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Neutrinoless double-beta decay is a beyond the Standard Model process that would indicate that
neutrinos are Majorana fermions, and the lepton number is not conserved. It could be interesting to use the
neutrinoless double-beta decay observations to distinguish between several beyond Standard Model
mechanisms that could contribute to this process. Accurate nuclear structure calculations of the nuclear
matrix elements necessary to analyze the decay rates could be helpful to narrow down the list of
contributing mechanisms. We investigate the information one can get from the angular and energy
distribution of the emitted electrons and from the half-lives of several isotopes, assuming that the right-
handed currents exist. For the analysis of these distributions, we calculate the necessary nuclear matrix
elements using shell model techniques, and we explicitly consider interference terms.
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I. INTRODUCTION

Neutrinoless double-beta decay, if observed, would
signal physics beyond the Standard Model (SM) that could
be discovered at energies significantly lower than those at
which the relevant degrees of freedom could be excited.
The black-box theorems [1–4] would indicate that the
neutrinos are Majorana fermions, and the lepton number is
violated in this process by two units.
However, it could be challenging to further use the

neutrinoless double-beta decay observations to distinguish
between many beyond Standard Model mechanisms that
could contribute to this process [5,6]. Accurate nuclear
structure calculations of the nuclear matrix elements
(NME) necessary to analyze the decay rates could be
helpful to narrow down the list of contributing mechanisms
and to better identify the more exotic properties of the
neutrinos, such as the existence of the heavy sterile partners
that could interact through right-handed currents [7–9]. The
NME for the standard mass mechanism were thoroughly
investigated using several nuclear structure models.
Figure 13 of Ref. [10] shows some of these NME for
isotopes of immediate experimental relevance. Here, we
describe the status of the shell model calculations of these
NME [6,10–18] and their relevance for discriminating
possible competing mechanisms that may contribute to
the neutrinoless double-beta decay process.
One possible alternative/competing mechanism consid-

ers the contribution from the exchange of the heavy, mostly
sterile, neutrinos [7–9]. The exchange of left-handed heavy
neutrinos is shown to be negligible in most cases [19,20].
The exchange of the right-handed heavy neutrinos is
predicted by left-right symmetric models [7,8,21–23],

which are presently under active investigation at LHC
[9,24]. In either case, the same heavy neutrino-exchange
NME are necessary for the analysis of the data. For
example, considering only the competition between the
light left-handed neutrino-exchange mechanism and the
heavy right-handed neutrino-exchange mechanism, one
could identify the dominant effect using half-lives of
several isotopes, such as 76Ge and 136Xe [25]. Some
of these heavy neutrino-exchange NME for isotopes of
immediate experimental relevance are shown in Fig. 14 of
Ref. [10]. The range of these matrix elements is quite large
due to their sensibility to the short-range correlation
effects that were not treated consistently. One important
improvement of these calculations would be obtaining an
effective transition operator that takes into account con-
sistently the short-range correlations effects and the effects
of the missing single particle orbits from the model
space [26].
Some other low-energy effects of the left-right symmet-

ric models, such as those due to the so called λ and η
mechanisms [8,27], could be identified experimentally if
one could measure the angular and the energy distribution
of the emitted electrons [28], but the analysis requires
knowledge of additional NME that one can calculate.
Finally, some more exotic possibilities [5,29] leading to
one- and two-pion exchange NME [30] were also calcu-
lated in the past within the interacting shell model approach
[6,15], and quasiparticle random phase approximation
(QRPA) (see, e.g., Ref. [5] and references therein). A more
general approach that includes a complete set of dimension
six and dimension nine operators to the SM Lagrangian, as
well as R-parity violating SUSY contributions, Kaluza-
Klein modes in higher dimensions [31,32], violation of
Lorentz invariance, and equivalence principle [33–35], is
given in Refs. [36,37]. Information from double-beta decay
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can help constrain these contributions, but additional
information from the colliders is needed for a full analysis.
In this paper, we consider the possibility of disentan-

gling the contributions of the right-handed currents to the
neutrinoless double-beta decay process. Our analysis
mostly focuses on the information one can get from
the two-electron energy and angular distributions, which
could be used to distinguish contributions coming from
the λ and η mechanisms from those of the usual light
neutrino-exchange mechanism. The analysis is done for
82Se, which was chosen as a baseline isotope by the
SuperNEMO experiment [28,38]. During the preparation
of this manuscript, we also found a more general analysis
of the terms contributing to the angular and energy
distributions for most of the double-beta decay isotopes
based on improved phase space factors and QRPA NME
[39]. Efforts of separating these effects are not new (see,
e.g., Refs. [40–44] among others). Our analysis is
however more detailed and more specific to the decay
of the 82Se isotope. It considers the competitions between
the mass mechanisms and the heavy right-handed neu-
trino-exchange mechanism if the contributions from λ and
η mechanisms are ruled out by the two-electron angular
and energy distributions.
The paper is organized as follows: Section II presents

the general formalism used to describe the neutrinoless
double-beta decay under the assumption that the right-
handed currents would contribute. Section III describes
the associated two-electron angular and energy distribu-
tions. Section IV analyzes the two-electron angular and
energy distributions for different scenarios that consider
different relative magnitudes of the λ and η mechanism
amplitudes (please notice the changes of notation).
Section V considers the possibility of disentangling the
mass mechanisms from the heavy right-handed neutrino-
exchange mechanism if the λ and η contributions could
be ruled out by the two-electron energy and angular
distributions. Section VI is devoted to conclusions, and
Appendixes A, B, and C present detailed formulas used
in the formalism.

