PHYSICAL REVIEW D 93, 106006 (2016)

B4

Massless Liischer terms and the limitations of the AdS;
asymptotic Bethe ansatz

Michael C. Abbott' and Inés Aniceto’

lDepartmem‘ of Mathematics, University of Cape Town, Rondebosch 7701, Cape Town, South Africa

*Institute of Physics, Jagiellonian University, Ulica Lojasiewicza 11, 30-348 Krakow, Poland
(Received 29 February 2016; published 25 May 2016)

In AdSs/CFT, integrability the Bethe ansatz gives the spectrum of long strings, accurate up to
exponentially small corrections. This is no longer true in three-dimensional anti—de Sitter (AdS;) space, as
we demonstrate here by studying Liischer F-terms with a massless particle running in the loop. We apply
this to the classic test of Herndndez and Lopez, in which the su(2) sector Bethe equations (including the
one-loop dressing phase) should match the semiclassical string theory result for a circular spinning string.
These calculations do not agree in AdS; x S* x T*, and we show that the sum of all massless Liischer

F-terms can reproduce the difference.
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I. INTRODUCTION

There has been much recent work on extending what we
have learned about the integrability of strings in AdSs x §°
[1,2] to the less than maximally supersymmetric back-
ground AdS; x §* x T* [3,4], which arises from a D1- and
D5-brane intersection. Some results for the massive sector
can be adapted quite simply from the five-dimensional
anti—de Sitter (AdSs) case, or even generalized to every
AdS,, x §". What is completely new is the presence of a
massless sector, corresponding to the T* directions and
their superpartners.

In all results to date it has been possible to ignore the
massless excitations when studying the massive sector.
This is true for the calculation of the exact S matrix from
centrally extended symmetries [5] and the corresponding
Bethe equations, for coset methods [6] and semiclassical
energy corrections to spinning strings [7,8], for near-
Berenstein-Maldacena-Nastase (-BMN) diagrammatic cal-
culations of two- and four-point functions [9—1 11" and the
one-loop S matrix via unitarity methods [13,14], and for the
various calculations of the massive dressing phase [15-17].

But not everything works perfectly in this decoupled
picture of the massive sector and, in particular, the
comparison of the one-loop energy correction to circular
spinning strings in $3 to the expansion of the su(2) sector
Bethe equations fails. This is precisely the comparison
from which Herndndez and Lépez constructed the complete
one-loop dressing phase in AdSs x S5 [18,19], and a
similar construction in AdS; x S* x T* was done in [7].
However the dressing phase constructed this way does not

'Earlier papers had to include massless modes on the internal
legs of diagrams [12], but better ways to handle divergent
integrals eventually removed this [9,10].
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solve the crossing equations [16], nor does it agree with a
construction from semiclassical magnon scattering [17],
nor give the amplitude seen in near-BMN scattering [9].
Conversely, using the correct dressing phase (as agreed on
by the authors of [16,17], and [9]) breaks the circular
spinning string comparison. The resulting mismatch is of
the same order as the one-loop energy.

Our paper offers a solution to this problem. Liischer
F-terms involving massive modes running in the loop give
exponentially small finite-size corrections in AdSs x §°
[20,21]. But massless modes are in some sense ‘“‘infinite
range,” and thus give rise to Liischer F-terms which are not
exponentially suppressed. In fact they are of the same order
as the prediction from the asymptotic Bethe equations, and
thus cannot be ignored, even when L is large. This is the
first time it is necessary to include the massless particles in
order to understand the massive sector.

In general one can consider Liischer corrections wrap-
ping the space any number of times [22], and with a
massless virtual particle these all contribute at the same
order. For multiparticle physical states (such as the circular
string, with order v/ excitations) however only the singly
wrapped Liischer terms are well understood [23].
Combining the results of [22] and [23], we write down a
simple formula for a multiparticle correction wrapping n
times. While we believe this omits some multiple wrapping
effects which should contribute at the same order, when
applied to the circular string (and summed over all n) it
gives the correct functional form of the mismatch, up to a
factor of 2.

