
Deuterium target data for precision neutrino-nucleus cross sections

Aaron S. Meyer*

Enrico Fermi Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
and Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

Minerba Betancourt†

Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

Richard Gran‡

Department of Physics and Astronomy, University of Minnesota—Duluth, Duluth, Minnesota 55812, USA

Richard J. Hill§

TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3 Canada,
Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5 Canada, Enrico Fermi Institute

and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
(Received 20 March 2016; published 23 June 2016)

Amplitudes derived from scattering data on elementary targets are basic inputs to neutrino-nucleus cross
section predictions. A prominent example is the isovector axial nucleon form factor, FAðq2Þ, which
controls charged current signal processes at accelerator-based neutrino oscillation experiments. Previous
extractions of FA from neutrino-deuteron scattering data rely on a dipole shape assumption that introduces
an unquantified error. A new analysis of world data for neutrino-deuteron scattering is performed using a
model-independent, and systematically improvable, representation of FA. A complete error budget for
the nucleon isovector axial radius leads to r2A ¼ 0.46ð22Þ fm2, with a much larger uncertainty than
determined in the original analyses. The quasielastic neutrino-neutron cross section is determined as
σðνμn → μ−pÞjEν¼1 GeV ¼ 10.1ð0.9Þ × 10−39 cm2. The propagation of nucleon-level constraints and
uncertainties to nuclear cross sections is illustrated using MINERvA data and the GENIE event generator.
These techniques can be readily extended to other amplitudes and processes.
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I. INTRODUCTION

Current and next generation accelerator-based neutrino
experiments are poised to answer fundamental questions
about neutrinos [1–5]. Precise neutrino scattering cross
sections on target nuclei are critical to the success of these
experiments. These cross sections are computed using
nucleon-level amplitudes combined with nuclear models.
Determination of the requisite nuclear corrections presently
relies on data-driven modeling [6–9] employing experi-
mental constraints [10–17]. Ab initio nuclear computations
are beginning to provide additional insight [18–20].
Regardless of whether nuclear corrections are constrained
experimentally or derived from first principles, independent
knowledge of the elementary nucleon-level amplitudes is
essential. In this paper, we address the problem of model-
independent extraction of elementary amplitudes from
scattering data, and the propagation of rigorous uncertain-
ties through to nuclear observables.

The axial-vector nucleon form factor, FAðq2Þ, is a promi-
nent source of uncertainty in any neutrino cross section
program.While the techniques employed in thepresent paper
may be similarly applied to other elementary amplitudes,
such as vector form factors [21], we focus on the axial-vector
form factor, which is not probed directly in electron scatter-
ing measurements, and which has large uncertainty.
The axial form factor is constrained, with a varying

degree of model dependence, by neutron beta decay [22],
neutrino scattering on nuclear targets heavier than deuterium
[11,23–28], pion electroproduction [29] and muon capture
[30]. Existing data for the neutrino-deuteron scattering
process provide the most direct access to the shape of the
axial-vector nucleon form factor. The assumption of a neutron
at rest and barely bound in the laboratory frame permits
unambiguous energy reconstruction, eliminating flux uncer-
tainties. The abundant neutrino scattering data on heavier
targets involve degenerate uncertainties from neutrino flux,
and from large and model-dependent nuclear corrections,
complicating the extraction of nucleon-level amplitudes.
Antineutrino scattering on hydrogen would entirely elimi-
nate even the nuclear corrections required for deuterium, but
there are no high-statistics data for this process. Given the
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importance of deuterium data for the axial form factor, it is
imperative to quantify the constraints from existing data.
In this paper, we present the charged-current axial-vector

nucleon form factor and error budget determined from
neutrino-deuterium scattering data. In place of the dipole
assumption [cf. Eq. (9) below] used in previous analyses of
the form factor, we employ the model-independent z
expansion1 parametrization. The resulting uncertainty is
significantly larger than found in previous analyses
[29,54,55] of the deuterium constraint on the axial form
factor using multiple data sets. This larger uncertainty
results from removing the dipole assumption, and from
including systematic errors for experimental acceptance
corrections and for model-dependent deuteron corrections.
The new constraints may be readily implemented in nuclear
models and neutrino event generators.
The remainder of the paper is structured as follows. In

Sec. II we introduce the deuterium data sets and perform
fits to the dipole model for the axial form factor. This is
done in order to compare with original publications, and to
isolate the impact of form factor shape assumptions versus
other inputs or data selections. In Sec. III we review the
relevant z expansion formalism, and redo fits from Sec. II
replacing dipole with z expansion. Several features of these
fits indicate potentially underestimated systematic errors
in corrections that were applied to data in the original
publications. Section IV describes a range of systematics
tests. We consider several sources of systematic errors in
more detail in Sec. V, and redo fits in Sec. VI, where we
present final results for FAðq2Þ. In Sec. VII we illustrate the
propagation of errors to several derived observables,
including the isovector axial nucleon radius and total
neutrino-nucleon quasielastic cross sections. The incorpo-
ration of nucleon-level uncertainties in nuclear cross sec-
tions is illustrated with MINERvA data [56]. Section VIII
provides a summary and conclusion.

II. DEUTERIUM DATA AND DIPOLE FITS

The world data from deuterium bubble chamber experi-
ments consists of deuterium fills of the ANL 12-foot
deuterium bubble chamber experiment [57–59], the BNL
7-foot deuterium bubble chamber experiment [60], and the
FNAL 15-foot deuterium bubble chamber experiment [61].
We refer below to these experiments as ANL1982,
BNL1981, and FNAL1983, respectively.2

A. Fits to Q2 distributions

Extracting the axial form factor from data requires
information about all other aspects of the scattering
cross-section. The original publications used a variety of
different inputs for axial (gA) and magnetic (μp − μn)
couplings, vector and pseudoscalar form factors, nuclear
corrections, and muon mass corrections. Table I displays
the input choices made in the original publications for each
of the three considered data sets, as well as the updated
inputs used for the remainder of this paper.3

The vector form factors are constrained by invoking
isospin symmetry and constraints of electron-nucleon
scattering data. In place of the Olsson vector form factors
[63], we use the so-called BBA2005 parametrization that is
commonly employed in contemporary neutrino studies
[64]. Similar results were obtained using the BBA2003
[66] and BBBA2007 [67] parametrizations. Recent devel-
opments, connected with the so-called “proton radius
puzzle,” point to potential shortcomings in previous extrac-
tions of the vector form factors [35,68,69]. A systematic
study of the vector form factors similar to the z expansion
analysis of the axial form factor presented here is under-
taken in Refs. [21,35].
For the pseudoscalar form factor FP, we employ the

partially conserved axial current (PCAC) ansatz,

FPCAC
P ðq2Þ ¼ 2m2

NFAðq2Þ
m2

π − q2
: ð1Þ

The free-nucleon form factors FA and FP are functions
of the four momentum transfer q2 from the lepton to the
nucleon, and mN ¼ 0.9389 GeV, mπ ¼ 0.14 GeV are
the masses of the nucleon and the pion. The effects of
the pseudoscalar form factor are suppressed in the limit of
small lepton mass, and its uncertainties are negligible in
most applications involving accelerator neutrino beams,
including this analysis.
Nuclear corrections relating the free neutron cross

section, dσn, to the deuteron cross section, dσD, may be
parametrized as

dσD

dQ2
¼ RðQ2; EνÞ

dσn

dQ2
; ð2Þ

where dσD=dQ2 denotes the deuteron differential cross
section with respect to the intrinsically positiveQ2 ¼ −q2.4

The model of Ref. [65] was used in the original analyses,
with RðQ2; EνÞ ≈ RðQ2Þ independent of neutrino energy,

1Formalism for z expansion and nucleon form factors is
described in Refs. [31,32], and several applications are found
in Refs. [33–36]. Related formalism and applications may be
found in [37–53].