II. 0νββ DECAY FORMALISM

If right-handed currents exist, there are several possible
contributions to the neutrinoless double-beta decay rate
[27,40]. Usually, only the light left-handed neutrino-
exchange mechanism (a.k.a. the mass mechanism) is taken
into consideration, but other mechanisms could play a
significant role [5]. One popular model that considers the
right-handed currents contributions is the left-right sym-
metric model [22,23], which assumes the existence of
heavy particles that are not part of the Standard Model (see
also Ref. [8] for a review specific to double-beta decay).
In the framework of the left-right symmetric model, one

can write the electron neutrino fields (see Appendix A
where we use the notations of Ref. [8]) as

ν0eL ¼
Xlight
k

UekνkL þ
Xheavy
k

SekNc
kR;

ν0eR ¼
Xlight
k

T�
ekν

c
iL þ

Xheavy
k

V�
ekNkR; ð1Þ

where ν0 represent flavor states, ν and N represent mass
eigenstates, U and V mixing matrices are almost unitary,
while S and T mixing matrices are small. The ν0eL electron
neutrino is active for the V − A weak interaction and sterile
for the V þ A interaction, with the opposite being true for
ν0eR. Then, the neutrinoless half-life expression is given by

½T0ν
1=2�−1 ¼ G0ν

01g
4
A∣M0νην þM0NðηLNR

þ ηRNR
Þ

þ ηλXλ þ ηηXη þ…j2; ð2Þ

where ην, ηLNR
, ηRNR

, ηλ, and ηη are neutrino physics
parameters defined in Ref. [8]. See Appendix A for the
definition of the neutrino physics parameters. One should
mention that our ηλ and ηη parameters correspond to λ and η
of Ref. [28]. Above, M0ν and M0N are the light and heavy
neutrino-exchange nuclear matrix elements [5,6,13] (see
their explicit decomposition in Appendix B), and Xλ and Xη

represent combinations of NME and phase space factors
that are analyzed below. Here, G0ν

01 is a phase space factor
[45] that can be calculated with relatively good precision in
most cases [46,47], and gA ¼ 1.27 (see also Appendix C).
The “� � �” sign stands for other possible contributions, such
as those of R-parity violating SUSY particle exchange
[5,6], Kaluza-Klein modes [6,31,32], violation of Lorentz
invariance, equivalence principle [33–35], etc., which are
neglected here.
The ηLNR

term also exists in the seesaw type I mecha-
nisms, but its contribution is negligible if the heavy mass
eigenstates are larger than 1 GeV [20]. Assuming a seesaw
type I dominance [48], we neglect it here. If the ηλ and ηη
contributions could be ruled out by the two-electron energy
and angular distributions, the remaining ην and ηRNR

terms
have a very small interference contribution (the interference
term is at most 8% of the two terms in the parenthesis of
Eq. (3) [25,49]), and the half-life becomes

½T0ν
1=2�−1 ¼ G0ν

01g
4
AðjM0νj2jηνj2 þ jM0N j2jηRNR

j2Þ: ð3Þ

Then, the relative contribution of the ην and ηRNR
can be

gauged out if one measures the half-life of at least two
isotopes [5,25], provided that the corresponding matrix
elementsM0ν andM0N are known with good precision (see
Sec. V). These matrix elements were calculated using
several methods including the interacting shell model
(ISM) [6,10,11,13–15,20] (see Ref. [10] for a review),
quasiparticle random phase approximation (QRPA) [5,50],
and interacting boson model (IBM) [51]. In general, the
ISM results for M0ν are quite close one to another but
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smaller than the QRPA and IBM results; the ISM and IBM
results for M0N are close, while they are both smaller than
the QRPA results. An explanation of this behavior was
recently provided [52], which suggests a path for improv-
ing these NME. We believe that nuclear shell model matrix
elements are the most reliable because they take into
consideration all correlations around the Fermi surface,
respect all symmetries, and take into account consistently
the effects of the missing single particle space via many-
body perturbation theory (shown to be small, about 20%,
for 82Se [26]). Because of that, we use no quenching for the
bare 0νββ operator in our calculations. This conclusion is
different from that for the simple Gamow-Teller operator
used in single beta and 2νββ decays for which a quenching
factor of about 0.7 is necessary [52].
In what follows, we provide an analysis of the two-

electron relative energy and angular distributions using
shell model NME. This analysis could be used to analyze
data that may be provided by the SuperNEMO experiment
to identify the relative contributions of ηλ and ηη terms in
Eq. (2). A similar analysis using QRPA NME was given in
Ref. [28]. During the preparation of this manuscript, we
also found a more general analysis of the terms contributing
to the angular and energy distributions, for most of the
double-beta decay isotopes, based on improved phase
space factors and QRPA NME [39]. However, our analysis
is more detailed and more specific to the decay of the 82Se
isotope. The starting point is provided by the classic paper
of Doi, Kotani, and Tagasuki [27], which describes the
neutrinoless double-beta decay process using a low-energy
Hamiltonian that includes the effects of the right-handed
currents. The ηλ and ηη terms in Eq. (2) are related to the λ
and η terms in Ref. [27]. With some simplifying notations,
the half-life expression [27] (here, we omit the contribution
from the ηLNR

term, which has the same energy and angular
distribution as the ην term) is given by

½T0ν
1=2�−1 ¼ jM0ν

GT j2fCν2 þ Cνλ cosϕ1 þ Cνη cosϕ2

þ Cλ2 þ Cη2 þ Cλη cosðϕ1 − ϕ2Þg; ð4Þ

where ϕ1 and ϕ2 are the relative CP-violating phases (A7),
and M0ν

GT is the Gamow-Teller contribution of the light
neutrino-exchange NME. Different processes give rise to
several contributions: Cν2 are from the left-handed leptonic
and currents, Cλ2 from the right-handed leptonic and right-
handed hadronic currents, and Cη2 from the right-handed
leptonic and left-handed hadronic currents. Interference
between these terms is represented by the the contributions
of Cνλ, Cνη, and Cλη. The precise definitions are

Cν2 ¼ C1hνi2; Cνλ ¼ C2hνihλi; Cνη ¼ C3hηihνi;
Cλ2 ¼ C4hλi2; Cη2 ¼ C5hηi2; Cλη ¼ C6hηihλi;

ð5Þ

where C1−6 are combinations of nuclear matrix elements
and phase-space factors (PSF). Their expressions can be
found in Appendix B, Eqs. (B1). Here, M0ν

GT and the other
nuclear matrix elements that appear in the expressions of
the C factors are presented in Eq. (B4). In the context of the
left-right symmetric model, we associate the neutrino
physics parameters hνi, hλi, and hηi with the corresponding
ηi parameters defined in Appendix A,

hνi ¼ jηνj; ð6aÞ

hλi ¼ jηλj; ð6bÞ

hηi ¼ jηηj; ð6cÞ

but we leave them in this generic form for the case that
other mechanisms could contribute. For example, any
contribution from a mechanism whose amplitude is pro-

portional with
ffiffiffiffiffiffiffiffi
G0ν

01

q
, such as ηLNR

and ηRNR
, may be added to

the hνi term with an appropriate redefinition of the nuclear
matrix elements and the interference phases.

