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Using the type II seesaw approach and properties of discrete flavor symmetry group representations, we
build a supersymmetric A4 × A3 neutrino model with θ13 ≠ 0. After describing the basis of this model—
which is beyond the minimal supersymmetric Standard Model—with a superfield spectrum containing
flavons in A4 × A3 representations, we first generate the tribimaximal neutrino mixing which is known to
be in agreement with the mixing angles θ12 and θ23. Then, we give the scalar potential of the theory where
the A3 discrete subsymmetry is used to avoid the so-called sequestering problem. We next study the
deviation from the tribimaximal mixing matrix which is produced by perturbing the neutrino mass matrix
with a nontrivial A4 singlet. Normal and inverted mass hierarchies are discussed numerically. We also study
the breaking of A4 down to Z3 in the charged lepton sector, and use the branching ratio of the decay
τ → μμe—which is allowed by the residual symmetry Z3—to get estimations on the mass of one of the
flavons and the cutoff scale Λ of the model. Key words: Neutrino family symmetry, supersymmetry,
deviation from TBM
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I. INTRODUCTION

In the Standard Model (SM) of electroweak interactions,
neutrinos ðνiÞi¼1;2;3 are left-handed and massless; this is
because in the SM there are no right-handed neutrino
singlets νiR that allow gauge-invariant Yukawa couplings to
the Higgs doublet yðH:LiÞνiR. However, recent experimen-
tal data on neutrino oscillations have shown that they have
very tiny masses mi and that the different flavors ν1, ν2, ν3
are mixed with some mixing angles θij, as shown in Table I
below. This important discovery led to awarding the Nobel
Prize in Physics for 2015 to Takaaki Kajita (SUPER-
KAMIOKANDE Collaboration) and Arthur B. McDonald
(SNO Collaboration). Although we cannot determine the
exact masses mi of the neutrinos, many experiments
performed in the last few years measured the squared-mass
differences Δm2

ij ¼ m2
i −m2

j and mixing angles θij, as
reported by several global fits of neutrino data [1–3], the
most recent of which can be found in Ref. [4].
To deal with the small masses and mixing of neutrinos

we need to go beyond the SM framework; for this purpose
many neutrino models have been proposed in recent years,
and it is common that the observed mixing angles θ12 and
θ23 are close to the tribimaximal mixing matrix (TBM),
which predicts them to be in the 2σ and 3σ ranges, as in
Table I [5]. The remaining θ13 is however not compatible
with TBM, as announced by recent experiments, [6–9]
although TBM still remains a good approach to the present
data. We recall that one way to reproduce TBM at leading
order (LO) is to go beyond the usual spectrum of the
Standard Model via discrete non-Abelian groups like the

alternating A4 symmetry, which is admitted as the most
natural discrete group that captures the family symmetry,
as motivated in the literature. Following Altarelli and
Feruglio [10], A4 models have a particularly economical
and attractive structure, e.g., in terms of group representa-
tions and field content [11–14]. For neutrino models based
on other discrete groups see, for instance, Ref. [15], and for
an introduction to non-Abelian discrete symmetries and
representations see Ref. [16] and references therein. Recall
also that there are several ways to generate masses for
neutrinos beyond the standard model, such as the imple-
mentation of dimension-five nonrenormalizable operators
[17]; or by using the three types of the seesaw mechanism:
type I with extra SU(2) singlet fermions, type II with an

TABLE I. The global fit values for the mass squared differences
Δm2

ij and mixing angles θij as reported by Ref. [2]. NH and IH
stand for normal and inverted hierarchies, respectively.

Parameters Best fitðþ1σ;þ2σ;þ3σÞ
ð−1σ;−2σ;−3σÞ

Δm2
21½10−5 eV2� 7.60ðþ0.19;þ0.39;þ0.58Þ

ð−0.18;−0.34;−0.49Þ
Δm2

31½10−3 eV2�ðNHÞ 2.48ðþ0.05;þ0.11;þ0.17Þ
ð−0.07;−0.13;−0.18Þ

Δm2
31½10−3 eV2�ðIHÞ −2.38ðþ0.05;þ0.10;þ0.16Þ

ð−0.06;−0.12;−0.18Þ
sin2 θ12 0.323ðþ0.016;þ0.034;þ0.052Þ

ð−0.016;−0.031;−0.045Þ
sin2θ23ðNHÞ 0.567ðþ0.032;þ0.056;þ0.076Þ

ð−0.128;−0.154;−0.175Þ
sin2θ23ðIHÞ 0.573ðþ0.025;þ0.048;þ0.067Þ

ð−0.043;−0.141;−0.170Þ
sin2θ13ðNHÞ 0.0234ðþ0.0020;þ0.004;þ0.006Þ

ð−0.0020;−0.0039;−0.0057Þ
sin2θ13ðIHÞ 0.0240ðþ0.0019;þ0.0038;þ0.0057Þ

ð−0.0019;−0.0038;−0.0057Þ*h‑saidi@fsr.ac.ma
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extra SU(2) triplet scalar, and type III with an extra SU(2)
triplet fermion [18–22].
In this paper, we propose a supersymmetric neutrino

model with discrete flavor symmetry A4 × A3 that extends
the minimal supersymmetric SM (MSSM), and whose
theoretical predictions for Δm2

ij and sin2 θij are compatible
with experiments [6–9]. This field theory prototype is a
supersymmetric type II seesaw neutrino theory based on a
particular extension of the MSSM. In addition to the usual
MSSM superfield spectrum and the chiral superfield
triplets of the type II seesaw model, our model involves
the extra flavon chiral superfields f~χ; ~χ0;Φ;Φ0g carrying
quantum numbers under A4 × A3 discrete symmetry. ~χ is
needed by the A4 symmetry in charged sector, while the
three others concern the chargeless sector: ~χ0 to realize the
tribimaximal texture, Φ to reproduce the correct mass
squared difference Δm2

31≠0, and Φ0 to generate θ13 ≠ 0.
By giving vacuum expectation values (VEVs) to these
flavons, one generates Majorana mass terms and induces
neutrino mixing compatible with the observations listed in
Table I. Notice that supersymmetry plays a crucial rule in
our construction; it is needed to have the right vacuum
alignment and to overcome the sequestering problem, as
was first noticed in Refs. [23,24]. Without supersymmetry
there is no way to forbid terms of the form λχχ0 jχj2jχ0j2 in
the scalar potential which destroys the desired VEV
structure in four-dimensional renormalizable theories.
With supersymmetry, the scalar potential is derived from
complex F terms in the chiral superpotential W ¼
Wðχ; χ0;…Þ sector, and Hermitian D terms of the Kahler
Kðχ; χ†; χ0; χ0†;……Þ involving gauge interactions; terms
like the undesirable jχj2jχ0j2 come from a complex W and
may be eliminated by an extra discrete symmetry having
complex representations. Notice also that aspects of the
type II seesaw mechanism for neutrinos with an A4 flavor
symmetry were considered before in Ref. [25] but without
supersymmetry. In our supersymmetric extension, the two
A4 flavon superfield triplets ~χ and ~χ0 act, respectively, in the
charged lepton sector and neutrino sector; they carry
different charges under the extra A3 discrete subsymmetry
which is needed to exclude unwanted terms in the super-
potential W and to avoid the communication between
charged and chargeless sectors. To engineer appropriate
squared mass differences Δm2

ij and mixing angles sin2 θij
in the chargeless sector, we find that we also need to
implement two A4 scalar flavon chiral superfields Φ and
Φ0. By giving them VEVs, we obtain TBM consistent with
the experimental data on Δm2

ij and sin2 θ13. In this regard,
we recall that several models use different approaches to
generate a θ13 deviation from the TBM pattern; for
instance, in Ref. [26], the deviation of TBM is obtained
by adding a nonleading contribution coming from charged
lepton mass diagonalization. In Ref. [25], the TBM was
generated at LO with the type I seesaw mechanism and the

deviation was made by perturbing the neutrino mass matrix
with the type II seesaw mechanism. In our approach, we
borrow techniques from the method used in Ref. [27]
before θ13 ¼ 0 was ruled out. This method relies on
perturbing the neutrino mass matrix by adding nontrivial
A4 singlets and has been used recently in Ref. [28] where
neutrino masses were generated by dimension-five oper-
ators. After a numerical study, we show that normal and
inverted hierarchies are both permitted. The VEV of the
triplet ~χ breaks A4 down to Z3 in the charged lepton sector;
because of this residual symmetry, only the lepton-flavor-
violating decays τ → eeμ and τ → μμe are allowed in our
model. We find that these decays are mediated by the flavon
triplet χi, and by using the experimental upper bound of the
branching ratio of the decay τ → μμe we obtain an
estimation on the mass of the flavon as well as the cutoff
scale Λ of our model.
The presentation is as follows. In Sec. II we present the

superfield content of the extended MSSM we are interested
in here, and give their A4 representations. Useful tools on
A4 tensor calculus, superpotential building, and the lepton
charged sector are also given. In Sec. III, we first introduce
our supersymmetric A4 × A3 model and make some com-
ments. Then, we focus on the chargeless sector; we first
study the neutrino mass matrix and its diagonalization with
the TBM matrix, then we analyze the scalar potential of
flavons and describe the motivation beyond the need for the
extra A3 discrete symmetry. In Sec. IV we study the
deviation of the TBM matrix with the help of the A4

flavon singlets and give numerical results for both normal
hierarchy (NH) and inverted hierarchy (IH). In Sec. V we
study the lepton flavor violation (LFV) in the charged
lepton sector to constrain the mass of the flavons χi and the
cutoff scale Λ. In Sec. VI we give our conclusion and
comments. In the three appendices, we report some relevant
details and extra tools. In Appendix A, we recall useful
properties of the A4 group and irreducible representations.
In Appendix B, we derive the vacuum alignments of ~χ and
~χ0 used in this paper, and show that they are obtained
without having to add extra superfields. In this regard,
recall that in many models in the literature the problem of
vacuum alignment is resolved by adding the so-called
driving fields [29,30]. In Appendix C, we give explicit
details on the tensor product of A4-invariant terms used in
the derivation of the flavon scalar potential (3.26) obtained
in Sec. III. We also give details on solving the minimum
condition of the scalar potential of the theory with respect
to the two A4 triplets ~χ and ~χ0.

II. FLAVOR SYMMETRY
IN SUPERSYMMETRIC MODELS

We begin by noticing that it is quite commonly admitted
that the family symmetry relating flavors belonging to
different generations of the SM might be behind the
neutrino mass hierarchy and their mixing. This hypothetical
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flavor symmetry Γ is a discrete invariance that has been the
subject of several studies, and particular interest has been
focused on those Γ’s given by non-Abelian discrete
symmetries [16,31]. In this study, we consider the interest-
ing case where flavor symmetry is given by A4 × A3, and
describe how this discrete symmetry can be implemented in
models around the supersymmetric scale M2

SUSY where the
discrete Γ’s are expected to follow from more basic
symmetries, such as the breaking of E8 gauge invariance
of heterotic string or F-theory GUTs on Calabi-Yau
manifolds [32–34].

A. Extending the MSSM

We start with the usual chiral superfield spectrum of the
MSSM; then, we describe a particular extension of this
minimal supersymmetric model by implementing flavon
superfields carrying quantum numbers under a flavor
symmetry A4 × A3. This extension is one of the results
of this paper; it will be further developed in forthcoming
sections.

1. MSSM contents

In addition to the usual gauge superfield sector that we
will omit for simplicity, the chiral superfield spectrum of
the MSSM and their quantum numbers under SUð3ÞC ×
SUð2ÞL × Uð1ÞY invariance are as shown in Table II, with
i ¼ 1, 2, 3 referring to the number of matter generations. In
superspace, these chiral superfields (and similar ones to be
introduced later; see Tables III and V) may be generically
denoted by Φm with the usual θ expansion [35]

Φm ¼ ϕm þ
ffiffiffi
2

p
θ:ψm þ θ2Fm: ð2:1Þ

Recall that properties and theoretical predictions of the
MSSM are well established; the interacting dynamics of the
MSSM spectrum is very well known, including both
spontaneous and soft supersymmetry breaking. Recall also
that this particular field theory dynamics is nicely described
in superspace; we refer to the rich literature for details
[36,37]. Moreover, notice that in this study wewill focus on
those relevant contributions to neutrino physics coming
from couplings involving some ϕm’s, auxiliary Fm’s, and

the usual auxiliary D’s; that is, those contributions to the
scalar potential of the model that lead to the computation
of neutrino masses and mixing angles (for details, see
Sec. III).