2An updated BNL data set was presented in Ref. [62] with a
factor ≈2 increase in number of events. However, we were unable
to extract a sufficiently preciseQ2 distribution of events from this
reference, since the data were presented on a logarithmic scale
(cf. Ref. [62], Fig. 5) . We thus consider only the events from the
BNL1981 data set.

3Form factor notations and conventions are as in Ref. [31].
4For definiteness in the deuteron case, we let Q2 in Eq. (2)

denote the leptonic momentum transfer. This definition is
consistent with the experimental reconstruction, which assumed
the kinematics for scattering from a free neutron in the presence
of a spectator proton carrying opposite momentum to the neutron.
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and RðQ2Þ → 1 above Q2 ≈ 0.2 GeV2. We retain this
model as default, but examine deviations from this simple
description below in Sec. IV, using the calculations
of Ref. [70].
The neutrino-neutron quasielastic cross section may be

written in a standard form

dσn

dQ2
∝

1

E2
ν

�
AðQ2Þ∓BðQ2Þs−u

m2
N
þCðQ2Þðs−uÞ2

m4
N

�
; ð3Þ

where s − u ¼ 4EνmN −Q2 −m2
μ is the difference of

Mandelstam variables, A, B and C are quadratic functions
of nucleon form factors [71], and the vector-axial interfer-
ence term B changes sign for the ν̄p scattering process. In
the BNL1981 and FNAL1983 data sets, the lepton mass
was neglected inside the functions AðQ2Þ, BðQ2Þ, and
CðQ2Þ of Eq. (3), but retained in other kinematic prefactors.
In our analysis, we retain the complete lepton mass
dependence.
The event distributions in Q2 have been obtained by

digitizing the relevant plots from the original publications.
Table I gives the Q2 range and bin size, the total number
of events,5 and the minimum Q2 retained in the original
analyses. In each case, events in a lowest Q2 bin were
omitted from fits, and only FNAL1983 reports these events.
We retain the same binning and minimum Q2 cut in our
default fits. These distributions are included as
Supplemental Material to the present paper [72].

B. Eν distributions and flux

An advantage of the νμd → μ−pp process in an
exquisite device like a bubble chamber is the accurate

reconstruction of the neutrino energy for each event.
Cross section parameters can be constrained from the Q2

distribution despite poorly controlled uncertainties in
ab initio neutrino flux estimates. This is especially
valuable for the low energy ANL1982 and BNL1981
data, whose neutrino energy spectrum significantly
influences the shape of the dN=dQ2 distribution through
the energy-dependent kinematic limit corresponding to a
backscattered lepton.
Unfortunately, event-level kinematics from the deu-

terium data sets are no longer available and unbinned
likelihood fits using the Eν and Q2 dependence of the cross
section cannot be repeated. However, the one-dimensional
distribution of events in reconstructed neutrino energy,
dN=dEν, may be extracted from the original publications,
and we use this information to reconstruct the flux self-
consistently. This subsection describes the procedure we
use, including some subtle points required for later inter-
pretation of the form factor fits.
The differential neutrino flux is determined by

dΦðEνÞ
dEν

∝
1

σnðEν; FAÞ
dNn

dEν
; ð4Þ

where σnðEν; FAÞ is the free-neutron quasielastic cross
section, and dNn=dEν is the energy distribution of free-
neutron events that would be obtained in the experimental
flux. The constant of proportionality in Eq. (4) is deter-
mined by the number of target deuterons and the time
duration of the experiment. Let us normalize the energy
distribution according to

Z
∞

0

dEν
dNn

dEν
¼ N

Z
∞

Q2
min

dQ2
dND

dQ2
: ð5Þ

Consistency inEq. (5) is obtainedwhenN ¼N̂ ðFA;Q2
min;RÞ,

where

TABLE I. Inputs from the original publications, BNL1981 [60], ANL1982 [59], and FNAL1983 [61], and our
default inputs. See text for details.

Input BNL1981 ANL1982 FNAL1983 This work Reference

gA ¼ FAð0Þ −1.23 −1.23 −1.23 −1.2723 [22]
μp − μn − 1 3.708 3.71 3.708 3.7058 [22]
FVi Olsson [63] Olsson [63] Olsson [63] BBA2005 [64]
FP PCAC PCAC PCAC PCAC (1)
Deuteron correction Singh [65] Singh [65] Singh [65] Singh [65]
lepton mass mμ ¼ mμ except ABC mμ ¼ mμ mμ ¼ mμ except ABC mμ ¼ mμ

Q2 range 0.06–3 GeV2 0.05–2.5 GeV2 0–3 GeV2

Nbins 49 49 30
Nevents 1236 1792 354
kinematic cut Q2 ≥ 0.06 GeV2 Q2 ≥ 0.05 GeV2 Q2 ≥ 0.10 GeV2

5For BNL1981 and ANL1982, the digitized number of events
in each Q2 bin was rounded to the nearest integer, resulting in the
same total numbers, 1236 and 1792 respectively, quoted in the
original publications. For FNAL1983, the digitization produced
near-integer results in each Q2 bin, but the total summed event
number, 354, differs from the value 362 quoted in the original
publication.
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N̂ ðFA;Q2
min; RÞ ¼

R∞
0 dQ2 dNn

dQ2R∞
Q2

min
dQ2 dND

dQ2

: ð6Þ

The right-hand side of Eq. (6)may be computed using a given
dNn=dEν, and depends on RðQ2; EνÞ and FAðq2Þ through
Eqs. (2) and (4). Using the flux from Eq. (4), we have finally,

�
dND

dQ2

�
theory

¼ N fit

Z
∞

0

dEν

RðQ2;EνÞ dσndQ2ðEν;FA;Q2Þ
σnðEν;FAÞ

dNn

dEν
;

ð7Þ

where a fit parameter, N fit, has been introduced for the
normalization.
Choosing N ¼ N̂ ðFA;Q2

min; RÞ in Eq. (5) would cor-
respond to N fit ¼ 1. In order to avoid the explicit compu-
tation of the integrals (6), we instead take N ¼ 1,
corresponding to the expectation N fit ¼ N ðFA;Q2

min; RÞ.
We allow the parameter N fit to float unconstrained in the
fits, with an independent parameter for each experiment.
We emphasize that dNn=dEν in Eq. (4) represents the

energy distribution of free-neutron events that would be
obtained in the experimental flux; this distribution is
obtained from the energy distribution of observed events
in deuterium by correcting for nuclear effects, for events
lost due to the Q2

min cut, and for other experimental effects.
Such corrections were applied to the energy distribution
presented in the BNL1981 data set, but not in the ANL1982
and FNAL1983 data sets. The effect of applying or not
applying these corrections is found to be small, as dis-
cussed below in Sec. VA.
For later comparison, we compute the ratios (6) with a

nominal dipole axial form factor [mA ¼ 1 GeV, cf. Eq. (9)
below], neglecting deuteron corrections (R ¼ 1), and at a
nominal Eν ¼ 1 GeV neutrino energy, for the Q2

min values
employed in the BNL1981, ANL1982, FNAL1983 data
sets6:

N̂ ðQ2
min ¼ 0.06 GeV2Þ ≈ 1.13;

