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We report the results of a study aimed at quantifying the impact on the oscillation analysis of the
uncertainties associated with the description of the neutrino-nucleus cross section in the two-particle–two-
hole sector. The results of our calculations, based on the kinematic method of energy reconstruction and
carried out comparing two data-driven approaches, show that the existing discrepancies in the neutrino
cross sections have a sizable effect on the extracted oscillation parameters, particularly in the antineutrino
channel.
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The T2K Collaboration has recently reported two mea-
surements of the inclusive cross section for charged-current
(CC) muon-neutrino scattering off the hydrocarbon target,
CH [1,2]. Since they are flux-averaged at different mean-
energy values, the T2K results show the cross section as a
function of neutrino energy with minimal dependence on
nuclear models.
While the T2K data are lower by ∼20% than the flux-

averaged hydrocarbon result previously obtained by the
SciBooNE Collaboration [3], with the difference exceeding
the experimental uncertainties, they appear to be in good
agreement with the expectations based on the 12

6Cðνμ; μ−ÞX
cross section measured at higher energies by the NOMAD
experiment [4].
At the kinematics of the T2K and SciBooNE experi-

ments, momentum transfers q are typically large enough
for neutrinos—probing the nuclear interior with the spatial
resolution ∼1=jqj—to scatter off individual (bound) nucle-
ons. On the other hand, the dominant contribution to the
cross section comes from low energy transfers ω, insuffi-
cient to produce pions, and the quasielastic (QE) mecha-
nisms of interaction,

νl þ n → l− þ p; ν̄l þ p → lþ þ n; ð1Þ

play the most important role.
In the past, CC QE processes were considered well

understood theoretically and used to determine the flux
normalization [5]. Recently, however, it has become ap-
parent that this is not the case to the extent required by
precise oscillation experiments [6]. For example, while
the CC QE cross sections of carbon reported by the
MiniBooNE Collaboration [7,8] turn out to be higher than

those of free nucleons, the corresponding NOMAD data [9]
show the cross-sections’ reduction arising from nuclear
effects. Although those puzzling discrepancies have
received a great deal of theoretical interest, their interpre-
tation is not fully established so far.
In particular, while a non-negligible role of CC QE

reaction mechanisms involving more than one nucleon is
now generally acknowledged, and important theoretical
progress has been achieved [10], an ab initio estimate of the
corresponding cross sections is not yet available. Since
those multinucleon mechanisms involve predominantly
two nucleons, hereafter we refer to them as two-particle–
two-hole (2p2h) processes.
For nuclear targets ranging from carbon to iron, a

growing body of experimental evidence [7,11–15] shows
that 2p2h effects on the differential QE cross sections can
be effectively accounted for by increasing the value of the
axial mass MA, typically to ∼1.2 GeV, with respect to
MA ¼ 1.03 GeV extracted predominantly from deuterium
measurements [16]. Note that as the axial mass is the cutoff
parameter driving the axial form factor’s dependence on
Q2 ¼ q2 − ω2, its changes affect both the differential and
total cross sections.
In this article, we discuss uncertainties of the 2p2h

cross sections for carbon and quantify their effect on the
oscillation analysis for an experimental setup similar to that
of T2K [17]. We consider a disappearance experiment
running in both neutrino and antineutrino mode with the
same flux [18], peaked at ∼600 MeV. To describe the
ground-state properties of the target nucleus, we use
the realistic spectral function (SF) of Ref. [19]. This
approach allows an accurate estimate of QE scattering
induced by one-nucleon currents, as shown by an extensive
comparison to electron-scattering data in Ref. [20]. To
account for an increase of the CC QE cross sections due to
2p2h processes, we use two data-driven phenomenological*ankowski@vt.edu
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methods: (i) an increased value of the axial mass, yielding
results consistent with the T2K [1,2], NOMAD [4,9], and
MINERvA [21,22] data, and (ii) the 2p2h estimate in the
GENIE Monte Carlo generator [23], determined from the
MiniBooNE data [7] and in agreement with the exper-
imental cross sections extracted from SciBooNE [3].
We emphasize that although our study is performed for

a setup similar—not identical—to that of T2K, it does not
follow the analysis of that experiment. For example,
applying a generalization of the kinematic method of
energy reconstruction [24], we include in the oscillation
analysis events of all types, instead of the CC QE event
sample alone. The rationale for considering the T2K-like
kinematics is its importance for the next generation of
oscillation experiments [25,26].
Consequences of 2p2h effects for the CC QE cross

sections have been analyzed within a few effective
approaches. The calculations of Martini et al. [27–30],
based on the local Fermi gas model and the random-phase
approximation (RPA), extend the treatment of multinu-
cleon contributions to the electromagnetic responses of
iron developed by Alberico et al. [31] to the case of
neutrino interactions with carbon and to a broader kin-
ematic region.
While employing the local Fermi gas model and the RPA

scheme, the approach of Nieves et al. [32–35] differs from
that of Martini et al. by using effective interactions, the
parameters of which were fixed in earlier studies of photon,
electron, and pion scattering off nuclei. At the MiniBooNE
kinematics, the CC QE νμ (ν̄μ) cross sections obtained by
Nieves et al. are lower by ∼10% (∼15%) with respect to
those calculated by Martini et al.
To extend their superscaling approach and include the