II. CONFLICTING RESULTS ABOUT su(2)
CIRCULAR STRINGS

The su(2) sector at strong coupling concerns strings in
R x S3. For classical string theory this is a consistent

© 2016 American Physical Society
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truncation of both AdSs x §° and AdS; x S* x T*, thus we
expect an identical integrable description. However at one
loop the string should feel the entire space: this is seen
explicitly in the list of modes needed for semiclassical
analysis, and is encoded in the dressing phase of
integrability.

The circular spinning string in S° which we study is
given by [24]

iei(JﬁLmo‘) Z,= —_ pi(Jr—mo)

V2 ’ V2 ’

where ¢ is AdS time, S C C? has coordinates Z;, and we
take o € [0, 2z]. Clearly m € Z is a winding number. The

Virasoro constraints impose k = /72 + m?. This solution
has two equal angular momenta, J, = J, = R>J/ 2;% and
energy A = R’k. We define the 't Hooft coupling as in
AdSs by R? = /4.

This solution is particularly simple in string theory
because it is homogeneous, in the sense that a translation
along ¢ maps to an isometry of the target space. It is also
particularly simple in integrability because all the Bethe
roots lie on one connected curve. Below we present the
calculation of its energy at one loop in both of these pictures.

t =Krt, Z]:

(1)

A. World sheet semiclassical calculation

The bosonic modes of the same solution in S° were
calculated in [25]. While it is simple to repeat their
calculation, there is no need to do so, as we can safely
just keep the modes lying in S°, and discard the other two.
They have frequencies

WSt — \/n2 £ 272 £ 20/ (T2 + m?) + T

The bosonic modes in AdS directions of course have mass
s = k, and those in torus directions are massless:

wh = /n? +«?,

For the fermionic modes, the calculation was performed
in [7], and we briefly sketch it here. The equations of
motion are as usual given by p_D, 0! =0=p, D_6?
where D,0" = (9, +1,)0" + Fp, 0" with u =0, 1,

wl = |n|.

pﬂ - aﬂXME‘}?lFA
1
t/l == ZaﬂXMw’:,[BFAB

1
F=—Fg = i (012 4 [345),

*Note the factor of 2. If we write J = J; + J, then J = J/\/A.
Later we use J = L, for instance in (6).
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and 0L = 0y + 9y, p+ = po £ p;. etc. If we adopt the «
gauge ®' = @7 then the equations of motion simplify to

(p$8:t TPl +p:FFpi)®(Uv 7)=0.

Taking the sum of these equations, and using a plane wave
ansatz for the modes (o, 7) = ™ +"°@, (where 0 is a
constant Majorana-Weyl spinor), we get

(P00 — p101 + poto — p1ty + poFpo — p1Fp1)

X eiw,lﬂ»in{r@() =0.

Solving this equation for the mode frequencies, we find
equally many massive and massless fermions:

|n| 4 massless

VvVt +J* 4of massJ.

With these mode frequencies we can now calculate the
semiclassical one-loop energy correction

S6F = Ze(n),

Clearly the 4 massless fermionic and 4 massless bosonic
modes cancel, and we need only the 4 + 4 massive mode
frequencies. Using the resummation procedure of [18], the
nonanalytic term SE™ was determined in [7] to be the
following:

F
Wh

8+8 1

e(n) = Z(—l)FﬂwZ.

b

SEgiam — m* 3 Tmb +29m8 3 97m!°
27 1200 4877 1607°
2309m'?
*3sa00m T

(2)

It is this nonanalytic term that should be directly compared
to the Bethe ansatz calculation, presented next.

B. Bethe ansatz calculation

The relevant Bethe equations were found in [5], and the
su(2) sector is exactly the same as the su(2) sector Bethe
equation from AdSs x S3, as it must be. This is the case
n=+1of

() = (S o

i A L

Here we use the following expansion of the dressing phase:

o (19) = exp - 560,90, . @
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where ¢, = hcg)‘) + C§"1\> + O(1/h) with (:502 being the
usual Arutyunov-Frolov-Staudacher (AFS) phase [26].