N̂ ðQ2
min ¼ 0.05 GeV2Þ ≈ 1.11;

N̂ ðQ2
min ¼ 0.10 GeV2Þ ≈ 1.23: ð8Þ

We expect these numbers to be approximately reproduced
in N fit when the deviation from N̂ ¼ 1 in Eq. (6) is
dominated by the Q2

min cut.
Two further complications result in technical subtlety but

do not affect the fit results. First, the binned event rate

dN=dEν for ANL1982 is provided in a prior publication [73]
that used a subset of about half the events. A second
complication is the finite bin width of the dN=dEν distri-
butions, which would yield unphysical discontinuities when
displaying ANL and BNL dN=dQ2 spectra at best fit. This
effect is the result of convoluting a low energy flux with a
differential cross section that has an energy-dependent
kinematic limit.Weuse an interpolation algorithm toproduce
smoothed fluxes with 500 bins in energy over the original
range of data. Nearly identical fit results are obtained
regardless of whether the interpolation is a cubic spline,
linear, or whether the original binning is used, so this step is
primarily cosmetic. The smoothed and unsmoothed Eν
distributions are included as Supplemental Material to the
present paper [72].

C. Dipole fits

Our results for the axial form factor will differ from the
analyses in the original publications. These differences
arise from a number of sources: updated numerical inputs
in Table I; not using unbinned likelihood fits; and
differences in axial form factor shape assumptions. In
order to understand these differences, we begin by restrict-
ing attention to the dipole ansatz,

Fdipole
A ðq2Þ ¼ FAð0Þ

�
1 −

q2

m2
A

�−2
; ð9Þ

and compare to fits in the original publications.
Table II gives results for fits to the dipole ansatz (9) for

the axial form factor. The table shows “flux-independent”
results from the original experiments, which performed
unbinned likelihood fits to event-level data. Our results are
from a Poisson likelihood fit to the binned Q2 distribution
of events obtained with a neutrino flux given by smoothing
the binned reconstructed neutrino energy distribution
(divided by theoretical cross section), as described in
Sec. II B. Fits to the binned log-likelihood function are
found by minimizing the function

−2 log½LðFAÞ� ¼ 2
X
i

�
μiðFAÞ − ni þ ni log

�
ni

μiðFAÞ
��

;

ð10Þ

TABLE II. Dipole axial mass extracted in original publications,
our extraction using parameter inputs as in the original publica-
tions, and our extraction using updated constants and vector form
factors as in Table I. Errors are statistical only.

mdipole
A (ref) mdipole

A (old) mdipole
A (new)

BNL 1981 [60] 1.07(6) 1.07(5) 1.05(5)
ANL 1982 [59] 1.05(5) 1.05(5) 1.02(5)
FNAL 1983 [61] 1.05þ0.12

−0.16 1.20(11) 1.17(10)

6While Eν ¼ 1 GeV is close to the peak energy for the
BNL1981 and ANL1982 data sets, the FNAL1983 data set
involved higher energy. However, these ratios have mild energy
dependence above Eν ∼ 1 GeV, e.g. at Eν ¼ 10 GeV the result is
N̂ ðQ2

min ¼ 0.10 GeV2Þ ≈ 1.25.
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where ni is the number of events in the ith bin, and μi is the
theory prediction (7) for the bin. Errors correspond to
changes of 1.0 in the −2LL function.
Because we do not use an unbinned likelihood fit, we do

not expect precise agreement even when the original
choices of constants in Table I are used. Comparing the
first two columns of Table II, the size of the resulting
statistical uncertainties are approximately equal, and only
FNAL shows a discrepancy in central value. A similar
exercise was performed in Refs. [66,74,75], and similar
results were obtained. Having reproduced the original
analyses to the extent possible, we will proceed with the
updated constants as in the final column of Table I.

III. z EXPANSION ANALYSIS

The dipole assumption (9) on the axial form factor shape
represents an unquantified systematic error. We now
remove this assumption, enforcing only the known analytic
structure that the form factor inherits from QCD. We
investigate the constraints from deuterium data in this
more general framework. A similar analysis may be
performed using future lattice QCD calculations in place
of deuterium data.

A. z expansion formalism

The axial form factor obeys the dispersion relation,

FAðq2Þ ¼
1

π

Z
∞

tcut

dt0
ImFAðt0 þ i0Þ

t0 − q2
; ð11Þ

where tcut ¼ 9m2
π represents the leading three-pion thresh-

old for states that can be produced by the axial current. The
presence of singularities along the positive real axis implies
that a simple Taylor expansion of the form factor in the
variable q2 does not converge for jq2j ≥ 9m2

π ≈ 0.18 GeV2.
Consider the new variable obtained by mapping the domain
of analyticity onto the unit circle [31],

zðq2; tcut; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − q2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − q2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tcut − t0
p ; ð12Þ

where t0, with −∞ < t0 < tcut, is an arbitrary number that
may be chosen for convenience. In terms of the new
variable we may write a convergent expansion,

FAðq2Þ ¼
Xkmax

k¼0

akzðq2Þk; ð13Þ

where the expansion coefficients ak are dimensionless
numbers encoding nucleon structure information.
In any given experiment, the finite range of Q2 implies a

maximal range for jzj that is less than unity. We denote by
toptimal
0 ðQ2

maxÞ the choice which minimizes the maximum
size of jzj in the range −Q2

max ≤ q2 ≤ 0. Explicitly,

toptimal
0 ðQ2Þ ¼ tcut

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

max=tcut

q �
: ð14Þ

Table III displays jzjmax for several choices of Q
2
max and t0.

The choice of t0 can be optimized for various applica-
tions. We have in mind applications with data concentrated
below Q2 ¼ 1 GeV2, and therefore take as default choice,

t̄0 ¼ toptimal
0 ð1 GeV2Þ ≈ −0.28 GeV2; ð15Þ

minimizing the number of parameters that are necessary to
describe data in this region. Inspection of Table III shows
that the form factor expressed as FAðzÞ becomes approx-
imately linear. For example, taking jzjmax ¼ 0.23 implies
that quadratic, cubic, and quartic terms enter at the level of
∼5%, 1% and 0.3%.
The asymptotic scaling prediction from perturbative QCD

[76], FA ∼Q−4, implies the series of four sum rules [35]

X∞
k¼n

kðk − 1Þ � � � ðk − nþ 1Þak ¼ 0; n ¼ 0; 1; 2; 3: ð16Þ

We enforce the sum rules (16) on the coefficients, ensuring
that the form factor falls smoothly to zero at large Q2.
Together with the Q2 ¼ 0 constraint, this leaves Na ¼
kmax − 4 free parameters in Eq. (13). From Eq. (16), it can
be shown [35] that the coefficients behave as ak ∼ k−4 at
large k. We remark that the dipole ansatz (9) implies the
coefficient scaling law jakj ∼ k at large k, in conflict with
perturbative QCD.
In addition to the sum rules, an examination of explicit

spectral functions and scattering data [31] motivates the
bound of

jak=a0j ≤ 5: ð17Þ
As noted above, from Eq. (16), the coefficients behave as
ak ∼ k−4 at large k. We invoke a falloff of the coefficients at
higher order in k,

jak=a0j ≤ 25=k; k > 5: ð18Þ
The bounds are enforced with a Gaussian penalty on the
coefficients entering the fit. We investigate fits using a

TABLE III. Maximum value of jzj for different Q2 ranges and
choices of t0. t

optimal
0 is defined in Eq. (14).