III. 0νββ DECAY ELECTRONS DISTRIBUTIONS

The differential decay rate of the 0þ → 0þ 0νββ tran-
sition can be expressed as

d2W0ν
0þ→0þ

dε1d cos θ12
¼ a0νω0νðε1Þ

2ðmeRÞ2
½Aðε1Þ þ Bðε1Þ cos θ12�: ð7Þ

Here, ε1 is the energy of one electron in units of mec2, R is
the nuclear radius (R ¼ r0A1=3, with r0 ¼ 1.2 fm), θ12 is
the angle between the outgoing electrons, and the expres-
sions for the constant a0ν and the function ω0ν are given in
the Appendix C, Eqs. (C2) and (C3), respectively. The
functions AðεÞ and BðεÞ are defined as combinations of
factors that include PSF and NME:

Aðε1Þ ¼ jN1ðε1Þj2 þ jN2ðε1Þj2 þ jN3ðε1Þj2 þ jN4ðε1Þj2;
ð8aÞ

Bðε1Þ ¼ −2Re½N⋆
1ðε1ÞN2ðε1Þ þ N⋆

3ðε1ÞN4ðε1Þ�: ð8bÞ

The detailed expressions of the N1−4ðε1Þ components are
presented in Eqs. (B7).
The expression of the half-life can be written as follows:

½T0ν
1=2�−1 ¼

1

ln 2

Z
dW0ν

0þ→0þ

¼ a0ν
ln 2ðmeRÞ2

Z
Tþ1

1

Aðε1Þω0νðε1Þdε1; ð9Þ

with the kinetic energy T defined as
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T ¼ Qββ

mec2
: ð10Þ

A. Angular distributions

The integration of Eq. (7) over ε1 provides the angular
distribution of the electrons. We can now write it as

dW0ν
0þ→0þ

dΩ
¼ a0ν

4πðmeRÞ2
�Z

Tþ1

1

Aðε1Þω0νðε1Þdε1

þ dΩ
2π

Z
Tþ1

1

Bðε1Þω0νðε1Þdε1
�
; ð11Þ

where dΩ ¼ 2πd cos θ12.

B. Energy distributions

Integrating Eq. (7) over cos θ12, one obtains the single
electron spectrum. When investigating the energy distri-
bution, it is convenient to express the decay rate as a
function of the difference in the energy of the two outgoing
electrons, Δt ¼ ðε1 − ε2Þmec2, where ε2 ¼ T þ 2 − ε1 is
the kinetic energy of the second electron. We now express
the energy of one electron as

ε1 ¼
T þ 2þ Δt

mec2

2
: ð12Þ

After changing the variable, the energy distribution as a
function of Δt is

2dW0ν
0þ→0þ

dðΔtÞ ¼ 2a0ν
ðmeRÞ2

ω0νðΔtÞ
mec2

AðΔtÞ: ð13Þ

IV. RESULTS

Here, we analyze in detail the two-electron angular and
energy distributions for 82Se, which was chosen as a
baseline isotope by the SuperNEMO experiment [28,38].
We calculate the 82Se NME of Eq. (B4) using a shell model
approach with the JUN45 [53] effective Hamiltonian in the
jj44 model space [12,13]. The nuclear structure effects are
taken into account by the inclusion of short-range corre-
lations with CD-Bonn parametrization, finite nucleon size
effects, and higher order corrections of the nucleon current
[17]. We point out that some of the neutrino potentials in

Eq. (B5) are divergent [27], such that the approximations
χGTω ¼ 2 − χGTq and χFω ¼ 2χF − χFq [54] are not
accurate. This simplification was widely used because
of the high complexity and difficulty of the previous shell
model calculations with large model spaces [55,56] when
most of 0νββ decaying isotopes were considered. A
solution to this problem is to first perform the radial
integral over the coordinate space and only after the
second integral over the momentum space in Eq. (B6).
For gA, we use the older value of 1.254 for an easier
comparison to other NME and PSF results in the
literature. It was shown in Ref. [13] that changing to
the newer value of 1.27 [57] changes the result by only
0.5%. Most of uncertainties in the shell model calcu-
lations come from different parametrization of the short
range correlations, but they are less than 20% for most of
the NME. It is also worth noting that the shell model
NME are in general smaller by a factor of 2 than the
QRPA NME, but recent work on restoring the broken
symmetries in QRPA shows a tendency of reducing the
QRPA values towards the shell model ones (see, e.g.,
Sec. IV.c of Ref. [58]).
The NME calculated in this work are presented on the

first line of Table I. The second line displays the normalized
values χα (α ¼ F, GTω, Fω, GTq, Fq, T, R, P).
The PSF that enter in the components of Eq. (4) are

calculated in this work using Eq. (C1). These can be also
calculated by a simple manipulation of Eq. (9), involving
~A�k defined in Appendix B. Using a new effective method
to calculate PSF [59] in agreement with other recent results,
we choose a value of 92 for the effective “screening factor”
(Sf) that changes the charge of the daugther nucleus,

Zs ¼ Sf
100

Z. Reference [59] provides a detailed study of
the 2νββ and 0νββ PSF using this method for 11 nuclei. In
the case of G1, we obtain results which are in good
agreement with those of Ref. [39], having a difference
of about 8%. The results of Ref. [39] have been obtained
more rigorously by solving numerically the Dirac equation
and by including the effects of the finite nuclear size and
electron screening using a Coulomb potential derived from
a realistic proton density distribution in the daughter
nucleus. The largest difference is 15.5% in the case of
G8. The original formalism of Ref. [27] provides signifi-
cantly larger differences, of up to more than 64% for G8 of
82Se, and would result in differences in half-lives of over
30% for Case 4, where all the nine PSF contribute.

TABLE I. The 82Se NME corresponding to Eq. (B3).

