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In AdS5=CFT4 integrability the Bethe ansatz gives the spectrum of long strings, accurate up to
exponentially small corrections. This is no longer true in three-dimensional anti–de Sitter (AdS3) space, as
we demonstrate here by studying Lüscher F-terms with a massless particle running in the loop. We apply
this to the classic test of Hernández and López, in which the suð2Þ sector Bethe equations (including the
one-loop dressing phase) should match the semiclassical string theory result for a circular spinning string.
These calculations do not agree in AdS3 × S3 × T4, and we show that the sum of all massless Lüscher
F-terms can reproduce the difference.
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I. INTRODUCTION

There has been much recent work on extending what we
have learned about the integrability of strings in AdS5 × S5

[1,2] to the less than maximally supersymmetric back-
ground AdS3 × S3 × T4 [3,4], which arises from a D1- and
D5-brane intersection. Some results for the massive sector
can be adapted quite simply from the five-dimensional
anti–de Sitter (AdS5) case, or even generalized to every
AdSn × Sn. What is completely new is the presence of a
massless sector, corresponding to the T4 directions and
their superpartners.
In all results to date it has been possible to ignore the

massless excitations when studying the massive sector.
This is true for the calculation of the exact S matrix from
centrally extended symmetries [5] and the corresponding
Bethe equations, for coset methods [6] and semiclassical
energy corrections to spinning strings [7,8], for near-
Berenstein-Maldacena-Nastase (-BMN) diagrammatic cal-
culations of two- and four-point functions [9–11]1 and the
one-loop S matrix via unitarity methods [13,14], and for the
various calculations of the massive dressing phase [15–17].
But not everything works perfectly in this decoupled

picture of the massive sector and, in particular, the
comparison of the one-loop energy correction to circular
spinning strings in S3 to the expansion of the suð2Þ sector
Bethe equations fails. This is precisely the comparison
from which Hernández and López constructed the complete
one-loop dressing phase in AdS5 × S5 [18,19], and a
similar construction in AdS3 × S3 × T4 was done in [7].
However the dressing phase constructed this way does not

solve the crossing equations [16], nor does it agree with a
construction from semiclassical magnon scattering [17],
nor give the amplitude seen in near-BMN scattering [9].
Conversely, using the correct dressing phase (as agreed on
by the authors of [16,17], and [9]) breaks the circular
spinning string comparison. The resulting mismatch is of
the same order as the one-loop energy.
Our paper offers a solution to this problem. Lüscher

F-terms involving massive modes running in the loop give
exponentially small finite-size corrections in AdS5 × S5

[20,21]. But massless modes are in some sense “infinite
range,” and thus give rise to Lüscher F-terms which are not
exponentially suppressed. In fact they are of the same order
as the prediction from the asymptotic Bethe equations, and
thus cannot be ignored, even when L is large. This is the
first time it is necessary to include the massless particles in
order to understand the massive sector.
In general one can consider Lüscher corrections wrap-

ping the space any number of times [22], and with a
massless virtual particle these all contribute at the same
order. For multiparticle physical states (such as the circular
string, with order

ffiffiffi
λ

p
excitations) however only the singly

wrapped Lüscher terms are well understood [23].
Combining the results of [22] and [23], we write down a
simple formula for a multiparticle correction wrapping n
times. While we believe this omits some multiple wrapping
effects which should contribute at the same order, when
applied to the circular string (and summed over all n) it
gives the correct functional form of the mismatch, up to a
factor of 2.