We normalize the one-loop phase c£12 as in [19], and note

that in AdS; we are interested in the left-left phase.3
The analysis we need is identical to that of [19], and we
briefly review the procedure. Assuming that there is just
one cut (with one mode number k), in the thermodynamic
limit we can replace the product by an integral. Multiplying
by the relevant weight and integrating over the cut, [19]
obtained this expression in terms of the resolvents®:

G? - 27kG —
_ gZ[G(lﬂ

nG)

- 27kGP] + F(1 4+ 1)[GV 0, - GP Q)]

1 . . 1
+3 — 2l v (G0, -GWQ,]+0 <—> ,

where
G(x) = _ZQnJrI)NC ) —Zémﬂﬂx
n=0 m=0
and
1 h
0=—— = 6
9= 427 " 2L (6)

The first two lines of (5) are the classical Bethe equation.
To calculate the effect of the dressing phase (on the second
line), we perturb all the charges:

1 - -
+—=060,, 00, =0,

ﬂ n 1
and expand to order 1/ V4> We are interested in the
simplest case with k = 2m. This gives a cancellation such

0, =0,

that 5@2 can be found alone, and the result is

S el 07105 - Q?HQ?_
r,s ( +29 QZ)

=
g ~

E==5 =
o 0>

The spectrum of AdS; x §° x T* divides massive particles
into left and right sectors. The product of the left-left phase ¢
and the left-right phase 6™ is in fact the dressing phase of AdSs.
We assume that the coefficients ¢, ; are antisymmetric in r<>s,
and zero when r + s even.

We write tildes on quantities defined to match [19], which
differ from those in the S matrix and dressing phase papers
[5,16,17,27] by powers of g. The spectral parameters are related
as ¥ = gx. The charges are related as Q,, = §"~' Q,, but we always
use Q, for the total, and Qn(xk ) for the constituents.

The Bethe equations give us an expansion in a couphng h
which in general may be a nontrivial function of the 't Hooft
coupling v/2. However this does not happen in AdSs x §°, nor (at
least to one loop) in AdS; x S* x T% where we have

V2 =2rh+ O(1/h).
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Expanding the one-cut resolvent

47rmx

V14 (damg)? —/1+

2(x-7°/%)

we obtain classical charges starting with

G(x)=2am+

(7)

Q? = —2am,

1
0% = 5 [~1+ /1 + 16227m?].
27

Substituting these into 6F and expanding leads to

SE — miciy  mO(=dcig —cra+23)
473 167°
m8(15c1,2 + 5C1,4 + 2Cl,6 - 56’2.3 — 26’2.5 + C3,4)
647"
T (8)
Then using the coefficients from [19] (ie. =

—8%)) for r,s >2) naturally gives us the AdSs

(rts=2)(
answer:
mé  md  49m'0  2m'? 1
SEy = — - o
HL 3j5 +3j7 120J9+5j11 + <j13>

In fact the only change from the AdSs x S° derivation made
here is that we have allowed for the possibility of ¢ ; # 0
in (8).

To use this result (8) in AdS; x S x T* we simply need
to substitute in different coefficients. The first set ¢BIMT
proposed in [7] is

s—r
r+s-—2

BLMT
Crs

, r+sodd,r,s >1

©)
and using this, we recover 6 Egy it of (2) above, by design:
[7] performed exactly this comparison.

The second set of coefficients ¢B9ST was found by
solving symmetry conditions on the S matrix including
crossing symmetry [16], as well as from a semiclassical
calculation involving giant magnon scattering [17].° These

two techniques agree perfectly, and also agree with the
near-BMN scattering amplitude [9]. They give

§—=r

BOSST _ |9
r+s=2

Crs - 5r.l + 51.& s

(10)
r+sodd,r,s >1

®This calculation was also done in [7], which omitted a crucial
twist in the algebraic curve. The correct integral was calculated
earlier in [15], however they did not express it in terms of the
charges Q,. The analogous calculations in AdSs x §° are in
[28,29], in that case done after both [19] and [30,31].
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and using this in (8) we obtain

SE - m* 13m® n 25m®  311m!'°
BOSST ™4 73 4875 " 9677 128077
N 1723m!? N
76807
thus
SE SE B m*  Sm®  11md N 93m10
BOSST BLMT — 4j3 16j5 32]7 256j9
193m!2
512711
m*(J =)
=4+ 7 11
* 2x2 ( )

This difference is the mismatch we seek to explain. (The
closed form on the last line is guessed from the series, and
checked to order 1/71.)

