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Using the type II seesaw approach and properties of discrete flavor symmetry group representations, we
build a supersymmetric A, X A3 neutrino model with 63 # 0. After describing the basis of this model—
which is beyond the minimal supersymmetric Standard Model—with a superfield spectrum containing
flavons in A4 X As representations, we first generate the tribimaximal neutrino mixing which is known to
be in agreement with the mixing angles 8, and 6,5. Then, we give the scalar potential of the theory where
the A5 discrete subsymmetry is used to avoid the so-called sequestering problem. We next study the
deviation from the tribimaximal mixing matrix which is produced by perturbing the neutrino mass matrix
with a nontrivial A4 singlet. Normal and inverted mass hierarchies are discussed numerically. We also study
the breaking of A4 down to Z; in the charged lepton sector, and use the branching ratio of the decay
7 — upe—which is allowed by the residual symmetry Z;—to get estimations on the mass of one of the
flavons and the cutoff scale A of the model. Key words: Neutrino family symmetry, supersymmetry,

deviation from TBM
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I. INTRODUCTION

In the Standard Model (SM) of electroweak interactions,
neutrinos (v;);_,, 5 are left-handed and massless; this is
because in the SM there are no right-handed neutrino
singlets v, that allow gauge-invariant Yukawa couplings to
the Higgs doublet y(H.L;)v;z. However, recent experimen-
tal data on neutrino oscillations have shown that they have
very tiny masses m; and that the different flavors v, v,, 13
are mixed with some mixing angles 6;;, as shown in Table I
below. This important discovery led to awarding the Nobel
Prize in Physics for 2015 to Takaaki Kajita (SUPER-
KAMIOKANDE Collaboration) and Arthur B. McDonald
(SNO Collaboration). Although we cannot determine the
exact masses m; of the neutrinos, many experiments
performed in the last few years measured the squared-mass
differences Am;; = m; —m; and mixing angles 0;;, as
reported by several global fits of neutrino data [1-3], the
most recent of which can be found in Ref. [4].

To deal with the small masses and mixing of neutrinos
we need to go beyond the SM framework; for this purpose
many neutrino models have been proposed in recent years,
and it is common that the observed mixing angles 0, and
0,3 are close to the tribimaximal mixing matrix (TBM),
which predicts them to be in the 20 and 3¢ ranges, as in
Table I [5]. The remaining 6,5 is however not compatible
with TBM, as announced by recent experiments, [6—9]
although TBM still remains a good approach to the present
data. We recall that one way to reproduce TBM at leading

alternating A, symmetry, which is admitted as the most
natural discrete group that captures the family symmetry,
as motivated in the literature. Following Altarelli and
Feruglio [10], A4 models have a particularly economical
and attractive structure, e.g., in terms of group representa-
tions and field content [11-14]. For neutrino models based
on other discrete groups see, for instance, Ref. [15], and for
an introduction to non-Abelian discrete symmetries and
representations see Ref. [16] and references therein. Recall
also that there are several ways to generate masses for
neutrinos beyond the standard model, such as the imple-
mentation of dimension-five nonrenormalizable operators
[17]; or by using the three types of the seesaw mechanism:
type I with extra SU(2) singlet fermions, type II with an

TABLEI The global fit values for the mass squared differences
Amgj and mixing angles 0;; as reported by Ref. [2]. NH and TH
stand for normal and inverted hierarchies, respectively.

(+16,4206,+30)
(=16,-20,-30)

Parameters Best fit

Am2,[1075 eV?]
Am3,[1073 eV?](NH)
Am3,[1073 eV?](IH)

(+0.19,4+0.39,+0.58)
7'60(—0.18.—0.34.—0.49)

(+0.05,40.11,40.17)
2'48(—0.07.—0.13.—0.18)

(+0.05,40.10,40.16)
_2'38(7040650.12,70.18)
in2 (+0.016,4-0.034,40.052)
sin- @ ,

12 0.323 4 16.-0.031-0.045)
Sin2923 NH)

(

(+0.032,40.056,4-0.076)
0'567(—0.128.—0.154.—0.175)
(

(

: -2 0.025,+0.048.+0.067
order (LO) is to go beyond the usual spectrum of the S 03 (IH) 0-573:0,043,_114,,:),,70))
Standard Model via discrete non-Abelian groups like the  sin6,3(NH) 0.0234 (10-0020.+0.004,+-0.006)

U23%(20.0020,-0.0039.-0.0057)

sin20,5(IH) 0,024/ H0-0019+0.0038+0.0057)
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extra SU(2) triplet scalar, and type III with an extra SU(2)
triplet fermion [18-22].

In this paper, we propose a supersymmetric neutrino
model with discrete flavor symmetry A, x A3 that extends
the minimal supersymmetric SM (MSSM), and whose
theoretical predictions for Am%j and sin’ 6, ; are compatible
with experiments [6-9]. This field theory prototype is a
supersymmetric type II seesaw neutrino theory based on a
particular extension of the MSSM. In addition to the usual
MSSM superfield spectrum and the chiral superfield
triplets of the type II seesaw model, our model involves
the extra flavon chiral superfields {y,y’, ®, ®'} carrying
quantum numbers under A, x A; discrete symmetry. y is
needed by the A, symmetry in charged sector, while the
three others concern the chargeless sector: ' to realize the
tribimaximal texture, ¢ to reproduce the correct mass
squared difference Am3, #0, and @' to generate 03 # 0.
By giving vacuum expectation values (VEVs) to these
flavons, one generates Majorana mass terms and induces
neutrino mixing compatible with the observations listed in
Table I. Notice that supersymmetry plays a crucial rule in
our construction; it is needed to have the right vacuum
alignment and to overcome the sequestering problem, as
was first noticed in Refs. [23,24]. Without supersymmetry
there is no way to forbid terms of the form 4, |y|*[y'|* in
the scalar potential which destroys the desired VEV
structure in four-dimensional renormalizable theories.
With supersymmetry, the scalar potential is derived from
complex F terms in the chiral superpotential W =
W(y.x';...) sector, and Hermitian D terms of the Kahler
K.t 7 2% ) involving gauge interactions; terms
like the undesirable |y|?[y/|* come from a complex W and
may be eliminated by an extra discrete symmetry having
complex representations. Notice also that aspects of the
type II seesaw mechanism for neutrinos with an A, flavor
symmetry were considered before in Ref. [25] but without
supersymmetry. In our supersymmetric extension, the two
A, flavon superfield triplets y and ¥’ act, respectively, in the
charged lepton sector and neutrino sector; they carry
different charges under the extra A; discrete subsymmetry
which is needed to exclude unwanted terms in the super-
potential W and to avoid the communication between
charged and chargeless sectors. To engineer appropriate
squared mass differences Am%j and mixing angles sin® 0, j
in the chargeless sector, we find that we also need to
implement two A, scalar flavon chiral superfields ¢ and
d'. By giving them VEVs, we obtain TBM consistent with
the experimental data on Amy; and sin® 3. In this regard,
we recall that several models use different approaches to
generate a @3 deviation from the TBM pattern; for
instance, in Ref. [26], the deviation of TBM is obtained
by adding a nonleading contribution coming from charged
lepton mass diagonalization. In Ref. [25], the TBM was
generated at LO with the type I seesaw mechanism and the

PHYSICAL REVIEW D 93, 113005 (2016)

deviation was made by perturbing the neutrino mass matrix
with the type II seesaw mechanism. In our approach, we
borrow techniques from the method used in Ref. [27]
before ;3 =0 was ruled out. This method relies on
perturbing the neutrino mass matrix by adding nontrivial
A, singlets and has been used recently in Ref. [28] where
neutrino masses were generated by dimension-five oper-
ators. After a numerical study, we show that normal and
inverted hierarchies are both permitted. The VEV of the
triplet ¥ breaks A, down to Z5 in the charged lepton sector;
because of this residual symmetry, only the lepton-flavor-
violating decays 7 — eey and 7 — ppue are allowed in our
model. We find that these decays are mediated by the flavon
triplet y;, and by using the experimental upper bound of the
branching ratio of the decay 7 — upe we obtain an
estimation on the mass of the flavon as well as the cutoff
scale A of our model.

The presentation is as follows. In Sec. II we present the
superfield content of the extended MSSM we are interested
in here, and give their A, representations. Useful tools on
A, tensor calculus, superpotential building, and the lepton
charged sector are also given. In Sec. III, we first introduce
our supersymmetric Ay X Az model and make some com-
ments. Then, we focus on the chargeless sector; we first
study the neutrino mass matrix and its diagonalization with
the TBM matrix, then we analyze the scalar potential of
flavons and describe the motivation beyond the need for the
extra A; discrete symmetry. In Sec. IV we study the
deviation of the TBM matrix with the help of the A,
flavon singlets and give numerical results for both normal
hierarchy (NH) and inverted hierarchy (IH). In Sec. V we
study the lepton flavor violation (LFV) in the charged
lepton sector to constrain the mass of the flavons y; and the
cutoff scale A. In Sec. VI we give our conclusion and
comments. In the three appendices, we report some relevant
details and extra tools. In Appendix A, we recall useful
properties of the A, group and irreducible representations.
In Appendix B, we derive the vacuum alignments of y and
7' used in this paper, and show that they are obtained
without having to add extra superfields. In this regard,
recall that in many models in the literature the problem of
vacuum alignment is resolved by adding the so-called
driving fields [29,30]. In Appendix C, we give explicit
details on the tensor product of A-invariant terms used in
the derivation of the flavon scalar potential (3.26) obtained
in Sec. III. We also give details on solving the minimum
condition of the scalar potential of the theory with respect
to the two A, triplets y and y’.