2. Extending the MSSM

There are several extensions of the MSSM that have been
considered in literature. The extension of the MSSMwe are
interested in here concerns the enlargement of the Higgs
sector; it is obtained by adding extra chiral superfields
which carry quantum numbers under gauge symmetry and
also under the discrete symmetry A4 × A3. So the Higgs
sector in our proposal may be thought of as consisting of
three subsectors.

(i) The H subsector, involving the usual Hu, Hd of
the MSSM.

(ii) The Δ subsector of the extended MSSM (type II
seesaw); see Table III.

(iii) The χ subsector. This is our subsector; see Table V
for its content.

Before giving the full superfield spectrum of our model,
let us first focus on the Δ subsector; this is a particular
extension of the Higgs sector of the MSSM given by adding

two chiral superfield triplets ~Δu and ~Δd with gauge
quantum numbers as in Table III. The y ¼ �2 hypercharge
values are required by gauge invariance of the superfield
couplings Hu;d and Δu;d in the chiral superpotential W ¼
WðH;ΔÞ of the extended supersymmetric model; this chiral
superfield coupling has the form

W ¼ λuTrðHu ⊗ Δu ⊗ HuÞ þ λdTrðHd ⊗ Δd ⊗ HdÞ;
ð2:2Þ

where λu;d are Yukawa coupling constants.
To describe the χ subsector, it is interesting to first collect

some useful tools on discrete groups, in particular, on the
group A4 × A3 and its representations.

B. A4 × A3 symmetry

First, notice that A3 ≃ Z3 is an Abelian group and so its
irreducible representations 1qr are one dimensional with

charge r ¼ 0, �1 and q ¼ e
2irπ
3 . This group should not be

confused with the A0
3 subgroup contained in A4. In what

follows, we will focus on describing pertinent properties of
the discrete symmetry, in particular those concerning the
non-Abelian A4 factor and its representations. These

TABLE II. MSSM chiral superfield content.

sector chiral superfields SUð3ÞC SUð2ÞL Uð1ÞY
leptons

Li ¼ ðνi; e−ÞL 1 2 −1
Rc
i ¼ eci 1 1 þ2

quarks

Qi ¼ ðui; diÞL 3 2 þ 1
3

Uc
i ¼ uci 3̄ 1 − 4

3

Dc
i ¼ dci 3̄ 1 þ 2

3

Higgs
Hu ¼ ðHþ

u ; H0
uÞ 1 2 þ1

Hd ¼ ðH0
d; H

−
d Þ 1 2 −1

TABLE III. Chiral superfields added to the MSSM.

chiral superfields SUð3ÞC SUð2ÞL Uð1ÞY
Δu ¼ ðΔ0

u;Δ−
u ;Δ−−

u Þ 1 3 −2

Δd ¼ ðΔþþ
d ;Δþ

d ;Δ0
dÞ 1 3 2
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realizations will be used later to refine the quantum
numbers of the chiral superfield spectrum (see Tables II
and III) as well as the content of the χ subsector given in
Table V.

1. A4 and its representations

The finite A4 symmetry is a non-Abelian discrete group
with order 12; it is a particular subgroup of the symmetric
S4 and is generated by two noncommuting elements S and
T that satisfy the following cyclic relations:

S2 ¼ T3 ¼ ðSTÞ3 ¼ 1: ð2:3Þ

Because of their noncommutativity, S and T cannot be
diagonalized simultaneously; later, we use the basis where
S is diagonal.

Representations and tensor products.—By using the group
character relation 12 ¼ P

id
2
i relating the order 12 of the

group A4 to the dimensions dk of the irreducible repre-
sentations Ri of A4, we have

12 ¼ 12 þ 12 þ 12 þ 32: ð2:4Þ

From this relation we learn a set of useful features, in
particular

(i) the group A4 has four R1, R2, R3, R4 with respective
dimensions di as in Eq. (2.4),

(ii) it has four conjugacy classes C1, C2, C3, C4 given by
Eq. (A5) of Appendix A, and

(iii) it has one irreducible triplet 3, but three kinds of
singlets 1, 10, 100.

Though interesting, the appearance of three singlets in
the A4 representation theory makes their use somehow
subtle; this difficulty is apparent and can be overcome
by using the characters χRi

ðCjÞ ¼ χij of the irreducible
representations. The basic table of these characters, thought
of as a matrix χij ≡ χRi

ðCiÞ, is given by Eq. (A6) in
Appendix A. By restricting to the characters of the S and T
generators of A4, the above four irreducible representations
Ri can be characterized as follows:

1∶1ð1;1Þ; 10∶1ð1;ωÞ;

3∶3ð−1;0Þ; 100∶1ð1;ω2Þ; ð2:5Þ

where ω ¼ e
2iπ
3 with the usual feature 1þ ωþ ω̄ ¼ 0 and

ω̄ ¼ ω2. These irreducible representations obey the follow-
ing tensor product algebra [16,31]:

3ð−1;0Þ⊗3ð−1;0Þ ¼1ð1;1Þ⊕1ð1;ωÞ⊕1ð1;ω2Þ⊕3ð−1;0Þ⊕3ð−1;0Þ;

3ð−1;0Þ⊗1ð1;ωrÞ ¼3ð−1;0Þ;

1ð1;ωrÞ⊗1ð1;ωsÞ ¼1ð1;ωrþsÞ; ð2:6Þ

where the integers r and s take the values 0, 1, 2 mod 3.
Observe that these relations preserve total dimension and
the total character. Observe also that the tensor product
3ð−1;0Þ ⊗ 3ð−1;0Þ has a singlet 1ð1;1Þ; the same feature holds
for higher product powers, in particular, for the cubic and
quartic powers to be encountered later in our construction:

3ð−1;0Þ ⊗ 3ð−1;0Þ ⊗ 3ð−1;0Þ ¼ 1ð1;1Þ ⊕ …;

3ð−1;0Þ ⊗ 3ð−1;0Þ ⊗ 3ð−1;0Þ ⊗ 3ð−1;0Þ ¼ 1ð1;1Þ ⊕ …: ð2:7Þ

Superpotential.—The superpotential of chiral superfields
Φi in the extended MSSM is given by a superfunction
WðΦiÞ that obeys two kinds of symmetries:

(i) invariance under the SUð2ÞL × Uð1ÞY gauge group;
(ii) invariance under the flavor group A4 × A3.
Since WðΦiÞ has a polynomial form in the chiral

superfields Φi, the invariance of the superpotential under
A4 × A3 is obtained by performing tensor products of
irreducible representations. Seeing that the tensor product
of the 1qr representation of A3 is governed by the fusion
relation 1qr ⊗ 1qs ¼ 1qrþs , the main difficulty comes from
the non-Abelian A4 when computing higher-order mono-
mials of the type

Y
i

Φni
i ð2:8Þ

with the fusion algebra (2.6). These computations are
necessary since the A4-invariant trace TrA4

WðΦiÞ is given
by the following restriction:

TrA4
WðΦiÞ ¼ WðΦiÞj1ð1;1Þ : ð2:9Þ

To illustrate how the method works let us focus on the A4

subsymmetry and later extend the construction to the full
discrete symmetry.

2. A4-invariant superpotential

As a first step to implementing flavor symmetry in
neutrino supersymmetric model building, we consider the
superfield spectrum given in Tables II and III, to which we
add flavon chiral superfields

χk ¼ ðχ1; χ2; χ3Þ; ð2:10Þ

which transform as a triplet under the discrete group A4.
Then, we attribute the following A4 quantum numbers to
the chiral superfield spectrum:
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chiral superfields Li Rc
iQiUc

iD
c
i Hu;dΔu;d χk

A4 symmetry 1ð1;ω̄i−1Þ 3ð−1;0Þ 1ð1;1Þ 3ð−1;0Þ
ð2:11Þ

where the Li’s refer to the left doublets ðνi; e−ÞL, the Rc
i ’s

to the right-handed eci , and the others are as in Tables II
and III. Notice the following remarkable features:

(i) The three lepton doublets ðL1; L2; L3Þ sit in different
A4 singlets, while the right leptons ðRc

1; R
c
2; R

c
3Þ sit

together in an A4 triplet [38].
(ii) The implementation of the A4 discrete symmetry is

not a soft operation; by attributing A4 quantum
numbers to leptons Li and Rc

i , the usual superfield
couplings for building the lepton mass matrix,
such as

yijRc
i LjHd;

are forbidden by invariance under discrete
A4. Indeed, by focusing on the charged
lepton sector, the chiral superpotential
Wlepþ describing the usual gauge-invariant
Yukawa couplings,

Wlepþ ¼ yijRc
i LjHd; ð2:12Þ

is no longer invariant under A4 transforma-
tions, since from the view of the A4 repre-
sentation group theory this chiral superfield
coupling has the following tensor product
form:

3ð−1;0Þ ⊗ 1ð1;ω̄i−1Þ ⊗ 1ð1;1Þ∼3ð−1;0Þ; ð2:13Þ

which does not contain the desired A4 singlet
1ð1;1Þ in the trace (2.9). We will see later that a
similar feature to Eq. (2.12) also happens for
the chiral superpotential Wlep0 describing
couplings involving neutrinos.

To make the gauge-invariant Wlepþ symmetric as well
under the discrete A4, we have to modify the chiral
superfield interaction (2.12) like ~W lepþ ¼ TrA4

ð ~WlepþÞ,
with

~Wlepþ ¼ 1

Λ
yijkðχiRc

jLkHdÞ; ð2:14Þ

where yijk are Yukawa couplings, Λ denotes a cutoff
scaling as mass (to be related in Sec. IV with a flavon
VEV), and χi is an A4 flavon triplet. The fourth-order
superfield coupling χiRc

jLkHd transforms under discrete
symmetry as

3ð−1;0Þ ⊗ 3ð−1;0Þ ⊗ 1ð1;ω̄i−1Þ ⊗ 1ð1;1Þ; ð2:15Þ

with the reduction containing the desired A4 singlet type
1ð1;1Þ. Indeed, by using the fusion algebra (2.6)—in
particular, the reduction 3ð−1;0Þ ⊗ 3ð−1;0Þ ¼ 1ð1;ω1−pÞ ⊕ …
with p ¼ 1, 2, 3—it follows that the above chiral superfield
product usually contains a term of the form
1ð1;ω1−iÞ ⊗ 1ð1;ωi−1Þ, leading precisely to the desired singlet
1ð1;1Þ. To write down an explicit expression in terms of
the superfields, it is interesting to work in the basis of A4

where the generator S is diagonal. In this basis, the tensor
product Rc ⊗ χ between the two A4 triplet superfields
Rc ¼ ðec1; ec2; ec3Þ and χ ¼ ðχ1; χ2; χ3Þ reads as

Rc ⊗ χ ¼

0
B@

ec1χ1 ec1χ2 ec1χ3
ec2χ1 ec2χ2 ec2χ3
ec3χ1 ec3χ2 ec3χ3

1
CA: ð2:16Þ

It is formally given by 3ð−1;0Þ ⊗ 3ð−1;0Þ with nine compo-
nents transforming in the 9ð1;0Þ representation of A4,
which is reducible as in Eq. (2.6). The restrictions of this
tensor product to the three A4 singlet components 1ð1;ωrÞ are
given by

Rc ⊗ χj1ð1;1Þ ¼ ec1χ1 þ ec2χ2 þ ec3χ3;

Rc ⊗ χj1ð1;ωÞ ¼ ec1χ1 þ ωec2χ2 þ ω2ec3χ3;

Rc ⊗ χj1ð1;ω2Þ ¼ ec1χ1 þ ω2ec2χ2 þ ωec3χ3; ð2:17Þ

satisfying the properties

ec1χ1 ¼
1

3
Rc ⊗ χj þ 1

3
Rc ⊗ χjω þ 1

3
Rc ⊗ χjω2 ;

ec2χ2 ¼
1

3
Rc ⊗ χj þ ω2

3
Rc ⊗ χjω þ ω

3
Rc ⊗ χjω2 ;

ec3χ3 ¼
1

3
Rc ⊗ χj þ ω

3
Rc ⊗ χjω þ ω2

3
Rc ⊗ χjω2 ; ð2:18Þ

where we have used the notations

Rc ⊗ χj≡ Rc ⊗ χj1ð1;1Þ ;
Rc ⊗ χjω ≡ Rc ⊗ χj1ð1;ωÞ ;
Rc ⊗ χjω2 ≡ Rc ⊗ χj1ð1;ω2Þ : ð2:19Þ