MGT MF MGTω MFω MGTq MFq MT MR MP

2.993 −0.633 2.835 −0.618 3.004 −0.487 0.012 3.252 −1.286
χF χGTω χFω χGTq χFq χT χR χP

−0.134 0.947 −0.131 1.003 −0.103 0.004 1.086 0.430
aThe values of the χ1� and χ2� factors of Eq. (B2) are χ1þ ¼ 0.717, χ1− ¼ 1.338, χ2þ ¼ 0.736, χ2− ¼ 0.930.
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However, given the larger uncertainty in the NME [52], our
approximation is satisfactory, and we use it in calculations
of the half-lives and of the two-electron angular and energy
distributions.
In our analysis of the angular and energy distributions,

we consider five scenarios: a reference case named “Case
0,” commonly referred to in the literature as the “mass
mechanism"(displayed with a thick blue line in all the
figures); a case when only the mass mechanism and the η
mechanism contribute, presented as “Case 1”; the scenario
when only the mass mechanism and the λ mechanism
contribute, “Case 2”; the case when the mass mechanism
does not contribute, and we have competition and inter-
ference between the λ and the η mechanisms denoted as
“Case 3”; and the most complex scenario, “Case 4”, when

there is competition and interference between all the
mechanisms.
The values of the effective parameters for these scenarios

are chosen such that they highlight the competition or the
dominance of these mechanisms, taking into account the
current experimental limits [8,39] for the 76Ge 0νββ half-
life (see also Appendix A). They are presented in Table III.
In the figures, the red color indicates the lower values for λ
or η, while the green color is used for the higher values.
For an easier evaluation of each contribution and the

interference effects, we provide in Table IV the calculated
Ci factors (i ¼ 1;…; 6) of Eqs. (B1), together with their
effective values from Eq. (5), for each particular case. Due
to the large G7, G8, and G9 PSF, the contribution of C5 has
a significantly higher magnitude compared to the other
factors, such that the calculations are very sensitive to the η
mechanism for the present limits of the neutrino physics
parameters.
One may calculate the 0νββ half-life with either Eq. (4)

using the nine PSF of Eq. (C1) displayed in Table II or
by integrating Eq. (7) over angles (θ12 from 0 to π) and
energy in Eq. (9) (Δt goes from 0 to Qββ, which is
2.99 MeV for 82Se). The calculated half-lives for the cases
of interest are presented in Table V. There are four
combinations for the CP phases ϕ1 and ϕ2, providing
up to four values for the half-lives for each case. All
half-lives in Table V, except Case 3 Red, are above the
present experimental limits but within the reach of the
SuperNEMO experimental setup (1.0 × 1026 years). One
should also mention that the on-axis limits for the neutrino
physics parameters hλi and hηi corresponding to the same
half-life, 9.41 × 1025 years, as the 100 meV mass mecha-
nism are 1.2 × 10−7 and 1.0 × 10−9, respectively. The
bands in the figures represent the interference effects of
these phases, and their width is the maximum difference
between them. In the case of the mass mechanism, there is
no interference, such that Case 0 is represented by a single
thick blue line. This line is present in all the figures to

TABLE II. The 82Se PSF corresponding to Eq. (C1) expressed
in ½yr−1�.
G1 × 1014 G2 × 1014 G3 × 1014 G4 × 1015 G5 × 1013

2.31 7.93 1.61 4.75 5.33
G6 × 1012 G7 × 1010 G8 × 1011 G9 × 109

4.09 2.97 2.02 1.09

TABLE III. The neutrino parameter values chosen for the five
cases described in the text.

hνi hλi hηi
Case 0 Blue 2 × 10−7 0 0
Case 1 Red 2 × 10−7 0 0.5 × 10−9

Case 1 Green 2 × 10−7 0 2 × 10−9

Case 2 Red 2 × 10−7 0.5 × 10−7 0
Case 2 Green 2 × 10−7 2 × 10−7 0
Case 3 Red 0 0.5 × 10−7 0.5 × 10−9

Case 3 Green 0 2 × 10−7 2 × 10−9

Case 4 Red 2 × 10−7 0.5 × 10−7 0.5 × 10−9

Case 4 Green 2 × 10−7 2 × 10−7 2 × 10−9

TABLE IV. The 82Se Ci factors (i ¼ 1;…; 6) corresponding to Eq. (4) expressed in ½yr−1�. We also present the effective values when
these factors are multiplied with the neutrino parameters from the four cases discussed.

C1 C2 C3 C4 C5 C6

2.94 × 10−14 −1.46 × 10−14 4.75 × 10−12 7.72 × 10−14 1.15 × 10−9 −1.01 × 10−13

Cν2 Cνλ Cνη Cλ2 Cη2 Cλη

Case 0 Blue 1.18 × 10−27 0 0 0 0 0
Case 1 Red 1.18 × 10−27 0 4.75 × 10−28 0 2.86 × 10−28 0
Case 1 Green 1.18 × 10−27 0 1.90 × 10−27 0 4.58 × 10−27 0
Case 2 Red 1.18 × 10−27 −1.46 × 10−28 0 1.93 × 10−28 0 0
Case 2 Green 1.18 × 10−27 −5.83 × 10−28 0 3.09 × 10−27 0 0
Case 3 Red 0 0 0 1.93 × 10−28 2.86 × 10−28 −2.53 × 10−27

Case 3 Green 0 0 0 3.09 × 10−27 4.58 × 10−27 −4.04 × 10−29

Case 4 Red 1.18 × 10−27 −1.46 × 10−28 4.75 × 10−28 1.93 × 10−28 2.86 × 10−28 −2.53 × 10−30

Case 4 Green 1.18 × 10−27 −5.83 × 10−28 1.90 × 10−27 3.09 × 10−27 4.58 × 10−27 −4.04 × 10−29
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provide the reader with a reference scenario, which is the
most studied in the literature. In the following, we discuss
these cases.
Case 0, representing the mass mechanism and displayed

in Figs. 1–4 with a blue line, is the most studied mechanism
in the literature. The value of the effective neutrino mass
parameter hνi ¼ jηνj is chosen to correspond to a neutrino
mass limit of about 0.1 eV, which results in a calculated
half-life of 9.4 × 1025, just beyond the current experimental

limits but within the SuperNEMO reach [38]. From Figs. 1
and 2, one can see that this mode dominates the other
contributions as long as hνi ≥ 4 × hλi and hνi ≥ 400 × hηi
(the red bands). Should any of the hλi or hηi parameters
increase four times (hatched green bands), the distributions
change, and one could identify the domination of another
mechanism.
Case 1 presented in Fig. 1 describes the η mechanism

dominance (hatched green bands) showing a significant
change in the shape of the angular distribution (Fig. 1,
upper panel), while the energy distribution retains the shape

TABLE V. Calculated half-lives (T1=2) for the four possible combinations of values for ϕ1 and ϕ2 in Eq. (4).