II. FLAVOR SYMMETRY
IN SUPERSYMMETRIC MODELS

We begin by noticing that it is quite commonly admitted
that the family symmetry relating flavors belonging to
different generations of the SM might be behind the
neutrino mass hierarchy and their mixing. This hypothetical

113005-2



TYPE I SEESAW SUPERSYMMETRIC NEUTRINO MODEL ...

flavor symmetry I" is a discrete invariance that has been the
subject of several studies, and particular interest has been
focused on those I'’s given by non-Abelian discrete
symmetries [16,31]. In this study, we consider the interest-
ing case where flavor symmetry is given by A4 x Az, and
describe how this discrete symmetry can be implemented in
models around the supersymmetric scale M%;qy where the
discrete I’s are expected to follow from more basic
symmetries, such as the breaking of Eg gauge invariance
of heterotic string or F-theory GUTs on Calabi-Yau
manifolds [32-34].

A. Extending the MSSM

We start with the usual chiral superfield spectrum of the
MSSM; then, we describe a particular extension of this
minimal supersymmetric model by implementing flavon
superfields carrying quantum numbers under a flavor
symmetry A4 X As. This extension is one of the results
of this paper; it will be further developed in forthcoming
sections.

1. MSSM contents

In addition to the usual gauge superfield sector that we
will omit for simplicity, the chiral superfield spectrum of
the MSSM and their quantum numbers under SU(3). x
SU(2), x U(1), invariance are as shown in Table II, with
i =1, 2, 3 referring to the number of matter generations. In
superspace, these chiral superfields (and similar ones to be
introduced later; see Tables III and V) may be generically
denoted by ®,, with the usual @ expansion [35]

®,, = ¢+ V20.y,, + °F,,. (2.1)
Recall that properties and theoretical predictions of the
MSSM are well established; the interacting dynamics of the
MSSM spectrum is very well known, including both
spontaneous and soft supersymmetry breaking. Recall also
that this particular field theory dynamics is nicely described
in superspace; we refer to the rich literature for details
[36,37]. Moreover, notice that in this study we will focus on
those relevant contributions to neutrino physics coming
from couplings involving some ¢,,’s, auxiliary F,,’s, and

TABLE II. MSSM chiral superfield content.

sector chiral superfields ~ SU(3).  SU(2),  U(1l),

Li = (l/l',e_)L 1 2 -1

leptons RS = et 1 ) B

Qi = (u;.d;), 3 2 +3

quarks US = uf 3 1 —%

D¢ =df 3 1 +12

oo H, = (HEHD) I 2 +1

&8 H, = (HY. H7) 1 2 -1
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TABLE III.  Chiral superfields added to the MSSM.

chiral superfields SU3)¢ SU(2), U(l)y
A, = (Agv Ay, A;_) 1 3 -2
A= (A]7, A7, A9) 1 3 2

the usual auxiliary D’s; that is, those contributions to the
scalar potential of the model that lead to the computation
of neutrino masses and mixing angles (for details, see
Sec. III).

2. Extending the MSSM

There are several extensions of the MSSM that have been
considered in literature. The extension of the MSSM we are
interested in here concerns the enlargement of the Higgs
sector; it is obtained by adding extra chiral superfields
which carry quantum numbers under gauge symmetry and
also under the discrete symmetry A4 x A3. So the Higgs
sector in our proposal may be thought of as consisting of
three subsectors.

(i) The H subsector, involving the usual H,, H,; of

the MSSM.

(i) The A subsector of the extended MSSM (type II

seesaw); see Table III.
(iii) The y subsector. This is our subsector; see Table V
for its content.

Before giving the full superfield spectrum of our model,
let us first focus on the A subsector; this is a particular
extension of the Higgs sector of the MSSM given by adding

two chiral superfield triplets Eu and A, with gauge
quantum numbers as in Table III. The y = £2 hypercharge
values are required by gauge invariance of the superfield
couplings H, ; and A, ; in the chiral superpotential W =
W(H, A) of the extended supersymmetric model; this chiral
superfield coupling has the form

W= )*uTr(Hu ® Au ® Hu) +)“dTr(Hd ® A01 ® Hd)7
(2.2)

where 1, ; are Yukawa coupling constants.

To describe the y subsector, it is interesting to first collect
some useful tools on discrete groups, in particular, on the
group A4 X A; and its representations.

B. A4 x A3 symmetry

First, notice that A; = Z3 is an Abelian group and so its
irreducible representations 1, are one dimensional with

charge r =0, 1 and g = ¢'%". This group should not be
confused with the A subgroup contained in A,. In what
follows, we will focus on describing pertinent properties of
the discrete symmetry, in particular those concerning the
non-Abelian A, factor and its representations. These
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realizations will be used later to refine the quantum
numbers of the chiral superfield spectrum (see Tables II
and III) as well as the content of the y subsector given in
Table V.

1. A, and its representations

The finite A, symmetry is a non-Abelian discrete group
with order 12; it is a particular subgroup of the symmetric
S4 and is generated by two noncommuting elements S and
T that satisfy the following cyclic relations:

§?=1T3= (ST =1. (2.3)
Because of their noncommutativity, S and 7 cannot be

diagonalized simultaneously; later, we use the basis where
S is diagonal.

Representations and tensor products.—By using the group
character relation 12 = >_,d? relating the order 12 of the
group A, to the dimensions d; of the irreducible repre-
sentations R; of A4, we have
12=12+12+1%2+3% (2.4)
From this relation we learn a set of useful features, in
particular
(i) the group Ay has four Ry, R,, R, R, with respective
dimensions d; as in Eq. (2.4),

(ii) it has four conjugacy classes C, C,, C3, C4 given by
Eq. (A5) of Appendix A, and

(iii) it has one irreducible triplet 3, but three kinds of
singlets 1, 1/, 1”.

Though interesting, the appearance of three singlets in
the A, representation theory makes their use somehow
subtle; this difficulty is apparent and can be overcome
by using the characters yg (C;) = y;; of the irreducible
representations. The basic table of these characters, thought
of as a matrix y;; = yg.(C;), is given by Eq. (A6) in
Appendix A. By restricting to the characters of the S and T
generators of A4, the above four irreducible representations
R; can be characterized as follows:

1 : 1(1’1),
3:310)

1" l(l.u))’

17:1(1 ). (2.5)

where @ = ¢ with the usual feature 1 + @ + @ = 0 and
@ = w’. These irreducible representations obey the follow-
ing tensor product algebra [16,31]:
310)®3C10)=1(1.1) B L(1.0) B 1(1,,2) B 3(_1.0) D 3(-1.0)
3(_1.()) ® l(l,a)’) :3(—1,0)’

1.0 @110 = 1(1.0r+), (2.6)
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where the integers r and s take the values 0, 1, 2 mod 3.
Observe that these relations preserve total dimension and
the total character. Observe also that the tensor product
3(_1.0) ® 3(_1,0) has a singlet 1; ;); the same feature holds
for higher product powers, in particular, for the cubic and
quartic powers to be encountered later in our construction:

30100 ®310)®3ig =141 ® ...

30100 ®3C10)®3i0)®310 =1 @ ... (2.7)

Superpotential—The superpotential of chiral superfields
®,; in the extended MSSM is given by a superfunction
W(®;) that obeys two kinds of symmetries:

(i) invariance under the SU(2), x U(1), gauge group;

(ii) invariance under the flavor group A4 X As.

Since W(®;) has a polynomial form in the chiral
superfields ®;, the invariance of the superpotential under
A, X Az is obtained by performing tensor products of
irreducible representations. Seeing that the tensor product
of the 1, representation of A3 is governed by the fusion
relation 1 g ® 1 ¢ = 1 g the main difficulty comes from
the non-Abelian A4 when computing higher-order mono-
mials of the type

(2.8)

it

with the fusion algebra (2.6). These computations are
necessary since the Ay-invariant trace Tr,, W(®;) is given
by the following restriction:

Try W(®;) = W(®,) (2.9)

|1(1.1)'

To illustrate how the method works let us focus on the A,
subsymmetry and later extend the construction to the full
discrete symmetry.

2. A,-invariant superpotential

As a first step to implementing flavor symmetry in
neutrino supersymmetric model building, we consider the
superfield spectrum given in Tables II and III, to which we
add flavon chiral superfields

Xk = ()(1,)(27)(3), (2-10)

which transform as a triplet under the discrete group Ay.
Then, we attribute the following A, quantum numbers to
the chiral superfield spectrum:

113005-4



TYPE I SEESAW SUPERSYMMETRIC NEUTRINO MODEL ...

PHYSICAL REVIEW D 93, 113005 (2016)

chiral superfields | L; | RQUsDS | HyaAva |k @11
A, symmetry ‘ Ly a1y ‘ 310 ‘ 1 ‘ 310 '
where the L;’s refer to the left doublets (v;,e™),, the R’s 3-10) ®3-10) ® L1 1) ® 111, (2.15)

to the right-handed e{, and the others are as in Tables II
and III. Notice the following remarkable features:

(i) The three lepton doublets (L, L,, L3) sit in different
A, singlets, while the right leptons (R{, RS, RS) sit
together in an A, triplet [38].

(i) The implementation of the A, discrete symmetry is
not a soft operation; by attributing A, quantum
numbers to leptons L; and Rf, the usual superfield
couplings for building the lepton mass matrix,
such as

YIRCLiHy,

are forbidden by invariance under discrete
A,. Indeed, by focusing on the charged
lepton sector, the chiral superpotential
Wiep+ describing the usual gauge-invariant
Yukawa couplings,

Wlep+ = leRlCLJHd, (212)

is no longer invariant under A, transforma-
tions, since from the view of the A4 repre-
sentation group theory this chiral superfield
coupling has the following tensor product
form:
310 ® Ly ® Luy~310),  (2.13)
which does not contain the desired A4 singlet
1(11) in the trace (2.9). We will see later that a
similar feature to Eq. (2.12) also happens for
the chiral superpotential W, describing
couplings involving neutrinos.

