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The recent proposal of a photon and a neutrino-pair beam is investigated in detail. Production rates, both
differential and total, of a single photon, two photons, and a neutrino pair emitted from quantum ions in
circular motion are given for any velocity of ion. This part is an extension of our previous calculations at
highest energies to lower energies of circulating ions, and hopefully helps to identify the new process of
quantum ion circulation at a low energy ring. We clarify how to utilize the circulating ion for a new source
of coherent neutrino beam despite much stronger background photons. Once one verifies that the coherence
is maintained in the initial phases of time evolution after laser irradiation, large background photon
emission rates are not an obstacle against utilizing the extracted neutrino-pair beam.
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I. INTRODUCTION

Conventional sources of the neutrino beam have been
decay products of elementary particles, pions for accel-
erator-based neutrino experiments, muons for atmospheric
neutrino oscillation experiments, and unstable beta-nuclei
for reactor-based neutrino experiments. It would be of great
interest if one could add different kinds of neutrino beams
having stronger flux and different features. Moreover, a
related process, a gamma-ray beam with a large intensity
(photons with energies larger than MeV), would be of
interest in its own way and of great help to produce
secondary intensive beams such as positron and neutron
beams, which would provide other tools for future high
energy physics experiments. A new mechanism of photon
and neutrino-pair emission from circulating ions has
recently been proposed [1] with these goals in mind.
The new mechanism of photon and neutrino-pair emis-

sion has some similarity to the synchrotron radiation [2–4],
but also has important differences from the synchrotron
radiation. The new proposal uses circulating quantum
ions of mixed excited and ground states. When ions are
circulated in the ground state, the formalism reduces to the
usual synchrotron radiation: produced neutrinos and pho-
tons remain in the low energy region, typically in the keV
range; hence one can essentially ignore the neutrino-pair
emission due to extremely low production rates. But when
quantum mixed states are circulated, it produces a com-
pletely different spectrum of more intensive fluxes in the
high energy region, as demonstrated in our recent paper [1],
which presented results in the high energy limit of ions.
With the introduction of the quantum ion a new input of
internal energy leads to a phase matching absent in the
synchrotron radiation, providing large production rates of
neutrino pairs and photons. Since ion deexcitation is

involved, produced neutrinos appear in the pair, νiν̄i,
i ¼ e, μ, τ, which is quite unique to this beam. It would
be ideal for CP violation oscillation experiments, since the
beam itself is CP-even [5,6]. Application of a gamma-ray
beam to a strong neutron source has also been worked out
recently [7].
In the present work we shall deepen the understanding of

the production mechanism of photons and neutrino pairs
from a quantum ion ring and calculate basic quantities of
production rates at any velocity of circular motion. This is
expected to help verify experimentally important features
of this new process.
The rest of this work is organized as follows. In Sec. II

we recapitulate basic features of particle emission from a
quantum ion beam and derive the fundamental differential
rate for single-photon emission at any ion velocity. At the
end of this section we discuss decoherence of a quantum
ion beam during its circulation. In Sec. III outputs of
analytical and numerical results are presented for the
photon energy spectrum near the forward direction and
the angular distribution, paying special attention to how
these are changed with ion circulation velocity or the boost
factor. Section IV discusses the neutrino-pair emission and
how circulating heavy ions may become a strong source
of the neutrino-pair beam, regardless of even stronger
backgrounds of photon emission. In Appendix A we
discuss the two-photon emission. In Appendix B we give
some relevant mathematical items related to the subject in
the present work. The mechanism of amplified emission
discussed in the text is shown to be related to the parametric
amplification that occurs in the Floquet system of differ-
ential equations having periodic coefficients.
Throughout this work we use the natural units of

ℏ ¼ c ¼ 1.
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II. PHOTON EMISSION FROM QUANTUM
ION BEAM: BASIC FEATURES

We shall extend derivation of fundamental formulas of
the photon emission rate of [1] to include cases of low
velocity (small β ¼ v=c) regions.
The quantum coherent state of a single ion (in the

Schrödinger picture) is defined by a superposition of two
states, jei and jgi,

jcðtÞi ¼ cos
θc
2
e−iϵgt=γjgi þ sin

θc
2
e−iϵet=γeiφc jei: ð1Þ

We assume jei to be a metastable excited state, while jgi is
the ground state of the ion. The state jcðtÞi is not an energy
eigenstate unless θc=2 ¼ 0, π=2, but may be realized after
laser irradiation. Without a loss of generality we may take
φc ¼ 0, which we shall do in the following. The boost
factor γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
, with β the velocity of a circulating

ion divided by the light velocity.
The coherent state given by Eq. (1) is prepared in situ,

most likely in a straight section just upstream of an
extraction part, by laser irradiation from a counterpropa-
gating direction. The actual choice of laser system, such as
the number of lasers, their wavelengths, and intensities,
depends upon the properties of the ions in use, in particular
the energy gap ϵeg between jei and jgi, and their mutual
parity. For example, in the most simple case of jei being
accessible from jgi by the electric dipole transition (E1), the
π=2-pulse method [8], a well-established method in atomic
physics experiments, may be employed with the wave-
length corresponding to ϵeg=γ, taking into account the boost
factor felt by the ions. Notice that the counterpropagating
direction is chosen so that the maximum available photon
energy 2γϵeg is as large as possible while keeping the laser’s
photon energy low enough.
We assume that a single ion in this quantum state is

circulating in the ring of radius ρ such that its orbit is

~rIðtÞ ¼ ρ

�
sin

βt
ρ
; cos

βt
ρ
− 1; 0

�
; ð2Þ

in a coordinate system of ~rIð0Þ ¼ 0. (β ¼ v=c here and
below is meant to be the velocity of circulating ions, with
the natural unit of the light velocity c ¼ 1.) We consider
coherent emission of many photons of definite momentum,