ϕ1 ¼ 0, ϕ2 ¼ 0 ϕ1 ¼ π, ϕ2 ¼ π ϕ1 ¼ 0, ϕ2 ¼ π ϕ1 ¼ π, ϕ2 ¼ 0

Case 0 Blue 9.41 × 1025 9.41 × 1025 9.41 × 1025 9.41 × 1025

Case 1 Red 5.72 × 1025 1.12 × 1026 1.12 × 1026 5.72 × 1025

Case 1 Green 1.45 × 1025 2.87 × 1025 2.87 × 1025 1.45 × 1025

Case 2 Red 9.05 × 1025 7.31 × 1025 9.05 × 1025 7.31 × 1025

Case 2 Green 3.01 × 1025 2.29 × 1025 3.01 × 1025 2.29 × 1025

Case 3 Red 2.32 × 1026 2.32 × 1026 2.30 × 1026 2.30 × 1026

Case 3 Green 1.45 × 1025 1.45 × 1025 1.44 × 1025 1.44 × 1025

Case 4 Red 5.59 × 1025 8.36 × 1025 1.07 × 1026 4.86 × 1025

Case 4 Green 1.09 × 1025 1.48 × 1025 1.73 × 1025 9.75 × 1024

FIG. 1. Electrons angular distribution (upper panel) and energy
distributions (lower panel) for the competition between ν and η
mechanisms, Case 1 (see Sec. IV for a full description of the
bands).

FIG. 2. Same as Fig. 1 for the competition between ν and λ
mechanisms, Case 2.
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of Case 0, only increasing in amplitude. In the scenario of
Case 2 presented in Fig. 2, one can see the dominance of
the λ mechanism (hatched green bands) in both distribu-
tions as changes in the shape and amplitude. One can
conclude that one can use these different shape changes to
distinguish between hνi, hλi, and hηi mechanism domi-
nance, assuming that only two of them can compete.
However, one needs to consider the case when the

jmeej ¼ mehνi is very small or zero, while the λ and η
mechanisms are competing. This scenario is covered by
Case 3 presented in Fig. 3. The interference termCλη is very
small leading to very narrow interference bands.
Dominance of any of the two mechanisms would show
little difference from the similar behavior shown in Figs. 1
and 2 (the shape is fixed by the small interference term,
while in Case 1 and 2 the dependence on the interference
phases could distort the shapes). The green lines in Case 3
are just rescaling of the red to emphasize the effect of
rescaling relative to the standard mass mechanism (blue
line). The shapes of the distributions and their changes
seem to be similar to some of those in Fig. 2. However, the
ratio max/min in the angular distribution (15=1 for Case 3
vs 2=1 for Case 2) could be used to distinguish between
these two cases.

Case 4 allows competition between all three contribu-
tions (Fig. 4). Obviously, the qualitative behavior of these
distributions cannot be easily disentangled from those of
Cases 1–3 discussed above. That would require a numerical
simulation that includes interference effects to rule in or out
some of these scenarios.
One should also mention that the energy distribution of

the angular correlation coefficient, α ¼ BðεÞ=AðεÞ in our

FIG. 3. Same as Fig. 1 for the competition between λ and η
mechanisms, Case 3.

FIG. 4. Same as Fig. 1 for the competition between ν, λ and η
mechanisms, Case 4.

FIG. 5. The angular correlation coefficient corresponding to
Case 1. The meaning of the bands is the same as in Figs. 1–4.
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Eq. (7), could provide additional information (see, e.g.,
Figs. 6.5–6.9 of [27] and Fig. 7 of [39]). Figures 5–8 show
the angular correlation coefficient αðΔtÞ of all four cases
analyzed in Figs. 1–4. One can clearly see that Cases 2 and

3 can also be identified by the value of α when the energies
of the two emitted electrons are very close (Δt ≈ 0). Cases 3
and 1 can be separated by the shape of their energy
distributions. Figures 5–8 show that the angular correlation
coefficient could be also used to better identify the other
cases analyzed in Figs. 1–4.
Given the complexity of our analysis, and considering

the potential usefulness for future analyses, we provide a
link to a Mathematica file that can be used to perform these
calculations and produce the plots included in this
paper [60].

V. DISENTANGLING THE HEAVY
NEUTRINO CONTRIBUTION

As mentioned in Sec. II, if the ηλ and ηη contributions
could be ruled out by the two-electron energy and
angular distributions analyzed in the previous section,
and in that case assuming a seesaw type I dominance
[48], the half-life is given by Eq. (3). Then, the relative
contribution of the ην and ηRNR

terms can be identified if
one measures the half-life of at least two isotopes [5,25],
provided that the corresponding matrix elements M0ν and
M0N are known with good precision. References [5,25]
already provided some limits of the ratios of the half-
lives of different isotopes based on older QRPA calcu-
lations. However, based on those calculations, the two
limits for rðν=NÞ≡ Tν=N

1=2 ð1Þ=Tν=N
1=2 ð2Þ,

rðν=NÞ ¼ G0ν
01ð2ÞjM0ν=Nð2Þj2

G0ν
01ð1ÞjM0ν=Nð1Þj2 ; ð14Þ

were too close to allow for a good separation of the
contribution of these two mechanisms. In Eq. (14), terms
(1) and (2) designate members of a pair of isotopes.
Below, we present the results based on our shell model
calculations given in Tables III and IV of Ref. [10]. In
Table VI, Ge, Se, Te, and Xe are short-hand notions for
76Ge, 82Se, 130Te, and 136Xe, respectively. In the table,
we only use the NME calculated with CD-Bonn short-
range correlations. The G0ν

01 factors from Table III of
Ref. [39] were used (they are very close to those
of Ref. [62]).
The pre-last line in Table VI presents the ratio of the

ratios of half-lives, RðN=νÞ ¼ rðNÞ=rðνÞ, calculated with
our NME. One can see that the largest ratio is obtained
for the combination 82Se=136Xe. Its magnitude larger than
2 indicates that one can differentiate between these two
limits if the half-lives are known with reasonable uncer-
tainties and provided that the NME can be calculated
with sufficient precision. The last line in Table VI shows
the same quantity calculated with the recent QRPA NME
taken from Table I (columns d) of Ref. [61]. On can see
that these ratios are not as favorable in identifying the

FIG. 6. The angular correlation coefficient corresponding to
Case 2. The meaning of the bands is the same as in Figs. 1–4.