If we choose the VEVs of the A4 triplet χi as in the Altarelli-
Feruglio model (AF) [39] and the VEVof the Higgs Hd as
usual
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hχii ¼ υχð1; 1; 1Þ; hHdi ¼ υd; ð2:20Þ

then by substituting these expressions back into the super-
potential (2.14) we obtain the charged lepton mass matrix
Mlepþ as

Mlepþ ¼ υχυd
Λ

0
B@

ye ye ye
yμ ωyμ ω2yμ

yτ ω2yτ ωyτ

1
CA; ð2:21Þ

where the Yukawa couplings ye;μ;τ are related to the ones in
Eq. (2.14) as follows:

ye ¼ yij1; yμ ¼ yij2; yτ ¼ yij3; ð2:22Þ

where i ¼ j ¼ 1, 2, 3. Following Ref. [40], this matrix can
be diagonalized by using asymmetric left and right trans-
formations like Mdiag

lepþ ¼ URMlepþU
†
L with eigenvalues

miði ¼ e; μ; τÞ given by

Mdiag
lepþ ¼

ffiffiffi
3

p
υχυd
Λ

0
B@

ye 0 0

0 yμ 0

0 0 yτ

1
CA; ð2:23Þ

and where

UL ¼ 1ffiffiffi
3

p

0
B@

1 1 1

1 ω ω2

1 ω2 ω

1
CA; UR ¼

0
B@

1 0 0

0 1 0

0 0 1

1
CA:

ð2:24Þ

In order to obtain the hierarchy among the three families of
charged leptons, one may use the Froggatt-Nielsen (FN)
mechanism which consists of adding a new Uð1ÞFN
symmetry with a new charge to be assigned to the right-
handed charged leptons [41]; for more details we refer to
Refs. [16,39]. Following the AF model [39], by taking
yτυd < 250 GeV and by using the experimental value of
the tau lepton mass, we get a constraint on the lower bound
of the ratio of the triplet VEV υχ over the Λ cutoff scale as
follows:

υχ
Λ

> 0.004: ð2:25Þ

III. SUPERSYMMETRIC A4 × A3
NEUTRINO MODEL

In this section, we use the tools introduced in the
previous section to develop our supersymmetric A4 × A3

neutrino model describing neutrino mixing and their
masses. First, we give the superfield spectrum of the
proposal; then, we study the contributions of the χ sector

to the chargeless leptons of the model, in particular the
aspects regarding neutrino masses and their mixing.

A. Superfield content

The superfield spectrum of the A4 × A3 neutrino model
involves—in addition to the usual superfields of the type II
seesaw picture—extra flavon superfields with nontrivial
quantum numbers under A4 × A3.

1. Chiral superfields in type II seesaw

In our model, the Higgs sector has three subsectors:
(a) the H subsector involving the Hu, Hd superfields of the
MSSM, (b) the Δ subsector given in Table III, and (c) an
extra χ subsector involving flavons. The quantum numbers
of the chiral superfields of theH andΔ sectors are shown in
Table IV (with explicit content like in Tables II and III).
The A4 × A3-invariant superpotentials relevant for the

neutrino physics will be studied explicitly once we intro-
duce the superfield content of the χ subsector.

2. Flavon sector

Flavon superfields are chiral superfields which transform
as singlets under gauge symmetry, but in general they carry
nontrivial charges under the A4 × A3 flavor symmetry; for
our concern, we show the relevant flavons in Table V.
These flavons couple to the lepton superfields of the

model; for instance, the chiral superfield triplet χi, which
was introduced previously in Eq. (2.14), is needed to build
the mass matrix for the charged leptons. The other chiral
superfield triplet χ0i is needed to engineer the Majorana
mass matrix of the neutrinos; its coupling to leptons will be
described in detail in the next subsection.
Moreover, the trivial singlet Φ is needed to reproduce the

correct mass-squared difference Δm2
31 ≠ 0, while the non-

trivial singlet Φ0 has been added in order to generate a
nonzero mixing angle θ13. Notice also that the discrete
symmetry A3 is required to satisfy the following:

(i) Exclude unwanted terms that appear in A4-invariant
superpotentials for charged and chargeless leptons.

TABLE IV. A4 × A3 quantum numbers of the matter and Higgs
superfields.

sector superfields SUð3ÞC SUð2ÞL Uð1ÞY A4 A3

leptons
Li 1 2 −1 1ð1;ω̄i−1Þ 10
Rc
i 1 1 þ2 3ð−1;0Þ 1−

quarks

Qi 3 2 þ 1
3

3ð−1;0Þ 10
Uc

i 3̄ 1 − 4
3

3ð−1;0Þ 10
Dc

i 3̄ 1 þ 2
3

3ð−1;0Þ 10

Higgs
Hu 1 2 þ1 1ð1;1Þ 10
Hd 1 2 −1 1ð1;1Þ 10
Δu 1 3 −2 1ð1;1Þ 10
Δd 1 3 þ2 1ð1;1Þ 10
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Without the extra A3, generic A4-invariant super-
potentials Wðχ; χ0Þ would be invariant under the
exchange of the two flavon triplets, that is, by
performing the permutation

χi↔χ0i: ð3:1Þ

(ii) Prevent χχ0 interactions in the superpotential
through other intermediate superfields, and therefore
between the charged and chargeless lepton subsec-
tors of the supersymmetric A4 × A3 model. It hap-
pens that this constraint coincides precisely with the
so-called sequestering problem [23,24,42]. The A3

subsymmetry is therefore a requirement of the
sequestering problem.

B. Chargeless lepton sector

Before implementing A4 × A3 invariance, it is interesting
to notice that without flavons, the part Wlep0 of the chiral
superpotential of the model that leads to the Majorana mass
may be expressed as

Wlep0 ¼ λeeν LeΔdLe þ λeμν LeΔdLμ þ λeτν LeΔdLτ

þ λμeν LμΔdLe þ λμμν LμΔdLμ þ λμτν LμΔdLτ

þ λτeν LτΔdLe þ λτμν LτΔdLμ þ λττν LτΔdLτ; ð3:2Þ

where λijν ¼ λjiν are Yukawa coupling constants. By using
the A4 quantum charges given in Tables IVand V, it follows
that the three terms LeΔdLe, LμΔdLτ, and LτΔdLμ are
invariant under A4 transformations, but not the other terms
of Eq. (3.2) due to the fusion relation 1ð1;ωrÞ ⊗ 1ð1;ωsÞ ¼
1ð1;ωrþsÞ which in general is not a trivial singlet. For
example, by using Table IV, the superfield coupling
LμΔdLμ transforms under the A4 representation like

1ð1;ω2Þ ⊗ 1ð1;ω2Þ ⊗ 1ð1;1Þ; ð3:3Þ

which behaves as a nontrivial singlet representation since it
is given by 1ð1;ωÞ. To overcome this difficulty, we introduce
an extra flavon superfield that transforms as 1ð1;ω2Þ; by
using the fusion algebra (2.6), this nontrivial singlet of A4

can be thought of in terms of a composite of the χ0 triplet as

ðχ0χ0Þjω2 ; ð3:4Þ

where the notation (2.19) has been used. The two other
singlet composites appearing in the reduction of the tensor
product χ0 ⊗ χ0, which are denoted as

ðχ0χ0Þjω and ðχ0χ0Þjω3 ; ð3:5Þ

are needed to recover A4 invariance of the other couplings,
as shown below. Notice that if we use only the three A4-
invariant terms described above, the neutrino mass matrix
will not agree with the TBM matrix and thus with the
mixing angles θ12 and θ23; with the three invariant terms
LeΔdLe, LμΔdLτ, and LτΔdLμ the shape of neutrino mass
matrix is given by 0

B@
x 0 0

0 0 y

0 y 0

1
CA; ð3:6Þ

where the mixing matrix is0
BB@

1 0 0

0 1ffiffi
2

p − 1ffiffi
2

p

0 1ffiffi
2

p 1ffiffi
2

p

1
CCA; ð3:7Þ

which is clearly in conflict with the TBM matrix.

1. Implementing the flavon triplet χ 0i
To restore A4 invariance in the chargeless lepton sub-

sector, we add1 the A4 triplet χ0i ¼ ðχ01; χ02; χ03Þ and modify
the superpotential Wlep0 of Eq. (3.2) as

W lep0 ¼ TrA4
½W0

lep0 �≡W0
lep0 j1ð1;1Þ ; ð3:8Þ

with

W0
lep0 ¼ λeeν LeΔdLe þ

λμeν
Λ2

LeΔdLμðχ0χ0Þjω

þ λeτν
Λ2

LeΔdLτðχ0χ0Þjω2 þ λeμν
Λ2

LμΔdLeðχ0χ0Þjω

þ λμμν
Λ2

LμΔdLμðχ0χ0Þjω2 þ λμτν LμΔdLτ

þ λτeν
Λ2

LτΔdLeðχ0χ0Þjω2 þ λτμν LτΔdLμ

þ λττν
Λ2

LτΔdLτðχ0χ0Þjω: ð3:9Þ

In this relation, the term ðχ0χ0Þ stands for χ0⊗χ0 trans-
forming in the 3ð−1;0Þ ⊗ 3ð−1;0Þ representation of the A4

TABLE V. The flavon superfields.

superfields SUð3ÞC SUð2ÞL Uð1ÞY A4 A3

χi 1 1 0 3ð−1;0Þ 1þ
χ0i 1 1 0 3ð−1;0Þ 10
Φ 1 1 0 1ð1;1Þ 10
Φ0 1 1 0 1ð1;ωÞ 10

1The first triplet has been used in the charged lepton sector; see
Eq. (2.14).
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discrete symmetry whose reduction (2.6) contains
(amongst others) three possible A4 singlets. The notation
ðχ0χ0Þjξ is as defined in Eq. (2.19), which for convenience
we recall below:

ðχ0χ0Þj1ð1;1Þ ≡ ðχ0χ0Þj1 ¼ χ021 þ χ022 þ χ023 ;

ðχ0χ0Þj1ð1;ωÞ ≡ ðχ0χ0Þjω ¼ χ021 þ ωχ022 þ ω2χ023 ;

ðχ0χ0Þj1ð1;ω2Þ ≡ ðχ0χ0Þjω2 ¼ χ021 þ ω2χ022 þ ωχ023 : ð3:10Þ

2. Tribimaximal mixing matrix

For the sake of the TBM matrix, the neutrino mass
matrix must respect the μ − τ symmetry and the two
following conditions [5,43]:

ðMυÞ11 þ ðMυÞ12 ¼ ðMυÞ22 þ ðMυÞ23;
ðMυÞ12 ¼ ðMυÞ13: ð3:11Þ

The implementation of the form of the TBM matrix for
generating neutrino masses requires vacuum alignment of
the A4 triplet χ0 and for Δd as follows2:

hχ0i ¼ υχ0 ð1; 0; 0Þ; hΔdi ¼ υΔd
: ð3:12Þ

Hence the neutrino mass matrix is

Mυ ¼ υΔd

0
B@

λeeν λeμν b λeτν b

λeμν b λμμν b λμτν

λeτν b λμτν λττν b

1
CA; ð3:13Þ

where we have set

υ2χ0

Λ2
≡ β2 ¼ b: ð3:14Þ

Since the higher-dimensional operators involving ðχ0χ0Þ
contribute to the tiny mass of the neutrinos, the VEVof the
flavon χ0 should be small and close to the cutoff scale υχ0 ≲
Λwhich means that b ≲ 1. Assuming for simplicity that the
Yukawa couplings λijν are of the order of unity,3 and using
the usual tribimaximal mixing matrix U, it results that the
above mass matrix Mυ is diagonalized as Mυ ¼ UTMυU
with

Mυ ¼ υΔd

0
B@

1 − b 0 0

0 1þ 2b 0

0 0 −1þ b

1
CA: ð3:15Þ

Recall that the TBM mixing matrix has the form

U ¼

0
BBB@

−
ffiffi
2
3

q
1ffiffi
3

p 0

1ffiffi
6

p 1ffiffi
3

p − 1ffiffi
2

p

1ffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p

1
CCCA: ð3:16Þ

It predicts the mixing angles as follows:

sin2θ12 ¼
1

3
; sin2θ23 ¼

1

2
; sin2θ13 ¼ 0: ð3:17Þ

However, a careful inspection of the eigenvalues of Mυ

reveals that we have Δm2
31 ¼ 0, which is in conflict with

the data in Table I. For this reason, we need to correct the
mass matrix (3.13), a correction that we realize by further
enlarging the flavon spectrum of the model as
described below.