~k ¼ ωðcosψ cos θ; cosψ sin θ; sinψÞ; ð3Þ

and some helicity from a circulating single ion.
We consider the photon emission by electric dipole (E1)

interaction. Extension to the magnetic dipole (M1) tran-
sitions is straightforward. The probability amplitude of an
E1 photon is given using an expectation value of jcðtÞi:

MðtÞ ¼
Z

t

0

dt0hcðt0Þ
���� e~pme

����cðt0Þi · ~Aðt0; ~k; hÞ ð4Þ

¼ −i
ϵegffiffiffiffiffiffiffiffiffiffi
2ωV

p
Z

t

0

dt0hcðt0Þj~djcðt0Þi · ~eheiωt0−i~k·~rIðt0Þ:

ð5Þ

V is the quantization volume of emitted electromagnetic
field. This is a coherent sum along the orbit trajectory
of a single ion. The production rate is defined by the time
derivative of the probability; hence it is given by

∂tjMðtÞj2 ¼ 2ℜ

�
hcðtÞ

���� e~pme

����cðtÞi · ~Aðt; ~k; hÞMðtÞ�
�
:

ð6Þ
It is important from the fundamental physics point of

view to use the p · A=m gauge instead of the d · E gauge
often used in atomic physics calculation. These two gauges
give approximately identical results when photons are
nearly on the mass shell, namely, ω ∼ ϵeg, but they may
give completely different answers when photons are far
off the mass shell, namely, ω ≫ ϵeg in our problem. We
typically deal with cases of ω=ϵeg ¼ OðγÞ, which may be
very large. Differences of rates in dependences on the boost
factor γ are large in the two gauges.
Consider a situation in which all emitted photons of

definite momentum ~k are collected by some detector. We
sum over all available ions of the number I2πρ=Q, where I
is the DC current of a heavy ion of charge Q. The total
emission rate from all ion sources is

dΓ¼Vd3k
ð2πÞ3

2πρI
Q

γ
X
h

2ℜ

�
hcðtÞ

���e~p
me

���cðtÞi · ~Aðt;~k;hÞMðtÞ�
�
;

ð7Þ

2Vℜ

�
hcðtÞ

����e~pme

����cðtÞi · ~Aðt; ~k; hÞMðtÞ�
�

¼ ϵ2eg
ω

ðsin θc cos θcÞ2
X
pol

eihðejhÞ�ðdegÞiðdegÞj cos ~Φð0Þ

×
Z

t

0

dt0 cos ~Φðt0Þ; ð8Þ

~ΦðtÞ ¼
�
ω −

ϵeg
γ

�
t − ρω cosψ

�
sin

�
θ þ βt

ρ

�
− sin θ

�
:

ð9Þ
The need to insert the boost factor γ is explained in [1].
Note that the emission rate from the excited state jei

does not have this type of time integral, since the factor
ϵeg=γ is missing in Eq. (9) in that case. It leads to the usual
synchrotron radiation [2] from the state jei, and the
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emitted photons have much lower energies than of order
1 keV (and much smaller rates in the neutrino-pair
emission). The reason for this behavior is due to the
positive definiteness of the phase factor ~ΦðtÞ in the case
without the −ϵeg=γ term, which leads to an exponential
damping as ω increases. On the other hand, emission from
the quantum state jcðtÞi has the extra contribution in the
phase ~ΦðtÞ from the internal ion energy ∝ ϵeg, which
competes with the orbital contribution, giving rise to a
kind of nonlinear resonance at the stationary phase points
of ∂t

~ΦðtÞ ¼ 0.
It is convenient for a comparison to introduce new angle

variables tangential to the circulating ion:

ðθ0;ψ 0Þ ¼ ðθ þ u;ψÞ; ð10Þ

such that θ0 ¼ 0 corresponds to the tangential direction at
different time t ¼ uρ=β. The phase integral multiplied by
the photon momentum phase space is then

dΩ
Z

u

0

dy cosΦðy; θ0;ψÞ ¼
Z

u

0

dydΩ0 cosΦðy; θ0;ψÞ:

ð11Þ

Keeping in mind a photon extraction scheme in the outside
of the ring, one may take small angular regions ∝ Δθ near
the tangential direction of θ0 ¼ 0,

dΩ0 ¼ Δθdψ cosψ ;

dΩ
Z

u

0

dy cosΦðy; θ0 ¼ 0;ψÞ

∼ Δθdψ cosψ
Z

u

0

dy cosΦðy; 0;ψÞ: ð12Þ

Written in terms of the new angular variable θ0, we
compare two terms in Eq. (9) (u ¼ βt=ρ),

sinðθ þ uÞ − sin θ ¼ sin θ0 þ sinðu − θ0Þ
¼ ð1 − cos uÞ sin θ0 þ sin u cos θ0:

ð13Þ

Near the tangential direction of θ0 ¼ 0, the first term in
the last equality of Eq. (13) is small, both because of
θ0 ∼ 0 and a small phase u region contributing to the large
rate. In order to verify this assertion, we numerically
simulated the phase integral, keeping fixed the tangential
angle θ0 at finite, nonvanishing values in Eq. (13). The
result is illustrated in Fig. 1. Simulations suggest that the
phase integrals for tangential angular regions of small,
but finite jθ0j < 0.1 (solid and dotted black curves in
Fig. 1) agree well in u < Oð0.1Þ. Moreover, the agree-
ment in the time phase region of nearly all 2π range
except at points close to 2π is good for smaller angle

regions of < Oð0.05Þ. This phase region includes the
most important initial phases (regions up around π=4),
smoothly matching to the stable plateau of large phase
integral. It would be interesting to understand more
deeply these behaviors from the point of the Floquet
system described in Appendix B.
In most of the following discussions we shall suppress

the angular θ0 dependence by fixing it at zero. Thus, we
shall use

Φðu; a; bÞ ¼ bu − a sin u;

a ¼ ρω cosψ ;

b ¼ ρ

β

�
ω −

ϵeg
γ

�
; ð14Þ

Z
t

0

dt0 cos ~Φðt0Þ ¼ ρ

β

Z
βt=ρ

0

du cosΦðu; a; bÞ: ð15Þ

Taking summation over photon polarization (helicity)
gives the differential spectrum of the form,

d2Γ
dωdΩ

¼ 2

3ð2πÞ2 Nd2egϵ2egωγ
ρ

β

Z
βt=ρ

0

du cosΦðuÞ;