FIG. 7. The angular correlation coefficient corresponding to
Case 3. The meaning of the bands is the same as in Figs. 1–4. The
red and green (narrow) bands are overlapping.

FIG. 8. The angular correlation coefficient corresponding to
Case 4. The meaning of the bands is the same as in Figs. 1–4.
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two limits. This analysis emphasizes again the need of
having reliable NME for all mechanisms.

VI. CONCLUSIONS

In this paper, we calculate nuclear matrix elements,
phase-space factors, and half-lives for the 0νββð0þ → 0þÞ
decay of 82Se under different scenarios that include,
besides the mass mechanism, the mixed right-handed/
left-handed currents contributions known as η and λ
mechanisms. For the mass mechanism dominance scenario,
the results are consistent with previous calculations [13]
using the same Hamiltonian. Inclusion of contributions
from η and λmechanisms have the tendency to decrease the
half-lives.
We present the two-electrons angular and energy dis-

tributions for five theoretical scenarios of mixing between
mass mechanisms contributions and η and λ mechanism
contributions. From the figures presented in the paper, one
can recover the general conclusion [27] that the energy
distribution can be used to distinguish between the mass
mechanism and the λ mechanism, while the angular
distribution can be used in addition to the energy distri-
bution to distinguish between the mass mechanism and the
η mechanism, but the identification could be more nuanced
due to the lack of knowledge of the interference phases. In
the case of the energy distributions for the mass mechanism
dominance (blue line) and the λ mechanism dominance
(green band in Figure 2, lower panel), we find similar
results to those of Fig. 2 in Ref. [28]. However, our results
emphasize the significant role of the interference phases ϕ1

and ϕ2 in identifying the effect.
We also find out from the analysis of Case 3 that if the

effective neutrino mass is very small, close to zero, and the
η and λ mechanisms are competing, then one can poten-
tially identify this scenario from the λ dominance, Case 2,
by comparing the ratio min-to-max in the angular distri-
butions and/or by the behavior of the angular correlation
coefficient for almost equal electron energies. The small
interference effects in Case 3 could be also used as an
additional identification tool. These conclusions seem to be

stable even if one considers small NME changes, such as
those due to different short-range correlations models.
We conclude that the η mechanism, if it exists, may be

favored to compete with the mass mechanisms due to the
larger contribution from the phase-space factors.
Reference [8] shows however that it is possible to obtain
a λ mechanism dominance in some cases.
Finally, we show that if the ηλ and ηη contributions could

be ruled out by the two-electron energy and angular
distributions, the mass mechanisms can be disentangled
from the heavy right-handed neutrino-exchange mecha-
nism using ratios of half-lives of few isotopes. The analysis
based on our shell model NME indicates that the most
favorable combinations of isotopes would be 82Se=136Xe
and 76Ge=136Xe.
Certainly, the analysis presented in this paper is based on

the positive detection of the neutrinoless double-beta decay,
followed by the collection of enough events that one can
use to make assessments on the angular and energy
distributions. Similar distributions were obtained with high
precision by NEMO-3 for the 2νββ of 100Mo, but a very
large number, about 1 million, of events were collected
[38]. Clearly, this large number of events will not be
available for any 0νββ experiment, but we believe that the
tools provided by our analysis could help to assess
probabilities for these mechanisms even if only tens of
events are collected.
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APPENDIX A: LEFT-RIGHT
SYMMETRIC MODEL

Left-right symmetric models [7,21–23] could explain the
physics of the right-handed currents, which may contribute
to the neutrinoless double-beta decay process, and are also

TABLE VI. Calculated limits of half-lives ratios, Eq. (14), for different combinations of isotopes (see text for details). For example, in
the combination Ge/Se, (1) corresponds to Ge and (2) to Se.

Ge=Se Ge=Te Ge=Xe Se=Te Se=Xe Te=Xe

Ge Se Ge Te Ge Xe Se Te Se Xe Te Xe

G0ν
01 × 1014 0.237 1.018 0.237 1.425 0.237 1.462 1.018 1.425 1.018 1.462 1.425 1.462

M0νð1=2Þ 3.57 3.39 3.57 1.93 3.57 1.76 3.39 1.93 3.39 1.76 1.93 1.76
M0Nð1=2Þ 202 187 202 136 202 143 187 136 187 143 136 143
Tν
1=2ð1Þ=Tν

1=2ð2Þ 3.87 1.76 1.50 0.45 0.39 0.85

TN
1=2ð1Þ=TN

1=2ð2Þ 3.68 2.73 3.09 0.74 0.84 1.13

RðN=νÞ present 0.95 1.55 2.06 1.63 2.17 1.33
RðN=νÞ [61] 1.02 1.39 1.42 1.36 1.39 1.03
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under current investigation at LHC [24]. Specific details for
double-beta decay can be found in Ref. [8].
The neutrino mixing matrices are defined by

n0L ¼
�

ν0L
ν0R

c

�
¼

�
U S

T V

��
νL

Nc
R

�
; ðA1Þ

where ν0L, ν
0
R
c are flavor eigenstates, and νL, Nc

R are mass
eigenstates. Here, the U and V matrices are almost unitary,
while the S and T matrices are very small. The sterile
neutrinos ν0R and the mass eigenstates NR are presumed to
be very heavy, but at least the lightest ones are at the TeV
scale. Light (1 eV) sterile neutrinos could exist, and they
could influence the effective neutrino mass and the out-
come of 0νββ decay [5], but they may be detected in
neutrino oscillations experiments. The neutrino physics
parameter jhmeeij≡ jPU2

ekmkj is the effective electron
neutrino mass, and the suitably normalized dimensionless
parameter that describes lepton number violation is (the
upper limits for the neutrino physics parameters below
were taken from Refs. [8,39])