Q2
max GeV2 t0 jzjmax

1.0 0 0.44
3.0 0 0.62
1.0 toptimal

0 ð1.0 GeV2Þ ¼ −0.28 GeV2 0.23

3.0 toptimal
0 ð1.0 GeV2Þ ¼ −0.28 GeV2 0.45

3.0 toptimal
0 ð3.0 GeV2Þ ¼ −0.57 GeV2 0.35
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range of kmax, other choices of t0, and alternatives to
Eqs. (17) and (18), which are briefly reported in Sec. IV.

B. z expansion basic fit results

Using the same data sets and constants as described in
Sec. II and summarized in Table I, we perform fits replacing
dipole axial form factor with z expansion as in Eq. (13). We
use the scheme choice (15), enforce the sum rule con-
straints (16), and use the default bounds on the coefficients
ak in Eqs. (17), (18). The results are summarized in
Table IV and displayed in Figs. 1 and 2. The coefficients
corresponding to the fits with Na ¼ 4 free parameters in
Table IV are

½a1;a2;a3;a4�

¼

8>><
>>:
½2.24ð10Þ;0.6ð1.0Þ;−5.4ð2.4Þ;2.2ð2.7Þ� ðBNLÞ
½2.25ð10Þ;0.2ð0.9Þ;−4.9ð2.3Þ;2.7ð2.7Þ� ðANLÞ
½2.02ð14Þ;−1.2ð1.5Þ;−0.7ð2.9Þ;0.1ð2.8Þ� ðFNALÞ

;

ð19Þ

where (symmetrized) errors correspond to a change of 1.0
in the −2LL function.
Table IV summarizes z expansion fits with different

numbers of free parameters. Focusing on the first order
coefficient,

½a1ðBNLÞ; a1ðANLÞ; a1ðFNALÞ�

¼

8>><
>>:

½2.23ð10Þ; 2.23ð10Þ; 2.02ð14Þ�; Na ¼ 3

½2.24ð10Þ; 2.25ð10Þ; 2.02ð14Þ�; Na ¼ 4

½2.22ð10Þ; 2.25ð10Þ; 2.02ð14Þ�; Na ¼ 5

: ð20Þ

As discussed after Eq. (15), z2, z3, z4, etc., terms in the z
expansion become increasingly irrelevant, corresponding to
jzjmax ≪ 1 in Table III. This is borne out by the data, which
determines a form factor with coefficients in Eq. (19) of
order 1.0 that mostly do not push the Gaussian bounds, and
a leading coefficient in Eq. (20) that is approximately the
same regardless of whether terms beyond order z3 are
included.
The axial “charge” radius is defined via the form factor

slope at q2 ¼ 0,

1

FAð0Þ
dFA

dq2

����
q2¼0

≡ 1

6
r2A: ð21Þ

For a general scheme choice t0 ≠ 0, this quantity depends
on all the coefficients in the z expansion. Table IV
illustrates that rA is poorly constrained without the restric-
tive dipole assumption. We will provide a final value for the
axial radius from deuterium data after discussion of
systematic errors in the next section.

The normalization factor N fit is also included in
Table IV. This parameter is allowed to float without bounds,
but returns values consistent with the approximation (8) to
the expectation (6).
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FIG. 1. Experimental data and best fit curves corresponding to
dipole and Na ¼ 4 z expansion in Table IV, for BNL1981 (top
pane), ANL1982 (middle pane) and FNAL1983 (bottom pane).
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An interesting feature of the fits displayed in Fig. 1 is that
whereas the best-fit dN=dQ2 curves for dipole and z
expansion are very similar in the considered Q2 range,
derived observables such as the radius in Table IV, and the

absolutely normalized cross section in Fig. 2, can be
markedly different. The presence of the Q2

min cut, and
the lack of an absolutely normalized flux, explains
this situation, which is most apparent for FNAL1983.
To illustrate, Fig. 3 shows the absolutely normalized
dσn=dQ2 computed using the central value dipole and
z-expansion axial form factors for FNAL1983 in Figs. 1
and 2. Omitting the lowest-Q2 data, and applying an
overall normalization factor obscures the difference
between these curves.
The normalization parameterN fit appearing in Eq. (7) is

not externally constrained in our shape fits. The uncertainty
after fitting yields ∼� 10% for BNL1981 and ANL1982
and ∼� 20% for FNAL1983, which is significantly larger
than the ∼3% to ∼5% uncertainty from Poisson statistics.
A simple Poisson constraint would not be adequate
considering uncertainties from acceptance and deuterium
corrections described later. A rateþ shape fit with a
correctly motivated uncertainty on N fit could in principle
produce a somewhat better constrained form factor and
cross section.

C. Residuals analysis

The best fits are still a relatively poor description of the
data, apparent in both Table IVand Fig. 1. This was briefly
discussed in the thesis [77] that accompanies the ANL1982
publication: the theoretical curve is too high at very lowQ2,
becoming too low above 0.2 GeV2, and too high again
around 0.7 GeV2. Similarly, the BNL1981 publication
discusses the possibility of residual scanning biases with
a kinematic dependence that mimics evidence for
second-class currents violating the symmetries of QCD
(cf. Ref. [60]). These observations motivate a careful
examination of systematic uncertainties assigned in
the fits.
The preference of the experiments for a common Q2-

dependent distortion can be illustrated by comparing the
residual discrepancy between the data and the best fit
curves from Fig. 1 in a single plot, shown in Fig. 4.7 The
distortion at lowest Q2 is clearly significant. The data also
seem to agree on potential distortions in the range
0.25 < Q2 < 3.0. However the null hypothesis, that the
data in this range were drawn from a flat distribution, yields
P-value of 0.12 and is not exceptional. In order to use a χ2

fit for this P-value and to improve the plot readability, the
upper bins in each data set were combined.
Form factors described by the z expansion, hence any

form factor consistent with QCD, cannot accommodate
such localized distortions of the Q2 spectrum (the dipole
ansatz similarly cannot accommodate such distortions).
The RðQ2Þ model for deuterium used by the original

[GeV]νE

-110 1 10

]2
)[

cm
ν

(Eσ

0

5

10

15

-3910×

=4 z expansionaBNL N

Dipole fit

[GeV]νE

-110 1 10

]2
)[

cm
ν

(Eσ

0

5

10

15

-3910×

=4 z expansionaANL N

Dipole fit

[GeV]νE

-110 1 10

]2
)[

cm
ν

(Eσ

0

5

10

15

-3910×

=4 z expansionaFNAL N

Dipole fit

FIG. 2. Best fit curves and errors propagated from deuterium to
free-neutron cross section, for BNL1981 (top pane), ANL1982
(middle pane) and FNAL1983 (bottom pane). Blue (horizontal
stripes) corresponds to dipole and red (vertical stripes) to Na ¼ 4
z expansion in Table IV.

7For definiteness, the best fit curve is from a simultaneous fit to
the BNL, ANL and FNAL data sets. A nearly identical plot is
obtained if different best fit curves for each data set are used.
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experiments asymptotically approaches unity and also does
not cause such distortions. It is interesting to consider
whether more complete deuteron correction models, such
as Ref. [70] (considered below in Fig. 6), could produce

such distortions.8 Finally, the impact of residual scanning
biases should also be accounted for. In the next sections we
turn to the question of assigning a systematic uncertainty to
account for such effects.