contributions of processes involving two-nucleon currents,
Amaro et al. [36,37] and Megias et al. [38,39] have
previously estimated the 2p2h cross sections within the
relativistic Fermi gas model accounting for the vector
meson-exchange currents only. Recently, the efforts to also
include the axial part in the response functions have been
completed [40].
In the Giessen Boltzmann-Uehling-Uhlenbeck transport

model, the 2p2h contribution to the CC QE cross sections
is obtained from a fit to the MiniBooNE data performed by
Lalakulich et al. [41], using a physically well-motivated
ansatz.
The GENIE Monte Carlo generator [42] simulates 2p2h

events following the empirical procedure developed by
Dytman [23], based on the one derived for electron
scattering in Ref. [43]. The kinematics of the produced
lepton is distributed according to the magnetic contribution
to the elementary cross section and, as a consequence, turns
out to be the same for neutrinos and antineutrinos. The
2p2h strength is set to decrease linearly for neutrino energy
larger than 1 GeVand to vanish at 5 GeV, consistently with
both the MiniBooNE [7] and NOMAD [9] data. GENIE is

employed in data analysis by a number of neutrino experi-
ments [44], as well as in phenomenological estimates of the
impact of nuclear effects on the determination of oscillation
parameters, following the pioneering studies carried out by
the authors of Ref. [45].
In this article, we analyze how the oscillation analysis

may be affected by uncertainties in the description of 2p2h
contributions to the CC QE cross sections, comparing two
estimates obtained from different approaches. In the first
case, we apply an effective value of the axial mass MA ¼
1.2 GeV to account for the modifications of the QE cross
sections due to 2p2h reaction mechanisms in a purely
phenomenological manner (“effective” calculations). In the
second case, we add the 2p2h results obtained using GENIE

2.8.0 [23] to the QE calculations performed using the
SF approach with MA ¼ 1.03 GeV, as implemented in the
νT package of additional modules [46] (“GENIEþ νT”
calculations).
The obtained total CC QE cross sections are compared to

the experimental data in Fig. 1. It clearly appears that
the effective calculations are in good agreement with the
NOMAD [9] and MINERvA [21,22] results for both
neutrinos and antineutrinos. They also reproduce the
energy dependence of the MiniBooNE data [7,8], but
not their absolute normalization. To better illustrate this
feature, we have divided the MiniBooNE cross sections by
a factor of 1.2, consistent with the ratio of the detected to
predicted events of 1.21� 0.24 reported from the first
MiniBooNE analysis [12].
While for neutrinos, the 2p2h contribution from GENIE is

in very good agreement with the MiniBooNE data, for
antineutrinos it overestimates the experimental points, in
spite of being added to the SF results obtained using
MA ¼ 1.03 GeV, which are too low to reproduce the cross
sections from NOMAD [48]. Owing to their large uncer-
tainties, the T2K CC QE data [14,47] cannot discriminate
between the two calculations.
Adding the considered CC QE estimates to the cross

sections for resonant, nonresonant, and coherent pion
production from GENIE, we have calculated the inclusive
CC cross sections for carbon shown in Fig. 2. The two
considered approaches turn out to be in good agreement
with the NOMAD data [4], collected in the region
dominated by pion production.
To compare to the T2K [1,2] and SciBooNE [3] data,

extracted for the hydrocarbon target, we have accounted for
the contribution of free protons using the cross sections
from GENIE. While the on-axis T2K data point [2] does not
distinguish the two approaches, the SciBooNE point [3]
clearly favors the GENIEþ νT calculations and the off-
axis T2K point [1] shows a distinct preference for the
effective calculations.
The puzzling difference between the T2K and SciBooNE

data—interesting in its own right—has important conse-
quences for neutrino-oscillation studies. We discuss them
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for the νμ and ν̄μ disappearance analysis of an experiment
using an off-axis (2.5°) beam peaked at ∼600 MeV [18].
The near (far) detector with a fiducial mass of of 1.0 (22.5)
kton is located at a distance of 1 (295) km from the neutrino
source.
We adopt the kinematic method of energy reconstruction,

applying it to all event types as in Ref. [24]. As neutral-
current background is expected not to play an important role,
we do not take it into account. Our analysis employs GLoBES
[49–51] and is based on ∼6000 unoscillated events with
reconstructed energies between 0.3 and 1.7 GeV, in both the
neutrino and antineutrino modes. The oscillation-parameter
values assumed as the true ones are detailed in Table I.
Implementing χ2, we apply a 20% systematic uncertainty
of the shape (normalization), bin-to-bin uncorrelated
(correlated).