III. THE CONTRIBUTION FROM MASSLESS
LUSCHER TERMS

When calculating quantum corrections to the mass of a
particle, by drawing Feynman diagrams for the self-energy,
Liischer terms are the effect of the new diagrams possible in
finite volume, namely those in which a loop wraps the
space. The original context was relativistic theories [32,33],
for which (in 1 4+ 1 dimensions) the effect is

do
SEF = —s / e=sLeoshO cosh 0| S (0 + i) —1].
2z 2

(12)

In this case the dispersion relation is e(p) = \/p* + s> =
s cosh 8 and the S matrix is a function only of the difference
of the rapidities S(p,, p,) = S(0, — 0,). The reason the S
matrix appears is that taking a large L puts the particle
circling the space on shell, leaving just one integral over the
loop momentum. This has made the formula very useful for
integrable theories, where the same S matrix is what defines
the Bethe equations. The derivation of SEF can be done
allowing arbitrary dispersion relations [34], including the
magnon dispersion relation of AdS/CFT integrability. This
has provided various tests at strong coupling [20,34-38]
including some in AdS; [39].

Liischer corrections are usually exponentially suppressed
in a large volume L. The crucial observation for this
paper is that the exponential ~e** in (12) contains the
mass s of the virtual particle, and thus in a system with
massless particles, we no longer expect this suppression.
There are similar terms in which the particle wraps the
space n times, typically ~e~"% and thus subleading. But
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) >

FIG. 1. (Left panel) The simplest F-term Feynman diagram.
(Right panel) The generalizations we consider allow a multi-
particle physical state (K = 4 shown) and multiple wrappings by
the virtual particle (n = 2 shown).

with a massless virtual particle, we expect these to all be of
the same order.’

Thus we need a generalization of the simplest formula in
two directions: to treat a multiparticle physical state, and to
allow multiple wrappings. (Both are drawn in Fig. 1.) These
have been studied separately in the literature, using
techniques other than the original Feynman diagrams,
and were reviewed in [21].

A. Multiply wrapped and multiparticle formulas

The derivation of [22] is a one-loop semiclassical
correction, treating the physical particle as a soliton.
They extended this to include the multiple wrappings
appearing at one-loop level (by picturing a cylinder of
twice the radius with two physical solitons, and so on), and
obtained the following sum over n:

0wy = _Z(_DF,,][ioj_Z (1 B ::‘g':l((ﬂi)))

Z mina.LISba(q,., p)" — 1]. (13)

The n = 1 term here agrees with [34], and reduces to (12)
in the relativistic case. Pausing to fix our notation, this is an
energy correction to a particle of type a (and momentum p,
dispersion relation €,) due to virtual particles of all types b
(and &) circling the cylinder of size L. The momentum ¢,
is defined as a function of g by the on-shell condition
q* + €5(q,) = 0. The integration contour we use has the
Euclidean energy ¢ real, and thus ¢, is imaginary. In this
notation the Lorentzian two-momenta of the real and virtual
particles are

"For our nonrelativistic system the exponent is not propor-
tional to the mass, but the conclusions of this paragraph still hold.
See (17) for the form: g, « |g| means that the contribution from
near ¢ = 0 in the integral is not exponentially suppressed.
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Py = (€4(P), P)
4, = (ig.q9.) = (&5(q4)- q.)-

Another derivation is possible from the thermodynamic
Bethe ansatz (TBA); in fact this was the first approach in
AdS/CFT [40]. A Liischer formula for multiparticle
physical states was derived in this way in [23]:

Zs <5BY.k> 5(1)1‘
- /_m 2 O DS

0Eg;y =

X S20(qa.p2) - Sy (qu. pr)JeT . (14)

The pieces of the first term come from writing the Bethe
equations as 2zn; = BY; + 6P, with

BY, = piL - iZ log 83 (px. pj)
JEk

dq a
6b; = / Z Do (8326 (q0s 1) -

d
b _

o Sb;:;(‘]w PK)]e iq.L 8 IOg Sbﬁla(q“ pj)
When K = 1 this reduces to the n = 1 term of (13). For the
case of interest here, we will see that the first line of (14)
will vanish, and the sum over various internal choices in

bya «bya
S, Sh;a
of the S matrix forces b; = b always.