II. CONFLICTING RESULTS ABOUT suð2Þ
CIRCULAR STRINGS

The suð2Þ sector at strong coupling concerns strings in
R × S3. For classical string theory this is a consistent

1Earlier papers had to include massless modes on the internal
legs of diagrams [12], but better ways to handle divergent
integrals eventually removed this [9,10].
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truncation of both AdS5 × S5 and AdS3 × S3 × T4, thus we
expect an identical integrable description. However at one
loop the string should feel the entire space: this is seen
explicitly in the list of modes needed for semiclassical
analysis, and is encoded in the dressing phase of
integrability.
The circular spinning string in S3 which we study is

given by [24]

t¼ κτ; Z1¼
1ffiffiffi
2

p eiðJ τþmσÞ; Z2¼
1ffiffiffi
2

p eiðJ τ−mσÞ; ð1Þ

where t is AdS time, S3 ⊂ C2 has coordinates Zi, and we
take σ ∈ ½0; 2π�. Clearly m ∈ Z is a winding number. The

Virasoro constraints impose κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 2 þm2

p
. This solution

has two equal angular momenta, J1 ¼ J2 ¼ R2J =2;2 and
energy Δ ¼ R2κ. We define the ’t Hooft coupling as in
AdS5 by R2 ¼ ffiffiffi

λ
p

.
This solution is particularly simple in string theory

because it is homogeneous, in the sense that a translation
along σ maps to an isometry of the target space. It is also
particularly simple in integrability because all the Bethe
roots lie on one connected curve. Below we present the
calculation of its energy at one loop in both of these pictures.

A. World sheet semiclassical calculation

The bosonic modes of the same solution in S5 were
calculated in [25]. While it is simple to repeat their
calculation, there is no need to do so, as we can safely
just keep the modes lying in S3, and discard the other two.
They have frequencies

wS�
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 2J 2 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ðJ 2 þm2Þ þ J 4

qr
:

The bosonic modes in AdS directions of course have mass
s ¼ κ, and those in torus directions are massless:

wA
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ κ2

p
; wT

n ¼ jnj:
For the fermionic modes, the calculation was performed

in [7], and we briefly sketch it here. The equations of
motion are as usual given by ρ−DþΘ1 ¼ 0 ¼ ρþD−Θ2,
where DμΘI ¼ ð∂μ þ tμÞΘI þ FρμΘnotI with μ ¼ 0, 1,

ρμ ¼ ∂μXMEA
MΓA

tμ ¼
1

4
∂μXMωAB

M ΓAB

F ¼ 1

4
Fð3Þ ¼

1

4
ðΓ012 þ Γ345Þ;

and ∂� ¼ ∂0 � ∂1, ρ� ¼ ρ0 � ρ1, etc. If we adopt the κ
gauge Θ1 ¼ Θ2 then the equations of motion simplify to

ðρ∓∂� þ ρ∓t� þ ρ∓Fρ�ÞΘðσ; τÞ ¼ 0:

Taking the sum of these equations, and using a plane wave
ansatz for the modes Θðσ; τÞ ¼ eiwnτþinσΘ0 (where Θ0 is a
constant Majorana-Weyl spinor), we get

ðρ0∂0 − ρ1∂1 þ ρ0t0 − ρ1t1 þ ρ0Fρ0 − ρ1Fρ1Þ
× eiwnτþinσΘ0 ¼ 0:

Solving this equation for the mode frequencies, we find
equally many massive and massless fermions:

wF
n ¼

8<
:

jnj 4masslessffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ J 2

p
4 of massJ :

With these mode frequencies we can now calculate the
semiclassical one-loop energy correction

δE ¼
X
n

eðnÞ; eðnÞ ¼
X8þ8

b

ð−1ÞF 1

2κ
wb
n:

Clearly the 4 massless fermionic and 4 massless bosonic
modes cancel, and we need only the 4þ 4 massive mode
frequencies. Using the resummation procedure of [18], the
nonanalytic term δEint was determined in [7] to be the
following:

δEBLMT ¼ m4

2J 3
−

7m6

12J 5
þ 29m8

48J 7
−

97m10

160J 9

þ 2309m12

3840J 11
þ � � � : ð2Þ

It is this nonanalytic term that should be directly compared
to the Bethe ansatz calculation, presented next.