3. An extra flavon singlet Φ

To generate appropriate masses for the neutrinos, we
deform the superpotential (3.9) by adding δWlep0 contri-
butions inducing off-diagonal elements in the matrixMυ as
a perturbation so that we can preserve the form of the
matrix (3.13), which respects the μ − τ symmetry and the
conditions in Eq. (3.11) where the A4 trivial singlet Φ is
sufficient to solve the problem. Since the superpotential
(3.9) is A4 invariant, if we add one nontrivial singlet (such
as Φ0 ∼ 1ð1;ωÞ or Φ00 ∼ 1ð1;ω2Þ) we do not obtain invariant
terms; this is why in the case of one singlet, the trivial
1ð1;1Þ ∼ Φ ¼ ζ þ θψζ þ θ2Fζ is the only representation that
reproduces the TBM matrix. Hence, the desired deformed
chiral superpotential reads as

W 00
lep0 ¼ W 0

lep0 þ δW lep0 ; ð3:18Þ

with an additional δW lep0 ¼ TrA4
½δWlep0 � term given by

δWlep0 ¼
λeμν
Λ3

½LeΔdLμ þ LμΔdLe�ðΦðχ0χ0ÞjωÞ

þ λeτν
Λ3

½LeΔdLτ þ LτΔdLe�ðΦðχ0χ0Þjω2Þ

þ λτμν
Λ3

½LμΔdLτ þ LτΔdLμ�ðΦðχ0χ0Þjω3Þ; ð3:19Þ

where the scale Λ is the cutoff introduced before. Since the
flavon Φ is introduced only to resolve the problem of the
zero squared-mass difference Δm2

31 ¼ 0 its presence does
not change the mixing angles, and also because it

2To avoid heavy notations, we denote the leading scalar
components with the same letter as the superfields; see also
the comment after Eq. ([27]).

3We can get the TBM matrix without assuming the Yukawa
coupling of Oð1Þ, but to do so we have to impose some
conditions on them in order to satisfy the relations (3.11); hence,
for the matrix (3.13) we impose the following: λeμν ¼ λeτν , λ

μμ
ν ¼

λττν and λeeν þ λeμν b ¼ λμμν bþ λμτν .
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transforms trivially under A4 its VEV does not break A4.
Accordingly, we have two possible routes: (i) either we
assume that hΦi ¼ υΦ is much smaller than the cutoff
scale υΦ ≪ Λ where invariant terms like the seriesP

nLeΔdLeðΦΛÞn may be suppressed by the factor of
υΦ
Λ ≪ 1, or (ii) the VEV υΦ is of the order of the cutoff
scale ðυΦ ∼ ΛÞ where the terms λeeν LeΔdLeðΦΛÞn are com-
parable to λeeν LeΔdLe. In this way, we assume that the
additional factor coming from the combination of these
operators is absorbed into the coupling constants λeeν . The
previous neutrino mass matrix Mυ [Eq. (3.13)] gets
corrected like M0

υ ¼ Mυ þ δMυ, whose expression can
be put into the form

M0
υ ¼ υΔd

0
B@

1 bþ c bþ c

bþ c b 1þ c

bþ c 1þ c b

1
CA; ð3:20Þ

where b is as in Eq. (3.14) and where we have set

c ¼ υ2χ0

Λ2

υΦ
Λ

¼ b
υΦ
Λ

: ð3:21Þ

Therefore, the convergence of the geometric series
LeΔdLe

P
nðΦΛÞn turns into the condition jcj < jbj. The

new mass matrix M0
υ is diagonalized by the TBM mixing

matrix U as M0
υ ¼ diagðm1; m2; m2Þ, with the neutrino

mass eigenvalues (in units of υΔd
) given as

m1 ¼ 1 − c − b;

m2 ¼ 2bþ 2cþ 1;

m3 ¼ b − c − 1: ð3:22Þ

From these new eigenvalues we learn that Δm2
31 ¼

−4cðb − 1Þ is no longer vanishing provided that we have
b ≠ 1 and c ≠ 0. Notice that the same constraint on the
parameter b (b≾1) holds for the parameter c for the same
reasons we mentioned in the previous subsection; thus,
c≲ 1, which means that υ2χ0υζ ≲ Λ3.

C. A4 × A3-invariant scalar potential

Here we study the A4 × A3-invariant scalar potential; the
A3 symmetry is needed for the reasons mentioned in
Sec. III A.

1. Higgs and flavon sector

By using the notation of Ref. for monomials of flavons
(in particular, the quadratic χ02 ≡ χ0 ⊗ χ0 and the cubic
χ03 ≡ χ0 ⊗ χ02), the A4 × A3-invariant superpotential
restricted to the Higgs isodoublet Hu;d, isotriplet Δu;d,
and flavon superfields χ, χ0, Φ is given by

WH−F ¼ μHuHd þ μΔTrðΔuΔdÞ þ λuHuΔuHu

þ λdHdΔdHd þ μχχ
02 þ λζχΦχ02 þ μζΦ2 þ λχ3

þ λ0χ03 þ λζΦ3 þ kζΦþ hζHuΦHd

þ δζΦTrðΔuΔdÞ; ð3:23Þ

where μ, μΔ, μζ, μχ are mass parameters and λx, hζ, δζ are
coupling constants. To justify the choice of the A3

symmetry instead of just Z2 to discriminate the two flavon
triplets, we need to analyze the scalar potential.

2. Scalar potential

Gathering all the contributions from F, D, and soft
terms, the scalar potential V tot of the model is given by

V tot ¼ VSUSY þ Vsoft; ð3:24Þ

with

VSUSY ¼ jFuj2 þ jFdj2 þ jFΔd
j2 þ jFΔu

j2

þ jFχ j2 þ jFχ0 j2 þ jFΦj2 þ ~D2 þD2; ð3:25Þ

where the explicit forms of VSUSY and Vsoft are given in
Appendix B. So the A4 × A3-invariant scalar potential is as
follows:

V ¼ 9λ2jχj4 þ 4jμχ j2jχ0j2 þ 4λ2ζχ jχ0j2jΦj2 þ 9λ02jχ0j4
þ 8μχλζχ jχ0j2Φþ 12μχλ

0jχ0j3 þ 12λζχλ
0jχ0j3Φ

þ λ2ζχ jχ0j4 þ 2kζλζχ jχ0j2 þ 6λζχλζjχ0j2jΦj2
þ 2hζλζχHuHdjχ0j2 þ 2δζλζχTrðΔuΔdÞjχ0j2
þ 4μζλζχΦjχ0j3 þm2

χ jχj2 þm2
χ0 jχ0j2 þ 2bχ0 jχ0j2

þ 2Aζχ0Φjχ0j2 þ 2Aχ jχj3 þ 2Aχ0 jχ0j3 þ V ind; ð3:26Þ

where V ind consists of terms that are irrelevant with two A4

triplets. The tensor products for all possible A4-invariant
terms are reported in Appendix C.
As stated before, in order to avoid the communication

between the charged and chargeless sectors (and thus the
interaction between the two A4 triplets χi and χ0i), we
impose invariance under the additional A3 symmetry given
in Table V. It is easy to check that without the charges of
this symmetry, we can add toWH-F other A4-invariant terms
like

λζχΦχ2: ð3:27Þ

But because of Eq. (3.1), the WH-F will also have λζχΦχ02,
and thus an induced interaction between χ and χ0 through
Φ. This feature can be checked by first computing the FΦ

term of the singlet superfield Φ singlet and then jFΦj2. The
resulting term

TYPE II SEESAW SUPERSYMMETRIC NEUTRINO MODEL … PHYSICAL REVIEW D 93, 113005 (2016)

113005-9



λχχ0 jχj2jχ0j2 ð3:28Þ

spoils the vacuum alignment of the triplets (2.20) and
(3.12). To prevent the existence of the term (3.28) in the
scalar potential, one of the triplet-singlet interactions
should be excluded; this has been achieved by the A3

charges given in Table V [excluding the term (3.27)]. It is
possible to choose χ0 to carry a nonzero charge under A3

instead of χ; this eliminates the term λζχΦχ02 from WH-F

instead of λζχΦχ2, but this choice would take apart the
invariance of the superpotential (3.19) needed to obtain
the TBM matrix consistent with the data. Therefore, the
absence of the term (3.27) in WH-F implies the absence of
the term (3.28) in V, thus allowing us to get the desired
vacuum alignment in Eqs. (2.20) and (3.12) after breaking
the A4 symmetry; see Appendix B for the details.
In addition, if we consider the interchange between χi

and χ0i for instance in Eq. (2.14), one generates the new
gauge-invariant term

~W0
lepþ ¼ yijk

Λ
χ0iR

c
jLkHd; ð3:29Þ

which is also invariant under A4. This extra term could be
excluded with a Z2 symmetry acting differently on the two
A4 triplets like

χi → þχi;

χ0i → −χ0i;
or

χi → −χi;
χ0i → þχ0i:

ð3:30Þ

One may also assign Z2 charges ðþ1;−1Þ for the rest of the
superfields so that the superpotential (2.14) and (3.18) is
invariant under Z2 symmetry while preventing Eq. (3.29).
However, within this picture the term λζϒΦχ2 cannot be
banned with the two possible assignments in Eq. (3.30),
thus allowing for the existence of Eq. (3.28) in the scalar
potential which would spoil the vacuum alignment of the
A4 triplets, as mentioned before. This is why we choose the
A3 symmetry to exclude the unwanted terms (3.27)–(3.29)
while keeping the required ones (2.14), (3.18), and (3.26)
with respect to A3 charges assigned to the various super-
fields listed in Tables IV and V.
As stated in Sec. III B 2, another chiral superfield is

needed to study the deviation from TBM, so one may ask
how this new flavon Φ0 will affect the scalar potential
(3.26). Since our aim is to study the vacuum alignment of
the A4 triplets (2.20) and (3.12) and (as we presented
above) only one triplet is allowed to interact with the singlet
Φ in order to avoid the sequestering problem thanks to the
A3 symmetry we have imposed, as the A3 charge assign-
ment for Φ0 is the same as Φ only one triplet is able to
interact with Φ0, allowing for the vacuum alignment to be
satisfied also with the presence of this extra flavon.

IV. DEVIATION FROM TBM MATRIX

In this section we study the angle deviation from TBM in
order to reconcile the reactor angle θ13 with the recent data
collected in Table I. First, we present the perturbation of the
neutrino mass matrix (3.20); this perturbation is captured
by the VEV of the extra chiral superfield singlet Φ0 of the
spectrum in Table V transforming as 1ð1;ωÞ under A4. Then
we study the effect of this deviation on the mixing angles
θ13 and θ23.