Combining features of (13) and (14), we will also

consider the following formula:

OF ][_oo 2n’ Z

Sz;(“u will turn out to be trivial, as the structure

444

_mq LZ Fh l:HSha G.rPi :| .

(15)

All terms n here will contribute at the same order. As was
pointed out in [22] about (13), at n > 1 this omits other
multiply wrapped effects which would be expected to
contribute at the same order.

After some preliminaries, we apply the singly wrapped
formula (14) to the circular string in Sec. III D, and then
look at multiple wrappings using (15) in Sec. IITE.

B. Variables and S matrix

In order to use the known S matrix [27,41] we must
describe both particles with Zukhovski variables. Allowing
a generic mass s these are defined by8

The mass is normalized so that s = 1 in AdS;s x 83, rather
than « as in Sec. II A. Note also that this equation fixes the
definition of A to match [17,27,42] but not [5,7,16].
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. 4l h +1 1
= —jlog—, S — - -
pZ gZ_ Zz 2l Z Z_

and describe dispersion relation

1 / 2 P
— 2 h2 i -
) SZ + 4 s

It is often useful to define the spectral parameter z by

h 1
+___ —

1 1 s
Zi*'ZTE:Z*'EiZi-
For the real particles, we will write x (or rather xk) in
terms of x defined like this, see (21) below.

For massive virtual particles y*, usually one transforms
the integral on ¢ into an integral on y along the upper half
unit circle. But when this is massless, the variable y is not
useful as it approaches 1 in the limit s, — 0. Instead, we

write everything in terms of g = —ie(q, ), finding
lql | laP 1
=1+ —+-—5+0 16
2h * 8h? * n (16)
and
i ilgP
= ¢74.L = Llal/h 4 (’)(F) (17)

The relevant matrix components of the S matrix for
massless-massive scattering are given in Appendix N of
[27]. Taking the physical particle to be a = Y§ (aleft-sector
sphere boson), we are interested in the following matrix
components:

N

Sf]., ha(y xi)_ pq,,

(A54.Bra.)™!

(A54.455.)"

(Bya.Bra.)™!

4 bosons, b = T4
= (N5 2 fermions, b =7,
2 fermions, b = 4.

(18)

where in (M.1) of [27] we find

_ \/7‘ xt -yt

xTxm —y*
We will also need the normalization factor from (O.2)
of [27]:

LL — LL
Apq, =1, By, =
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N = x [1=1/xy" [1=1/x"y~
pas =\ F\[1Z Uxty-\[1T=1/xty"
We have defined this without the dressing phase, so in full
we want S, , = S,, (o5, )%

Our calculation will be sensitive to the classical part of
the mixed-mass dressing phase ¢*°, which we take to be’

(5]

Y + +\ - h + +
s (.5%) = exp{ 110,410, ()
- QrH(xi)Qr(yi)]} (19)

in terms of charges defined as Q,(z) =
and, for n > 1,

p,=—ilog(z"/z7)

0. =5 [ e

.. . 10
For now we leave the coefficient W unfixed.

C. Ingredients for the su(2) circular string

The S-matrix part of (15) involves a product over all of
the physical particles xi. We can rewrite this as an integral
over the cut in the resolvent, in exactly the same way as is
done for the Bethe equations to derive (5) above:

K
Sp = H Spa (Y, X7)
k=1

K
= exp [Z log Sba(yi,x?ﬁ)}

k=1

2 =2
:exp{L/dfcx ~29 p
C X

The density p encodes the resolvent as

G(fc):/c sfz_ iéﬂx

(5) log Sy (v5. x* @)} . (0)

and the integration is over the single connected cut C
defining our solution. It is easy to work out p from (7), but
to do the integral over X it is much better to use identities

The massive sector phase a contains an AFS phase of this
form with W = 2. This is c” in (4).

"In [42] we used the same form (19) for the AFS phase for
particles of mass @ and 1 —a (in AdS; x S® x §% x §'). The
coefficient there was W, = 4s,s,/(s, + s,), which goes to zero
if s, =1, sy = 0.