N ¼ jρegðtÞj2
ρI
Q

; ð16Þ

with jρegðtÞj ¼ sin θc=2. N is the number of coherent ions
available for photon emission in the beam.
The radius ρ of circular ion motion is of macroscopic

length, and one may take the infinite radius limit in the
sense ρϵeg ≫ 1. The largest contribution to the rates in
the large radius limit arises from the large region of a, b in
the phase function ΦðuÞ. The numerical result for the ion
level spacing of 5 eV gives

1 2 3 4 5 6

0.1

0.2

0.3

0.4

Phase integrals

time phase

FIG. 1. Nonforward phase integral
R
u
0 dy cosΦðy; θ0Þ for a

few values of θ0: 0.05 in solid black, 0.1 in dashed red, 0.2 in
dotted-dashed blue, and 0 in dotted black. A two-period ion
circulation of u ¼ 0 ∼ 4π was taken for the end point of the
time integral without decoherence. Assumed parameters are
b ¼ 103, a ¼ 1.01b.
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ρϵeg ¼ 2.5 × 1010
ρ

1 km

ϵeg
5 eV

: ð17Þ

We consider the detection of emitted photons after
irradiating lasers from counterpropagating directions.
The counterpropagating direction is chosen both to create
a high coherence and to utilize laser frequencies boosted by
the factor 2γ for the best match to a deeper level spacing of
ions. Detectors are usually placed in a transport system
tangential to the ion circular motion. The transport system
for the photon extraction has a finite angular coverage Δθ
in the ion beam plane, and one should consider emitted
photons from circulating ions in a limited time interval Δt,
which is related to the detected angular aperture Δθ by
Δt ¼ ρrΔθ=v, r being of order the ratio of the distance to
the detector to the circular radius to R=ρ. The question now
arises on where the extraction system is to be placed in
relation to the laser irradiation point.
It is shown in Appendix B that the Bessel function is

relevant to the emission rate at one-period revolution
u ¼ 2π of ion motion after laser irradiation. It is however
necessary to calculate emission rates at any phase angle u
prior to one period of circulation. Consider for this purpose
the phase integral,

Z
u

0

du0 cosðbu0 − a sin u0Þ: ð18Þ

We are unaware of any simple analytic function that gives
this integral accurately. Extensive numerical studies of this
function for large a, b’s have been done accordingly. A
typical result is shown in Fig. 4 along with a truncated
approximation to the third order in u of the phase function.
There is a wide region of the phase u giving a nearly flat
plateau of integral value at the half of the full integral,
which is πJbðaÞ (the Bessel function of order b and
argument a). For the parameter range a ≫ a − b > 0,
πJbðaÞ ∼

ffiffiffi
π

p ða2 − b2Þ−1=4. See the Appendix for more
details. A stable photon emission rate is expected in this
plateau region, which is excellent for the purpose of
extracting a large flux of photons as a beam. The initial
behavior of emission rate at u ≪ 1 shall be discussed
in Sec. IV.
The differential spectrum rate in the stable extraction

region is then given, using a dimensionless energy
x ¼ ω=ϵeg, by

d2Γ
dxdΩ

¼ Aeg

2
ffiffiffi
π

p N
ffiffiffiffiffiffiffiffi
ρϵeg
β

r
γx
�
β2x2cos2ψcos2θ

−
�
x −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q �
2
�
−1=4

; ð19Þ

x− ≤ x ≤ xþ; x� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� β

1 ∓ β

s
; ð20Þ

with the Einstein coefficient (decay rate) given by
Aeg ¼ d2egϵ3eg=3π. This is our fundamental formula giving
the angular distribution and the energy spectrum of
photon emission. The overall rate factor is numerically
given by

1

2
ffiffiffi
π

p AegN
ffiffiffiffiffiffiffiffi
ρϵeg

p ¼ 2.82 × 1015 Hz
Aeg

1 kHz

ffiffiffiffiffiffiffiffiffi
ρϵeg
1010

r
N
108

:

ð21Þ

It is important to clarify how the coherence ρegðtÞ
changes during ion circulation. In the formulas above we
defined the effective number of ions as the circulating
number of ions times the coherence squared jρegj2. This
coherence decays with the emission of photons of rates
proportional to jρegðtÞj2. The basic equation of the time
dependence and its solutions for the coherence loss are
thus

dρeg
dt

¼ −
K
2
ρ3eg;

ρegðtÞ ¼
ρegð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Kρ2egð0Þt
q ;

ρegð0Þ ¼
1

2
sinðθcÞ; ð22Þ

K ¼ Aegffiffiffi
π

p ffiffiffiffiffiffiffiffi
ρϵeg

p π

γ
ffiffiffi
β

p
Z

dxx

�
β2x2 −

�
x −

1

γ

�
2
�

−1=4
;