A. Deviation by A4 singlet 11;ω
Using the chiral superfield Φ0 of Table V and the cutoff

Λ, we see that we can perform a symmetric perturbation of
the superpotential (3.2) that induces a deviation of the mass
matrix M0

υ of Eq. (3.20). At leading order, the linear
deviation in Φ0 that respects the symmetries of the model
is as follows:

δW0
ν ¼

Φ0

Λ
ðLeΔdLμ þ LμΔdLe þ LτΔdLτÞ; ð4:1Þ

where the deviation parameter ε ¼ hΦ0i
Λ ≪ 1. While local

gauge and discrete A3 symmetries are manifest, invariance
may be explicitly exhibited by using the A4 representation
language,

LeΔdLμ
Φ0

Λ
∼ 1ð1;1Þ ⊗ 1ð1;1Þ ⊗ 1ð1;ω2Þ ⊗ 1ð1;ωÞ;

LτΔdLτ
Φ0

Λ
∼ 1ð1;ωÞ ⊗ 1ð1;1Þ ⊗ 1ð1;ωÞ ⊗ 1ð1;ωÞ: ð4:2Þ

With this correction, the previous neutrino mass matrixM0
υ

gets deformed as

M00
υ ¼ υΔd

0
B@

1 bþ cþ ε bþ c

bþ cþ ε b 1þ c

bþ c 1þ c bþ ε

1
CA: ð4:3Þ

This is a symmetric matrix that can be diagonalized by a
similarity transformation like Mdiag ¼ ~UTM00

υ
~U. The sys-

tem of eigenvalues mi and eigenvectors ~υi can be computed
perturbatively; we find, up to oðε2Þ, the eigenvalues (in
units of υΔd

)

m1 ¼ 1 − c − b −
ε

2
þ oðε2Þ;

m2 ¼ 2bþ 2cþ 1þ ε;

m3 ¼ b − c − 1þ ε

2
þ oðε2Þ; ð4:4Þ

and eigenvectors
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υ1 ¼

0
BBBBB@

−
ffiffi
2
3

q
1ffiffi
6

p þ
ffiffi
3

p
ε

4
ffiffi
2

p ðb−1Þ
1ffiffi
6

p −
ffiffi
3

p
ε

4
ffiffi
2

p ðb−1Þ

1
CCCCCA; υ2 ¼

1ffiffiffi
3

p

0
B@

1

1

1

1
CA;

υ3 ¼

0
BBB@

− ε
2
ffiffi
2

p ðb−1Þ
− 1ffiffi

2
p þ ε

4
ffiffi
2

p ðb−1Þ
1ffiffi
2

p þ ε
4
ffiffi
2

p ðb−1Þ

1
CCCA;

with the condition b ≠ 1 imposed previously. From these
eigenvectors, we get the unitary matrix ~U diagonalizing
M00

υ ; it reads, up to order Oðε2Þ,

~U ¼

0
BBBBB@

−
ffiffi
2
3

q
1ffiffi
3

p − ε
2
ffiffi
2

p ðb−1Þ
1ffiffi
6

p þ
ffiffi
3

p
ε

4
ffiffi
2

p ðb−1Þ
1ffiffi
3

p − 1ffiffi
2

p þ ε
4
ffiffi
2

p ðb−1Þ
1ffiffi
6

p −
ffiffi
3

p
ε

4
ffiffi
2

p ðb−1Þ
1ffiffi
3

p 1ffiffi
2

p þ ε
4
ffiffi
2

p ðb−1Þ

1
CCCCCAþOðε2Þ

ð4:5Þ

and coincides with TBM in the limit ε → 0. The unitary
property of the above matrix holds up to second order in the
deformation parameter, i.e., ~U† ~U ≃ I þOðε2Þ. Notice, by
the way, that Eq. (4.5) depends on two free parameters ε, b,
in particular on ε

b−1 (which will be used later on). Notice
also from Eq. (4.5) that the parameter of deviation ε does
not affect the mixing angle θ12, where we have the same
value as in the case of TBM, sin θ12 ¼ 1ffiffi

3
p . Moreover, by

using the usual relationships sin θ13 ¼ jUe3j and
cos θ13 sin θ23 ¼ jUμ3j, we get the link between the θ13
reactor and the θ23 atmospheric angles and b, ε as given
below (see also Figs. 1–3):

sin θ13 ¼
���� ε

2
ffiffiffi
2

p ðb − 1Þ

����;
sin θ23 ¼

���� ε

4
ffiffiffi
2

p ðb − 1Þ −
1ffiffiffi
2

p
����: ð4:6Þ

The deviation of the atmospheric angle θ23 from its TBM
value can be seen as

sin2 θ23 ¼
1

2
−

ε

4ðb − 1Þ þOðε2Þ; ð4:7Þ

where, by looking at Table I, we understand that

−0.143 ≤
ε

4ðb − 1Þ ≤ 0.108 for NH;

−0.14 ≤
ε

4ðb − 1Þ ≤ 0.097 for IH: ð4:8Þ

Using Eq. (4.4), the parameter c may be related to the
neutrino mass-squared differences,

Δm2
31 ¼ 4v2Δd

�
1 − b −

ε

2

�
c;

Δm2
21 ¼ 3v2Δd

½ðbþ cÞðbþ cþ 2þ εÞ þ ε�: ð4:9Þ

In the next subsection, we use the experimental values of
sin θij and Δm2

ij to make predictions concerning numerical
estimations of the parameters ε, b, and c capturing data on
the VEVs of flavons.

B. Normal hierarchy

Focusing on relations in Eq. (4.6), we plot in Fig. 1 (left
panel) sin θ23 as a function of sin θ13 in terms of the ratio

ε

b − 1
¼ α ð4:10Þ

induced by the VEV of the singlet Φ0 (provided the
condition b ≠ 1 holds) and from Eq. (3.14) the relations

υ2χ0

Λ2
≠ 1;

υχ0

Λ
≠ �1: ð4:11Þ

Notice that although the matrix (4.5) involves two free
parameters, the true dependence is only through their ratio
α which generates the deviation of TBM we are interested
in. Notice also that to draw this variation, we have assumed
that ε and b are real parameters, and by using Eq. (4.6) we
find the linear deviations

sin θ13 ¼ � 1

2
ffiffiffi
2

p α: ð4:12Þ

The values of the parameter α that are compatible with both
sin θ13 and sin θ23 are shown in the left panel of Fig. 1
within their 3σ allowed range for the normal hierarchy
(Δm2

31 > 0) case; see Table I. We observe that the best fit
for θ13,

sin θ13 ¼ 0.1529; ð4:13Þ

corresponds to

α≃ 0.43; ð4:14Þ

while for θ23, we have
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0.626 ≤ sin θ23 ≲ 0.641; ð4:15Þ

which is in the ½−2σ;−3σ� range (as can be read from
Table I), and the interval of sin θ23 corresponds to

0.37 ≤ α≲ 0.452: ð4:16Þ

1. Allowed interval for b

Since the parameter of deviation ε should be small we fix
its value in the range of Oð 1

10
Þ, and from the equations in

Eq. (4.6) we plot in the left panel in Fig. 2 sin θ13 as a
function of ε with the parameter b presented in the palette
on the right. We plot the same variation in the right panel
but for sin θ23 instead of sin θ13. We observe with the color
palettes on the right of both panels in Fig. 2 that b is large
for different values of ε. Moreover, as we discussed
previously in Sec. III B 2, in order to have a tiny masses
for neutrinos the parameter b should be less than approx-
imately 1 ðb ≲ 1Þ. Hence, with the order Oð 1

10
Þ used for the

range of ε, we read from Fig. 2 that b is positive and closely
framed as

0.005≲ b ¼ υ2χ0

Λ2
< 1; ð4:17Þ

and by using Eq. (3.14) we conclude that the value of the
cutoff Λ is around the value υχ0 , the VEV of the flavon
triplet χ0.

2. Allowed intervals for c

To get the allowed interval of the parameter c, we shall
think of ðυ2Δd

; b; εÞ as spectral parameters and consider the
first equation in Eq. (4.9) with the 3σ to express Δm2

31 as a
function of c. For ε ∼Oð 1

10
Þ the parameter b is as in

Eq. (4.17), while in models with an extra Higgs triplet Δd

the υΔd
is fixed by using the relation υΔd

∼ mν

λijν
(λijν are the

Yukawa couplings). By using this relation and the recent
cosmological upper bound on the sum of the neutrino
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 0.628
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FIG. 1. Left: sin θ23 as a function of sin θ13 with the relative parameter α ¼ ε
b−1 shown in the palette on the right for normal hierarchy.

Right: The same variation as in the left panel but for inverted hierarchy.
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FIG. 2. Left: sin θ13 as a function of ε with b shown in the palette on the right. Right: sin θ23 as a function of ε with b shown in the
palette on the right.
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masses (which is constrained to
P

mν < 0.23 eV [44]), the
forthcoming inputs for υ2Δd

are reasonable.
In the left panel of Fig. 3 we plot the variation ofΔm2

31 as
a function of c in the case of normal hierarchy (Δm2

31 > 0)
for two inputs:

υ2Δd
≃ 0.01 eV2; b≃ 0.8; ε≃ 0.09 ð4:18Þ

for the blue dashed line, and

υ2Δd
≃ 0.3 eV2; b≃ 0.98; ε≃ 0.045 ð4:19Þ

for the red dashed line. It is clear from the equation for
Δm2

31 in Eq. (4.9) that the sign of c depends only on the
value of b, which we found to be positive from Fig. 2,
because Δm2

31 and v
2
Δd

are positive-definite parameters. We
observe in the left panel that c varies in the range

0.32≲ c≲ 0.38 ð4:20Þ

for the blue dashed line, and

−0.83≲ c≲ −0.78 ð4:21Þ

for the red dashed line. Notice that the NH depends strongly
on the parameter b; for example, for values 0.96 ≤ b < 1
we remark that the factor ð1 − b − ε

2
Þ in the first equation of

Eq. (4.9) is negative, so c has to be negative as well in order
to respectΔm2

31 > 0 (red line in left panel of Fig. 3). On the
other hand, for 0.005≲ b ≤ 0.95, the factor ð1 − b − ε

2
Þ is

positive for any allowed value of ε; this requires c to be
positive in order to respectΔm2

31 > 0 (blue line in left panel
of Fig. 3).

C. Inverted hierarchy

We represent in the right panel of Fig. 1 the same
parameters sin θ13, sin θ23, and ε

b−1 ¼ α as in the left
panel of the same figure, but this time for the inverted
hierarchy with (Δm2

31 < 0). The allowed region for α is

constrained by the values of the mixing angles sin θ13 and
sin θ23 at 3σ; we observe that for the mixing angles θ23 and
θ13 we have

0.6348≲ sin θ23 ≲ 0.6394; ð4:22Þ

which is in the range ½−2σ;−3σ� (as can be read from
Table I) and

0.1348≲ sin θ13 ≲ 0.1354 ð4:23Þ

where this intervals corresponds to

0.385 ≤ α≲ 0.408: ð4:24Þ

We show in the right panel of Fig. 3 the variation of Δm2
31

as a function of the parameter c, where the latter is
constrained by the 3σ allowed region of Δm2

31. The input
parameters b, ε, and v2Δd

are as follows:

υ2Δd
≃ 0.5 eV2; b≃ 0.98; ε≃ 0.045 ð4:25Þ

for the blue dashed line, and

υ2Δd
≃ 0.0045 eV2; b≃ 0.8; ε≃ 0.08 ð4:26Þ

for the red dashed line. Thus, we observe that c varies in the
range

0.42≲ c≲ 0.5 ð4:27Þ

for the blue dashed line and

−0.8≲ c≲ −0.7 ð4:28Þ

for the red dashed line.

V. LFV TO CONSTRAIN MASSES

In this section, we study LFV in the charged lepton sector
in order to provide estimations on the mass of the flavon χi
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FIG. 3. Left (Right): Variation of Δm2
31 as a function of the parameter c for different inputs ðv2Δd

; b; εÞ for NH (IH).
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and the cutoff scale Λ used in Eqs. (2.14) and (3.9). First,
we break the A4 symmetry down to Z3 in order to induce
LFV in the charged lepton sector; then, we calculate the
analytic flavon masses. Next, we use the branching ratio of
the allowed lepton-flavor-violating decays to give numeri-
cal lower bound estimations on the flavon masses and an
upper bound on the cutoff scale Λ.