B. Bethe ansatz calculation

The relevant Bethe equations were found in [5], and the
suð2Þ sector is exactly the same as the suð2Þ sector Bethe
equation from AdS5 × S5, as it must be. This is the case
η ¼ þ1 of

�
xþi
x−i

�
L

¼
YK
j≠i

�
xþi −x−j
x−i −xþj

�η�1−1=xþi x
−
j

1−1=x−i x
þ
j

�
σ••ðxi;xjÞ2: ð3Þ

Here we use the following expansion of the dressing phase:

σ••ðx; yÞ ¼ exp

�
i
4π

X
r;s

cr;sQrðxÞQsðyÞ
�
; ð4Þ2Note the factor of 2. If we write J ¼ J1 þ J2 then J ¼ J=

ffiffiffi
λ

p
.

Later we use J ¼ L, for instance in (6).
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where cr;s ¼ hcð0Þr;s þ cð1Þr;s þOð1=hÞ with cð0Þr;s being the
usual Arutyunov-Frolov-Staudacher (AFS) phase [26].

We normalize the one-loop phase cð1Þr;s as in [19], and note
that in AdS3 we are interested in the left-left phase.3

The analysis we need is identical to that of [19], and we
briefly review the procedure. Assuming that there is just
one cut (with one mode number k), in the thermodynamic
limit we can replace the product by an integral. Multiplying
by the relevant weight and integrating over the cut, [19]
obtained this expression in terms of the resolvents4:

G2 − 2πkG − ηGð1Þ

¼ ~g2½Gð1Þ2 − 2πkGð2Þ� þ ~g2ð1þ ηÞ½Gð1Þ ~Q2 − Gð2Þ ~Q1�

þ
X
r;s

− 2ηcð1Þr;s
1ffiffiffi
λ

p ~grþs−1½GðrÞ ~Qs −GðsÞ ~Qr� þO
�
1

λ

�
;

ð5Þ
where

Gð~xÞ ¼ −
X∞
n¼0

~Qnþ1 ~xn; GðrÞ ¼ −
X∞
m¼0

~Qmþrþ1 ~xm;

and

~g ¼ 1

4πJ
¼ h

2L
: ð6Þ

The first two lines of (5) are the classical Bethe equation.
To calculate the effect of the dressing phase (on the second
line), we perturb all the charges:

~Qn ¼ ~Q0
n þ

1ffiffiffi
λ

p δ ~Qn; δ ~Q1 ¼ 0;

and expand to order 1=
ffiffiffi
λ

p
.5 We are interested in the

simplest case with k ¼ 2m. This gives a cancellation such
that δ ~Q2 can be found alone, and the result is

δE ¼ ~g2

2π
δ ~Q2 ¼

X
r;s

cð1Þr;s ~grþs
~Q0
rþ1

~Q0
s − ~Q0

sþ1
~Q0
r

πð1þ 2~g2 ~Q0
2Þ

:

Expanding the one-cut resolvent

G0ð~xÞ¼ 2πmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð4πm~gÞ2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð4πm~xÞ2

p
2ð~x− ~g2=~xÞ ð7Þ

we obtain classical charges starting with

~Q0
1 ¼ −2πm;

~Q0
2 ¼

1

2~g2
½−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16π2 ~g2m2

q
�.

Substituting these into δE and expanding leads to

δE ¼ m4c1;2
4J 3

þm6ð−4c1;2 − c1;4 þ c2;3Þ
16J 5

þm8ð15c1;2 þ 5c1;4 þ 2c1;6 − 5c2;3 − 2c2;5 þ c3;4Þ
64J 7

þ � � � : ð8Þ

Then using the coefficients from [19] (i.e. cHLr;s ¼
−8 ðr−1Þðs−1Þ

ðrþs−2Þðs−rÞ for r; s ≥ 2) naturally gives us the AdS5
answer:

δEHL ¼ −
m6

3J 5
þ m8

3J 7
−

49m10

120J 9
þ 2m12

5J 11
þO

�
1

J 13

�
:

In fact the only change from the AdS5 × S5 derivation made
here is that we have allowed for the possibility of c1;s ≠ 0

in (8).
To use this result (8) in AdS3 × S3 × T4 we simply need

to substitute in different coefficients. The first set cBLMT
r;s

proposed in [7] is

cBLMT
r;s ¼ 2

s − r
rþ s − 2

; rþ s odd; r; s ≥ 1 ð9Þ

and using this, we recover δEBLMT of (2) above, by design:
[7] performed exactly this comparison.
The second set of coefficients cBOSSTr;s was found by

solving symmetry conditions on the S matrix including
crossing symmetry [16], as well as from a semiclassical
calculation involving giant magnon scattering [17].6 These
two techniques agree perfectly, and also agree with the
near-BMN scattering amplitude [9]. They give

cBOSSTr;s ¼
�
2

s − r
rþ s − 2

− δr;1 þ δ1;s

�
;

rþ s odd; r; s ≥ 1

ð10Þ

3The spectrum of AdS3 × S3 × T4 divides massive particles
into left and right sectors. The product of the left-left phase σ••

and the left-right phase ~σ•• is in fact the dressing phase of AdS5.
We assume that the coefficients cr;s are antisymmetric in r↔s,
and zero when rþ s even.

4We write tildes on quantities defined to match [19], which
differ from those in the S matrix and dressing phase papers
[5,16,17,27] by powers of ~g. The spectral parameters are related
as ~x≡ ~gx. The charges are related as ~Qn ¼ ~gn−1Qn but we always
use ~Qn for the total, and Qnðx�k Þ for the constituents.

5The Bethe equations give us an expansion in a coupling h
which in general may be a nontrivial function of the ’t Hooft
coupling

ffiffiffi
λ

p
. However this does not happen in AdS5 × S5, nor (at

least to one loop) in AdS3 × S3 × T4, where we haveffiffiffi
λ

p ¼ 2πhþOð1=hÞ.

6This calculation was also done in [7], which omitted a crucial
twist in the algebraic curve. The correct integral was calculated
earlier in [15], however they did not express it in terms of the
charges Qn. The analogous calculations in AdS5 × S5 are in
[28,29], in that case done after both [19] and [30,31].
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and using this in (8) we obtain

δEBOSST ¼ m4

4J 3
−
13m6

48J 5
þ 25m8

96J 7
−

311m10

1280J 9

þ 1723m12

7680J 11
þ � � �

thus

δEBOSST − δEBLMT ¼ −
m4

4J 3
þ 5m6

16J 5
−
11m8

32J 7
þ 93m10

256J 9

−
193m12

512J 11
þ � � �

¼ þm2ðJ − κÞ
2κ2

: ð11Þ

This difference is the mismatch we seek to explain. (The
closed form on the last line is guessed from the series, and
checked to order 1=J 15.)

III. THE CONTRIBUTION FROM MASSLESS
LÜSCHER TERMS

When calculating quantum corrections to the mass of a
particle, by drawing Feynman diagrams for the self-energy,
Lüscher terms are the effect of the new diagrams possible in
finite volume, namely those in which a loop wraps the
space. The original context was relativistic theories [32,33],
for which (in 1þ 1 dimensions) the effect is

δEF ¼ −s
Z

dθ
2π

e−sL cosh θ cosh θ

�
Sabab

�
θ þ i

π

2

�
− 1

�
:

ð12Þ

In this case the dispersion relation is εðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ s2

p
¼

s cosh θ and the S matrix is a function only of the difference
of the rapidities Sðpa; pbÞ ¼ Sðθa − θbÞ. The reason the S
matrix appears is that taking a large L puts the particle
circling the space on shell, leaving just one integral over the
loop momentum. This has made the formula very useful for
integrable theories, where the same S matrix is what defines
the Bethe equations. The derivation of δEF can be done
allowing arbitrary dispersion relations [34], including the
magnon dispersion relation of AdS=CFT integrability. This
has provided various tests at strong coupling [20,34–38]
including some in AdS3 [39].
Lüscher corrections are usually exponentially suppressed

in a large volume L. The crucial observation for this
paper is that the exponential ∼e−sL in (12) contains the
mass s of the virtual particle, and thus in a system with
massless particles, we no longer expect this suppression.
There are similar terms in which the particle wraps the
space n times, typically ∼e−nsL and thus subleading. But

with a massless virtual particle, we expect these to all be of
the same order.7

Thus we need a generalization of the simplest formula in
two directions: to treat a multiparticle physical state, and to
allow multiple wrappings. (Both are drawn in Fig. 1.) These
have been studied separately in the literature, using
techniques other than the original Feynman diagrams,
and were reviewed in [21].