IV. SYSTEMATIC TESTS

Fits using different choices for constructing the z
expansion form factors should yield equivalent results
for physical observables: a dependence on such choices
would indicate an underestimated systematic uncertainty.
Similarly, fits using different ranges of Q2 should yield
equivalent results.

A. Form factor scheme dependence

A test with variations of the number of free parameters
was presented in Eq. (20) of the previous section. In order
to translate other test fits into parameters that can be
compared side-by-side, we will consider in all cases the
dimensionless shape parameter defined by

ā1 ≡ a1jt0¼t̄0 ≡ −4ðtcut − t̄0ÞF0
Aðt̄0Þ; ð22Þ

where t̄0 ≡ toptimal
0 ð1 GeV2Þ ¼ −0.28 GeV2, as in Eq. (15).

To motivate the choice (22), note that since z is a small
parameter, the form factor is approximately linear when
expressed as a function of z. The slope of this approx-
imately linear function is the essential shape parameter
determined by the data, and for convenience we define the
slope at q2 ¼ t̄0. [The axial radius is similarly defined as
the form factor slope at q2 ¼ 0 in Eq. (21).]

1. Magnitude of bound

Consider first the numerical value of the bound (17). For
definiteness, we impose a coefficient falloff, ak ∼ 1=k, as in
Eq. (18). Focusing on Na ¼ 4,

TABLE IV. Fits to z expansion using the same data and constants as the final column of Table II. “LL” denotes log likelihood. Errors
on z expansion determinations of r2A are determined from the error matrix, all others correspond to Δð−2LLÞ ¼ 1. Na ¼ kmax − 4

denotes the number of free expansion coefficients in the z expansion fit (13) with scheme choice (15), sum rule constraints (16), and
bounds (17), (18). The final column is the number of bins, including bins with zero data. For Na ¼ 4 the resulting fit parameters are
displayed in Eq. (19).

Dipole Na ¼ 3 Na ¼ 4 Na ¼ 5

Experiment −2LL N fit r2A [fm2] −2LL N fit r2A [fm2] −2LL N fit r2A [fm2] −2LL N fit r2A [fm2] Nbins

BNL1981 70.9 1.14þ0.08
−0.07 0.424(44) 76.1 1.14þ0.12

−0.11 0.36(21) 73.4 1.13þ0.13
−0.11 0.25(21) 71.0 1.13þ0.13

−0.12 0.18(21) 49
ANL1982 58.6 1.15þ0.06

−0.06 0.444(44) 62.3 1.15þ0.10
−0.09 0.38(19) 60.9 1.14þ0.10

−0.10 0.31(19) 59.9 1.14þ0.11
−0.10 0.27(19) 49

FNAL1983 38.2 1.17þ0.16
−0.13 0.337(61) 39.1 1.21þ0.24

−0.20 0.61(28) 39.1 1.21þ0.25
−0.21 0.60(28) 39.1 1.20þ0.26

−0.21 0.58(32) 29
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FIG. 3. Absolutely normalized dσn=dQ2 at Eν ¼ 10 GeV for
dipole (blue) and z-expansion axial form factor central values as
in the FNAL1983 results of Fig. 1 and Fig. 2.
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FIG. 4. Data divided by best fit prediction for the Q2 distri-
butions displayed in Fig. 1, for BNL (blue) ANL (red), and FNAL
(green). Calculated χ2=Nbins are 35.3=22, 41.2=25, and 10.7=14
for BNL, ANL, and FNAL respectively.

8Calculations of multinucleon effects for heavier nuclei like
carbon exhibit qualitatively similar characteristics throughout this
region of Q2 [78,79].
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½ā1ðBNLÞ; ā1ðANLÞ; ā1ðFNALÞ�

¼

8>>><
>>>:

½2.18ð8Þ; 2.17ð8Þ; 2.01ð12Þ�; j aka0 j ≤ min ð3; 15k Þ
½2.23ð10Þ; 2.25ð10Þ; 2.02ð14Þ�; j aka0 j ≤ min ð5; 25k Þ
½2.36ð15Þ; 2.41ð15Þ; 2.02ð17Þ�; j aka0 j ≤ min ð10; 50k Þ

:

ð23Þ
Results are consistent within errors. The very conservative
bound jak=a0j ≤ 10 would lead to an error that is ∼50%
larger than our default jak=a0j ≤ 5.

2. Choice of t0
Next, consider the choice of t0.

9 A different choice of t0
requires more parameters to achieve the same truncation
error, ∼jzjNaþ1. We compare the default case of t0 ¼
−0.28 GeV2 and Na ¼ 4 to the case of t0 ¼ 0 and
Na ¼ 7,10 finding

½ā1ðBNLÞ; ā1ðANLÞ; ā1ðFNALÞ�

¼
� ½2.24ð10Þ;2.25ð10Þ;2.02ð14Þ� ðNa ¼ 4; t0 ¼ t̄0Þ
½2.22ð9Þ;2.21ð10Þ;2.02ð14Þ� ðNa ¼ 7; t0 ¼ 0Þ ;

ð24Þ

where the errors are propagated using the covariance matrix
for the coefficients ak. Nearly identical results are obtained
for different choices of t0.

B. Subsets of the Q2 range

A nonstatistical scatter of data points about the best fit
curves is apparent in Fig. 1, and indicated by the poor fit
quality in Table IV. Removing subsets of the data at high or
low Q2 will help isolate sources of tension between data
and fit.
First, consider the removal of highQ2 data, fitting to bins

whose center is within the restricted range Q2 ≤ 1 GeV2.
The analog of Table IV for this case is given by Table V.
Figure 5 shows comparisons of best fit curves and data
points. The analog of Eq. (19) is

½a1;a2;a3;a4�jQ2≤1GeV2

¼

8>><
>>:
½1.99ð15Þ;0.5ð1.1Þ;−3.6ð2.6Þ;1.1ð2.7Þ� ðBNLÞ
½2.29ð14Þ;0.2ð0.9Þ;−5.2ð2.5Þ;2.9ð2.7Þ� ðANLÞ
½1.88ð25Þ;−0.9ð1.6Þ;−0.3ð2.9Þ;−0.3ð2.8Þ� ðFNALÞ

:

ð25Þ

The omission of low-Q2 data has a similarly large effect
on the fit parameters. Fitting to the range Q2 ≥ 0.2 GeV2,
the results are given in Table VI. The z expansion
coefficients are determined for Na ¼ 4 to be

½a1;a2;a3;a4�jQ2≥0.2GeV2

¼

8>><
>>:
½2.35ð10Þ;−2.0ð1.2Þ;−1.4ð2.8Þ;1.4ð2.7Þ� ðBNLÞ
½2.34ð10Þ;−3.6ð1.2Þ;1.6ð2.8Þ;0.9ð2.8Þ� ðANLÞ
½2.04ð16Þ;−1.3ð1.6Þ;−0.5ð3.0Þ;0.1ð2.8Þ� ðFNALÞ

:

ð26Þ
Comparing the results in Tables IV, V, and VI and in

Eqs. (19), (25), and (26), we see that the leading a1 and a2

TABLE V. Same as Table IV, but fitting only to data with Q2 ≤ 1 GeV2. For Na ¼ 4 the resulting fit parameters are displayed in
Eq. (25).