A. Breaking A4 to Z3

The discovery of neutrino oscillations provides clear
evidence of lepton flavor violation in the chargeless lepton
sector; however, in the charged sector LFV has not been
observed yet. In this subsection, we study the breaking of
the A4 group to its subgroup Z3 in order to get the allowed
lepton-flavor-violating decays mediated by the flavon χi
in the charged lepton sector. To start, we recall that in
Sec. II B 2 the VEVof the flavon triplet was taken as hχi ¼
υχð1; 1; 1Þ [Eq. (2.20)], and because we are working in a
basis of A4 where the matrix generator Sij is diagonal

4 this
structure of the triplet VEV breaks A4 down to its subgroup
Z3, with the matrix Tij as a generator,

Tijhχji ¼ 0; Sijhχji ≠ 0: ð5:1Þ

By looking at the characters of the S and T generators of A4

for the lepton superfields (2.11), it is not difficult to check
that leptons li transform in different manners under the
three possible representations 1ωr of the residual symmetry
Z3 characterized by the phases ωr ¼ e

2iπr
3 , with r ¼ 0, 1, 2

and sum 1þ ωþ ω2 ¼ 0. Indeed, because A4 singlets are
also singlets of its subgroup Z3, the left-handed charged
leptons Lx live in the representations

Le ∼ 11; Lμ ∼ 1ω2 ; Lτ ∼ 1ω; ð5:2Þ

and because of the decomposition of the A4 triplet 3 in
terms of irreducible Z3 representations (namely,
30 ¼ 11 ⊕ 1ω ⊕ 1ω2), the right-handed A4 triplets ðeci Þ ∼
3 are now combined into three Z3 singlets with different
characters as follows:

ec ¼ 1ffiffiffi
3

p ðec1 þ ec2 þ ec3Þ ∼ 11;

μc ¼ 1ffiffiffi
3

p ðec1 þ ωec2 þ ω2ec3Þ ∼ 1ω;

τc ¼ 1ffiffiffi
3

p ðec1 þ ω2ec2 þ ωec3Þ ∼ 1ω2 : ð5:3Þ

Consequently, the radiative decays li → ljγ (i ≠ j) are
all excluded in our model by the residual symmetry Z3;
this is because li and lj live in different representations 1ωi

and 1ωj , and the photon γ is a singlet of Z3. On the other
hand, by using Eqs. (5.2) and (5.3), the LFV three-body
decays

τþ → eþeþμ−;

τþ → μþμþe− ð5:4Þ

and their charged conjugates are allowed due to the
representation character property 1ωn ⊗ 1ωm ¼ 1ωnþm. As
these decay modes are mediated by the flavon triplet χi, we
start by calculating its mass.

B. Mass matrix of flavons

In order to calculate the mass matrix of field modes ξi
describing the χi fluctuations near the vacuum expectation
value ðυχ ; υχ ; υχÞ of the flavon triplet χi, we proceed as
follows. First, we consider the pure χ contribution Vχ to
the full scalar potential (3.26) of the model; it is given by
Vχ ¼ TrA4

Vχ with

Vχ ¼ ðj3λχ2j2 þm2
χ jχj2 þ 2Aχχ

3Þ ð5:5Þ

[where χ2 stands for χ ⊗ χ ≡ ðχiχjÞ�, and a similar
relation for the other χ3 and χ4 terms. Second, we use
A4 representation properties to decompose these tensor
products into sums over irreducible representations of A4

and take the trace afterwards; the explicit expression for
TrA4

Vχ can be read by substituting Eqs. (C4)–(C12)
from Appendix C. Then, we expand the flavon field triplet
ðχ1; χ2; χ3Þ around the vacuum expectation value as
follows:

χ1 ¼ υχ þ ξ1;

χ2 ¼ υχ þ ξ2;

χ3 ¼ υχ þ ξ3; ð5:6Þ

where the ξi’s are field fluctuations; they will be thought of
as real fields. This step, which breaks A4 to its subgroup Z3,
leads to a quartic scalar potential Vχ ¼ Vðξ1; ξ2; ξ3Þ from
which we can determine the mass matrix

ðm2
ξÞij ¼

1

2

∂2Vχ

∂ξi∂ξj
����
ξ¼0

: ð5:7Þ

It reads explicitly as follows:

4The alternating group A4 has two noncommuting generators S
and T with the property S2 ¼ T3 ¼ I; because of the non-
commutativity ST ≠ TS, only one of them can be chosen
diagonal. In Eqs. (A2) and (A3), the diagonal S and nondiagonal
T are, respectively given by the matrices a2 and b1.
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ðm2
ξÞij ¼

1

2

0
BB@

m2
χ þ 234λ2υ2χ 144λ2υ2χ þ 12Aχυχ 144λ2υ2χ þ 12Aχυχ

144λ2υ2χ þ 12Aχυχ m2
χ þ 234λ2υ2χ 144λ2υ2χ þ 12Aχυχ

144λ2υ2χ þ 12Aχυχ 144λ2υ2χ þ 12Aχυχ m2
χ þ 234λ2υ2χ

1
CCA: ð5:8Þ

The next step is to diagonalize the above mass matrix; we
find

m2
ξ1
¼ 1

2
m2

χ þ 45λ2υ2χ − 6Aχυχ ;

m2
ξ2
¼ m2

ξ1
;

m2
ξ3
¼ 1

2
m2

χ þ 261λ2υ2χ þ 12Aχυχ ; ð5:9Þ

with two degenerate values.

C. Mass scale Λ

To get the order of magnitude of the cutoff scale, we need
extra information in addition to the above flavon masses
(5.9), in particular the structure of the flavon Yukawa
couplings LYukjξ in the charged lepton sector. To be able to
use the experimental results on branching ratios (5.4), the
explicit expression for LYukjξ is also needed to extract
information about which of the fields ξi is exchanged in
lepton-flavor-violating decays. The fields ξi transform
under Z3 symmetry like

ξ1 ∼ 11; ξ2 ∼ 1ω; ξ3 ∼ 1ω2 : ð5:10Þ

Hence, we obtain the desired expression for LYukjξ which,
by using Eqs. (5.2), (5.3), and (5.10), reads as follows:

LYukjξ ¼
yeυd
Λ

ðecξ1 þ μcξ3 þ τcξ2ÞLe

þ yμυd
Λ

ðecξ2 þ μcξ1 þ τcξ3ÞLμ

þ yτυd
Λ

ðecξ3 þ μcξ2 þ τcξ1ÞLτ: ð5:11Þ

Moreover, by substituting the expression for the lepton
masses we obtained in Sec. II B 2 [Eq. (2.23)], the flavon
Yukawa interactions of the charged leptons in terms of the
flavons ξi are given by

LYukjξ ¼
�

meffiffiffi
3

p
υχ

ecLe þ
mμffiffiffi
3

p
υχ

μcLμ þ
mτffiffiffi
3

p
υχ

τcLτ

�
ξ1

þ
�

meffiffiffi
3

p
υχ

τcLe þ
mμffiffiffi
3

p
υχ

ecLμ þ
mτffiffiffi
3

p
υχ

μcLτ

�
ξ2

þ
�

meffiffiffi
3

p
υχ

μcLe þ
mμffiffiffi
3

p
υχ

τcLμ þ
mτffiffiffi
3

p
υχ

ecLτ

�
ξ3:

ð5:12Þ

Accordingly, we find that the flavon exchange ξ1 does not
lead to flavor violation, while the flavons ξ2 and ξ3
contribute to the lepton flavor violation processes (5.4).
Following Ref. [45] and assuming that the contribution of
supersymmetric particles in the decay modes (5.4) is
negligible, the branching ratios of the these decays are
as follows:

Brðτþ → eþeþμ−Þ ¼ tτ
m5

τ

3072π3

����� mτme

3υ2χm2
ξ3

����2þ
���� memμ

3υ2χm2
ξ2

����2
�
;

Brðτþ → μþμþe−Þ ¼ tτ
m5

τ

3072π3

����� mτmμ

3υ2χm2
ξ2

����2þ
���� mμme

3υ2χm2
ξ3

����2
�
;

ð5:13Þ

where tτ is the mean life of the tau lepton. To get an
estimate on m2

ξ2
, we consider the second equation in

Eq. (5.13) and we assume that all terms proportional to
m2

em2
μ and m2

τm2
e are negligible because me ≪ mμ ≪ mτ;

we obtain the branching ratio

Brðτþ → μþμþe−Þ≃ tτ
m7

τm2
μ

27648π3υ4χ

1

m4
ξ2

ð5:14Þ

which, after substituting tτ as well as the numerical values
of the leptons masses from the Particle Data Group [46], we
obtain

Brðτþ → μþμþe−Þ≃ 3.21
υ4χm4

ξ2

× 105 GeV8: ð5:15Þ

Using the current upper bound of the branching ratio
(5.15), which is Brðτþ → μþμþe−Þ < 1.7 × 10−8 at
90% C.L. [46], we get the following lower bound on the
mass:

m2
ξ2
≳ 102

υ2χ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tτ
m7

τm2
μ

4.7π3

s
: ð5:16Þ

If we assume that the mass of the flavon ξ2 is of same order
of magnitude as υχ—say, mξ2 ≃ υχ—we get a lower bound
on its mass mξ2 ≳ 45.6 GeV, which is surprisingly very
light. With this limit, such kind of flavons could be
generated through several decays; for instance, if the flavon
mass mξ2 could be lighter than the Z0 boson, the decay
Z0 → ff̄ξ2 could occur at tree level. Moreover, using
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Eq. (2.25), by giving a lower bound on the ratio of the
flavon VEV with respect to the cutoff scale (namely,
υχ
Λ > 0.004) and taking mξ2 ≃ υχ , we find an upper bound
for the cutoff scale given by

Λ≲ 1.14 × 104 GeV: ð5:17Þ

Notice that in Eq. (5.9) if the flavon trilinear coupling
Aχ ≥ 0, the mass of the flavon ξ3 could be heavier than
mξ2 ¼ mξ1 . However, the lower bound of the flavon mass in
Eq. (5.16) depends on υχ and is specific for our model; in
general, such a constraint is model dependent. To illustrate
the relationship between the mass mξ2 and the VEV υχ, we
plot in Fig. 4 the branching ratio Brðτþ → μþμþe−Þ as a
function of mξ2 for υχ < 102 GeV represented by the color
palette on the right of the figure. We observe that for υχ ∈
½40–100� GeV the mass mξ2 is less than 100 GeV including
the value we find above for mξ2 ≃ υχ ; on the other hand,
when the value of υχ goes down to 40 GeV, mξ2 rises up
until 1 TeV which corresponds to υχ ≃ 10 GeV and to an
upper bound of the cutoff scale of the order
Λ≲ 2.5 × 103 GeV. Hence, as mξ2 increases both Λ and
υχ decrease.
As a general comment, since the four flavon superfields

we added in our model are all gauge singlets, they do not
contribute to the mass of W� and Z0 bosons. However, in
the scalar potential (3.26) we notice that the flavon χ0 mixes
with the Higgs doublets Hu and Hd; thus, they might
contribute to the so-called S and T oblique parameters [47].
Moreover, because some of the flavons could be lighter
than the Higgs or the Z0 boson, they will open new decay
channels for these particles; as these two final points
require examining the collider phenomenology of the
flavons, we leave detailed investigations to future work.

VI. CONCLUSION AND DISCUSSION

In this paper, we have constructed a supersymmetric
neutrino model based on A4 × A3 discrete symmetry. In this
model, neutrinos acquire a Majorana mass via the type II
seesaw mechanism, and TBM acquires an appropriate
deviation with θ13 ≠ 0.
First, we showed that it is possible to obtain the TBM

pattern with only one A4 triplet; however, we found that the
physical observableΔm2

31 ¼ 0, which is in conflict with the
present data. We then allowed for the presence of an extra
A4 scalar singlet Φ ∼ 11;1 which successfully reproduced
the TBM matrix with Δm2

31 ≠ 0; see Eq. (3.20). We have
studied the scalar potential of the supersymmetric model
where we allowed the addition of an extra A3 discrete
symmetry, which is necessary to forbid the terms coming
from the interchange between the TBM A4 triplet and the
one involved in the charged lepton sector, and also to avoid
the sequestering problem.
We next studied the perturbation of the neutrino mass

matrix that induces a deviation from the TBM matrix,
leading therefore to a nonzero θ13 as proved by many
experiments recently. This deviation is made with the help
of a nontrivial A4 singlet Φ0 which transforms under it as
11;ω. In the beginning, we gave the resulting neutrino mass
matrix (4.3) which received a new contribution from the
VEV singlet Φ0. Then, we gave the deformed TBM matrix
where the reactor angle θ13 ≠ 0 [Eq. (4.4)]. Next, we
showed numerically by means of scatter plots the allowed
regions of the parameters of the model which we have
constrained by using the 3σ ranges of the neutrino
oscillation parameters sin θ31, sin θ23, and Δm2