ð23Þ

where K was calculated by integrating the photon number

over all emitted photon energies x (
ffiffiffiffiffiffiffi
1−β
1þβ

q
≤ x ≤

ffiffiffiffiffiffiffi
1þβ
1−β

q
reduced in the high energy limit to 0 < x < 2γ in the
dimensionless energy units used here) and angular area
π=γ2. It is interesting to note that the asymptotic value in
t ≫ 1=ðKρ2egð0ÞÞ is independent of the initial coherence
ρegð0Þ, ρegðtÞ → 1=

ffiffiffiffiffiffi
Kt

p
. We assumed the reality of the

coherence, since the phase factor is not important.
It is assumed in this discussion of decoherence that

there exists no other important relaxation process. This
assumption is reasonable when the laser is irradiated after
ions reach their highest energy in the ring and the number
of circulating ions is scarce with negligible mutual
interaction.
The actual amount of decoherence is dependent on

details of the acceleration scheme, in particular where
the extraction of the beam is made after the point of laser
irradiation. For simplicity we shall extract photon or
neutrino-pair beams right after the laser irradiation; hence
we ignore the decoherence effect, keeping in mind that the
degree of decoherence is in principle calculable.
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III. ENERGY SPECTRUM IN THE FORWARD
DIRECTION AND ANGULAR DISTRIBUTION

In this section basic quantities relevant to the detection of
extracted photons are calculated in the stable plateau region
of phases< Oðπ=4Þ. Outside this region the approximation
that neglects the term 1 − cos u in Eq. (13) is questionable.
We first show the photon energy spectrum in the forward
direction. For this purpose we integrate the fundamental
formula, Eq. (19), over a small solid angle area πΔ2 in the
forward direction ψ ¼ θ ¼ 0. This can be done usingZ ffiffiffiffiffiffiffiffiffiffi

ψ2þθ2
p

≤Δ
dψdθðA2 − B2ðψ2 þ θ2ÞÞ−1=4

¼ 4π

3

1

B2
ðA3=2 − ðA2 − B2Δ2Þ3=4Þ: ð24Þ

Taking A2, B2 relevant to our problem and expanding in
terms of the small angle factor Δ2, one finds thatZ ffiffiffiffiffiffiffiffiffiffi

ψ2þθ2
p

≤Δ
dψdθ

�
β2x2cos2ψcos2θ−

�
x−

ffiffiffiffiffiffiffiffiffiffiffiffi
1− β2

q �
2
�
−1=4

∼ πΔ2γ1=2ððx− x−Þðxþ− xÞÞ−1=4; ð25Þ

in the limit γ → ∞. This formula is valid in a limited region
of Δ2, which gives a Δ-dependent range of allowed photon
energies:

1

1þ β2γ2Δ2

�
γ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2ð1 − β2Δ2Þ − 1

q �

≤ x ≤
1

1þ β2γ2Δ2

�
γ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2ð1 − β2Δ2Þ − 1

q �
: ð26Þ

The forward energy spectrum rate is given by either of the
following two forms,

�
dΓ
dx

�
0

¼ NπΔ2
Aeg

2
ffiffiffi
π

p ffiffiffiffiffiffiffiffi
ρϵeg

p γ3=2ffiffiffi
β

p xððx − x−Þðxþ − xÞÞ−1=4;

ð27Þ

�
dΓ
dy

�
0

→ NπΔ2
Aegffiffiffiffiffiffi
2π

p ffiffiffiffiffiffiffiffi
ρϵeg

p
γ2y3=4ð1 − yÞ−1=4;

y ¼ ω

ωmax
∼

ω

2γϵeg
; as γ → ∞: ð28Þ

We expect under normal experimental circumstances that
Δ ≤ Oð1=γÞ. In Fig. 2 we illustrate the forward energy
spectrum per unit solid angle area πΔ2 ¼ 1. The Jacobian
peak at the highest energy is clearly visible for smaller
values of the angular resolution Δ, which degrades when
the angular coverage Δ becomes larger, for instance, at
Δ ≥ Oð0.1Þ=γ. The Jacobian peak suggests a high degree
of a correlation between the photon energy and its
emission angle.
We next calculate the angular distribution after the

photon energy integration. The formula of angular inte-
gration gives

dΓ
dΩ

¼ 1

2
ffiffiffi
π

p NAeg
ffiffiffiffiffiffiffiffi
ρϵeg

p γffiffiffi
β

p
Z

Xþ

X−

dx
x�

β2x2 cos2 ψ cos2 θ −
�
x −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p �
2
�
1=4 ð29Þ

¼ c0NAeg
ffiffiffiffiffiffiffiffi
ρϵeg

p
γ−1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosψ cos θ

p
ð1 − β2cos2ψcos2θÞ7=4 → c0NAeg

ffiffiffiffiffiffiffiffi
ρϵeg

p
γ3

1

ð1 − γ2ðψ2 þ θ2ÞÞ7=4 ; ð30Þ

X� ¼ 1

γð1 ∓ β cosψ cos θÞ ; c0 ¼ 2
Γð3

4
Þ

Γð1
4
Þ ¼ 0.676: ð31Þ

This angular distribution is illustrated in Fig. 3. The forward peaking as the boost factor increases is clearly observed
already at intermediate γ values.

energy eg

10

11

12

13

Hz
Energy spectrum

10

10

10

10

200 400 600 800

FIG. 2. Photon energy spectrum per unit solid angle area
[Eq. (27) divided by πΔ2] at the forward direction for a few
choices of the boost factor: γ ¼ 100 in solid black, 200 in
dashed red, 300 in dash-dotted blue, and 400 in dotted black.
The angular resolution of Δ ¼ 0.01=γ was taken here. Other
assumed parameters are Aeg ¼ 1 kHz, ρϵeg ¼ 1010, N ¼ 108

and rates scale as ∝ Aeg
ffiffiffiffiffiffiffiffi
ρϵeg

p N.
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Finally, we calculate the total photon emission rate by
integrating both energy and angle variables. The result is
given by