A. Multiply wrapped and multiparticle formulas

The derivation of [22] is a one-loop semiclassical
correction, treating the physical particle as a soliton.
They extended this to include the multiple wrappings
appearing at one-loop level (by picturing a cylinder of
twice the radius with two physical solitons, and so on), and
obtained the following sum over n:

δEHJL ¼ −
X
b

ð−1ÞFb⨍ ∞

−∞

dq
2π

�
1 −

ε0aðpÞ
ε0bðq⋆Þ

�

×
X∞
n¼1

1

n
e−inq⋆L½Sbabaðq⋆; pÞn − 1�: ð13Þ

The n ¼ 1 term here agrees with [34], and reduces to (12)
in the relativistic case. Pausing to fix our notation, this is an
energy correction to a particle of type a (and momentum p,
dispersion relation εa) due to virtual particles of all types b
(and εb) circling the cylinder of size L. The momentum q⋆
is defined as a function of q by the on-shell condition
q2 þ ε2bðq⋆Þ ¼ 0. The integration contour we use has the
Euclidean energy q real, and thus q⋆ is imaginary. In this
notation the Lorentzian two-momenta of the real and virtual
particles are

FIG. 1. (Left panel) The simplest F-term Feynman diagram.
(Right panel) The generalizations we consider allow a multi-
particle physical state (K ¼ 4 shown) and multiple wrappings by
the virtual particle (n ¼ 2 shown).

7For our nonrelativistic system the exponent is not propor-
tional to the mass, but the conclusions of this paragraph still hold.
See (17) for the form: q⋆ ∝ jqj means that the contribution from
near q ¼ 0 in the integral is not exponentially suppressed.
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pμ ¼ ðεaðpÞ; pÞ
qμ ¼ ðiq; q⋆Þ ¼ ðεbðq⋆Þ; q⋆Þ:

Another derivation is possible from the thermodynamic
Bethe ansatz (TBA); in fact this was the first approach in
AdS=CFT [40]. A Lüscher formula for multiparticle
physical states was derived in this way in [23]:

δEBJ ¼ −
X
j;k

ε0aðpkÞ
�
δBYk

δpj

�
−1
δΦj

−
Z

∞

−∞

dq
2π

X
b1���bK

ð−1ÞFb1 ½Sb2ab1a
ðq⋆; p1Þ

× Sb3ab2a
ðq⋆; p2Þ � � � Sb1abKa

ðq⋆; pKÞ�e−iq⋆L: ð14Þ
The pieces of the first term come from writing the Bethe
equations as 2πnk ¼ BYk þ δΦk with

BYk ¼ pkL − i
X
j≠k

log Saaaaðpk; pjÞ

δΦj ¼
Z

∞

−∞

dq
2π

X
b1���bK

ð−1ÞFb1 ½Sb2ab1a
ðq⋆; p1Þ � � �

� � � Sb1abKa
ðq⋆; pKÞ�e−iq⋆L

∂
∂q logS

bjþ1a
bj a

ðq⋆; pjÞ:

When K ¼ 1 this reduces to the n ¼ 1 term of (13). For the
case of interest here, we will see that the first line of (14)
will vanish, and the sum over various internal choices in
Sb2ab1a

Sb3ab2a
� � �Sb1abKa

will turn out to be trivial, as the structure
of the S matrix forces bj ¼ b always.
Combining features of (13) and (14), we will also

consider the following formula:

δE¼−⨍ ∞

−∞

dq
2π

X∞
n¼1

1

n
e−inq⋆L

X4þ4

b

ð−1ÞFb

�YK
k¼1

Sbabaðq⋆;pkÞ
�n
:

ð15Þ
All terms n here will contribute at the same order. As was
pointed out in [22] about (13), at n > 1 this omits other
multiply wrapped effects which would be expected to
contribute at the same order.
After some preliminaries, we apply the singly wrapped

formula (14) to the circular string in Sec. III D, and then
look at multiple wrappings using (15) in Sec. III E.