31.
Moreover, we gave the allowed regions of the parameter
c where we found that the normal and inverted hierarchies
are both permitted in our model. Finally, after discussing
how the VEValignment of the flavon triplet in the charged
lepton sector breaks A4 to Z3, we studied the LFV in this
sector and we found that only the three-body decays τ →
eeμ and τ → μμe are possible under the residual symmetry
Z3. We also found that these decays are mediated by the
flavons ξ2 and ξ3; therefore, we calculated the lower bound
of the flavon massmξ2 by using the experimental branching
ratio of the decay τ → μμe where we found that mξ2 is very
light (mξ2 ≳ 45.6 GeV) if we assume mξ2 ≃ υχ . We then
used the relation between the cutoff scale Λ and υχ (namely,
υχ
Λ > 0.004) to get an estimation on the upper bound of the
cutoff scale, which we found to be of the order of
1.14 × 104 GeV. Nevertheless, we showed in Fig. 4 that
the bound of mξ2 increases when υχ decreases, and there-
fore the cutoff scale also decreases, giving its relation
with υχ .
We end this conclusion by making a comment on the

TBM deviation using the other non-A4 singlet 1ð1;ω2Þ ∼ Φ00
instead of 1ð1;ωÞ ∼ Φ0. The new contributions added to the
superpotential (3.2) are given by

FIG. 4. Brðτþ → μþμþe−Þ as a function of mξ2 with υχ shown
in the palette on the right.
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δWν ¼
Φ00

Λ
ðLeΔdLτ þ LμΔdLμ þ LτΔdLeÞ; ð6:1Þ

where the cutoff Λ is the same as before. The invariance of
the above δWν under A4 may be exhibited explicitly by
using

LeΔdLτ
Φ00

Λ
∼ 1ð1;1Þ ⊗ 1ð1;1Þ ⊗ 1ð1;ωÞ ⊗ 1ð1;ω2Þ;

LμΔdLμ
Φ00

Λ
∼ 1ð1;ω2Þ ⊗ 1ð1;1Þ ⊗ 1ð1;ω2Þ ⊗ 1ð1;ω2Þ: ð6:2Þ

With this Φ0 correction, the previous neutrino mass matrix
M0

υ gets deformed as

M̂υ ¼ υΔd

0
B@

1 bþ c bþ cþ ε

bþ c bþ ε 1þ c

bþ cþ ε 1þ c b

1
CA: ð6:3Þ

We repeat the same study as in the case of the singletΦ0. We
find that the eigenvectors at first order of ε are as follows:

~U0 ¼

0
BBBBB@

−
ffiffi
2
3

q
1ffiffi
3

p ε
2
ffiffi
2

p ðb−1Þ
1ffiffi
6

p −
ffiffi
3

p
ε

4
ffiffi
2

p ðb−1Þ
1ffiffi
3

p − 1ffiffi
2

p − ε
4
ffiffi
2

p ðb−1Þ
1ffiffi
6

p þ
ffiffi
3

p
ε

4
ffiffi
2

p ðb−1Þ
1ffiffi
3

p 1ffiffi
2

p − ε
4
ffiffi
2

p ðb−1Þ

1
CCCCCAþOðε2Þ;

ð6:4Þ

where after diagonalizing M̂υ by the transformation
Mdiag ¼ ~U0TM̂υ

~U0, we obtain the same mass eigenvalues
as in the case of the singlet Φ0 [Eq. (4.4)] and therefore the
same neutrino mass-squared differences Δm2

ij as in
Eq. (4.9). The mixing angles in the case of Φ00 are given by

sin θ13 ¼
���� ε

2
ffiffiffi
2

p ðb − 1Þ

����;
sin θ23 ¼

���� − 1ffiffiffi
2

p −
ε

4
ffiffiffi
2

p ðb − 1Þ

����: ð6:5Þ

The deviation of the atmospheric angle θ23 from its TBM
value can be seen as

sin2 θ23 ¼
1

2
þ ε

4ðb − 1Þ þOðε2Þ; ð6:6Þ

where the sign in front of ε
4ðb−1Þ is changed compared to the

case of the singlet Φ0. Therefore, the signs of its intervals
are reversed as follows:

−0.108 ≤
ε

4ðb − 1Þ ≤ 0.143 for NH:

−0.097 ≤
ε

4ðb − 1Þ ≤ 0.14 for IH: ð6:7Þ

APPENDIX A: DISCRETE ALTERNATING A4

We here provide three appendices. Appendix A contains
useful aspects of the alternating A4. Appendix B concerns
the explicit derivation of the vacuum alignment property.
Appendix C concerns properties of the tensor algebra of
flavon superfield triplets used in the computation of the
scalar potential.
The alternating A4 group has 12 elements that can be

generated by two noncommuting basic ones that we denote
by S and T, satisfying the periodicity relations S2 ¼ Iid ≡ e
and T3 ¼ Iid. In terms of these generators, we have [16]

a1 ¼ e; a2 ¼ S; a3 ¼ TST2;

a4 ¼ T2ST; b1 ¼ Ty; b2 ¼ ST;

b3 ¼ TS; b4 ¼ STS; c1 ¼ T2;

c2 ¼ ST2; c3 ¼ TST; c4 ¼ T2S: ðA1Þ

This discrete group has four irreducible representations;
three of them have one dimension, while the nontrivial
fourth one has three dimensions. A realization of these
elements in terms of 3 × 3 matrices is given by

a1 ¼

0
B@

1 0 0

0 1 0

0 0 1

1
CA; a2 ¼

0
B@

1 0 0

0 −1 0

0 0 −1

1
CA; a3 ¼

0
B@

−1 0 0

0 1 0

0 0 −1

1
CA;

a4 ¼

0
B@

−1 0 0

0 −1 0

0 0 1

1
CA; b1 ¼

0
B@

0 0 1

1 0 0

0 1 0

1
CA; b2 ¼

0
B@

0 0 1

−1 0 0

0 −1 0

1
CA; ðA2Þ
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and

b3 ¼

0
B@

0 0 −1
1 0 0

0 −1 0

1
CA; b4 ¼

0
B@

0 0 −1
−1 0 0

0 1 0

1
CA; c1 ¼

0
B@

0 1 0

0 0 1

1 0 0

1
CA;

c2 ¼

0
B@

0 1 0

0 0 −1
−1 0 0

1
CA; c3 ¼

0
B@

0 −1 0

0 0 1

−1 0 0

1
CA; c4 ¼

0
B@

0 −1 0

0 0 −1
1 0 0

1
CA: ðA3Þ

Recall that A4 is a subgroup of the symmetric S4 consisting of only even permutations; a canonical representation of A4

elements is naturally obtained by considering 4 × 4 matrices acting on four elements xi and we the generators as S ¼ ð12Þ
(34), T ¼ ð123Þ (4), with matrix representations as follows:

0
BBB@

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

1
CCCA
0
BBB@

x1
x2
x3
x4

1
CCCA ¼

0
BBB@

x2
x1
x4
x3

1
CCCA;

0
BBB@

0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1

1
CCCA
0
BBB@

x1
x2
x3
x4

1
CCCA ¼

0
BBB@

x2
x3
x1
x4

1
CCCA: ðA4Þ

Recall also that the discrete group A4 has four irreducible representations Ri with properties encoded in the orthogonality
character relations; in particular, in the formula 12 ¼ 12 þ 12 þ 12 þ 32. It also has four conjugacy classes Ci given by

C1 ¼ feg; C3 ¼ fS; TST2; T2STg; C4 ¼ fT; TS; ST; STSg; C40 ¼ fT2; ST2; T2S; TSTg; ðA5Þ

and it is used in building the character table χij which reads as follows:

χijðA4Þ R1 R10 R100 R3

C1 1 1 1 3

C2 1 1 1 −1
C3 1 ω ω2 0
C4 1 ω2 ω 0

ðA6Þ

APPENDIX B: VACUUM ALIGNMENT

The scalar potential (3.26) is derived from the usual F, D and soft terms of the supersymmetric minimal standard model
and its extensions. The F terms are given by

jFuj2 ¼ jμHd þ λuΔuHu þ hζΦHdj2; jFdj2 ¼ jμHu þ λdΔdHd þ hζHuΦj2;
jFΔu

j2 ¼ jμΔΔd þ λuHuHu þ δζΦΔdj2; jFΔd
j2 ¼ jμΔΔu þ λdHdHd þ δζΔuΦj2; jFχ j2 ¼ j3λχ2j2;

jFχ0 j2 ¼ j2μχχ0 þ 2λζχχ
0Φþ 3λ0χ02j2; jFΦj2 ¼ jhζHuHd þ δζTrðΔuΔdÞ þ 2μζΦþ kζ þ λζχχ

02 þ 3λζΦ2j2: ðB1Þ

The D terms are

D2 ¼ g21
2

�
1

2
ðH†

uHu −H†
dHdÞ þ TrðΔ†

dΔdÞ − TrðΔ†
uΔuÞ

�
2

;

~D2 ¼ g22
2

X3
a¼1

�
1

2
ðH†

uσaHu þH†
dσ

aHdÞ þ
1

2
TrðΔ†

d½σa;Δd�Þ þ
1

2
TrðΔ†

u½σa;Δu�Þ
�
2

;

and for the soft terms we have
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Vsoft ¼ m2
Hd
jHdj2 þm2

Hu
jHuj2 þm2

Δd
jΔdj2 þm2

Δu
jΔuj2 þm2

χ jχj2 þm2
χ0 jχ0j2 þm2

ζ jΦj2 þ ðbHHuHd þ H:c:Þ
þ ðbΔTrðΔuΔdÞ þ H:c:Þ þ ðbχ0χ02 þ H:c:Þ þ ðbζΦ2 þ H:c:Þþ ½ðAuHuΔuHu þ AdHdΔdHd þ AHζHuΦHdÞþ H:c:�
þ ðAΔζΦTrðΔuΔdÞ þ H:c:Þ þ ðAζχ0χ

02Φþ Aχχ
3 þ Aχ0χ

03 þ AζΦ3 þ H:c:Þ: ðB2Þ
To break the flavor and electroweak symmetries, we give nonzero VEVs to the neutral fields of the Higgs doublets, the
triplets, and the flavons. Focusing on the A4 triplets χ and χ0, and denoting by

hχi ¼ ðυχ1 ; υχ2 ; υχ3Þ; hχ0i ¼ ðυχ0
1
; υχ0

2
; υχ0

3
Þ;

the VEVs solve the minimum conditions

∂V
∂χi ¼ 0;

∂V
∂χ0i ¼ 0 ðB3Þ

with V as in Eq. (3.26) and the VEVs of the triplets are as in Eqs. (2.20) and (3.12). To get these VEVs, we should take into
account all possible A4-invariant contributions coming from the tensor products of three and four triplets of A4 as they
appear in the computation of jχj4 and jχj3; see also Appendix C for more details. By using the fusion operator algebra of A4,
we have for the tensor product ð3−1;0Þ⊗4 the following expression:

ð3−1;0 ⊗ 3−1;0Þ⊗2 → ð11;1 ⊗ 11;1Þ ⊕ ð11;ω ⊗ 11;ω2Þ ⊕ ð11;ω2 ⊗ 11;ωÞ ⊕ ð3s−1;0 ⊗ 3s−1;0Þ
⊕ ð3s−1;0 ⊗ 3a−1;0Þ ⊕ ð3a−1;0 ⊗ 3s−1;0Þ ⊕ ð3a−1;0 ⊗ 3a−1;0Þ;

which can be reduced further. Using the method of Ref. [24], we can approach the solution of the minimum conditions V for
the A4 triplet χ through the relations

υχ2
∂V
∂υχ1

− υχ1
∂V
∂υχ2

¼ 0; υχ3
∂V
∂υχ1

− υχ1
∂V
∂υχ3

¼ 0; υχ3
∂V
∂υχ2

− υχ2
∂V
∂υχ3

¼ 0; ðB4Þ

they read explicitly as

0 ¼ 36λ2υχ1υχ2ðυ2χ1 − υ2χ2Þ þ 12Aχυχ3ðυ2χ2 − υ2χ1Þ; 0 ¼ 36λ2υχ1υχ3ðυ2χ1 − υ2χ3Þ þ 12Aχυχ2ðυ2χ3 − υ2χ1Þ;
0 ¼ 36λ2υχ2υχ3ðυ2χ2 − υ2χ3Þ þ 12Aχυχ1ðυ2χ3 − υ2χ2Þ: ðB5Þ

Clearly, the solution for the last three equations is given by

υχ1 ¼ υχ2 ¼ υχ3 ¼ υχ : ðB6Þ

It is precisely the VEV structure we choose in Eq. (3.12) to produce the TBM matrix pattern. The same method applies for
the minimum conditions coming from the triplet χ0; we have