Dipole Na ¼ 3 Na ¼ 4 Na ¼ 5

Experiment −2LL N fit r2A [fm2] −2LL N fit r2A [fm2] −2LL N fit r2A [fm2] −2LL N fit r2A [fm2] Nbins

BNL1981 24.7 1.16þ0.08
−0.08 0.348(48) 27.2 1.17þ0.14

−0.13 0.32(22) 27.0 1.17þ0.14
−0.13 0.28(22) 26.6 1.16þ0.14

−0.13 0.24(22) 16
ANL1982 28.2 1.14þ0.07

−0.06 0.452(52) 31.7 1.15þ0.10
−0.09 0.38(19) 30.5 1.14þ0.10

−0.10 0.31(20) 29.2 1.13þ0.11
−0.10 0.24(20) 19

FNAL1983 8.3 1.16þ0.26
−0.18 0.33(12) 8.3 1.22þ0.29

−0.23 0.54(31) 8.2 1.23þ0.29
−0.24 0.56(29) 8.1 1.24þ0.30

−0.24 0.57(26) 9

TABLE VI. Same as Table IV, but fitting only to data with Q2 ≥ 0.2 GeV2. For Na ¼ 4 the resulting fit parameters are displayed in
Eq. (26).

Dipole Na ¼ 3 Na ¼ 4 Na ¼ 5

Experiment −2LL N fit r2A [fm2] −2LL N fit r2A [fm2] −2LL N fit r2A [fm2] −2LL N fit r2A [fm2] Nbins

BNL1981 60.7 1.25þ0.21
−0.14 0.61(13) 62.4 1.28þ0.20

−0.17 0.83(24) 61.5 1.26þ0.21
−0.18 0.74(25) 60.9 1.25þ0.23

−0.19 0.67(24) 47
ANL1982 43.2 1.40þ0.25

−0.38 1.45þ0.92
−0.49 45.8 1.32þ0.21

−0.18 1.04(24) 45.8 1.32þ0.23
−0.20 1.03(25) 45.8 1.32þ0.25

−0.21 1.05(24) 46
FNAL1983 38.2 1.16þ0.22

−0.16 0.33(7) 39.1 1.22þ0.31
−0.25 0.64(31) 39.1 1.22þ0.32

−0.25 0.63(30) 39.0 1.21þ0.34
−0.26 0.60(35) 28

9For t0 ¼ toptimal
0 ð1 GeV2Þ ¼ −0.28 GeV2, by design, the

shape parameter is identified with the linear coefficient of the
z expansion in Eq. (13). Since ā1 [Eq. (22)] is a physical
observable, it can be computed for any choice of t0 ≠ t̄0.

10Both cases have jzjNaþ1
max ≈ 0.02 in the range 0<Q2<3GeV2.
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parameters shift in some cases by about twice the statistical
uncertainty of the fits. This reflects how different parts of
theQ2 range contribute to tensions in the fit. The minimum
value of −2LL ∼ χ2 decreases in both cases, closer to a
range that would be considered an adequate description of
the data. The improvement when eliminating the low-Q2

region is especially striking considering it amounts to only
two or three bins of data in each data set.
One method to translate the tensions in the fit to an

uncertainty on the fit parameters is to consider what
additional error is necessary to obtain a reduced χ2 of
unity. We include an error for each data point proportional
to the number of events in the original dN=dQ2 distribu-
tion. This requires the use of a χ2 calculation instead of a
log-likelihood fit, which we achieve by limiting the test to
the sample with Q2 ≤ 1 GeV2. Adding this error in quad-
rature to the statistical error, we see that for BNL, an
additional 10% error is required, while ANL requires an
additional 7.5% error.

V. SYSTEMATIC ERRORS

The experimental uncertainties in the fits summarized in
Table IV correspond only to statistical errors on the number
of events in each bin. With a framework in place to quantify
theoretical form factor shape uncertainty, let us examine
several sources of systematic error, and their impact on the
extraction of FA.
Experimental systematic uncertainties come from the

construction of the neutrino flux, and from acceptance
corrections. A theoretical systematic error arises from
uncertain modeling of deuteron effects.

A. Flux

Our procedure includes a self-consistent determination
of the neutrino flux for fits to the Q2 distributions, as
described in Sec. II B. Systematic uncertainty estimates in
the experimenter’s ab initio flux do not apply. Instead we
check for sensitivity to fluctuations in the number of events
by varying one dN=dEν bin by its statistical error,
reextracting fit parameters, and then repeating for all bins.
Adding errors in quadrature, the result for the BNL data
set is

ā1 ¼ 2.24� 0.10statQ2 � 0.04statEν
ðBNL1981Þ: ð27Þ

Such an additional flux error is numerically subleading
compared to statistical error, and also to the systematic
error assigned below to account for deuteron and accep-
tance corrections. We neglect it in our final fits.
The consistency of the flux procedure could also be

impacted by distortions of the dN=dEν distribution byQ2
min

cuts or deuteron corrections. Recall that the energy dis-
tribution from BNL1981, but not from ANL1982 or
FNAL1983, was corrected for these effects. We have
checked that the resulting variations are even smaller than
the statistical fluctuations in Eq. (27), and are neglected.

B. Acceptance corrections

One source of uncertainty, especially in the limit of very
low Q2, is the acceptance corrections associated with
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FIG. 5. Same as Fig. 1, but with Q2 ≤ 1 GeV2. These fits
correspond to the Na ¼ 4 z expansion in Table V.
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human-eye scanning of the bubble chamber photographs.
For example, Fig. 1 of ANL 1982 [59] provides an estimate
of the scanning efficiency ranging from e ¼ 90� 7%

at 0.05 GeV2 < Q2 < 0.1 GeV2 to e ¼ 98� 1% for
Q2 > 0.15 GeV2. We include a possible correlated effi-
ciency correction by making the following replacement in
the efficiency-corrected number of events:

dN
eðQ2Þ →

dN
eðQ2Þ þ ηdeðQ2Þ ¼

dN
eðQ2Þ

�
1þ η

deðQ2Þ
eðQ2Þ

�−1
:

ð28Þ

Here η ¼ 0� 1 is a parameter introduced in the fit, and we
use a simple linear interpolation of the function in Ref. [59]
for the efficiency eðQ2Þ and efficiency error deðQ2Þ.
In the BNL data set, an efficiency effect with similar

magnitude is presented, but not directly in the Q2 variable.
For simplicity we take the ANL function to represent
possible effects also in the BNL and FNAL data sets, with
independent floating scale parameters η ¼ 0� 1 in
Eq. (28). The shape parameters and minimum −2LL values
are as follows, comparing results with and without the
acceptance correction,

BNL∶ ½ā1;−2LL� ¼
� ½1.99ð15Þ; 27.0� ðwithoutÞ
½2.04ð15Þ; 26.0� ðwithÞ ;

ANL∶½ā1;−2LL� ¼
� ½2.29ð14Þ; 30.5� ðwithoutÞ
½2.38ð14Þ; 26.3� ðwithÞ ;

FNAL∶½ā1;−2LL� ¼
� ½1.88ð25Þ; 8.2� ðwithoutÞ
½1.88ð25Þ; 8.2� ðwithÞ : ð29Þ

The parameter η takes on values of −1.9, −1.0, and þ0.01
for data from ANL1982, BNL1981, and FNAL1983
respectively; the negative values indicate a pull to decrease
the predicted cross section to match the data. In each case
there is only modest improvement in the fit quality, and
small impact on the form factor shape. Acceptance cor-
rections within the quoted range have only minor impact.