To make the gauge-invariant W), symmetric as well
under the discrete A;, we have to modify the chiral

superfield interaction (2.12) like Wlep+ =Try 4(W16p+),
with

~ 1 ..
Wiepr = X}’”k()(inLkHd>7 (2.14)

where yU* are Yukawa couplings, A denotes a cutoff
scaling as mass (to be related in Sec. IV with a flavon
VEV), and y; is an A, flavon triplet. The fourth-order

superfield coupling y;RL;H, transforms under discrete
symmetry as

with the reduction containing the desired A4 singlet type
1(;1). Indeed, by using the fusion algebra (2.6)—in
particular, the reduction 3(_1,0) ® 3(_1,0) = 1(1’w1ﬁ7) D ...
with p = 1, 2, 3—it follows that the above chiral superfield
product wusually contains a term of the form
1) -1y ® 1y ,-1), leading precisely to the desired singlet
1(;1). To write down an explicit expression in terms of
the superfields, it is interesting to work in the basis of Ay
where the generator S is diagonal. In this basis, the tensor
product R ® y between the two A, triplet superfields
R = (ef, €5, €5) and y = (1, x>, x3) reads as

e ey e
RC ®){ = 65)(1 65}(2 65)(3
esxy1  esxr  esxs

(2.16)

It is formally given by 3_; g) ® 3(_1 ) with nine compo-
nents transforming in the 9 representation of Ay,

which is reducible as in Eq. (2.6). The restrictions of this
tensor product to the three A, singlet components 1(; ) are

given by

R @ xli,,, = eix1 + e + €5y,
R ®xly,,, = ¢x +wesp + w?eys,
RE®xli, . = ein + ey + wesys, (2.17)
satisfying the properties
. L. L. L.
eix1 =3 R ® x| +t3R ® %l +t3R ® Xlu2
2 = B @2+ LR @ 1], + LR D 1,
s = %RC ® 7 +§R" ® ¥lw +%2R" ® 2l (2.18)
where we have used the notations
REQ =R ®xli,,-
R ®rl, =R ®z,, -
R @yl = R ® 4], (2.19)

(La?)

If we choose the VEVs of the A, triplet y; as in the Altarelli-
Feruglio model (AF) [39] and the VEV of the Higgs H, as
usual
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<Zi> = ;((lv L, 1), <Hd> = Vg,

then by substituting these expressions back into the super-
potential (2.14) we obtain the charged lepton mass matrix
M+ as

(2.20)

Mgy =25 vy @y, o*y, |, (2.21)

. @y, wy,

where the Yukawa couplings y, , . are related to the ones in
Eq. (2.14) as follows:

_ ijl ij2
Ye =Y, /

Yo =YP oy =y, (2.22)

where i = j = 1, 2, 3. Following Ref. [40], this matrix can
be diagonalized by using asymmetric left and right trans-
formations like Mfel;% = UrM¢p+ Uj with eigenvalues
m;(i = e, pu,7) given by

v, 0 0
di \/§U Vg
Mle;§: AZ 0 y, 0|, (2.23)
0 0 y
and where
. 1 1 1 1 0 0
U = — 1 a a)z . U = 0 1 0
L \/§ R
1 o* o 0 0 1
(2.24)

In order to obtain the hierarchy among the three families of
charged leptons, one may use the Froggatt-Nielsen (FN)
mechanism which consists of adding a new U(l)gy
symmetry with a new charge to be assigned to the right-
handed charged leptons [41]; for more details we refer to
Refs. [16,39]. Following the AF model [39], by taking
v.04 < 250 GeV and by using the experimental value of
the tau lepton mass, we get a constraint on the lower bound
of the ratio of the triplet VEV v, over the A cutoff scale as
follows:

% < 0,004,

2 (2.25)

ITII. SUPERSYMMETRIC A4 x A3
NEUTRINO MODEL

In this section, we use the tools introduced in the
previous section to develop our supersymmetric A4 X Az
neutrino model describing neutrino mixing and their
masses. First, we give the superfield spectrum of the
proposal; then, we study the contributions of the y sector
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to the chargeless leptons of the model, in particular the
aspects regarding neutrino masses and their mixing.

A. Superfield content

The superfield spectrum of the A4 X A3 neutrino model
involves—in addition to the usual superfields of the type II
seesaw picture—extra flavon superfields with nontrivial
quantum numbers under A4 X As.

1. Chiral superfields in type Il seesaw

In our model, the Higgs sector has three subsectors:
(a) the H subsector involving the H,, H; superfields of the
MSSM, (b) the A subsector given in Table III, and (c) an
extra y subsector involving flavons. The quantum numbers
of the chiral superfields of the H and A sectors are shown in
Table IV (with explicit content like in Tables II and III).

The A, X Az-invariant superpotentials relevant for the
neutrino physics will be studied explicitly once we intro-
duce the superfield content of the y subsector.

2. Flavon sector

Flavon superfields are chiral superfields which transform
as singlets under gauge symmetry, but in general they carry
nontrivial charges under the A4 x A5 flavor symmetry; for
our concern, we show the relevant flavons in Table V.

These flavons couple to the lepton superfields of the
model; for instance, the chiral superfield triplet y;, which
was introduced previously in Eq. (2.14), is needed to build
the mass matrix for the charged leptons. The other chiral
superfield triplet y} is needed to engineer the Majorana
mass matrix of the neutrinos; its coupling to leptons will be
described in detail in the next subsection.

Moreover, the trivial singlet ® is needed to reproduce the
correct mass-squared difference Am3; # 0, while the non-
trivial singlet ®' has been added in order to generate a
nonzero mixing angle #3. Notice also that the discrete
symmetry A; is required to satisfy the following:

(1) Exclude unwanted terms that appear in A4-invariant

superpotentials for charged and chargeless leptons.

TABLE IV. A, x A3 quantum numbers of the matter and Higgs
superfields.

sector  superfields SU(3). SU(2), U(l), Ay A
Li l 2 —l ](1,@1—1) ]0

leptons R | | ) 30 L
0; 3 2 +1 30 o

quarks Us 3 1 -3 3o b
Dy 3 1 +2 3 Lo

, H, 1 2 SR PR
Higgs H, 1 2 -1 1gy o
A, 1 3 -2 gy o

Ay 1 3 +2 lay o
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TABLE V. The flavon superfields.

superfields ~ SU(3).  SU(2),  U(l)y Ay A;
Xi 1 1 0 3ci0) L4
){; 1 1 0 3(_1_0) 10
P 1 1 0 (11 Iy
@ 1 1 0 L 1o

Without the extra A;, generic A-invariant super-
potentials W(y, ') would be invariant under the
exchange of the two flavon triplets, that is, by
performing the permutation

(3.1)

Xi<oX
(ii) Prevent yxy' interactions in the superpotential
through other intermediate superfields, and therefore
between the charged and chargeless lepton subsec-
tors of the supersymmetric A4 X A3 model. It hap-
pens that this constraint coincides precisely with the
so-called sequestering problem [23,24,42]. The A,
subsymmetry is therefore a requirement of the
sequestering problem.

B. Chargeless lepton sector
Before implementing A4 X As invariance, it is interesting
to notice that without flavons, the part Wy of the chiral

superpotential of the model that leads to the Majorana mass
may be expressed as

W]ep() - ﬁﬁeLeAdLe + lfﬂLeAdLﬂ + lsTLeAdLT

+ M L,AL, + ML, AL, + 2 L,ALL,

+ AL AL, + AL AL, + AL AL, (3.2)
where 2 = /" are Yukawa coupling constants. By using
the A4 quantum charges given in Tables IV and V, it follows
that the three terms L,A,L,, L,A4L,, and L A,4L, are
invariant under A, transformations, but not the other terms
of Eq. (3.2) due to the fusion relation 1(; ) ® 1(1 ) =
1(j o+ which in general is not a trivial singlet. For

example, by using Table IV, the superfield coupling
L,A4L, transforms under the A4 representation like

lm ®1 (L?) ® 1(1,1)’ (33)
which behaves as a nontrivial singlet representation since it
is given by 1(; ,). To overcome this difficulty, we introduce
an extra flavon superfield that transforms as 1(; ,); by
using the fusion algebra (2.6), this nontrivial singlet of A,
can be thought of in terms of a composite of the y’ triplet as

PHYSICAL REVIEW D 93, 113005 (2016)
XX (3:4)

where the notation (2.19) has been used. The two other
singlet composites appearing in the reduction of the tensor
product ¥’ ® 4/, which are denoted as

W )e and (7).

are needed to recover A, invariance of the other couplings,
as shown below. Notice that if we use only the three A4-
invariant terms described above, the neutrino mass matrix
will not agree with the TBM matrix and thus with the
mixing angles 0, and 0,3; with the three invariant terms
L, A4L,, L,A;L,, and L A,L, the shape of neutrino mass
matrix is given by

(3.5)

x 0 0
0 0 y|. (3.6)
0 y O
where the mixing matrix is
1 0 O
1 1
07— (3.7)
o L L
V2ooV2

which is clearly in conflict with the TBM matrix.