υχ0
2

∂V
∂υχ0

1

− υχ0
1

∂V
∂υχ0

2

¼ 0; υχ0
3

∂V
∂υχ0

1

− υχ0
1

∂V
∂υχ0

3

¼ 0; υχ0
3

∂V
∂υχ0

2

− υχ0
2

∂V
∂υχ0

3

¼ 0:

Explicitly,

0 ¼ 36λ02υχ0
1
υχ0

2
ðυ2χ0

1
− υ2χ0

2
Þ þ 72λ0υχ0

3
ðυ2χ0

2
− υ2χ0

1
Þðμχ þ λζχυΦÞ þ 4λ2ζχυχ01υχ02ðυ2χ01 − υ2χ0

2
Þ þ 12Aχ0υχ0

3
ðυ2χ0

2
− υ2χ0

1
Þ ðB7Þ

and

0 ¼ 36λ02υχ0
1
υχ0

3
ðυ2χ0

1
− υ2χ0

3
Þ þ 72λ0υχ0

2
ðυ2χ0

3
− υ2χ0

1
Þðμχ þ λζχυΦÞ þ 4λ2ζχυχ0

1
υχ0

3
ðυ2χ0

1
− υ2χ0

3
Þ þ 12Aχ0υχ0

2
ðυ2χ0

3
− υ2χ0

1
Þ;

as well as

0 ¼ 36λ02υχ0
2
υχ0

3
ðυ2χ0

2
− υ2χ0

3
Þ þ 72λ0υχ0

1
ðυ2χ0

3
− υ2χ0

2
Þðμχ þ λζχυΦÞ þ 4λ2ζχυχ0

2
υχ0

3
ðυ2χ0

2
− υ2χ0

3
Þ þ 12Aχ0υχ0

1
ðυ2χ0

3
− υ2χ0

2
Þ:
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These equations have three solutions: we choose one
to produce the neutrino mass matrix hχ0i ¼ ðυχ0

1
; 0; 0Þ,

and the other two possibilities are hχ0i ¼ ð0; υχ0
2
; 0Þ and

hχ0i ¼ ð0; 0; υχ0
3
Þ.

APPENDIX C: TENSOR PRODUCT
OF A4 TRIPLETS

Here we give useful tools for the computation of the
tensor product of A4 triplets. For the case of two A4 triplets
taken as a ¼ ða1; a2; a3Þ and b ¼ ðb1; b2; b3Þ, their tensor
product is reducible with irreducible components given by
the following decomposition relation:

3 ⊗ 3 ¼ 1 ⊕ 10 ⊕ 100 ⊕ 3S ⊕ 3A: ðC1Þ

Expressing this product as

a ⊗ b ¼⊕i ðða ⊗ bÞjRi
Þ; ðC2Þ

the irreducible components are given by

ða ⊗ bÞj1 ¼ a1b1 þ a2b2 þ a3b3;

ða ⊗ bÞj10 ¼ a1b1 þ ωa2b2 þ ω2a3b3;

ða ⊗ bÞj100 ¼ a1b1 þ ω2a2b2 þ ωa3b3;

ða ⊗ bÞj3S ¼ ða2b3 þ a3b2; a3b1 þ a1b3; a1b2 þ a2b1Þ;
ða ⊗ bÞj3A ¼ ða2b3 − a3b2; a3b1 − a1b3; a1b2 − a2b1Þ:

ðC3Þ

As an application, we present all possible A4-invariant
terms for the monomials χ2, χ3, and χ4 which we encounter
in the scalar potential (3.26) by using Eq. (C3). For the case
χ2, the previous a and b are identical, so we have

ðχ ⊗ χÞj1 ¼ χ21 þ χ22 þ χ23: ðC4Þ

The other ðχ ⊗ χÞjRi
are directly obtained from Eq. (C3).

For χ3, we have for the example of ðχ ⊗ χ ⊗ χÞj1 the
following expression:

ðχ ⊗ χ ⊗ χÞj1 ¼

2
664
0
B@

χ1

χ2

χ3

1
CA ⊗

0
B@

χ1

χ2

χ3

1
CA
3
775
3

⊗

0
B@

χ1

χ2

χ3

1
CA

3

��������
1

¼

2
64
0
B@

2χ2χ3

2χ1χ3

2χ1χ2

1
CA

S

þ

0
B@

0

0

0

1
CA

A

3
75 ⊗

0
B@

χ1

χ2

χ3

1
CA
��������
;

1

ðC5Þ

leading to

ðχ ⊗ χ ⊗ χÞj1 ¼ 6χ1χ2χ3: ðC6Þ

Similar expressions can be written down for the other
ðχ ⊗ χ ⊗ χÞjRi

; they are not relevant for our study. To
determine ðχ ⊗ χ ⊗ χ ⊗ χÞj1, we start from

ðχ ⊗ χ ⊗ χ ⊗ χÞj1 ¼

2
64
0
B@

χ1

χ2

χ3

1
CA ⊗

0
B@

χ1

χ2

χ3

1
CA
3
75 ⊗

2
64
0
B@

χ1

χ2

χ3

1
CA ⊗

0
B@

χ1

χ2

χ3

1
CA
3
75
��������
:

1

ðC7Þ

Then, using

ð3 ⊗ 3 ⊗ 3 ⊗ 3Þj1 ¼ ½1 ⊕ 10 ⊕ 100 ⊕ 3S ⊕ 3A� ⊗ ½1 ⊕ 10 ⊕ 100 ⊕ 3S ⊕ 3A�j1 ðC8Þ

and by setting

1 × 1 ¼ X; 10 × 100 ¼ Y; 100 × 10 ¼ Z; ðC9Þ

we have

X ¼ ½ðχ1Þ2 þ ðχ2Þ2 þ ðχ3Þ2�1 × ½ðχ1Þ2 þ ðχ2Þ2 þ ðχ3Þ2�1;
Y ¼ ½ðχ1Þ2 þ ωðχ2Þ2 þ ω2ðχ3Þ2�10 × ½ðχ1Þ2 þ ω2ðχ2Þ2 þ ωðχ3Þ2�100 ;
Z ¼ ½ðχ1Þ2 þ ω2ðχ2Þ2 þ ωðχ3Þ2�100 × ½ðχ1Þ2 þ ωðχ2Þ2 þ ω2ðχ3Þ2�10 : ðC10Þ

We also have
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3S × 3S ¼

0
B@

2χ2χ3

2χ1χ3

2χ1χ2

1
CA

S

×

0
B@

2χ2χ3

2χ1χ3

2χ1χ2

1
CA

S

; 3S × 3A ¼

0
B@

2χ2χ3

2χ1χ3

2χ1χ2

1
CA

S

×

0
B@

0

0

0

1
CA

A

; 3A × 3A ¼

0
B@

0

0

0

1
CA

A

×

0
B@

0

0

0

1
CA

A

;

3A × 3S ¼

0
B@

0

0

0

1
CA

A

×

0
B@

2χ2χ3

2χ1χ3

2χ1χ2

1
CA

S

: ðC11Þ

We end with

χ4j1 ¼ 3½ðχ1Þ4 þ ðχ2Þ4 þ ðχ3Þ4� þ 4½ðχ1Þ2ðχ2Þ2 þ ðχ1Þ2ðχ3Þ2 þ ðχ2Þ2ðχ3Þ2�: ðC12Þ

Analogously, the exact calculations for the triplet χ0 lead to

χ02j1 ¼ χ021 þ χ022 þ χ023 ; χ03j1 ¼ 6χ01χ
0
2χ

0
3;

χ04j1 ¼ 3½ðχ01Þ4 þ ðχ02Þ4 þ ðχ03Þ4� þ 4½ðχ01Þ2ðχ02Þ2 þ ðχ01Þ2ðχ03Þ2 þ ðχ02Þ2ðχ03Þ2�: ðC13Þ

After substituting the above results into the scalar potential (3.26), the minimum conditions (B3) are as follows:

∂V
∂χ1

����
hχii¼υχi

¼ 0;
∂V
∂χ2

����
hχii¼υχi

¼ 0;
∂V
∂χ3

����
hχii¼υχi

¼ 0; ðC14Þ

leading to

108λ2υ3χ1
þ 72λ2υχ1

υ2χ2
þ 72λ2υχ1

υ2χ3
þ 2m2

χυχ1
þ 12Aχυχ2

υχ3
¼ 0;

108λ2υ3χ2
þ 72λ2υχ2

υ2χ1
þ 72λ2υχ2

υ2χ3
þ 2m2

χυχ2
þ 12Aχυχ1

υχ3
¼ 0;

108λ2υ3χ3
þ 72λ2υχ3

υ2χ1
þ 72λ2υχ3

υ2χ2
þ 2m2

χυχ3
þ 12Aχυχ1

υχ2
¼ 0: ðC15Þ

We also have

∂V
∂χ01

����
hχ0ii¼υχ0

i

¼ 0;
∂V
∂χ02

����
hχ0ii¼υχ0

i

¼ 0;
∂V
∂χ03

����
hχ0ii¼υχ0

i

¼ 0; ðC16Þ

giving

0 ¼ 8jμχ j2υχ0
1
þ 8λ02υχ0

1
υ2Φ þ 108λ02υ3χ0

1
þ 72λ02υχ0

1
υ2χ0

2
þ 72λ02υχ0

1
υ2χ0

3
þ 16μχλζχυχ0

1

þ 72μχλ
0υχ0

2
υχ0

3
þ 72λζχλ

0υΦυχ0
2
υχ0

3
þ 12λ2ζχυ

3
χ0
1
þ 8λ2ζχυχ0

1
υ2χ0

2
þ 8λ2ζχυχ0

1
υ2χ0

3

þ 4kζλζχυχ0
1
þ 12λζχλζυχ0

1
υ2Φ þ 4hζλζχυuυdυχ0

1
þ 4δζλζχυΔu

υΔd
υχ0

1

þ 8μχλζχυΦυχ0
1
þ 2m2

χ0υχ0
1
þ 4bχ0υχ0

1
þ 4Aζχ0υΦυχ0

1
þ 12Aχ0υχ0

3
υχ0

2
ðC17Þ

and

0 ¼ 8jμχ j2υχ0
2
þ 8λ02υχ0

2
υ2Φ þ 108λ02υ3χ0

2
þ 72λ02υ2χ0

1
υχ0

2
þ 72λ02υχ0

2
υ2χ0

3
þ 16μχλζχυχ0

2

þ 72μχλ
0υχ0

1
υχ0

3
þ 72λζχλ

0υΦυχ0
1
υχ0

3
þ 12λ2ζχυ

3
χ0
2
þ 8λ2ζχυ

2
χ0
1
υχ0

2
þ 8λ2ζχυχ0

2
υ2χ0

3

þ 4kζλζχυχ0
2
þ 12λζχλζυχ0

2
υ2Φ þ 4hζλζχυuυdυχ0

2
þ 4δζλζχυΔu

υΔd
υχ0

2

þ 8μχλζχυΦυχ0
2
þ 2m2

χ0υχ0
2
þ 4bχ0υχ0

2
þ 4Aζχ0υΦυχ0

2
þ 12Aχ0υχ0

3
υχ0

1
; ðC18Þ

as well as
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0 ¼ 8jμχ j2υχ0
3
þ 8λ02υχ0

3
υ2Φ þ 108λ02υ3χ0

3
þ 72λ02υχ0

3
υ2χ0

1
þ 72λ02υχ0

3
υ2χ0

2
þ 16μχλζχυχ0

3

þ 72μχλ
0υχ0

1
υχ0

2
þ 72λζχλ

0υΦυχ0
1
υχ0

2
þ 12λ2ζχυ

3
χ0
3
þ 8λ2ζχυχ0

3
υ2χ0

1
þ 8λ2ζχυχ0

3
υ2χ0

2

þ 4kζλζχυχ0
3
þ 12λζχλζυχ0

3
υ2Φ þ 4hζλζχυuυdυχ0

3
þ 4δζλζχυΔu

υΔd
υχ0

3

þ 8μχλζχυΦυχ0
3
þ 2m2

χ0υχ0
3
þ 4bχ0υχ0

3
þ 4Aζχ0υΦυχ0

3
þ 12Aχ0υχ0

1
υχ0

2
: ðC19Þ
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