and argða2=a1Þ are listed in Table VIII for different
solutions.
If we assume for factorizable amplitudes that the

effective Wilson coefficients a1;2 are the same, then their
magnitudes will differ mode by mode due to differences in
the final-state meson masses, decay constants, and form
factors. For the singly Cabibbo-suppressed decay modes,
the predicted BðDþ → πþϕÞ in solution (A1) has the
largest deviation from the current data. Its factorizable
amplitude is

TABLE VII. Form factors at q2 ¼ 0 and the corresponding
shape parameter α.

FDπ
0 FDK

0 FDπ
1 FDK

1 ADρ
0

ADK�
0

Fð0Þ 0.666 0.739 0.666 0.739 0.74 0.78
α 0.21 0.30 0.24 0.33 0.36 0.24
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C0
P;πþϕ ¼ GFffiffiffi

2
p a22fϕmDþFDπ

1 ðm2
ϕÞ: ð15Þ

Comparing with the related Cabibbo-favoredDþ → K̄�0πþ
decay mode, we obtain the ratio

C0
P;πþϕ

CP;K̄�0πþ
¼ fϕ

fK�

FDπ
1 ðm2

ϕÞ
FDπ
1 ðm2

K�0Þ≃ 1.07; ð16Þ

where a2 for these two decay modes is assumed to be the
same and cancels out. Including this symmetry breaking
factor, the invariant decay amplitude of Dþ → πþϕ now
becomes

AðDþ → πþϕÞ ¼ 1.07 × YsC0
P: ð17Þ

As a consequence, the predicted branching fraction is
enhanced from ð3.92�0.69Þ×10−3 to ð4.49�0.80Þ×10−3,
closer to the current data of ð5.66þ0.19

−0.21Þ × 10−3. The predicted
BðDþ → πþϕÞ in solution (S4) also deviates from the
measurement most significantly among all the singly
Cabibbo-suppressed modes. By the same token, our predic-
tion is enhanced from ð3.37�0.59Þ×10−3 to ð4.50�0.87Þ×
10−3 after taking the symmetry breaking effect into account,
but using Eq. (13) in this case. This method is also applicable
to the D0 → π0ϕ decay.
Even though the uncertainty associated with the current

data of BðDþ → K̄0K�þÞ is still quite large, the central
value of our prediction for this mode is more than two times
smaller, and so are the other predictions made in the pole
model and the FAT approach with the ρ-ω mixing. The
factorizable amplitude for this mode is

T 0
P;K̄0K�þ ¼ GFffiffiffi

2
p a12fK�mDFDK

1 ðm2
K�þÞ: ð18Þ

Comparing with theDþ → K̄0ρþ decay, we obtain the ratio

T 0
P;K̄0K�þ

TP;K̄0ρþ
¼ fK�

fρ

FDK
1 ðm2

K�þÞ
FDK
1 ðm2

ρþÞ
≃ 1.09: ð19Þ

Therefore, the flavor amplitude of Dþ → K̄0K�þ now
becomes

AðDþ → K̄0K�þÞ ¼ YdA0
P þ 1.09 × YsT 0

P: ð20Þ

The predicted BðDþ → K̄0K�þÞ ¼ ð14.45� 2.45Þ × 10−3

in solution (A1) is thus enhanced to ð17.10� 2.69Þ × 10−3

whose central value now becomes slightly closer to the
current data.
Although some of the modes have better agreement with

the data after the above-mentioned symmetry breaking is
included, some others deviate from the measurement even
more regardless of which solution we take. Take the decay
Dþ → KþK̄�0 as an example. Its factorizable amplitude T 0

V
is written as

T 0
V;KþK̄�0 ¼ GFffiffiffi

2
p a12fKmDADK�

0 ðm2
KþÞ: ð21Þ

Comparing with the factorization amplitude of the mode
Dþ → K̄�0πþ, we have

T 0
V;KþK̄�0

TV;K̄0πþ
¼ fK

fπ

ADK�
0 ðm2

KþÞ
ADK�
0 ðm2

πþÞ
≃ 1.28: ð22Þ

Hence, the flavor amplitude of this mode becomes

AðDþ → KþK̄�0Þ ¼ YdA0
V þ 1.28 × YsT 0

V; ð23Þ

and the predicted branching fraction is enhanced. Using
solution (A1), the predicted branching fraction of ð4.00�
0.82Þ × 10−3 based on exact flavor SU(3) symmetry now
becomes ð6.4� 1.1Þ × 10−3, which deviates even more
from the current data ð3.84þ0.14