B. Variables and S matrix

In order to use the known S matrix [27,41] we must
describe both particles with Zukhovski variables. Allowing
a generic mass s these are defined by8

pz ¼ −i log
zþ

z−
; sz ¼

h
2i

�
zþ þ 1

zþ
− z− −

1

z−

�

and describe dispersion relation

εzðpzÞ ¼
h
2i

�
zþ −

1

zþ
− z− þ 1

z−

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2z þ 4h2sin2

p
2

r
:

It is often useful to define the spectral parameter z by

z� þ 1

z�
¼ zþ 1

z
� i

sz
h
:

For the real particles, we will write x� (or rather x�k ) in
terms of x defined like this, see (21) below.
For massive virtual particles y�, usually one transforms

the integral on q into an integral on y along the upper half
unit circle. But when this is massless, the variable y is not
useful as it approaches 1 in the limit sy → 0. Instead, we
write everything in terms of q ¼ −iεðq⋆Þ, finding

y� ¼ 1� jqj
2h

þ jqj2
8h2

þO
�
1

h3

�
ð16Þ

and

q⋆ ¼ −
i
h
jqj þ ijqj3

24h3
þ � � �

⇒ e−iq⋆L ¼ e−Ljqj=h þO
�
1

h3

�
: ð17Þ

The relevant matrix components of the S matrix for
massless-massive scattering are given in Appendix N of
[27]. Taking the physical particle to be a ¼ YL

p (a left-sector
sphere boson), we are interested in the following matrix
components:

Ŝq⋆;p ¼ Ŝbabaðy�; x�Þ ¼ Ŝ−1p;q⋆

¼ ðN•∘
p;q⋆Þ−1

8>><
>>:

ðALL
p;q⋆B

LL
p;q⋆Þ−1 4 bosons; b ¼ T _aa

q⋆

ðALL
p;q⋆A

LL
p;q⋆Þ−1 2 fermions; b ¼ χaq⋆

ðBLL
p;q⋆B

LL
p;q⋆Þ−1 2 fermions; b ¼ ~χaq⋆

;

ð18Þ

where in (M.1) of [27] we find

ALL
p;q⋆ ≡ 1; BLL

p;q⋆ ≡
ffiffiffiffiffiffi
x−

xþ

r
xþ − yþ

x− − yþ
:

We will also need the normalization factor from (O.2)
of [27]:

8The mass is normalized so that s ¼ 1 in AdS5 × S5, rather
than κ as in Sec. II A. Note also that this equation fixes the
definition of h to match [17,27,42] but not [5,7,16].
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N•∘
p;q⋆ ≡

ffiffiffiffiffiffi
x−

xþ

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=x−yþ

1 − 1=xþy−

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=x−y−

1 − 1=xþyþ

s
:

We have defined this without the dressing phase, so in full
we want Sp;q⋆ ¼ Ŝp;q⋆ðσ•∘p;q⋆Þ2.
Our calculation will be sensitive to the classical part of

the mixed-mass dressing phase σ•∘, which we take to be9

σ•∘AFSðx�; y�Þ ¼ exp

�
i
h
W

X∞
r¼2

½Qrðx�ÞQrþ1ðy�Þ

−Qrþ1ðx�ÞQrðy�Þ�
�

ð19Þ

in terms of charges defined as Q1ðzÞ≡pz¼−i logðzþ=z−Þ
and, for n > 1,

QnðzÞ≡ i
n − 1

�
1

ðzþÞn−1 −
1

ðz−Þn−1
�
:

For now we leave the coefficient W unfixed.10

C. Ingredients for the suð2Þ circular string

The S-matrix part of (15) involves a product over all of
the physical particles x�k . We can rewrite this as an integral
over the cut in the resolvent, in exactly the same way as is
done for the Bethe equations to derive (5) above:

Sb ≡
YK
k¼1

Sbaðy�; x�k Þ

¼ exp

�XK
k¼1

log Sbaðy�; x�k Þ
�

¼ exp

�
L
Z
C
d~x

~x2 − ~g2

~x2
ρð~xÞ log Sbaðy�; x�ð~xÞÞ

�
: ð20Þ

The density ρ encodes the resolvent as

Gð~xÞ ¼
Z
C
d~z

ρð~zÞ
~x − ~z

¼ −X∞
n¼0

~Qnþ1 ~xn

and the integration is over the single connected cut C
defining our solution. It is easy to work out ρ from (7), but
to do the integral over ~x it is much better to use identities

~Qn ¼
Z
C
d~z

ρð~zÞ
~zn

:

The spectral parameters ~x, ~z appearing here are scaled by ~g
relative to the x�, y� used in the S matrix. This follows the
convention in [19], and is convenient for taking the limit
L → ∞ at a fixed ~g. This expansion gives x�k as follows:

x� ¼ 1

~g

�
~x� i

2L
~x2

~x2 − ~g2
þO

�
1

L2

��
: ð21Þ

The variables y� are still given by (16) above. We have an
expansion in h, but using h ¼ 2~gL we regard this as an
expansion in L, i.e. y� ¼ 1� jqj=4~gLþOð1=L2Þ.
With these expansions we can now write the leading

contribution for the S-matrix terms

− logBLL
pk;q⋆ ¼ þ logN•∘

pk;q⋆ ¼ −
i
2L

~x
ð~x − ~gÞ2 þO

�
1

L2

�
:

Expanding in ~g ≪ 1 and integrating as in (20), we get
(using ~Qn ¼ 0 for every odd n ≥ 3)

2iθ≡XK
k¼1

− logBLL
pk;q⋆

¼ −
i
2

�
~Q1 þ 2

X∞
n¼1

gn ~Qnþ1

�

¼ −iπmþ iGð~gÞ: ð22Þ

We must perform a similar sum for the AFS phase, since
(19) refers to the constituent particles. The charges are

Qnðx�k Þ ¼
~gn−1

L~xn−2
1

~x2 − ~g2
þO

�
1

L2

�

Qnðy�Þ ¼ −
ijqj
h

þ � � �

and thus the total phase is

YK
k¼1

σ∘•AFSðy�; x�k Þ ¼
YK
k¼1

exp

�
−
jqj
W

Q2ðx�k Þ
�

¼ exp

�
−
jqj~g ~Q2

W

�
:

Let us combine this with the e−iq⋆L factor as follows:

e−iq⋆Lðσ∘•AFSÞ2 ¼ expð−jqjϕÞ; ϕ ¼ 1

2~g
þ ~g ~Q2

W
: ð23Þ

Then finally putting all of this into the S matrix (18), we
have

9The massive sector phase σ•• contains an AFS phase of this
form, with W ¼ 2. This is cð0Þr;s in (4).

10In [42] we used the same form (19) for the AFS phase for
particles of mass α and 1 − α (in AdS3 × S3 × S3 × S1). The
coefficient there was Wxy ¼ 4sxsy=ðsx þ syÞ, which goes to zero
if sx ¼ 1, sy ¼ 0.
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e−iq⋆LSb ¼
8<
:

e−jqjϕ b ¼ Tmassless bosons

e−jqjϕe−2iθ b ¼ χmassless fermions

e−jqjϕeþ2iθ b ¼ ~χ:

D. Singly wrapped term

Using all the pieces we have calculated, it is now
straightforward to work out the singly wrapped Lüscher
F-term (14), or equivalently, the n ¼ 1 term of (15). We set
W ¼ 2, and assume m is even:

δE ¼ −
Z

∞

−∞

dq
2π

X4þ4

b

ð−1ÞFbe−iq⋆LSb

¼ −
Z

∞

−∞

dq
2π

8e−jqjϕsin2θ

¼ −
8

π

sin2θ
ϕ

:

Then expanding in ~g ¼ 1=4πJ ≪ 1,

δE ¼ −m4

2J 3
þ 15m6 þ π2m8

24J 5

−
990m8 þ 135π2m10 þ 2π4m12

1440J 7
þ � � � : ð24Þ

This is clearly of the same order as (11), although all the
coefficients are wrong (and there are unwanted powers of
m). These will be changed by including the n > 1 terms
below. But first we check our claim above that this n ¼ 1
term of (15) agrees exactly with the multiparticle
formula (14):

(i) We can see that the first line of (14) vanishes by
calculating δΦj. The constituent S-matrix elements

are independent ofq, and thus ∂
∂qlogS

bjþ1a
bja

ðq⋆;pjÞ¼0.