1. Implementing the flavon triplet y.
To restore A4 invariance in the chargeless lepton sub-
sector, we add' the A, triplet ¥, = (¥}, x}.x5) and modify
the superpotential W of Eq. (3.2) as

Wlepo = TrA4 [W;ep ] = ;ep°|1(u)’ (3.8)
with
e
Vviep0 - )“lcjeLeAdLe +— A2 L AdLﬂ()(/ /)lw
/1” !ol leﬂ 1ol
e LAl o g AL U
o
A2 LﬂAdL (Z/ /)|a)' +/1ﬂ L AdL
+ 3 LBl (01 )] + A LAGL,
i
+ PLTAdLT()(/X/) |a)' (39)

In this relation, the term (y’y’) stands for y'®y’ trans-
forming in the 3(_; o) ® 3(_; ) representation of the A4

"The first triplet has been used in the charged lepton sector; see
Eq. (2.14).
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discrete symmetry whose reduction (2.6) contains
(amongst others) three possible A, singlets. The notation
(X'x')|¢ is as defined in Eq. (2.19), which for convenience
we recall below:

(Z/Z/)hll E()/)/)'l — /2+ 2 _|_)(/327
XN, = 00 =
Wxh . =02l =

2+ oy} + o¥E,
2+ ol +wy?. (3.10)
2. Tribimaximal mixing matrix

For the sake of the TBM matrix, the neutrino mass
matrix must respect the y — 7 symmetry and the two
following conditions [5,43]:

(My) + (M), = (M) + (M,)3,

(M,)1, = (M,)3. (3.11)
The implementation of the form of the TBM matrix for
generating neutrino masses requires vacuum alignment of
the A, triplet ' and for A, as follows™:

) =v r(l 0,0), (Ay) = Ua,- (3.12)
Hence the neutrino mass matrix is
e b ACh
M, = v,, N B el S A (3.13)
b AT b
where we have set
2
A—)’zzﬂz =b. (3.14)

Since the higher-dimensional operators involving (y'y’)
contribute to the tiny mass of the neutrinos, the VEV of the
flavon y’ should be small and close to the cutoff scale v, <
A which means that » < 1. Assuming for simplicity that the

Yukawa couplings 2 are of the order of unity,3 and using
the usual tribimaximal mixing matrix U, it results that the
above mass matrix M, is diagonalized as M, = U'M,U
with

’To avoid heavy notations, we denote the leading scalar
components with the same letter as the superfields; see also
the comment after Eq. ([27]).

We can get the TBM matrix without assuming the Yukawa
coupling of O(1), but to do so we have to impose some
conditions on them in order to satisfy the relations (3.11); hence,
for the matrix (3.13) we impose the following: 4,/ = A¢7, A =
AT and A% + 41b = AFb + A

PHYSICAL REVIEW D 93, 113005 (2016)

1-b 0 0
M, = v,, 0 1+2b 0 (3.15)
0 0 -1+0
Recall that the TBM mixing matrix has the form
2 1
-3 % 0
— 1 1 1
U = = & -5 (3.16)
1 1 1
Vo VioV2
It predicts the mixing angles as follows:
sin2912 == sin2923 == sin2913 =0. (317)

However, a careful inspection of the eigenvalues of M,
reveals that we have Am3, = 0, which is in conflict with
the data in Table I. For this reason, we need to correct the
mass matrix (3.13), a correction that we realize by further
enlarging the flavon spectrum of the model as
described below.

3. An extra flavon singlet ®

To generate appropriate masses for the neutrinos, we
deform the superpotential (3.9) by adding 6W o contri-
butions inducing off-diagonal elements in the matrix M, as
a perturbation so that we can preserve the form of the
matrix (3.13), which respects the y — 7 symmetry and the
conditions in Eq. (3.11) where the A, trivial singlet ® is
sufficient to solve the problem. Since the superpotential
(3.9) is A, invariant, if we add one nontrivial singlet (such
as ® ~ 1, or " ~1 ) we do not obtain invariant
terms; this is why in the case of one singlet, the trivial
L1y ~ ® = ¢ + Oy, + 6> F is the only representation that
reproduces the TBM matrix. Hence, the desired deformed
chiral superpotential reads as

Wl/ W/

lep? lep® + 5W]epo ’

(3.18)

with an additional WV, = Try, [6W)e0] term given by

ey

Ay
6 Wlepo —

F[L AgLy, + L AgL (R0 Y ).)

le’l’
+-3 A
/IT”
A3 [

[LeAgLe + LeAGL(R0'Y ) 02)

L,AsL, + L AL (P Y )]),  (3.19)
where the scale A is the cutoff introduced before. Since the
flavon @ is introduced only to resolve the problem of the
zero squared-mass difference Am3; = 0 its presence does
not change the mixing angles, and also because it
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transforms trivially under A4 its VEV does not break A,.
Accordingly, we have two possible routes: (i) either we
assume that (®) = vg is much smaller than the cutoff
scale vy < A where invariant terms like the series
SLeAJL,(3)" may be suppressed by the factor of
’% < 1, or (ii) the VEV oy is of the order of the cutoff
scale (vg ~ A) where the terms AL, A,L,(3)" are com-
parable to A{°L,A,L,. In this way, we assume that the
additional factor coming from the combination of these
operators is absorbed into the coupling constants A5¢. The
previous neutrino mass matrix M, [Eq. (3.13)] gets
corrected like M, = M, + 6M,, whose expression can
be put into the form

1 b+c b+c
b+c b 1+c¢ |,
b+c 1+c¢ b

M, = v, (3.20)

d

where b is as in Eq. (3.14) and where we have set
2
1))(/ Vg o l)_q>

c

Therefore, the convergence of the geometric series
L,A4L,Y.,(3)" turns into the condition |c| < |b|. The
new mass matrix M}, is diagonalized by the TBM mixing
matrix U as M., = diag(m,, m,, m,), with the neutrino
mass eigenvalues (in units of v, ) given as

m =1-—c—b,
m, =2b+2c + 1,

my=b—c—1. (3.22)
From these new eigenvalues we learn that Am3, =
—4c¢(b — 1) is no longer vanishing provided that we have
b # 1 and ¢ # 0. Notice that the same constraint on the
parameter b (bX1) holds for the parameter ¢ for the same
reasons we mentioned in the previous subsection; thus,
¢ < 1, which means that uj,vg < A3,

C. A4 x Az-invariant scalar potential

Here we study the A, x As-invariant scalar potential; the
Az symmetry is needed for the reasons mentioned in
Sec. IITA.

1. Higgs and flavon sector

By using the notation of Ref. for monomials of flavons
(in particular, the quadratic y> =y ® ¥/ and the cubic
>=y ®y?), the A, x As-invariant superpotential
restricted to the Higgs isodoublet H, ,, isotriplet A, ;,
and flavon superfields y, 4/, @ is given by

PHYSICAL REVIEW D 93, 113005 (2016)
Why_p=uH,H; + MATr(AuAd> + A‘MHMAMHM
+ /IdeAde + ﬂ)()(lz + l@fb}(ﬂ + ﬂé“bz + /1)(3
+ )" + 2.9 + k@ + hH,PH,

+ 6, PTr(A,A), (3.23)
where u, pa, pe, u, are mass parameters and 4., h;, o, are
coupling constants. To justify the choice of the Aj;
symmetry instead of just Z, to discriminate the two flavon
triplets, we need to analyze the scalar potential.

2. Scalar potential

Gathering all the contributions from F, D, and soft
terms, the scalar potential V,, of the model is given by

Viot = Vsusy + Vorts (3.24)

with

Vsusy = |Ful* + [Fal* 4+ |Fa,[* + |Fa,?
+|F |2+ [Fy 2+ |Fo|> + D* + D%, (3.25)

where the explicit forms of Vgygy and V. are given in
Appendix B. So the A4 x As-invariant scalar potential is as
follows:

V= ORI+l Pl + 42, L PO + 9270
+ 8;4){/1(:1|)(/|2(I> + 12”)(’1/|)(/|3 + 12/1@(/1/|)(/|3‘I)
+ A.%X|}(/|4 + 2k¢'l§1|)(/|2 + 6)’§X/1CI)(/|2|@|2
+ 2/’1(;1ngqu|}/|2 + 26§15)(Tr(AuAd)|)(/|2
b g Bl gl 4 P 20l P

+ 2AC;(’(I)|)(/|2 + 2A)(|)(|3 + 2A)(’ |}(/|3 + Vind: (326)
where V; 4 consists of terms that are irrelevant with two Ay
triplets. The tensor products for all possible A4-invariant
terms are reported in Appendix C.

As stated before, in order to avoid the communication
between the charged and chargeless sectors (and thus the
interaction between the two Ay triplets y; and y}), we
impose invariance under the additional A; symmetry given
in Table V. It is easy to check that without the charges of
this symmetry, we can add to W_r other A4-invariant terms
like
But because of Eq. (3.1), the W will also have 4., ®y’ 2,
and thus an induced interaction between y and y’ through
®. This feature can be checked by first computing the Fg
term of the singlet superfield ® singlet and then |F|*. The
resulting term
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A Pl P (3.28)
spoils the vacuum alignment of the triplets (2.20) and
(3.12). To prevent the existence of the term (3.28) in the
scalar potential, one of the triplet-singlet interactions
should be excluded; this has been achieved by the A,
charges given in Table V [excluding the term (3.27)]. It is
possible to choose y’ to carry a nonzero charge under As
instead of y; this eliminates the term 1., ®y’ 2 from Wy p
instead of ACZCD)(Q, but this choice would take apart the
invariance of the superpotential (3.19) needed to obtain
the TBM matrix consistent with the data. Therefore, the
absence of the term (3.27) in Wy_r implies the absence of
the term (3.28) in V), thus allowing us to get the desired
vacuum alignment in Egs. (2.20) and (3.12) after breaking
the A, symmetry; see Appendix B for the details.