PHYSICAL REVIEW D 93, 106006 (2016)

= [ -r@)
Qn/Cdz T

The spectral parameters X, z appearing here are scaled by g
relative to the x*, y* used in the S matrix. This follows the
convention in [19], and is convenient for taking the limit
L — oo at a fixed . This expansion gives xi as follows:

et oM

The variables y* are still given by (16) above. We have an
expansion in A, but using 4 = 2gL we regard this as an
expansion in L, i.e. y© =14 |q|/4gL + O(1/L?).

With these expansions we can now write the leading
contribution for the S-matrix terms

i X 1
—logBLL, = +1ogN5, , = _2L(J%—§)2+O<L2>'

Expanding in g < 1 and integrating as in (20), we get
(using Q,, = 0 for every odd n > 3)

2i0 = —log B5E,.

M)~

k=1
e =
3 <Q1 +2;9 Qn+1)

= —izm + iG(7). (22)

We must perform a similar sum for the AFS phase, since
(19) refers to the constituent particles. The charges are

~n—1 1
Qn(xki)_% ) 92+O( >

Qn(yi) = _%—'—

and thus the total phase is

ottt Fow|- Y]

— exp [_ |¢I|QQ2]
w |

Let us combine this with the e~+L factor as follows:

190 o

e_iq'L(GXFs)z = exp(—|q|¢), ¢ = 25 W

Then finally putting all of this into the S matrix (18), we
have
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e~lalé b = T massless bosons

el = ¢ ¢7ldl¢e=2i0 | — ymassless fermions

e—lq\¢e+2i9 b :5{‘

D. Singly wrapped term

Using all the pieces we have calculated, it is now
straightforward to work out the singly wrapped Liischer
F-term (14), or equivalently, the n = 1 term of (15). We set
W = 2, and assume m is even:

o= - T35

= —/ dq8e laltsin26

0 27
8 sin’0
T ¢
Then expanding in g = 1/4z7 < 1,

F;, e—iq,LSh

SE — —-m*  15m® + 2%m?

273 + 24.7°
990m® + 135722m!0 + 27*m!?
a 144077 (24)

This is clearly of the same order as (11), although all the
coefficients are wrong (and there are unwanted powers of
m). These will be changed by including the n > 1 terms
below. But first we check our claim above that this n = 1
term of (15) agrees exactly with the multiparticle
formula (14):
(i) We can see that the first line of (14) vanishes by
calculating 6®;. The constituent S-matrix elements

are independent of ¢, and thus 541088 ’““(q*,p/-):O.
We have simplified SZZZSZW - Sb]a by setting b, =

b for all k. Looking at 'the S matrix as given in (N.3)
of [27] again, notice that acting on |YLT4) this
never gives |X Y%) with X # T%. The same is true
for the massless fermions, thus no diagrams with
by # by, survive.

(i)

E. Sum over all wrappings

Doubly wrapped Liischer F-terms would usually (with
massive particles) be suppressed by the exponential factor
squared. But this is not true with massless virtual particles,
and we find that the n-wrapped terms all contribute at order
1/7°3, the same as the singly wrapped term (24). Thus we
ought to sum all of them.

We can do this using (15), which attempts to add
multiple wrapping corrections along the lines of (13).
Using the same ingredients as above, the steps are as
follows:

PHYSICAL REVIEW D 93, 106006 (2016)

0 n=1 b

©dg =8
—/_ooz—zzlze‘”m‘ﬁsinznﬁ

dqzl (1 pa— e_lq‘¢+2i0)(1 — e_‘q‘¢_2i0)
- /_oo o (1 — e~lal9)2
T 1

2 . 1 )
- _7+*L12(6219) +*Li2(€_216) .
¢ 3 T

At this point we can expand in g by brute force, but we can
also obtain the closed form of (11) more elegantly. Begin
by observing that (for an even m)'' the term ‘71 0, =

—Xam in 6 (22) does not contribute to sin* nf. Thus we

(25)

may replace @ with the 6 given by

2m2m? g am?

b—— _

1+ 16723 m? 2k

J?* +m?

recalling x = . We also write

Now we can use some properties of the dilogarithm to
simplify (25). For 0 < |y| < 2z we have [43]

. :tny = sin (£ny)
Ll j:ty )
Then using the elementary sum > %, %= i"y
%2 FEA+ ﬁ, we obtain
2 2
Li2(6+i7) + Liz(e_i}/) = % + %

For our calculation y = 26, and when § is small (« is large)
this is in the required range. Thus (25) becomes simply

1
SE = — (20)?

B Wm?[J (W —1) — k]
21— (W = 2)WT2/m?]
:—M it W=2.