C. Deuteron corrections

The analysis to this point, like the original analyses, used
the deuteron correction model RðQ2Þ of Singh [65]. This
model yields a suppression of the cross section for
Q2 < 0.16 GeV2.11 An example of a modern calculation
with extended range in energy and Q2 is given by Shen
et al. in Ref. [70].12 The Shen et al. model is overlaid with
the original Singh model as well as the free neutron model
in Fig. 6. The Shen et al. model deviates substantially from

the free-neutron result at the ∼20% level over a broad Q2

range. These models do not constitute an estimate of the
uncertainty on deuteron corrections, but suggest an avenue
for future work even if there are no future measurements on
deuterium.
Assuming an energy independent, but Q2 dependent,

deuteron correction, the change in the fit results can be
compared. For illustration, we employ the results of Ref. [70]
at Eν¼1GeV, and limit attention to Q2≤1GeV2, i.e., the
configuration of Table Vand Eq. (25). Shape parameter and
minimum −2LL values are

BNL∶½ā1;−2LL� ¼
� ½1.99ð15Þ; 27.0� ðSinghÞ
½2.16ð14Þ; 25.1� ðShen et al:Þ ;

ANL∶½ā1;−2LL� ¼
� ½2.29ð14Þ; 30.5� ðSinghÞ
½2.46ð13Þ; 29.2� ðShen et al:Þ ;

FNAL∶½ā1;−2LL� ¼
� ½1.88ð25Þ; 8.2� ðSinghÞ
½2.00ð25Þ; 9.1� ðShen et al:Þ :

ð30Þ

The extracted form factor shifts tomimic the difference in the
curves in Fig. 6, and there is slight improvement in fit quality
for two of the three data sets.

D. Final systematic error budget

The most important systematic uncertainties are the two
that significantly modify the Q2 distribution: acceptance
corrections and the deuteron correction. In our final
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FIG. 6. Differential scattering cross sections for neutrino-
deuteron scattering at 1 GeV neutrino energy, employing differ-
ent nuclear models. The solid (red) curve is the free-neutron
result. The dashed (blue) curve is obtained from the free-neutron
result using the model from Ref. [65], as in the original deuterium
analyses. The top dot-dashed (black) curve is extracted at
Eν ¼ 1 GeV from Ref. [70]. The charged lepton mass is
neglected in this plot.

11A follow-up analysis [80] considers effects of meson
exchange currents and alternate deuteron wave functions, with
a total result very similar to Ref. [65].

12See also Ref. [81].
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analysis, we modify the original fits displayed in Table V.
First, we allow a correlated acceptance correction as in
Eq. (28). Second, we include a 10% error added in
quadrature to statistical error in each Q2 bin to account
for residual deuteron or other systematic corrections, as
described at the end of Sec. IV B. With these corrections in
place, we perform a χ2 fit to all data up to Q2 ¼ 1 GeV2.
The neglect of data above Q2 ¼ 1 GeV2 has only minor
impact on the extraction of FAðq2Þ, and allows a simple
treatment of these combined uncertainties with full covari-
ance using a χ2 fit.
As an alternative, we also provide a log-likelihood fit to

the data up to Q2 ¼ 3 GeV2, but without inflated errors to
account for deuterium and other residual systematics. This
has the benefit of including data over the entire kinematic
range, but omits sources of systematic error that would
need to be treated separately.

VI. AXIAL FORM FACTOR EXTRACTION

The best axial form factor is extracted from a joint fit to
the three data sets. We choose Na ¼ 4 free parameters with
t0 ¼ toptimal

0 ð1 GeV2Þ and data with Q2 ≤ 1 GeV2. As
discussed above, this corresponds to a kmax ¼ 8 z expan-
sion, where five linear combinations of coefficients are
fixed by the Q2 ¼ 0 constraint and by the four sum rules
(16). The acceptance correction free parameter is indepen-
dent for each experiment in the joint fit.
Our knowledge of the axial form factor resulting from

deuterium scattering data is summarized by constraints on
the coefficients ak. Central values and 1σ errors determined
from Δχ2 ¼ 1 are13

½a1; a2; a3; a4� ¼ ½2.30ð13Þ;−0.6ð1.0Þ;−3.8ð2.5Þ;2.3ð2.7Þ�:
ð31Þ

The diagonal entries of the error (covariance) matrix,
computed from the inverse of the Hessian matrix for
χ2ðfakgÞ, are

Ediag ¼ ½0.0154; 1.08; 6.54; 7.40�: ð32Þ

Note that ðEdiagÞi ≈ ðδaiÞ2, reflecting approximately
Gaussian behavior. The four-dimensional correlation
matrix is

Cij ¼

0
BBB@

1 0.350 −0.678 0.611

0.350 1 −0.898 0.367

−0.678 −0.898 1 −0.685
0.611 0.367 −0.685 1

1
CCCA ð33Þ

and as usual the error matrix is given by Eij ¼ δaiδajCij.
This description can be systematically improved when and
if further data or externally constrained deuterium models
become available. The form factor is plotted versus Q2 and
versus z in Fig. 7, and compared with a previous world
average dipole form factor from Ref. [55].
We also provide an alternate log-likelihood determina-

tion of the axial form factor to the range Q2 < 3.0 GeV2,
but without deuteron systematic corrections. Central values
and 1σ errors determined from Δð−2LLÞ ¼ 1 are

½a1; a2; a3; a4� ¼ ½2.28ð8Þ; 0.25ð95Þ;−5.2ð2.3Þ; 2.6ð2.7Þ�:
ð34Þ
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FIG. 7. Final form factor from Eqs. (31), (32) and (33). Also
shown is the dipole axial form factor with axial mass mA ¼
1.014ð14Þ GeV [55].

13The complete specification for the form factor involves the
normalization gA ¼ −1.2723 from Table I; the pion mass mπ ¼
0.14 GeV employed in the specification of tcut ¼ 9m2

π in
Eq. (12); and the choice t0 ¼ −0.28 GeV2. The remaining
coefficients, a0, a5, a6, a7 and a8, are determined by FAð0Þ ¼
gA, and by the sum rule constraints (16); for ease of comparison
we list the complete list of central values here: ½a0;…;a8�¼½−0.759;2.30;−0.6;−3.8;2.3;2.16;−0.896;−1.58;0.823�.
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The diagonal entries of the error matrix are

Ediag ¼ ½0.00635; 0.781; 4.49; 6.87�; ð35Þ

and the four-dimensional correlation matrix is

Cij ¼

0
BBB@

1 0.321 −0.677 0.761

0.321 1 −0.889 0.313

−0.677 −0.889 1 −0.689
0.761 0.313 −0.689 1

1
CCCA: ð36Þ

VII. APPLICATIONS

Having presented the axial form factor with errors and
correlations amongst the coefficients, we may systemati-
cally compute derived observables that depend on this
function. We consider several applications of our results.

A. Axial radius

We begin with the axial radius, defined in Eq. (21).
While the radius by itself is not the only quantity of interest
to neutrino scattering observables, it is only through the
q2 → 0 limit that a robust comparison can be made to other
processes such as pion electroproduction.
The form factor coefficients and error matrix from the χ2

fit in Sec. VI determine the radius as

r2A ¼ 0.46ð22Þ fm2: ð37Þ

The constraint is much looser than would be obtained by
restricting to the dipole model, cf. Table IV.14 For com-
parison, let us consider the constraints from individual
experiments. Table VII gives results for Na ¼ 3, 4, 5 free
parameters, with errors determined from the error matrix in
Eqs. (32) and (33). The results from individual experiments
are consistent with the joint fit. Note that the joint fit is not
simply the average of the individual fits. This situation
arises from a slight tension between data and Gaussian
coefficient constraints (17) when comparing a single data
set to the statistically more powerful combined data.