In addition, if we consider the interchange between y;
and y; for instance in Eq. (2.14), one generates the new
gauge-invariant term

14 yijk ! pc
‘/Vlep+ = T%'RijHdv

1

(3.29)

which is also invariant under A4. This extra term could be
excluded with a Z, symmetry acting differently on the two
Ay triplets like

Xi = i
Xi = X

i (3.30)
Xi = Xi

One may also assign Z, charges (+1, —1) for the rest of the
superfields so that the superpotential (2.14) and (3.18) is
invariant under Z, symmetry while preventing Eq. (3.29).
However, within this picture the term /1§T<I>;(2 cannot be
banned with the two possible assignments in Eq. (3.30),
thus allowing for the existence of Eq. (3.28) in the scalar
potential which would spoil the vacuum alignment of the
A, triplets, as mentioned before. This is why we choose the
A; symmetry to exclude the unwanted terms (3.27)—(3.29)
while keeping the required ones (2.14), (3.18), and (3.26)
with respect to A3 charges assigned to the various super-
fields listed in Tables IV and V.

As stated in Sec. III B 2, another chiral superfield is
needed to study the deviation from TBM, so one may ask
how this new flavon ®' will affect the scalar potential
(3.26). Since our aim is to study the vacuum alignment of
the A, triplets (2.20) and (3.12) and (as we presented
above) only one triplet is allowed to interact with the singlet
® in order to avoid the sequestering problem thanks to the
A; symmetry we have imposed, as the A3 charge assign-
ment for ¢’ is the same as ® only one triplet is able to
interact with @', allowing for the vacuum alignment to be
satisfied also with the presence of this extra flavon.

PHYSICAL REVIEW D 93, 113005 (2016)
IV. DEVIATION FROM TBM MATRIX

In this section we study the angle deviation from TBM in
order to reconcile the reactor angle 65 with the recent data
collected in Table I. First, we present the perturbation of the
neutrino mass matrix (3.20); this perturbation is captured
by the VEV of the extra chiral superfield singlet ®' of the
spectrum in Table V transforming as 1(; ., under A4. Then
we study the effect of this deviation on the mixing angles
0 13 and 923.

A. Deviation by A, singlet 1, ,

Using the chiral superfield ® of Table V and the cutoff
A, we see that we can perform a symmetric perturbation of
the superpotential (3.2) that induces a deviation of the mass
matrix M/, of Eq. (3.20). At leading order, the linear
deviation in @' that respects the symmetries of the model
is as follows:

/

®
6W; - K(LeAdLﬂ + LﬂAdLe + LTAdLT),

(4.1)
where the deviation parameter € = % < 1. While local
gauge and discrete A; symmetries are manifest, invariance
may be explicitly exhibited by using the A, representation
language,

@/
LeAdLyKN Lo @111y ® 11 02) @ 11,0

/

P
LebgLe 5~ L10) @ 11y ® Li10) ® L1 (4.2)

With this correction, the previous neutrino mass matrix M/,
gets deformed as

1 b+c+e b+c
My =v5,| b4cH+e b l+c¢ (4.3)
b+c 1+¢ b+e

This is a symmetric matrix that can be diagonalized by a
similarity transformation like Mgj,, = U'M"U. The sys-
tem of eigenvalues m; and eigenvectors v; can be computed

perturbatively; we find, up to o(&?), the eigenvalues (in
units of v, )

mlzl—c—b—g—f—o(ez),
my, =2b+2c+1+e¢,
m3:b—c—1—|—§—|—0(82),

and eigenvectors
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2

e 1
1
V3e —
toen |0 2T A5
Ve 1
4v2(b-1)

v =

L
NG
1
NG

1 €
U3 = _WJM\/E(H) ,

1 £
CRET=Y

with the condition b # 1 imposed previously. From these
eigenvectors, we get the unitary matrix U diagonalizing
M it reads, up to order O(e?),

_./2 L €
3 V3 2v2(b-1)
7 1 \3e 1 1 2
U= v “20-1) V3 2 + 42(b-1) +0(e7)
A _VBe 1 L,
V6 a2(b-1) V3 V2 42(b-1)
(4.5)

and coincides with TBM in the limit € — 0. The unitary
property of the above matrix holds up to second order in the
deformation parameter, i.e., UU=1+ O(€?). Notice, by
the way, that Eq. (4.5) depends on two free parameters ¢, b,
in particular on ;% (which will be used later on). Notice
also from Eq. (4.5) that the parameter of deviation & does
not affect the mixing angle #,,, where we have the same
value as in the case of TBM, sinf, = % Moreover, by
using the wusual relationships sin6; =|U,| and
cosf3sin6y; = |U,;3|, we get the link between the 63

reactor and the 6,53 atmospheric angles and b, € as given
below (see also Figs. 1-3):

Sm&y*iﬁéfﬁk
mwﬂzlaﬁéjﬁ—éﬂ. (4.6)

The deviation of the atmospheric angle 0,3 from its TBM
value can be seen as

1
sin? 0,3 = — — S O(€?),

2 4b-1) (4.7)

where, by looking at Table I, we understand that
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-0.143 <

15
<0.108 for NH,
Ab—1) " o

£
—0.14 <
“4(b-1)

Using Eq. (4.4), the parameter ¢ may be related to the
neutrino mass-squared differences,

<0.097 for IH.

(4.8)

Amé:4@4?—b—9a

Am3, = 31}2Ad[(b+c)(b+c+2+8) + el (4.9)

In the next subsection, we use the experimental values of
sin@;; and Am%j to make predictions concerning numerical

estimations of the parameters ¢, b, and ¢ capturing data on
the VEVs of flavons.

B. Normal hierarchy
Focusing on relations in Eq. (4.6), we plot in Fig. 1 (left
panel) sin 6,3 as a function of sin ;5 in terms of the ratio

€
b—1

—a (4.10)

induced by the VEV of the singlet ® (provided the
condition b # 1 holds) and from Eq. (3.14) the relations

lé#l % 24 (4.11)
A? ' A ' '
Notice that although the matrix (4.5) involves two free
parameters, the true dependence is only through their ratio
a which generates the deviation of TBM we are interested
in. Notice also that to draw this variation, we have assumed
that € and b are real parameters, and by using Eq. (4.6) we
find the linear deviations

1
sinf; = +——=a.

2V/2

The values of the parameter « that are compatible with both
sin®@; and sin6,; are shown in the left panel of Fig. 1
within their 30 allowed range for the normal hierarchy
(Am3; > 0) case; see Table I. We observe that the best fit
for 913,

(4.12)

sin@;3 = 0.1529, (4.13)
corresponds to
a =043, (4.14)

while for 6,3, we have
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0.642 : : : : : : 0.46 0.64 . . . . 0.41
0.64 0.45
0639 | {F4 0.405
0638 044
0.43 0638 | 1k 4 04
0.636 |
& 0.42 o
T 0634 | s 2 0637 1F 1 0395 &
@ 0.41 ?
0632 |
0.4 0.636 | 1F4 0.9
063 f 0.39
0635 | 1Y o385
0628 | 0.38
0.626 : : : : : : 0.37 0.634 : : : : 0.38
013 0135 014 0145 015 0155 016 0.165 0135 0137 0139  0.141 0143 0.145
sinGy3 SinGy3
FIG. 1.  Left: sin 03 as a function of sin 6,3 with the relative parameter @ = ;£; shown in the palette on the right for normal hierarchy.

Right: The same variation as in the left panel but for inverted hierarchy.

0.626 < sinf,; < 0.641, (4.15)
which is in the [-20,—30] range (as can be read from
Table I), and the interval of sin 8,3 corresponds to

037 < a < 0.452. (4.16)

1. Allowed interval for b

Since the parameter of deviation ¢ should be small we fix
its value in the range of O(55), and from the equations in
Eq. (4.6) we plot in the left panel in Fig. 2 sin6f;; as a
function of ¢ with the parameter b presented in the palette
on the right. We plot the same variation in the right panel
but for sin 8,5 instead of sin #,3. We observe with the color
palettes on the right of both panels in Fig. 2 that b is large
for different values of e. Moreover, as we discussed
previously in Sec. III B 2, in order to have a tiny masses
for neutrinos the parameter b should be less than approx-
imately 1 (b < 1). Hence, with the order O(1;) used for the

0.175 1
017 |
0.95
0.165 -
0.16 0.9
© 0.155 «
2 ; 085 2 @
@ 015+ a
0.145 | Sl 08
0.14
0.75
0.135 [ i
0.13

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

€

0.81
08

0.79 -

0.78

0.77 ¢

0.76

0.75

0.74 -

0.73

072

0.71

0.7

range of €, we read from Fig. 2 that b is positive and closely
framed as

2
U
x

0.005 b =5

<1, (4.17)

and by using Eq. (3.14) we conclude that the value of the
cutoff A is around the value v,, the VEV of the flavon
triplet /.

2. Allowed intervals for ¢

To get the allowed interval of the parameter ¢, we shall
think of (vad, b, €) as spectral parameters and consider the
first equation in Eq. (4.9) with the 30 to express Am3, as a
function of ¢. For &£ ~O(f;) the parameter b is as in
Eq. (4.17), while in models with an extra Higgs triplet A,
the vy, is fixed by using the relation vy, ~ 7 (4] are the
Yukawa couplings). By using this relation and the recent
cosmological upper bound on the sum of the neutrino

0 001 002 003 0.04 005 0.06 007 0.08 009 01
13

FIG. 2. Left: sin;5 as a function of € with b shown in the palette on the right. Right: sin 8,5 as a function of ¢ with b shown in the

palette on the right.
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FIG. 3. Left (Right): Variation of Am3, as a function of the parameter c¢ for different inputs (yid, b, ¢) for NH (IH).

masses (which is constrained to Y m, < 0.23 eV [44]), the
forthcoming inputs for vad are reasonable.