Γ ∼ 2.8NAeg
ffiffiffiffiffiffiffiffi
ρϵeg

p
γ; ð32Þ

which holds in both large γ and small β limits.
We observe that compared to the spontaneous emission

rate AegN, the quantum ion beam gives rise to a rate
enhanced by a factor ∝ ffiffiffiffiffiffiffiffi

ρϵeg
p , except the factor ∝ γ. Since

ρ is of a macroscopic size and is much larger than the
microscopic scale 1=ϵeg, this may become gigantic.
A nontrivial aspect of γ-dependence should be noted for

the collimated photon emission. For a large γ the angular
coverage is very much limited to an angular area of order
1=γ2 and the total rate is diminished by this coverage factor.
This means that in a unit solid angle area in the forward
narrow cone the differential angular rate is effectively of the
order γ2 larger than the total rate.
Calculations so far presented are exact except the use of

an approximate form of the large order Bessel function. An
alternative method of total rate calculation is to treat the
angular variables θ, ψ symmetrically, and to approximate
the product function

cos2ψcos2θ ∼ 1 − ðψ2 þ θ2Þ; ð33Þ

which is valid at large γ’s, showing the highly collimated
angular distribution. This method can readily be extended
to the case of multiple particle emission such as the
neutrino-pair emission. To make the behavior of the rates
in the high energy limit (γ → ∞) more transparent, it is
convenient to use the energy rescaled by the maximum
energy xþϵeg and to introduce the variable y defined below.
Resulting rates are as follows:

dΓ0

dy
¼ c3AegN

ffiffiffiffiffiffiffiffi
ρϵeg

p
GðyÞ; c3 ¼

4
ffiffiffiffiffiffi
2π

p

3
¼ 3.34;

y ¼ x
xþ

; y− ≤ y ≤ 1; y− ¼ 1 − β

1þ β
; ð34Þ

GðyÞ ¼ ððy − y−Þð1 − yÞÞ3=4
y

: ð35Þ

A more useful approximation to treat the total rate at any
velocity is given by

Γ0 ¼ c4AegN
ffiffiffiffiffiffiffiffi
ρϵeg

p
γ; c4 ¼

4
ffiffiffiffiffiffi
2π

p

3
B

�
3

4
;
7

4

�
¼ 2.83:

ð36Þ

The agreement of the parameter dependence and an
excellent closeness of constants in Eqs. (32) and (36) gives
confidence in the approximation here.
One may use a truncated time expansion in the initial and

intermediate phase region for an estimate of the crucial
phase integral. We thus expand the phase function ΦðuÞ in
terms of the circulating phase variable u to its third order:

ΦðuÞ ∼ −ða − bÞuþ a
6
u3: ð37Þ

This approximation is compared with the exact phase
integral in Fig. 4. It is thus clear that the third order
approximation is excellent except in a small region near the
returning phase point of u ¼ 2π.
For further analytic calculations it is important to locate

stationary points of the phase integral. The stationary phase
point given by the vanishing derivative Φ0ðuÞ ¼ 0 exists at

u ¼ u� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ða − bÞ

a

r
; for

a − b
a

≥ 0: ð38Þ
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FIG. 3. Angular distribution either at ψ ¼ 0 or θ ¼ 0 in the single-photon emission for a few choices of the boost factor. In the left
panel γ ¼ 10 in solid black, 100 in dashed red, 1000 in dotted-dashed blue, and 104 in dotted black. In the right panel γ ¼ 1.01 in solid
black, 1.1 in dashed red, 1.5 in dotted-dashed blue, and 2 in dotted black. Other assumed parameters are Aeg ¼ 1 kHz, ρϵeg ¼ 1010,
N ¼ 108 and rates scale as ∝ Aeg

ffiffiffiffiffiffiffiffi
ρϵeg

p N.
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The Gaussian phase approximation to this function and the
resulting phase integral give

ΦðuÞ ∼ −
2

ffiffiffi
2

p

3
ða − bÞ

ffiffiffiffiffiffiffiffiffiffiffi
a − b
a

r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aða − bÞ

2

r �
u −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ða − bÞ

a

r �
2

; ð39Þ

Z
u

0

dy cosΦðyÞ ∼
�

2

aða − bÞ
�

1=4

×ℜ

�
e−iX

Z
Y

0

dz exp½iðz −WÞ2�
�
;

ð40Þ

X ¼ 2
ffiffiffi
2

p

3
ða − bÞ

ffiffiffiffiffiffiffiffiffiffiffi
a − b
a

r
;

Y ¼ u
�
aða − bÞ

2

�
1=4

;

W ¼ b

�
2

aða − bÞ
�

1=4
: ð41Þ

In the limit of Y ≫ W, one may replace Y → ∞,W → 0 to
derive a Fresnel type of integral in an infinite range,

Z
∞

0

dycosΦðyÞ∼
�

2

aða−bÞ
�

1=4
ffiffiffi
π

p
2

cos

�
X−

π

4

�
: ð42Þ

Inserting relevant quantities for a, b gives

d2Γ
dxdΩ

¼ 1

29=2
ffiffiffi
π

p AegN
ffiffiffiffiffiffiffiffi
ρϵeg

p ð1þ βÞ1=4
β3=4

γ3=2F1gðxÞ; ð43Þ

F1gðxÞ ¼ x

�
xðxþ − xÞ − βð1þ βÞ

2
γ2x2ðθ2 þ ϕ2Þ

�
−1=4

× cos

�
ρϵeg
3

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βð1þ βÞ

p
γÞ−3x

×

�
xþ − x

x
−
βð1þ βÞ

2
γ2ðθ2 þ ϕ2Þ

�
3=2

−
π

4

�
:

ð44Þ

The major difference from the previous formula (19), in
particular at large γ’s, is the presence of the oscillating
function having an interesting combination of large factors,
ρϵeg=γ2 with x ∝ γ; all other factors are in reasonable
agreement with the previous result. Another difference is
the low β behavior, arising from ∝ ðaða − bÞÞ−1=4, which
should be compared with the previous approximation from
the Bessel function giving ∝ ða2 − b2Þ−1=4. Although the
difference at large γ’s is minor, the low β behavior is
quite different. Indeed, the stationary phase approximation
here cannot reproduce the correct behavior ∝

ffiffiffi
β

p
in the

total rate.
The formula (43) is valid for the time or its related phase

domain,

t > t�;

t� ¼ ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

βð1þ βÞ

s
1

βγ

�
xþ − x

x
−
βð1þ βÞ

2
γ2ðθ2 þ ψ2Þ

�
1=2

:

ð45Þ

Due to the oscillating factor the major contribution arises
from the photon phase space region of

1 2 3 4 5 6

0.1

0.2

0.3

0.4

0.5

Phase integral and its approximation

time phase

FIG. 4. Approximate phase integral by truncation to the third
order compared with exact results: exact case of ðb; aÞ ¼
500ð1; 1.01Þ in solid black, its approximate case in dashed
red, exact case of ðb; aÞ ¼ 500ð1; 1.1Þ in dotted-dashed blue,
and its approximate case in dotted black. The straight line shows
the JbðaÞ value for ðb; aÞ ¼ 500ð1; 1.01Þ.
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FIG. 5. Effect of oscillatory behavior in the forward energy
spectrum. Formula given by Eq. (44) with (solid black) and
without (dashed red) the sinusoidal function. Assumed param-
eters are the γ ¼ 1.5, ρϵeg ¼ 1014 case in dotted black.
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x
xþ

�
xþ − x

x
−
βð1þ βÞ

2
γ2ðθ2 þ ψ2Þ

�
3=2

<
3

ρϵeg
β3=2ð1þ βÞ1=2γ2: ð46Þ

The combination of parameters that appear here is of order,

γ2

ρϵeg
¼ 10−4

�
γ

103

�
2 1010

ρϵeg
: ð47Þ

At the quantitative level the effect of the oscillatory term
is important only at low γ’s. We illustrate an example in
Fig. 5, which shows that the oscillation effect is not
significant at energies contributing to large rates.

IV. NEUTRINO-PAIR EMISSION RATES

The cases of multiple particle emission, in particular a
neutrino pair, are of great interest. Our formalism may

be directly extended to these cases, which we shall
turn to.
For simplicity we shall take massless neutrinos of three

flavors, which is an excellent approximation for neutrino
energies Ei much larger than their masses. Quantities that
appear in the phase integral are changed to

ΦðuÞ ¼ bu − a sin u;

b ¼ ρ

β

�
E1 þ E2 −

ϵeg
γ

�
;

a ¼ ρðE1 cosψ1 cos θ1 þ E2 cosψ2 cos θ2Þ: ð48Þ

Matrix element factors are readily worked out by squaring

the electron spin transition moment ~Se ¼ hgj~σjei=2 arising
from the axial vector part of the four-Fermi interaction as
in [1]. The calculated differential rate for three neutrino
flavor pairs is

d4Γ2ν

dy1dy2dΩ1dΩ2

¼
ffiffiffi
π

p
16ð2πÞ6G

2
Fϵ

5
egN

ffiffiffiffiffiffiffiffi
ρϵeg

p ~S2e

�
1þ 2

3
β2γ2

�
1ffiffiffi
β

p
γ
x6þ

× y21y
2
2

�
1þ 1

3
cosψ1 cosψ2 cosðθ1 − θ2Þ þ

1

3
sinψ1 sinψ2

�

×

�
β2ðy1 cosψ1 cos θ1 þ y2 cosψ2 cos θ2Þ2 −

�
y1 þ y2 −

1

γxþ

�
2
�

−1=4
; ð49Þ

with xþ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ βÞ=ð1 − βÞp
∼ 2γ and yi ¼ Ei=ðxþϵegÞ.

After angular integrations that give the Oðγ−4Þ factor, one
may derive a formula of the total pair emission rate,

Γ2ν ¼ c4G2
Fϵ

5
egN

ffiffiffiffiffiffiffiffi
ρϵeg

p ~S2e

�
1þ 2

3
β2γ2

�
β−9=2ð1þ βÞ11=2γI;

ð50Þ

I ¼
Z

dy1dy2
y1y2

ðy1 þ y2Þ2
ððy1 þ y2 − y−Þð1− y1 − y2ÞÞ7=4;

ð51Þ

c4 ¼
ffiffiffi
π

p
12ð2πÞ6

Z
j~xj≤1

dv4ð1 − ~x2Þ−1=4

¼ 1

128ð2πÞ3
Γð3=4Þ
Γð13=4Þ ¼ 1.21 × 10−4; ð52Þ

c4G2
Fϵ

5
egN

ffiffiffiffiffiffiffiffi
ρϵeg

p ¼ 2.5 Hz

ffiffiffiffiffiffiffiffiffi
ρϵeg
1014

r
N
108

�
ϵeg

10 keV

�
5

: ð53Þ

The integral related to the constant c4 is over the 4d volume
of radius unity. For this estimate we took a large radius ρ of

ion circular motion and the level spacing ϵeg appropriate for
high energy neutrino-pair production.
Dependence of the total rate ∝ γ3 of Eq. (50) in the