jηνj ¼
jhmeeij
me

¼ jPlight
k U2

ekmkj
me

≲ 7 × 10−7; ðA2Þ

with Uei the (PMNS) mixing matrix of light neutrinos, mi
the light neutrino masses, andme the electron mass. For the
mixing of the left- and right-handed currents with the heavy
neutrino, the neutrino physics parameters in the left-right
symmetric model are given by

jηLNR
j ¼ mp

����
Xheavy
k

Sek2

Mk

����≲ 7 × 10−9; ðA3Þ

jηRNR
j ¼ mp

�
mWL

mWR

�
4
����
Xheavy
k

V⋆
ek

2

Mk

����≲ 7 × 10−9; ðA4Þ

where mWR
ðmWL

Þ is the mass of the right-handed
WRðleft − handed WLÞ, Mi are the masses of the heavy
neutrinos, and V is the right-handed analogue of the PMNS
matrix U. To satisfy the present limit of jηRNR

j, one needs
mWR

and some of theMk masses at TeV scale. For the terms
that could contribute to the neutrinoless double-beta decay
that involve a mixture of left-handed and right-handed
currents, the ηλ and ηη neutrino physics parameters are

jηλj ¼
�
mWL

mWR

�
2
����
Xlight
k

UekT⋆
ek

����≲ 4 × 10−7; ðA5Þ

jηηj ¼ tan ξ

����
Xlight
k

UeiT⋆
ek

����≲ 3 × 10−9: ðA6Þ

The heavy neutrino contributions to both λ and η
mechanisms are suppressed, being proportional toPheavy

k SekV⋆
ekq=M

2
k.

The CP phases used in Eq. (4) are

ϕ1 ¼ arg
��Xlight

k

U2
ekmk

���
MWL

MWR

�
2Xlight

k

UekVek

�⋆�
;

ϕ2 ¼ arg

��Xlight
k

U2
ekmk

��
ξ
Xlight
k

UekVek

�⋆�
: ðA7Þ

APPENDIX B: 0νββ NME

Most of the theoretical formalism used in this work is
adopted from Refs. [27] and [45], with little change of
notation for simplicity and consistency wherever need.
The C1−6 factors composed from PSF and NME [27] are

C1 ¼ ð1 − χFÞ2G1; ðB1aÞ

C2 ¼ −ð1 − χFÞ½χ2−G3 − χ1þG4�; ðB1bÞ

C3 ¼ ð1 − χFÞ
× ½χ2þG3 − χ1−G4 − χPG5 þ χRG6�; ðB1cÞ

C4 ¼
�
χ22−G2 þ

1

9
χ21þG4 −

2

9
χ1þχ2−G3

�
; ðB1dÞ

C5 ¼ χ22þG2 þ
1

9
χ21−G4 −

2

9
χ1−χ2þG3 þ χ2PG8

− χPχRG7 þ χ2RG9; ðB1eÞ

C6 ¼ −2
�
χ2−χ2þG2 −

1

9
ðχ1þχ2þ þ χ2−χ1−ÞG3

þ 1

9
χ1þχ1−G4

�
; ðB1fÞ

χ1� ¼ χGTq � 3χFq − 6χT; ðB2aÞ

χ2� ¼ χGTω � χFω −
1

9
χ1�: ðB2bÞ

The normalized NME,

χα ¼ Mα=M0ν
GT; ðB3Þ

where α ¼ F, T, GTω, Fω, GTq, Fq, R, and P. All Fermi-
type matrix elements MFðωqÞ are multiplied by gV=gA.
Due to the two-body nature of the transition operator, the

matrix elements are reduced to sums of products of two-
body transition densities (TBTD) and matrix elements for
two-particle states [17]:

MIHAI HOROI and ANDREI NEACSU PHYSICAL REVIEW D 93, 113014 (2016)

113014-10



M0ν
α ¼

X
jpjp0 jnjn0Jπ

TBTDðjpjp0 ; jnjn0 ; JπÞ

× hjpjp0 ; Jπjjτ−1τ−2Oα
12jjjnjn0 ; Jπi: ðB4Þ

The detailed expressions for the two-body transition
operators ðOα

12Þ can be found in Ref. [63]. They can be
factorized into products of coupling constants and oper-
ators which act on the intrinsic spin, relative, and center-of-
mass wave functions of two-particle states [17].
The NME depend on four dimensionless neutrino

potentials defined by the integral over the momentum of
the virtual neutrino. Expressions for the Gamow-Teller
(GT), the Fermi (F), and the tensor (T) cases are described
in detail in Refs. [14,17]. The other three potentials are
presented here in a form similar to Eq. (12) of Ref. [63],

H0ν
ω ðrÞ ¼ 2R

π

Z
∞

0

q2j0ðqrÞdq
ðqþ hEiÞ2 ≡

Z
∞

0

q2j0ðqrÞVωðqÞdq;

for the M0ν
GTw and M0ν

Fw NME; ðB5aÞ

H0ν
q ðrÞ ¼ 2R

π

Z
∞

0

q2j1ðqrÞdq
qþ hEi ≡

Z
∞

0

q2j1ðqrÞVqðqÞdq;

for the M0ν
GTq;M

0ν
Fq;M

0ν
T ; and M0ν

P NME: ðB5bÞ

In the case of M0ν
R ; the potential is written as :

H0ν
R ðrÞ ¼ 2R2

πM

Z
∞

0

q3j0ðqrÞdq
qþ hEi ≡

Z
∞

0

q2j0ðqrÞVωðqÞdq;

ðB5cÞ

where M is the nucleon mass, R is the nuclear radius
(R ¼ 1.2A1=3fm), hEi represents the closure energy, Vω;q;R

are the Fourier transforms of the potentials, and jκðqrÞ are
spherical Bessel functions of rank κ.
The computation of the matrix element requires solving a

double integral over the coordinate space and over the
momentum [from Eq. (B5)] of the form [16]