In the left panel of Fig. 3 we plot the variation of Am3, as
a function of ¢ in the case of normal hierarchy (Am3, > 0)
for two inputs:

vi =0.01 eV?, b=0.8, e=0.09 (4.18)
d
for the blue dashed line, and
I)ZA =0.3eV?, b =0.98, e=0.045 (4.19)
d

for the red dashed line. It is clear from the equation for
Am3, in Eq. (4.9) that the sign of ¢ depends only on the
value of b, which we found to be positive from Fig. 2,
because Am3, and vid are positive-definite parameters. We
observe in the left panel that ¢ varies in the range

032<¢=<0.38 (4.20)
for the blue dashed line, and
—0.83<c¢<-0.78 (4.21)

for the red dashed line. Notice that the NH depends strongly
on the parameter b; for example, for values 0.96 < b < 1
we remark that the factor (1 — b — £) in the first equation of
Eq. (4.9) is negative, so ¢ has to be negative as well in order
to respect Am3, > 0 (red line in left panel of Fig. 3). On the
other hand, for 0.005 < b < 0.95, the factor (1 —b —%) is
positive for any allowed value of ¢; this requires ¢ to be
positive in order to respect Am3; > 0 (blue line in left panel
of Fig. 3).

C. Inverted hierarchy

We represent in the right panel of Fig. 1 the same
parameters sinf3, sinf,3, and ;%5 =a as in the left
panel of the same figure, but this time for the inverted

hierarchy with (Am32, < 0). The allowed region for « is

constrained by the values of the mixing angles sin 8,5 and
sin #,3 at 30; we observe that for the mixing angles 6,3 and
013 we have

0.6348 <sinf,3 < 0.6394, (4.22)

which is in the range [-20,—306] (as can be read from
Table I) and

0.1348 <sinf3 < 0.1354 (4.23)
where this intervals corresponds to
0.385 < a £ 0.408. (4.24)

We show in the right panel of Fig. 3 the variation of Am%1
as a function of the parameter ¢, where the latter is
constrained by the 3¢ allowed region of Am3,. The input
parameters b, €, and vid are as follows:

uid =0.5eV?, b =10.98, e=0.045 (4.25)
for the blue dashed line, and
U2A =0.0045 eV2, b=0.3, e=0.08 (4.26)
d

for the red dashed line. Thus, we observe that ¢ varies in the
range

042<c=<05 (4.27)
for the blue dashed line and
—-08=<c¢<-07 (4.28)

for the red dashed line.

V. LFV TO CONSTRAIN MASSES

In this section, we study LFV in the charged lepton sector
in order to provide estimations on the mass of the flavon y;
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and the cutoff scale A used in Egs. (2.14) and (3.9). First,
we break the A, symmetry down to Z5 in order to induce
LFV in the charged lepton sector; then, we calculate the
analytic flavon masses. Next, we use the branching ratio of
the allowed lepton-flavor-violating decays to give numeri-
cal lower bound estimations on the flavon masses and an
upper bound on the cutoff scale A.

A. Breaking A4 to Z;

The discovery of neutrino oscillations provides clear
evidence of lepton flavor violation in the chargeless lepton
sector; however, in the charged sector LFV has not been
observed yet. In this subsection, we study the breaking of
the A, group to its subgroup Z5 in order to get the allowed
lepton-flavor-violating decays mediated by the flavon y;
in the charged lepton sector. To start, we recall that in
Sec. II B 2 the VEV of the flavon triplet was taken as (y) =
v)((l, 1,1) [Eq. (2.20)], and because we are working in a
basis of A4 where the matrix generator S;; is diagonal4 this
structure of the triplet VEV breaks A, down to its subgroup
Z3, with the matrix 7';; as a generator,

T;i(xj) =0, (5.1)
By looking at the characters of the S and T generators of A4
for the lepton superfields (2.11), it is not difficult to check
that leptons /; transform in different manners under the
three possible representations 1, of the residual symmetry

Z5 characterized by the phases " = e%, with r =0, 1, 2
and sum 1 + @ + @? = 0. Indeed, because A, singlets are
also singlets of its subgroup Z;, the left-handed charged
leptons L, live in the representations
L,~1y, L,~1, L.~1

" (O3] T (o} (52)
and because of the decomposition of the A, triplet 3 in
terms of irreducible Z; representations (namely,
3)=1, &1, ®1,), the right-handed A, triplets (e{) ~
3 are now combined into three Z; singlets with different

characters as follows:

1
e :ﬁ(€T+€§+€§)N11,
1
o= 5+ aes + o) ~1,,
1
° = —(€§ + 0’es + we§) ~ 1. (5.3)
\/§ [0)

“The alternating group A4 has two noncommuting generators S
and T with the property S* = T3 = I; because of the non-
commutativity ST # TS, only one of them can be chosen
diagonal. In Eqgs. (A2) and (A3), the diagonal S and nondiagonal
T are, respectively given by the matrices a, and b;.
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Consequently, the radiative decays [; — Ly (i # j) are
all excluded in our model by the residual symmetry Zs;
this is because /; and /; live in different representations 1,
and 1,,, and the photon y is a singlet of Z5. On the other
hand, by using Egs. (5.2) and (5.3), the LFV three-body
decays

tt > etetu,

= utute” (5.4)

and their charged conjugates are allowed due to the
representation character property 1, @ 1,» = 1,0n. As
these decay modes are mediated by the flavon triplet y;, we
start by calculating its mass.

B. Mass matrix of flavons

In order to calculate the mass matrix of field modes ¢;
describing the y; fluctuations near the vacuum expectation
value (v,.v,.v,) of the flavon triplet y;, we proceed as
follows. First, we consider the pure y contribution V), to
the full scalar potential (3.26) of the model; it is given by

V, = Try,V, with

V, = (B4 + myly? +24,7°) (5.5)

[where y* stands for y ® y = (y;x;)], and a similar
relation for the other y° and y* terms. Second, we use
A, representation properties to decompose these tensor
products into sums over irreducible representations of A,
and take the trace afterwards; the explicit expression for
Try,V, can be read by substituting Egs. (C4)—(C12)
from Appendix C. Then, we expand the flavon field triplet
(x1,x2.x3) around the vacuum expectation value as
follows:

X1 :U)(+§]a
X2 :U;(Jf_é:Za
X3 = U){ +§3s (56)

where the &;’s are field fluctuations; they will be thought of
as real fields. This step, which breaks A, to its subgroup Zs,
leads to a quartic scalar potential V, = V(&;.&,,&3) from
which we can determine the mass matrix

10,

2 ___ X
(mé)ij - 28€ia§j 5:0‘ (5'7)

It reads explicitly as follows:
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m; + 2342%0;
1
(m?)ij =3 1442207 + 1240,
1441202 + 124,0,

The next step is to diagonalize the above mass matrix; we
find

1
2 2 2.2
m; = Em)‘ + 4547, — 6A,v,,

2 2
me, = me,,

1
m} = Emf( +2612%07 4 124,0,,,

with two degenerate values.

(5.9)

C. Mass scale A

To get the order of magnitude of the cutoff scale, we need
extra information in addition to the above flavon masses
(5.9), in particular the structure of the flavon Yukawa
couplings Ly, in the charged lepton sector. To be able to
use the experimental results on branching ratios (5.4), the
explicit expression for Ly is also needed to extract
information about which of the fields &; is exchanged in
lepton-flavor-violating decays. The fields ¢&; transform
under Z; symmetry like

Si~1y, &~ 1,

E~1,.  (5.10)

Hence, we obtain the desired expression for Lyy|. which,
by using Egs. (5.2), (5.3), and (5.10), reads as follows:

Vel . . .
Lywle = er(efl +ué +1°6)L,
yﬂvd
A

0 c c c
yAd (€G3 + pué + 76 )L,.

+ (€6 +pé +1°6)L,

- (5.11)

Moreover, by substituting the expression for the lepton
masses we obtained in Sec. I B 2 [Eq. (2.23)], the flavon

Yukawa interactions of the charged leptons in terms of the
flavons ¢; are given by

nm
LYukl}j = <\/§Z ecLe +
X

m
£ MLy, + e TCLT>§1
%

V3, V3o
mT

V3,

L, 4+ e e
" \/gl))( T 3

my

m
+ (7L, +
<\/§v;( V3,

e‘L, +

/’lCLT> 52

m,

m
+(—=—uL, +
<\/§vx g V3,

(5.12)
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1447202 + 1240, 144720 + 124 0,
m3 + 2342%;
1442%07 + 1240,

1447202 + 1240, (5.8)

m3 + 2342%;

Accordingly, we find that the flavon exchange &; does not
lead to flavor violation, while the flavons &, and &
contribute to the lepton flavor violation processes (5.4).
Following Ref. [45] and assuming that the contribution of
supersymmetric particles in the decay modes (5.4) is
negligible, the branching ratios of the these decays are
as follows:

m) mm, > | mom, |2
Br(r" — e y7) =ty < 3U§m§3 + SUgmgz >
m) m.m, | | m,m, |?
Br(e” > piuten) =1, 30757:3( 3oz | | 30zmz >
(5.13)

where ¢, is the mean life of the tau lepton. To get an
estimate on méz, we consider the second equation in

Eq. (5.13) and we assume that all terms proportional to
mZm? and m?m? are negligible because m, < m, < m.;
we obtain the branching ratio

m!m?

1
L ——— 5.14
’ 2764871’31); mg ( )
2

Br(ct — pfputem) =

which, after substituting ¢, as well as the numerical values
of the leptons masses from the Particle Data Group [46], we
obtain

3.21
T3
Uy,

Br(zt - putute™) = x 10° GeVs.