high energy limit is different from the ∝ γ4 in [1]. The
difference is traced to a different angular distribution in
the stationary phase approximation. In [1] the angular θ,
ψ distribution is asymmetric, and it has a wider range
of allowed angles in θi variables: only the relative
opening angle θ1 − θ2 is limited by 1=γ, but their
individual θi’s are not limited by this factor. This does
not give an extra 1=γ suppression in the result of
the total rate, which explains the difference from the
present work. As to the total rate we believe that the
present method is closer to the correct, more precise
result. But it is important to note that what is to be
compared with actual observations is the rate within a
given aperture of angles, and this should be calculated
more precisely by taking into account the geometry of
the detector system. This way one may obtain an
effective enhancement of a γ power.
In Fig. 6 we illustrate the forward spectrum rate of a

single neutrino in the pair production process. The basic
formula derived by taking ψ i ¼ θi ¼ 0 in Eq. (49) is given
in terms of y ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ βÞ=ð1 − βÞp
,
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SðyÞ ¼ 0.05 Hz

ffiffiffiffiffiffiffiffiffi
ρϵeg
1014

r
N
108

~S2e

�
1þ 2

3
β2γ2

� ð1þ βÞ6ffiffiffi
β

p γ11=2

×
Z

dy2y2y22ððy1 þ y2 − y−Þðyþ − y1 − y2ÞÞ−1=4;

ð54Þ

which is valid for rates per unit solid angle area in the

forward direction of θ ¼ ψ ¼ 0. The spin factor ~S2e ¼ 1 and
N ¼ 108, ρϵeg ¼ 1014 were taken for simplicity.
Now we would like to discuss a possible obstacle

against detection of the neutrino-pair emission. Gigantic
backgrounds of QED processes are not really a problem,
because all emitted photons are beam-dumped by some
experimental facility before the extracted neutrino-pair
beam is used for experiments. The important question is
whether the absolute neutrino-pair emission is large
enough for experiments away from the ion ring. Our

calculations here show that when the circulating ion and
the accelerator parameter are appropriately chosen, this is
not a problem.
In summary, we presented both the differential and the

total rates of produced single photons and neutrino
pairs emitted from quantum ions in circular motion.
When ions are in a quantum mixed state, the produced
energy spectrum is completely different from the case of
synchrotron radiation from circulating ions, opening a
new method of unique production of a coherent neutrino-
pair beam. Results were given for any velocity of
circulating ion and hence should be useful for exper-
imental investigations of these processes, for instance,
pilot experiments of low energy photon emission. An
important parameter region of energy and direction of
emitted photons or neutrino pairs was derived by iden-
tifying where rate amplification occurs in the important
time integral of the phase factor. In a sequel to the
present work [6] we shall discuss how neutrino oscil-
lation experiments can measure important parameters of
neutrino properties.
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APPENDIX A: RATES OF
TWO-PHOTON EMISSION

Here we calculate rates of two-photon emission and
discuss which of the single- or the two-photon emission is
dominant for large boost values relevant to the large rate
region of the neutrino-pair emission.
The differential spectrum of two-photon emission is

calculated as

d4Γ2γ

dy1dy2dΩ1dΩ2

¼
ffiffiffi
π

p
4ð2πÞ4 N

ApeApgϵeg
ϵpeϵpg

ϵeg

ffiffiffiffiffiffiffiffi
ρϵeg
β

r
ð1þ βÞ6γ4y1y2Mðy1; y2Þ

×

�
β2γ2ðy1 cosψ1 cos θ1 þ y2 cosψ2 cos θ2Þ2 −

�
γðy1 þ y2Þ −

1

xþ

�
2
�

−1=4
; ðA1Þ

Mðy1; y2Þ ¼
1

ðy1 þ ϵpe=ðxþϵegÞÞ2
þ 1

ðy2 þ ϵpe=ðxþϵegÞÞ2
þ 3

4

1

ðy1 þ ϵpe=ðxþϵegÞÞðy2 þ ϵpe=ðxþϵegÞÞ
; ðA2Þ

with yi ¼ ωi=ðxþϵegÞ. The functionM is the squared sum of energy denominator factors in the second order of perturbation

theory. In this estimate of matrix elementM we replaced a factor ð~k1 · ~k2=ω1ω2Þ2 in the interference term by its average 1=2,
which is not precise, but it would serve for our crude estimate.
The angular integrations over those of two photons may be explicitly done, using the expansion like cos θi ∼ 1 − θ2i =2,

which should be valid for large boosts. The result after angular integrations is
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FIG. 6. Neutrino spectrum rate in the forward direction in
neutrino-pair emission, assuming the overall factor of 0.05 Hz
in Eq. (54). The chosen γ factors are 4000 in solid black, 6000
in dashed red, 8000 in dotted-dashed blue, and 104 in dotted
black.
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Z
dΩ1

Z
dΩ2ððy1 þ y2 − y−Þð1 − y1 − y2Þ − β2γ2ðy1 þ y2Þðy1ðψ2

1 þ θ21Þ þ y2ðψ2
2 þ θ22ÞÞ−1=4

¼ 128

231
π2

Γð3=4Þ
Γð13=4Þ ðβγÞ

−4 ððy1 þ y2 − y−Þð1 − y1 − y2ÞÞ7=4
y1y2ðy1 þ y2Þ2

: ðA3Þ

The single-photon spectrum shape after the second photon energy is integrated out is given by

dΓ2γ

dy
¼ 3.6 × 109 Hz

keVϵeg
ϵpeϵpg

ApeApg

ð10 MHzÞ2
ffiffiffiffiffiffiffiffiffi
ρϵeg
1010

r
N
108

ð1þ βÞ2
β9=2

F2γðyÞ; ðA4Þ

F2γðyÞ ¼
Z

dy2

�
1

yþ y2

�
2

ððyþ y2 − y−Þð1 − y − y2ÞÞ7=4Mðy; y2Þ; y− ¼ 1 − β

1þ β
; ðA5Þ

with xþ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ βÞ=ð1 − βÞp
.