B. Neutrino-nucleon quasielastic cross sections

Current and future neutrino oscillation experiments will
precisely measure neutrino mixing parameters, determine
the neutrino mass hierarchy, and search for possible CP
violation and other new phenomena. This program relies on
accurate predictions, with quantifiable uncertainties, for
neutrino interaction cross sections. As the simplest exam-
ples, consider the charged-current quasielastic cross section
σðEνÞ for neutrino (antineutrino) scattering on an isolated
neutron (proton).

The best fit cross section and uncertainty are shown in
Fig. 8, and compared to the prediction of dipole FA with
axial mass mA ¼ 1.014ð14Þ [55]. At representative ener-
gies, the cross sections and uncertainties shown in Fig. 8 are

TABLE VII. Axial radius extracted using best values from
Table I, and default priors as discussed in the text. Note that the
joint fit is not an average, but a simultaneous fit to all of the data
sets.

r2A [fm2] r2A [fm2] r2A [fm2]
Data set (Na ¼ 3) (Na ¼ 4) (Na ¼ 5)

BNL 1981 0.56(23) 0.52(25) 0.48(26)
ANL 1982 0.69(21) 0.63(23) 0.57(24)
FNAL 1983 0.63(34) 0.64(35) 0.64(35)
Joint Fit 0.54(20) 0.46(22) 0.39(23)
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FIG. 8. Free nucleon CCQE cross section computed from
Eqs. (31), (32) and (33), for neutrino-neutron (top) and anti-
neutrino-proton (bottom) scattering. Also shown are results
using dipole axial form factor with axial mass
mA ¼ 1.014ð14Þ GeV [55].

14Extractions of the radius from electroproduction data are also
strongly influenced by the dipole assumption [31].
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σνn→μpðEν ¼ 1 GeVÞ ¼ 10.1ð0.9Þ × 10−39 cm2;

σνn→μpðEν ¼ 3 GeVÞ ¼ 9.6ð0.9Þ × 10−39 cm2; ð38Þ

for neutrinos and

σν̄p→μnðEν ¼ 1 GeVÞ ¼ 3.83ð23Þ × 10−39 cm2;

σν̄p→μnðEν ¼ 3 GeVÞ ¼ 6.47ð47Þ × 10−39 cm2; ð39Þ

for antineutrinos.

C. Neutrino nucleus cross sections

Connecting nucleon-level information to experimentally
observed neutrino-nucleus scattering cross sections
requires data-driven modeling of nuclear effects. Our
description of the axial form factor and uncertainty in
Eqs. (31), (32), and (33) can be readily implemented in
neutrino event generators that interface with nuclear
models.15

A multitude of studies and comparisons are possible.
As illustration, consider MINERvA quasielastic data on
carbon [56]. Figure 9 shows a comparison of the Q2

distribution of measured events with the predictions from
our FAðq2Þ, using a relativistic Fermi gas nuclear model in
the default configuration of the GENIE v2.8 neutrino event
generator [6]. For comparison, we display the result
obtained using a dipole FA with axial mass central value
and error as quoted in the world average of Ref. [55]. The
central curves differ in their kinematic dependence, and the
dipole result severely underestimates the uncertainty propa-
gated from deuterium data.
The z expansion implementation within GENIE includes

a complete description of parameter errors and correlations.
This will provide a systematic approach for testing different
nuclear models and fitting nuclear model parameters, and
for propagating uncertainties in nucleon-level amplitudes
through to oscillation observables.

D. Discussion

The dipole ansatz has been commonly used to para-
metrize the axial form factor in neutrino cross section
predictions. The axial mass parameter in this ansatz often
appears with either a very small uncertainty, e.g. mA ¼
1.014ð14Þ GeV [55], or a very large uncertainty, e.g. mA ¼
1.21ð45Þ GeV [14].
In the first case, the small error estimate results from the

restrictive dipole ansatz, and is likely an underestimate of
the actual uncertainty: as a point of comparison, the ≲1.5%
axial radius error is comparable to or smaller than the

uncertainty on the proton charge radius [35,69]. Recall that
the charge radius is defined for the vector charge form
factor analogously to the axial radius for the axial form
factor. In contrast to the axial radius from neutrino-deuteron
scattering, the charge radius from electron-proton scattering
involves much higher statistics, amonoenergetic beam, and
a simpler, proton, target.
In the second case, the large uncertainty on mA is

typically included to account for tensions in external inputs
from other experiments [14], and/or poorly constrained
nuclear effects. Neither of these approaches is suited to the
kinds of analyses that can be undertaken with modern cross
section data such as the MINERvA example considered in
Fig. 9. Underestimating nucleon-level uncertainties will
bias conclusions about neutrino parameters or nuclear
models. Inflating errors on mA within a dipole ansatz fails
to capture the correct kinematic dependence of either
nucleon-level uncertainties, or of nuclear corrections.16

VIII. SUMMARY AND CONCLUSION

The constraints of elementary target data are critical to
precision neutrino-nucleus cross sections underlying the
accelerator neutrino program. Oscillation experiments rely
on event rate predictions using nucleon-level amplitudes
corrected for nuclear effects. Cross section experiments on
nuclear targets can measure these nuclear effects but a
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MINERvA Data

FIG. 9. Cross section for charged-current quasielastic events
from the MINERvA experiment [56] as a function of recon-
structed Q2, compared with prediction using relativistic Fermi
gas (RFG) nuclear model with z expansion axial form factor
extracted from deuterium data. MINERvA data uses an updated
flux prediction from [82]. Also shown are results using the same
nuclear model but dipole form factor with axial mass mA ¼
1.014ð14Þ GeV [55].

15The z expansion will be available in GENIE production
release v2.12.0. The code is currently available in the GENIE
trunk prior to its official release. The module provides full
generality of the z expansion, and supports reweighting and
error analysis with correlated parameters.

16Nondipole parametrizations have been considered in
Refs. [67,83]. Similar remarks apply to these examples.
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complete accounting of uncertainty in nucleon-level ampli-
tudes is critical for disentangling nucleon-level, nuclear-
level, and flux uncertainties, and for determining final
sensitivity to fundamental neutrino parameters.
The axial form factor is a prominent source of nucleon-

level uncertainty. We have analyzed the world data set for
quasielastic neutrino-deuteron scattering using a model-
independent description of the axial form factor. Our final
results are presented with central values (31), errors (32),
and correlations (33). Any observable depending on the
axial form factor may be computed from these results, with
a complete error budget.
The axial radius, governing the shape of the axial form

factor, is presented in Eq. (37). It has a significantly larger
uncertainty than previously estimated based on the unjus-
tified dipole ansatz. Benchmark total cross sections on
nucleon targets are presented in Fig. 8 and Eqs. (38)
and (39). The incorporation of nuclear effects with the
RFG model is illustrated in Fig. 9.
The form factor and uncertainty budget presented here

are important new inputs to the neutrino cross section
effort. It is interesting to investigate potential impacts and
interplay with a variety of other processes such as neu-
trinoless double beta decay matrix elements [84,85] and the
muon capture rate in muonic hydrogen [30]. The method-
ology presented can be revised or extended if new

information becomes available. Future hydrogen or deu-
terium data would be trivial to include. Updated calcu-
lations for neutrino-deuteron scattering, especially if
accompanied by an uncertainty, can be readily incorporated
on top of this result. Lattice QCD holds promise to
determine the axial form factor over much of the relevant
Q2 range, in a manner that is free from nuclear corrections
[86–91].
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