(5.15)

Using the current upper bound of the branching ratio
(5.15), which is Br(z" —= ptute™) < 1.7x 1078 at
90% C.L. [46], we get the following lower bound on the
mass:

10? mlm?
2 TR
méz ) Tm. (516)

If we assume that the mass of the flavon &, is of same order
of magnitude as v,—say, m;, = v,—we get a lower bound
on its mass mg, 2 45.6 GeV, which is surprisingly very
light. With this limit, such kind of flavons could be
generated through several decays; for instance, if the flavon
mass mg, could be lighter than the 7" boson, the decay

7% = ff& could occur at tree level. Moreover, using
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FIG. 4. Br(z" — u*u*e™) as a function of my, with v, shown
in the palette on the right.

Eq. (2.25), by giving a lower bound on the ratio of the
flavon VEV with respect to the cutoff scale (namely,
"K’f > 0.004) and taking m, = v,, we find an upper bound
for the cutoff scale given by

A <1.14 x 10* GeV. (5.17)

Notice that in Eq. (5.9) if the flavon trilinear coupling
A, >0, the mass of the flavon &3 could be heavier than
me, = mg, . However, the lower bound of the flavon mass in
Eq. (5.16) depends on v, and is specific for our model; in
general, such a constraint is model dependent. To illustrate
the relationship between the mass m,, and the VEV v,, we
plot in Fig. 4 the branching ratio Br(z" — y*ute™) as a
function of m,, for v, < 10? GeV represented by the color
palette on the right of the figure. We observe that for v, €
[40-100] GeV the mass m,, is less than 100 GeV including
the value we find above for m;, = v,; on the other hand,
when the value of v, goes down to 40 GeV, my, rises up
until 1 TeV which corresponds to v, = 10 GeV and to an
upper bound of the cutoff scale of the order
A <2.5x10° GeV. Hence, as m, increases both A and
v, decrease.

As a general comment, since the four flavon superfields
we added in our model are all gauge singlets, they do not
contribute to the mass of W+ and Z° bosons. However, in
the scalar potential (3.26) we notice that the flavon y’ mixes
with the Higgs doublets H, and H,; thus, they might
contribute to the so-called S and T oblique parameters [47].
Moreover, because some of the flavons could be lighter
than the Higgs or the Z° boson, they will open new decay
channels for these particles; as these two final points
require examining the collider phenomenology of the
flavons, we leave detailed investigations to future work.
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VI. CONCLUSION AND DISCUSSION

In this paper, we have constructed a supersymmetric
neutrino model based on A4 x A3 discrete symmetry. In this
model, neutrinos acquire a Majorana mass via the type II
seesaw mechanism, and TBM acquires an appropriate
deviation with 83 # 0.

First, we showed that it is possible to obtain the TBM
pattern with only one A, triplet; however, we found that the
physical observable Am3; = 0, which is in conflict with the
present data. We then allowed for the presence of an extra
A, scalar singlet ® ~ 1, ; which successfully reproduced
the TBM matrix with Am3; # 0; see Eq. (3.20). We have
studied the scalar potential of the supersymmetric model
where we allowed the addition of an extra A; discrete
symmetry, which is necessary to forbid the terms coming
from the interchange between the TBM A, triplet and the
one involved in the charged lepton sector, and also to avoid
the sequestering problem.

We next studied the perturbation of the neutrino mass
matrix that induces a deviation from the TBM matrix,
leading therefore to a nonzero €3 as proved by many
experiments recently. This deviation is made with the help
of a nontrivial A, singlet ®' which transforms under it as
1, ., In the beginning, we gave the resulting neutrino mass
matrix (4.3) which received a new contribution from the
VEV singlet ®'. Then, we gave the deformed TBM matrix
where the reactor angle 6135 #0 [Eq. (4.4)]. Next, we
showed numerically by means of scatter plots the allowed
regions of the parameters of the model which we have
constrained by using the 3o ranges of the neutrino
oscillation ~parameters sin6y;, sinf,;, and Am3,.
Moreover, we gave the allowed regions of the parameter
¢ where we found that the normal and inverted hierarchies
are both permitted in our model. Finally, after discussing
how the VEV alignment of the flavon triplet in the charged
lepton sector breaks A, to Z3, we studied the LFV in this
sector and we found that only the three-body decays r —
eey and T — ppe are possible under the residual symmetry
Z5. We also found that these decays are mediated by the
flavons &, and &;; therefore, we calculated the lower bound
of the flavon mass m,, by using the experimental branching
ratio of the decay 7 — ppe where we found that m;, is very
light (m;, 2 45.6 GeV) if we assume m;, = v,. We then
used the relation between the cutoff scale A and v, (namely,
UK* > (0.004) to get an estimation on the upper bound of the
cutoff scale, which we found to be of the order of
1.14 x 10* GeV. Nevertheless, we showed in Fig. 4 that
the bound of m, increases when v, decreases, and there-
fore the cutoff scale also decreases, giving its relation
with v,.

We end this conclusion by making a comment on the
TBM deviation using the other non-Ay singlet 1(; ,2) ~ ®”
instead of 1(; ) ~ ®'. The new contributions added to the
superpotential (3.2) are given by
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!

oW, =
YA

(LAgL, + L,AJL, + L ALL, ), (6.1)

where the cutoff A is the same as before. The invariance of
the above oW, under A, may be exhibited explicitly by
using
/!
T K ~
1

MXN

L,ALL Loy ® L) © Liw) ® 1(1.02)s

L/AAdL 1(1,(02) ® 1(1,]) ® l(lqu) ® 1(1’m2>. (62)
With this &' correction, the previous neutrino mass matrix

M, gets deformed as

1 b+c b+4+c+e
MU:UA([ b+c b+e 1+c (6.3)
b+c+e 14c¢ b

We repeat the same study as in the case of the singlet ®’. We
find that the eigenvectors at first order of ¢ are as follows:

_./2 e e
3 V3 2v2(b-1)
rrl 1 3¢ 1 1 £ 2
U=|%-wen v ~vi waen | TOE)
1 e S
Ve L aV2(b-1) V3 V2 4V2(b-1)

(6.4)

where after diagonalizing M, by the transformation
M gipe = U'TM,U', we obtain the same mass eigenvalues
as in the case of the singlet @’ [Eq. (4.4)] and therefore the
same neutrino mass-squared differences Am,-zj as in
Eq. (4.9). The mixing angles in the case of ®” are given by

. €
sin 63 :‘42\/5(17 i
. 1 €
sin 6,3 = ‘ —\/5—4\/5(17_1)’. (6.5)
|
1 00 1 0
aa=10 1 0], a=|0 -1
0 0 1 0 O
-1 0 O 0
aa=1 0 -1 01, by=11
0 0 1 0

PHYSICAL REVIEW D 93, 113005 (2016)

The deviation of the atmospheric angle 6,5 from its TBM
value can be seen as

1
Sil’l2 923 = 5 + (66)

where the sign in front of pTgs=) b£—1)

case of the singlet ®'. Therefore, the signs of its intervals
are reversed as follows:

is changed compared to the

&

b—1)

&

b—1)

<0.143 for NH.

—0.108 <
008_4

<0.14 for IH.

~0.097 < ¢ (6.7)

APPENDIX A: DISCRETE ALTERNATING A,

We here provide three appendices. Appendix A contains
useful aspects of the alternating A,. Appendix B concerns
the explicit derivation of the vacuum alignment property.
Appendix C concerns properties of the tensor algebra of
flavon superfield triplets used in the computation of the
scalar potential.

The alternating A, group has 12 elements that can be
generated by two noncommuting basic ones that we denote
by S and 7, satisfying the periodicity relations $*> = I;; = e
and T3 = I,,. In terms of these generators, we have [16]

a, =e, a, =S, ay = TST?,

a, = T°ST, b, =Ty, by =ST,

by =TS,  by,=STS, ¢ =T

¢y =ST2, ¢ =TST, ¢, =T2S.  (Al)

This discrete group has four irreducible representations;
three of them have one dimension, while the nontrivial

fourth one has three dimensions. A realization of these
elements in terms of 3 x 3 matrices is given by
0 -1 0 O
0 |, az=1 0 0 1,
-1 0 0 -1
0 1 0 0 1
0 0], b=1-1 0 0], (A2)
1 0 0 -1 0
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and
0 0 -1 0 0 -1 010
by=11 0 0 |, by=1-1 0 0 |, cg=|10 0 1],
0 -1 0 I 0 1 00
0 1 -1 0 0 -1 0
=10 0 -1], c3=| 0 0 1], =10 0 -1 (A3)
-1 0 O -1 0 O 1 0 O

Recall that A, is a subgroup of the symmetric S, consisting of only even permutations; a canonical representation of A4
elements is naturally obtained by considering 4 x 4 matrices acting on four elements x; and we the generators as S = (12)

(34), T = (123) (4), with matrix representations as follows:
0 1 0 0 X1 X 0 1 0 0 X1 Xy
1 0 0 O X X 00 1 0 X Y
2 | _ Hl 2| (A4)
0 O 0 1 X3 X4 1 0 0 0 X3 X1
0O 0 1 0 Xyq X3 0 0 0 1 X4 X4

Recall also that the discrete group A, has four irreducible representations R; with properties encoded in the orthogonality
character relations; in particular, in the formula 12 = 12 4 12 4 12 + 3. It also has four conjugacy classes C; given by

C, ={e}, Cy = {S,TST?, T*ST}, Cy ={T,TS,ST,STS}, Cy = {T?,ST?, T*S,TST}, (AS)
and it is used in building the character table y;; which reads as follows:
)(ij(A4) R, R, R, R;
¢ 1 1 1 3
C, 1 1 1 —1 (A6)
C3 1 (0] a)2 O
C4 1 (L)2 @ 0

APPENDIX B: VACUUM ALIGNMENT

The scalar potential (3.26) is derived from the usual F, D and soft terms of the supersymmetric minimal standard model
and its extensions. The F terms are given by

|Fu|2 = |ﬂHd +’1uAuHu =+ h(q)Hd 27 |Fd|2 = | u
|Fp,)* = |ualg + A H,H, + 5, DA%, |Fa, > = |u |F, 1> =
\Fy 1> = 2u + 220,/ ® + 3052, |F|?> = |hCHqu + 6, Tr(A,Ay) + 2/4@ + ke + AM + 3/1§<1>2|2 (B1)