Numerical results of the energy spectrum of a single
photon in the two-photon emission process are illustrated in
Fig. 7 for some values of the boost factor. The end point of
energy spectrum increases with γ accompanied by a rate
increase. In the high energy limit of γ ≫ 1 the total rate of
two-photon emission obeys the scaling law ∝ γ4 [1]. The
two-photon emission of E1 × E1 type is usually weaker
than M1 type emission, although the M1 rate is much
smaller than the E1 rate.

APPENDIX B: MATHEMATICAL SUPPLEMENTS

1. Bessel function of large orders
for large arguments

In order to calculate the phase integral of a type as in
Eq. (18), we note the integral representation of a Bessel
function that holds for noninteger ν’s [9]:

JνðzÞ ¼
1

π

Z
π

0

dθ cosðνθ − z sin θÞ

−
sin νπ
π

Z
∞

0

dte−νt−z sinh t; ðB1Þ

which holds for ℜν > 0, ℜz > 0. The second integral is
limited from above: for real and positive ν, z by����

Z
∞

0

dte−νt−z sinh t
���� <

Z
∞

0

dte−ðνþzÞt ¼ 1

νþ z
; ðB2Þ

which means that this second contribution is a small
contribution in the large ν, z limit. We then work out
the other half of the integration range,

Z
2π

π
dθ cosðνθ − z sin θÞ ¼ ℜ

�Z
π

0

dθ0eiνðθ0−πÞþz sin θ0Þ
�

∼ℜe−iνπJνð−zÞ ¼ JνðzÞ: ðB3Þ

Thus, by neglecting the subleading terms,

JνðzÞ ¼
1

2π

Z
2π

0

dθ cosðνθ − z sin θÞ þO

�
1

νþ z

�
: ðB4Þ

The asymptotic behavior of the Bessel function,

Jνðν sec βÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

νπ tan β

s
cos

�
ν tan β − νβ −

π

4

�
; ðB5Þ

can be used to derive for 0 < a2 − b2 ≪ jbj → ∞

JbðaÞ ∼
1ffiffiffi
π

p ða2 − b2Þ−1=4: ðB6Þ

This limiting behavior is valid when a2 − b2 ≫ 1. If
a2 − b2 ¼ Oð1Þ, a function fð1=ða2 − b2ÞÞ which may
be expressed in power series expansions multiplies.
Since a2 − b2 ¼ OððρϵegÞ2Þ, the asymptotic form is usually
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FIG. 7. Energy spectrum shape of a single photon using x ¼
ω=ϵeg in two-photon emission for γ ¼ 100 in magenta, 300 in
red, 600 in blue, and 1000 in black. ϵpe=ϵeg ¼ 0.5 is assumed.
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excellent except at special points of photon energies and
emission angles.
In the following subsection we point out the relevance of

the Bessel function to the Floquet system governed by a
linear set of ordinary differential equations having a
periodic coefficient function.

2. Floquet system

We point out the relevance of the problem to the Floquet
system [10]. The function YðuÞ ¼ cosΦðuÞ along with
ZðuÞ ¼ sinΦðuÞ satisfies

d
du

�
Y

Z

�
¼ Φ0ðuÞ

�
0 −1
1 0

��
Y

Z

�
; ðB7Þ

Φ0ðuÞ ¼ b − a cosðu − θ0Þ: ðB8Þ

Unlike ΦðuÞ, its derivative Φ0ðuÞ here is periodic. The
general theorem [10] states that solutions ðY; ZÞ are
written by

cosðμtÞ or sinðμtÞ × PðtÞ;

Pðuþ TÞ ¼ PðuÞ
�
periodic function of periodT ¼ 2π

β
ρ

�
:

ðB9Þ

Eigenvalues λj ¼ iμj ≡ λ, j ¼ 1, 2 are determined by
solving differential equations in one period under the
boundary conditions ðYð0Þ; Zð0ÞÞ ¼ ð1; 0Þ; ð0; 1Þ. In terms
of solutions written in the matrix form ΨðtÞ the eigenvalue
equation is

det ðΨðTÞ − λÞ ¼ 0: ðB10Þ

It is found that for large values of b ∼ a a large time
integral may be obtained, but it depends on how close
these two values are. It is important to differentiate two
cases of b ≤ a and b > a in which stationary points of
Φ0 ¼ 0 do or do not exist. Some cases of b > a are
illustrated in Fig. 8. To understand deeper, we plotted
the phase function cosΦðuÞ and its integralR
u
0 dy cosΦðyÞ in Fig. 9, one case showing a steady
increase over one period of circulation and the other
case showing a failed increase. A nearly plateaulike
region of the phase itself at a relatively early phase of
circulation is a crucial condition leading to the stable
phase of the rate integral.
Using the terminology of periodic potentials that one

encounters in solid state physics, one would say that large
rate integrals occur when parameters a, b (necessarily in the
stability band due to bounded functions of sinusoidal
functions) are near the boundary to the instability band.
The situation may be phrased in a different way. One may
introduce another function, namely, the phase integral
itself,

WðuÞ ¼
Z

u

0

dy cosΦðyÞ: ðB11Þ
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FIG. 9. cosΦðuÞ and its integral for a combination of (b, a) Left panel: (20 × 0.5; 20), with cosΦðuÞ in dotted black and its integral in
solid black. Right panel: (20 × 0.5; 20).
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FIG. 8. Rates in various (b, a): (20 × 0.5; 20) in solid black,
(20, 20) in dashed red, (20 × 1.5; 20) in dotted-dashed blue, and
(20 × 2; 20) in dotted black.
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The three-function system (X, Y, W) now satisfies a closed
set of differential equations whose coefficient functions are
periodic. This time the new W may not be bounded; hence
this Floquet system may belong to the instability band for

particular regions of (a, b). It would be useful to explore
more of these features from the point of instability/stability
band structure and identify quantitatively the large rate
region.
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