In our analysis, the true event rates are simulated using
the GENIEþ νT calculations, and the fitted rates are
obtained for both considered approaches over a range of
atmospheric oscillation parameters, θ23 and Δm2

31. Having
determined the minimal χ2 value, χ2best−fit, the confidence
regions are found from the condition

Δχ2ðθ23;Δm2
31Þ≡ χ2ðθ23;Δm2

31Þ − χ2best−fit < l; ð2Þ

where l ¼ 2.30, 6.18, and 11.83 for the 1, 2, and 3σ
confidence level, respectively.
Before discussing the oscillation results, it is illustrative

to compare the reconstructed energy distributions for
muon neutrinos and antineutrinos obtained from the
GENIEþ νT and effective calculations. As shown in
Fig. 3, the differences between the two cross-section

(a) (b)

FIG. 2. Per-nucleon CC inclusive (a) νμ and (b) ν̄μ cross sections divided by neutrino energy, obtained using the QE contributions of
Fig. 1. The calculations for the carbon target (and for the hydrocarbon target in the inset) are compared with the carbon data extracted
from the NOMAD [4] experiment and the hydrocarbon flux-averaged measurements reported by the SciBooNE [3] and T2K [1,2]
Collaborations (the central energy values correspond to the mean energy in the detector). Note that antineutrino data are currently
unavailable.

(a) (b)

FIG. 1. CC QE (a) νμ and (b) ν̄μ cross sections. The results for carbon obtained using GENIE þ νT (dashed lines) and the SF approach
with MA ¼ 1.2 GeV (solid line) are compared with the carbon data reported by the MiniBooNE [7,8] and NOMAD [9] Collaborations
and the hydrocarbon data extracted from the MINERvA [21,22] and T2K [14,47] experiments. For comparison, the MiniBooNE data
divided by 1.2 are also shown.
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estimates translate into differences between the oscillated
event rates in the far detector, with the discrepancies being
particularly severe in the case of antineutrinos.
In addition to the total event numbers, the two

approaches yield clearly different distributions of recon-
structed energy, as shown in Fig. 4 for the true energy
Eν ¼ 0.6 GeV and in the Supplemental Material for 0.2 ≤
Eν ≤ 2.0 GeV [52]. While in the effective calculations,
2p2h processes enhance the low-energy tails of the
distributions, in the GENIEþ νT approach, they also
produce additional bumps, corresponding to the recon-
structed energy ∼0.4 GeV at the kinematics of Fig. 4. In the
antineutrino case, for Eν ≲ 1.4 GeV the strength of these
2p2h bumps turns out to be larger than that of the QE ones,
located at Erec

ν ≃ Eν. The observed differences in the
reconstructed energy distributions have important conse-
quences for the oscillation analysis.

The obtained confidence regions are shown in Fig. 5.
The shaded areas represent the results for the GENIEþ νT
fitted rates, and the solid lines correspond to the fitted rates
from the effective calculations. The high values of χ2best−fit
per degree of freedom, given in Fig. 5, clearly indicate that
the differences between the two considered approaches are
too large to be neglected in a precise oscillation analysis.
We have verified that this observation holds true even when
the normalization of the QE event sample, with any number
of nucleons, is treated as arbitrary. Therefore, the observed
effect can be traced back to the shape discrepancies
displayed in Figs. 1 and 4, which appear to be especially
large for antineutrinos. In particular, as for antineutrinos in
the relevant Eν region the reconstructed energy distribu-
tions in the effective and GENIEþ νT approaches are
peaked at different values, the extracted Δm2

31 is subject to
larger bias for antineutrinos than for neutrinos.
In summary, we have studied the impact of discrepancies

between experimental cross sections on neutrino-
oscillation analysis, adopting the kinematic method of
energy reconstruction. We have compared two data-driven
approaches focusing on the 1-GeV energy region and

TABLE I. The oscillation parameters assumed in the analysis.

Δm2
21 (eV2) Δm2

31 (eV2) θ12 (°) θ23 (°) θ13 (°) δ

7.50 × 10−5 2.46 × 10−3 33.48 42.30 8.50 0.0

FIG. 3. Distribution of CC (a) νμ and (b) ν̄μ events in the far detector as a function of the reconstructed energy, obtained within the
GENIEþ νT and effective calculations. For comparison, we also show the GENIEþ νT results with the unoscillated QE event rates
rescaled to those of the effective calculations.

(a) (b)

FIG. 4. Reconstructed energy distributions of CC QE (a) νμ and (b) ν̄μ events with any number of nucleons calculated at
Eν ¼ 0.6 GeV. The dashed (solid) lines represent the results obtained using the GENIEþ νT (effective) approach.
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shown that the differences between them have a sizable
effect on the resulting oscillation parameters, especially in
the antineutrino channel.
In view of these findings, improving the precision of the

neutrino and antineutrino cross sections will be of great
importance for future oscillation studies. Such progress will
require new experimental data for energies ∼1 GeV, as
well as an improvement in the understanding of systematic
uncertainties, which would allow the tensions between
existing measurements to be significantly alleviated.
Because the description of final-state hadrons involves

larger uncertainties than those associated with leptons,
the conclusions of this article are expected to also apply
to the calorimetric method of energy reconstruction and are,
therefore, relevant to the next generation of long-baseline

oscillation measurements, such as the Deep Underground
Neutrino Experiment [26], aimed at determining the
charge-parity violating phase and at verification of the
three-neutrino paradigm.
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