−0.23Þ × 10−3.
We also list the results for solutions (A5) and (S5) in

Table VIII. Although both of them are disfavored by many
of the singly Cabibbo-suppressed decay modes, their
extracted ja2=a1j for different decay modes are much
closer to each other. In spite of the fact that taking into
account the symmetry breaking factors in the factorizable
amplitudes results in more deviation from the experimental
data for modes like Dþ → KþK̄�0, such factors in other
singly Cabibbo-suppressed modes do improve agreement,
as illustrated above in the two examples of Dþ → πþϕ and
K̄0K�þ. Nevertheless, it is pertinent to conclude that the

TABLE VIII. The effective Wilson coefficients a1;2, ja2=a1j and argða2=a1Þ extracted from the Cabibbo-favored Dþ → K̄�0πþ and
K̄0ρþ decay modes based on solutions (A1), (A5), (S4) and (S5) shown in Tables V and VI.

K̄�0πþ K̄0ρþ

(A1) (A5) (S4) (S5) (A1) (A5) (S4) (S5)

ja1j 1.34� 0.06 1.22� 0.05 1.45� 0.07 1.20� 0.07 1.43� 0.04 1.43� 0.04 1.38� 0.11 1.43� 0.04
ja2j 0.69� 0.06 0.85� 0.02 0.73� 0.06 0.80� 0.02 1.05� 0.05 1.04� 0.06 1.09� 0.03 1.07� 0.05
ja2=a1j 0.52� 0.05 0.69� 0.03 0.50� 0.05 0.66� 0.04 0.73� 0.04 0.73� 0.04 0.79� 0.07 0.75� 0.04
argða2=a1Þ −ð157� 2Þ° −ð165� 3Þ° −ð159� 2Þ° −ð162� 3Þ° ð158� 51Þ° ð158� 36Þ° −ð151� 141Þ° ð157� 42Þ°
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flavor SU(3) symmetry is generally a good approximate
symmetry in explaining the D → VP data.

VII. CONCLUSIONS

Because of the low masses of charmed mesons, their
hadronic decays are best analyzed using the diagrammatic
approach with the assumption of flavor SU(3) symmetry.
Within this framework and using the latest data, we have
updated the global χ2 fit to the Cabibbo-favored decay
branching fractions and, thanks to the recent measurement
of BðDþ

s → πþρ0Þ, determined for the first time the W-
annihilation amplitudes AP;V . They are the smallest in size
among all the tree-level flavor amplitudes analyzed in this
work. A determination of BðDþ

s → π0ρþÞ will be very
useful in confirming the information we get from BðDþ

s →
πþρ0Þ and reducing the uncertainties associated with AP;V .
During the fits, we have found several possible solutions.
Many of them are ruled out by the data of singly Cabibbo-
suppressed modes.
Using the flavor amplitudes extracted from the Cabibbo-

favored decays,we are able to predict the branching fractions
of all the D → VP decays under flavor SU(3) symmetry
and test this working assumption, particularly in the

Cabibbo-suppressed decays. The predictions for the doubly
Cabibbo-suppressed channels are in goodagreementwith the
data, while some of those for the singly Cabibbo-suppressed
decay modes are seen to violate the flavor SU(3) symmetry.
We have tried to include SU(3) symmetry breaking in color-
allowed and color-suppressed tree amplitudes to see if a
better agreement with data can be achieved. However, the
conclusion is mixed, and the exact flavor SU(3)-symmetric
approach is still sufficiently adequate to provide an overall
explanation for the current data.
We have also compared our diagrammatic-approach

results in some detail to those of other existing theoretical
calculations in the literature. In order to test which theories
are more favored by nature, we need to await more
precisely measured data, especially those of yet unobserved
modes and some of the singly Cabibbo-suppressed decays
that have significant deviations from theory predictions.
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