The D terms are

1 2
D? — {5 (HyH, — H H,) + Tr(ALA,) — Tr(AJA,) |
3

N‘S{\) [\)|Q—Qw

1 1.
[ (Hio"H, + Hyo"Hy) + 5 Tr(Alo" Ag)) + 5 Tr(Ailo®. A,)) |

a=1

and for the soft terms we have
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Vot = miy, [Ha + miy [H, 2+ md |80+ m3 A2+ m2ly 4 m2 24 m2| @ + (byyH,H, + H.e.)
+ (baTr(A,A,) +Hee.) + (byx? + He.) + (b®* + Hee.) + [(A,H,AH, + AyH A yHy + Ay H, PHy) + Hee!]
+ (Aac®Tr(A,Ay) +Hee) + (A y*® + A + Ayy® + A + He). (B2)

To break the flavor and electroweak symmetries, we give nonzero VEVs to the neutral fields of the Higgs doublets, the
triplets, and the flavons. Focusing on the A, triplets y and y’, and denoting by

) = (vy,.0,,.0,,), W) = (0,04 02):
the VEVs solve the minimum conditions
v 0 o
i ' o
with V as in Eq. (3.26) and the VEVs of the triplets are as in Egs. (2.20) and (3.12). To get these VEVs, we should take into
account all possible A,-invariant contributions coming from the tensor products of three and four triplets of A, as they

appear in the computation of |y|* and |y|*; see also Appendix C for more details. By using the fusion operator algebra of A,
we have for the tensor product (3_1,0)‘3’4 the following expression:

(B3)

(Boo®3.0)% > (11111 D (11, ®11,) B (1,2 Q11,) ® (3, ®3%,,)
@ (3s—].0 ® 3Lil.O) @ (3i].0 ® 35—1.0) @ <3i].0 ® 361],0)’

which can be reduced further. Using the method of Ref. [24], we can approach the solution of the minimum conditions ) for
the A, triplet y through the relations

%%—%%:0, ﬁ;—v—%%zo, 013%—0“%:0, (B4)
they read explicitly as
0 = 364%0,v,,(v7, —v2) + 1240, (2, — 07 ), 0 = 364%0, v, (v2, —v2) + 1240, (2, — 02 ),
0 = 364%0,,v,,(v2, —v2.) + 1240, (2, —v2)). (B5)
Clearly, the solution for the last three equations is given by
v, =0, =0, =0, (B6)

It is precisely the VEV structure we choose in Eq. (3.12) to produce the TBM matrix pattern. The same method applies for
the minimum conditions coming from the triplet ’; we have

% oV 0 )% % 0 )% )% 0
vy ——v, — =0, vy ———0v, — =0, vy — =0, —=0.
£$ 81)1; £ 81))/2 43 8UX/1 £ 61))(3 43 81)){/2 *2 6‘%
Explicitly,
_ 242 2 _ 2 2 _ 2 2 2 _ .2 2 _ .2
0 =364"v 0, (1))(,l - v){,z) + 7220, (1)){,2 - Ux’l)(/’tl + Ag08) +44z,0, D/z(v;/l - Ux’z) + 1240y, (Ux’z h Ux’l) (B7)
and
_ 262 2 2 2 2 2 2 2 2 2
0 = 361"v, vy, (UX,] - ng) + 72’1,“%2(”;(3 -y )1y + A 08) + 422,04 0y (l)x,] - ng) + 12Axlvxrz(vx; - Dx’l)’
as well as

— 362 2 _ 2 2 _ 2 2 2 _ 2 2 _ .2
0 = 36400y, (UX,2 - ng) + 72X vy (l)x; - Ux’z)('u?( + AgyVa) + 422,005 (UX,2 - ng) + 1240, <Dx; —02).
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These equations have three solutions: we choose one
to produce the neutrino mass matrix (1) = (v,,0,0),
and the other two possibilities are (1) = (0,v,,,0) and

(') = (0.0,0,,).

APPENDIX C: TENSOR PRODUCT
OF A, TRIPLETS

Here we give useful tools for the computation of the
tensor product of Ay triplets. For the case of two A, triplets
taken as a = (a;, a», a3) and b = (b4, by, b3), their tensor
product is reducible with irreducible components given by
the following decomposition relation:

33=101"® 1" &35 3,. (C1)
Expressing this product as
a®b=a; (a®b),). (C2)

the irreducible components are given by

(a®b)|; = aiby + arby + azbs,
(a ® b)|1/ = Cllbl + wa2b2 + 602613[?3,
a |1// = a1b1 + 0)2612]92 + 0)03[93,

(a®b)
(a ®b) |5, = (axb; + azb,, asby + a b3, a,b, + ayb,),
(a®Db)
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As an application, we present all possible A,-invariant
terms for the monomials y2, y°, and y* which we encounter
in the scalar potential (3.26) by using Eq. (C3). For the case
x7, the previous a and b are identical, so we have

 ® )i =21 +15 + 13- (C4)
The other (¥ ® x)|g, are directly obtained from Eq. (C3).

For y3, we have for the example of (y ® ¥y ® y)|, the
following expression:

X1 X1 X1
)=l ]|®|r ® | »
i X3 X3 ; X3 3]
[ [ 20213 0 X
= v | +1 0 ® | x2 ||
2002/ s 0/ 4 X3 |
(CS)
leading to
r ®x ® 1) = 6xixaxs. (Co)

Similar expressions can be written down for the other

= (arb3 — azby, a3by — a\b3, a1by, — aby).
? s, = (axby = dsby. asby = arbs. by = axby) (¥ ® ¥ ® x)|g; they are not relevant for our study. To
(C3)  determine (r®y®y®y)l, we start from
|
4! X1 4! X1
U x@0i= || |®|n]||®||rn]|®|r (C7)
A3 A3 A3 X3 |
Then, using
BR303R3),=[101I'®1"®3;03,|1d1'® 1" ®3s® 3, (C8)
and by setting
Ix1=X, 'x1"=Y, 1"x1' =27, (C9)
we have
X =[0n)*+ 02 + 03l < [(1)* + (2)* + ()],
Y =[(01)* + or2)* + @ (3)]y x [001)* + 0*(12)* + @ (r3)*]r,
Z =)+ ()’ + o)l x (1) + 0(r2)* + @ (13)*]y- (C10)

We also have
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2003 2003 2003 0 0 0
3SX3S: 2)(1)(3 X 2)(1){3 y 3SX3A = 2}{1){3 X 0 s 3A X3A = 0 X 0 y
2nixa/ s 2/ s 2nxa) s 0/ 4 0/ 4 0/ 4
0 2203
3A X3S: 0 X 2}(1)(3 . (Cl])
0/ 4 202/ s
We end with
2 =3[0+ )t + O) 1+ 4100 )* () + ()> () + () (r3)7)- (C12)
Analogously, the exact calculations for the triplet 4’ lead to
K=t a2+ 25 APl =,
24 =300+ )+ 0A) + 4l (0a)* + () () + () ()] (C13)
After substituting the above results into the scalar potential (3.26), the minimum conditions (B3) are as follows:
oV % 0
v _o _o —o. (C14)
1] gry= 2l )= O3l ()=,
leading to
1082203, + 724%v, v3, + 120%v, v3. + 2miv, + 12A4,0,,0,, =0,
108/121)53(2 +72%0 Uy, Xl +722% Uy, X1 + 2m)(1)x2 + 124,00, =0,
108/121)§(3 + 72/121))(31))(1 + 72&2 v T 2mxvm + 124,00, = 0. (C15)
We also have
)% oV %
; =0, o7 =0, ; =0, (C16)
il iy, U=, %3 p=o,
giving
0 = 8|u[Pvy; + 8420y 05 + 1084%0;, + 722%0,0), + 720007, + 161,40y,
+ 72u, Uy Oy, + 20,4 VgDy, Uy + 12/10{ Y, + 812 Uy 1) —|— 8/1@{0){/ Ux
+ 4k§/1gvx/ + 12i§1/1§vx/ 1)<I> + 4hc/1§}(vuvdvxf + 464,04, 0, Uy,
+ 8, A vavy + 2m? 0y, T 4by vy + AAL g0y + 124, 0,00y (C17)
and
0 = 8lu vy, + 840,05 + 1084%0;, + 722207, vy + 72200}, + 16,4550y,
+ 72u, Uy Oy, + 20,4 VgLy Vyr + 12/1@( v + 8}»@( A + 8/1&0){/1)
+ 4k§/1gvx/ + 12i§1/1§vx/ 1)<I> + 4hc/1§}(vuvdvxf + 464,04, 0, Uy,
+ 8, A a0y, + 2m? Oy, T 4by vy + 4Ag vg0, + 124,05 0, (C18)
as well as
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0 = 8|p,[vy, + 8270, 05 + 108/1’21)3(,1 + 72/1/203‘5012(’1 + 72/1’20%1);2(/2 + 160, A0y

2 .3 2 2 2 2
+ 72;!)(/1’1))(/1 vy, + 72’1@(’1,”@“)(’1 vy, +122z,0,, + 814«)(1)%/31)%,1 + 8/1&0){/30)(,2

'

+ 4k§ACIUX; + lzig)(/lgl)xg Ué + 4h§/{§xvul)dl)xl + 45¢A§IUAMUAL11)X3

2
+ Suxﬂqu,vxg + ZmZ,vxg + 4b)(’vx§ + 4AC){’U<I>UX’3 + 12A)(/UX/1 Uy -

3
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