Iαðμ;mÞ ¼
Z

∞

0

q2dqVαðqÞ

×

�
2

π

�1
2ð2νÞmþ1

2

Z
∞

0

dre−μr
2

rmjκðqrÞ; ðB6Þ

where μ ¼ ν, νþ a, νþ 2a, with ν the oscillator constant
and m is an integer.
It was previously observed in Ref. [27] that the three

potentials in Eq. (B5) are formally divergent, but the
associated radial matrix elements are not, if certain pre-
cautions are taken, such as first performing the radial
integrals and then the integrals of the momentum in
Eq. (B6), as was done in Ref. [17].
In Ref. [13], a method was proposed for obtaining an

optimal closure energy, which yields similar results as

when preforming calculations beyond the closure approxi-
mation. Here, we use an optimal average closure energy
hEi of 3.4 MeV, which has been shown to produce accurate
results in the case ofMGT andMF (see Fig. 5 of Ref. [13]).
Therefore, our NME do not have any significant uncer-
tainties related to choice of the closure energy. Higher order
corrections of the nuclear current for the Gamow Teller
nuclear matrix element and CD-Bonn parametrization
short-range correlations are taken into account as described
in Ref. [17].
To calculate the two-electron angular and relative energy

distributions, we take into account the decay rate as
described by Eq. (C·3·1) of Ref. [27]. This leads to the
expressions of Eqs. (7) and (8). The factors N1−4ðε1Þ
represent mixtures of NME and PSF, expressed as

N1ðε1Þ ¼ a�−1−1

��
Z1 −

4Z6

3

�
−
�

4

meR

��
Z4 − ξ

Z6

6

��
;

ðB7aÞ

N2ðε1Þ ¼ a�11

��
Z1 −

4Z6

3

�
þ
�

4

meR

��
Z4 − ξ

Z6

6

��
;

ðB7bÞ

N3ðε1Þ ¼ a�1−1

��
Z1 −

2Z5

3

�
−
�
ε12
me

��
Z3 þ

Z5

3

��
;

ðB7cÞ

N4ðε1Þ ¼ a�−11

��
Z1 −

2Z5

3

�
þ
�
ε12
me

��
Z3 þ

Z5

3

��
;

ðB7dÞ

with ξ ¼ 3αZs þ ðT þ 2ÞmeR, ε12 ¼ ε1 − ε2 and aκλ ¼
~Aκðε1Þ ~Aλðε2Þ, where ε2 ¼ T þ 2 − ε1.

~A�kðεÞ ≅
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðε∓meÞ=2ε

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fk−1ðZs; εÞ

p
; ðB8Þ

Fk−1ðZs; εÞ ¼
�

Γð2kþ 1Þ
ΓðkÞΓð2γk þ 1Þ

�
2

× ð2pRÞ2ðγk−kÞjΓðγk þ iyÞj2eπy; ðB9Þ

γk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − ðαZÞ2

q
; y ¼ αZsε=p; ðB10Þ

where α is the fine structure constant, pi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ε2i − 1

p
(with

i ¼ 1, 2), and Zs ¼ Z · Sf
100

the “screened” charge of the
final nucleus, and Sf ¼ 92 is the effective “screening”
factor from Table 4 of Ref. [59]. Here, Z1−6 are composed
of the NME from Eq. (B4), defined as follows:

Z1 ¼ ðhνiÞðχF − 1ÞM0ν
GT; ðB11aÞ
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Z3 ¼ ½−hλiðχGTω − χFωÞe−iϕ1 ðB11bÞ

þ hηiðχGTω þ χFωÞe−iϕ2 �M0ν
GT; ðB11cÞ

Z4 ¼ hηiχRe−iϕ2M0ν
GT; ðB11dÞ

Z5 ¼
1

3
½hλiχ1þe−iϕ1 − hηiχ1−e−iϕ2 �M0ν

GT; ðB11eÞ

Z6 ¼ hηiχPe−iϕ2M0ν
GT: ðB11fÞ

APPENDIX C: 0νββ DECAY PSF EXPRESSIONS

The PSF are calculated using the following expression
adopted from Eq. (A.27) of Ref. [45]:

Gk ¼
a0ν

ln 2ðmeRÞ2
Z

Tþ1

1

bkF0ðZs; ε1ÞF0ðZs; ε2Þω0νðε1Þdε1;

ðC1Þ

where R is the nuclear radius (R ¼ r0A1=3, with
r0 ¼ 1.2 fm) and F0 is defined in Eq. (B9) for k ¼ 1,

a0ν ¼
g4AðGF cos θcÞ4m9

e

32π5
; ðC2Þ

with GF ¼ 1.1663787 × 10−5 GeV−2 the Fermi constant,
and cos θc ¼ 0.9749 the Cabbibo angle. In Ref. [45], the
constant g0ν ¼ a0ν= ln 2 ¼ 2.8 × 10−22g4A yr−1 was used.
Taking into account the value gA ¼ 1.27, instead of
gA ¼ 1.254, would change the results by 5%. One should
mention that the G0ν

01g
4
A product in Eq. (3) is equal to G1.

Also, in Eq. (C1)

ω0νðε1Þ ¼ p1p2ε1ε2; ðC3Þ

with ε2 ¼ T þ 2 − ε1, p1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε21;2 − 1

q
, and T defined

in Eq. (10).
The kinematical factors bk are defined as

b1 ¼ 1; ðC4Þ

b2 ¼
1

2

�
ε1ε2 − 1

ε1ε2

�
ðε1 − ε2Þ2; ðC5Þ

b3 ¼ ðε1 − ε2Þ2=ε1ε2; ðC6Þ

b4 ¼
2

9

�
ε1ε2 − 1

ε1ε2

�
; ðC7Þ

b5 ¼
4

3

�ðT þ 2Þξ
2rAε1ε2

−
ε1ε2 þ 1

ε1ε2

�
; ðC8Þ

b6 ¼
4ðT þ 2Þ
rAε1ε2

; ðC9Þ

b7 ¼
16

3

1

rAε1ε2

�
ε1ε2 þ 1

2rA
ξ − T − 2

�
; ðC10Þ

b8 ¼
2

9

1

ðrAÞ2ε1ε2
½ðε1ε2 þ 1Þðξ2 þ 4ðrAÞ2Þ

−4rAξðT þ 2Þ�; ðC11Þ

b9 ¼
8

ðrAÞ2
�
ε1ε2 þ 1

ε1ε2

�
; ðC12Þ

with ξ ¼ 3αZs þ rAðT þ 2Þ, where α represents the fine

structure constant, Zs ¼ Z · Sf
100

the “screened” charge of the
final nucleus, and rA ¼ meR.
In Eqs. (2), (3), and (14) and in Table VI, we use the

factor G0ν
01 ¼ G1=ðgAÞ4.
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