K2

(26)

We obtain the mismatch (11) up to a factor of 2. Setting
W =2 makes (19) precisely the usual AFS phase.
Expanding, we get

""The case of an odd m should give the same physics, but one
will need to be more careful about branches of functions.
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The formula (15) we used here is a rather crude attempt
to write down the appropriate multiply wrapped multi-
particle Liischer term. It is very encouraging that it almost
works, but the real answer is probably much more
complicated. Some comments in this direction follow:

(1) There is another derivation of Liischer terms from the
TBA in [44,45]. The leading order (i.e. n = 1) term
there, SE(), is (14), but they also derive two “next to
leading order” (NLO) terms. One of these, SEV), is
similar to our n = 2 term but with a different trace
structure. The other, SE>?), has two momentum
integrals, and a factor of the virtual-virtual S matrix.

The original application of these was at weak
coupling. Naively attempting to evaluate these terms
at strong coupling, we do not see how to obtain the
correct results. For instance for giant magnons, we
can compare them to [46], where we computed n = 2
terms using (13) and saw agreement with string
theory.

(i) However it seems likely that a better derivation for
terms with n > 2 wrappings may include similar
features: several loop momentum integrals, and fac-
tors of the virtual-virtual S matrix. While the n = 2
term may not be too difficult (from either Feynman
diagrams or from TBA), it seems clear that we will
need to sum all wrappings for the effects studied here.

We stress that our conclusion that the Bethe ansatz is not
complete without massless Liischer corrections does not
depend on these details. The singly wrapped term (14)
alone produces a correction (24) of the same order as the
mismatch (11) which we set out to explain.

IV. CONCLUSION

The problem we aimed to solve was that the correct one-
loop dressing phase ¢” (as deduced from crossing sym-
metry, and direct semiclassical calculations) does not
produce the correct one-loop energy in the Bethe ansatz,
for circular strings in S3. The solution we found is that
Liischer F-terms with a massless virtual particle circling the
space contribute without an exponential suppression factor,
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at precisely the right orders in 1/.7 to repair this disagree-
ment. By summing over all wrappings, we are able to
recover the difference almost exactly.

From this we conclude that the su(2) Bethe equations are
not sufficient to describe the spectrum in this sector: they
must be supplemented by the effect of massless wrapping
terms. This effect is the first place in which the massless
excitations of AdS; x S x T* do not decouple from the
massive sector.

Our calculation involves the mixed-mass dressing phase
¢™°, and we show that its classical term has the AFS form.
We observe that this phase is not the limit ¢ — 1 of the one
needed for the scattering of mass a and mass 1 — « particles
in the AdS; x §% x §% x §! case [42], and in particular
cannot have the Q;Q, term which seems to be necessary
there.'”> We interpret this as more evidence that the
matching of the variables used for that integrable system
to those for AdS; x $3 x T* is not simple.

Massless Liischer terms will also be needed for macro-
scopic solutions in AdS; x §3 x §3 x S', where the sit-
uation is very similar: by placing the same resolvent in each
S one finds an equally simple su(2) sector of the Bethe
equations, and in string theory one can likewise place the
same solution in each S3 [7]. The correct massive dressing
phase there differs only by a factor of % [17], and the mixed-
mass S matrix is now also known [47]. Further ahead,
similar effects are surely going to be important in learning
to treat “macroscopic massless” solutions in integrability,
as we proposed in [48].
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The effect of using a classical phase starting with Q;Q, as in
[42] in place of (19) is that the final answer has a term
SEF ~1)T 4. which is undesirable. In addition the coefficient
W,, needed in [42] goes to zero as s, — 0.
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