(ii) We have simplified Sb2ab1a
Sb3ab2a

� � �Sb1abKa
by setting bk ¼

b for all k. Looking at the S matrix as given in (N.3)
of [27] again, notice that acting on jYLT _aai this
never gives jX YLi with X ≠ T _aa. The same is true
for the massless fermions, thus no diagrams with
bk ≠ bkþ1 survive.

E. Sum over all wrappings

Doubly wrapped Lüscher F-terms would usually (with
massive particles) be suppressed by the exponential factor
squared. But this is not true with massless virtual particles,
and we find that the n-wrapped terms all contribute at order
1=J 3, the same as the singly wrapped term (24). Thus we
ought to sum all of them.
We can do this using (15), which attempts to add

multiple wrapping corrections along the lines of (13).
Using the same ingredients as above, the steps are as
follows:

δE ¼ −
Z

∞

−∞

dq
2π

X∞
n¼1

X4þ4

b

ð−1ÞFb
1

n
½e−iq⋆LSb�n

¼ −
Z

∞

−∞

dq
2π

X∞
n¼1

8

n
e−njqjϕsin2nθ

¼ −
Z

∞

−∞

dq
2π

2 log
ð1 − e−jqjϕþ2iθÞð1 − e−jqjϕ−2iθÞ

ð1 − e−jqjϕÞ2

¼ 2

ϕ

�
−
π

3
þ 1

π
Li2ðe2iθÞ þ

1

π
Li2ðe−2iθÞ

�
: ð25Þ

At this point we can expand in ~g by brute force, but we can
also obtain the closed form of (11) more elegantly. Begin
by observing that (for an even m)11 the term −1

4
Q1 ¼

− 1
2
πm in θ (22) does not contribute to sin2 nθ. Thus we

may replace θ with the θ̄ given by

θ̄ ¼ −
2π2m2 ~gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 16π2 ~g2m2
p ¼ −

πm2

2κ

recalling κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 2 þm2

p
. We also write

ϕ ¼ 2π

W
½J ðW − 1Þ þ κ�:

Now we can use some properties of the dilogarithm to
simplify (25). For 0 < jγj < 2π we have [43]

Li2ðe�iγÞ ¼
X∞
n¼1

cos ð�nγÞ
n2

þ i
X∞
n¼1

sin ð�nγÞ
n2

:

Then using the elementary sum
P∞

n¼1
cos ð�nγÞ

n2 ¼
π2

6
∓ πγ

2
þ γ2

4
, we obtain

Li2ðeþiγÞ þ Li2ðe−iγÞ ¼
π2

3
þ γ2

2
:

For our calculation γ ¼ 2θ̄, and when ~g is small (κ is large)
this is in the required range. Thus (25) becomes simply

δE ¼ 1

πϕ
ð2θ̄Þ2

¼ −
Wm2½J ðW − 1Þ − κ�

2κ2½1 − ðW − 2ÞWJ 2=m2�

¼ −
m2ðJ − κÞ

κ2
if W ¼ 2: ð26Þ

We obtain the mismatch (11) up to a factor of 2. Setting
W ¼ 2 makes (19) precisely the usual AFS phase.
Expanding, we get

11The case of an odd m should give the same physics, but one
will need to be more careful about branches of functions.

MASSLESS LÜSCHER TERMS AND THE LIMITATIONS OF … PHYSICAL REVIEW D 93, 106006 (2016)

106006-7



δE ¼ −2
�
−

m4

4J 3
þ 5m6

16J 5
−
11m8

32J 7
þ 93m8

256J 9
þ � � �

�
:

The formula (15) we used here is a rather crude attempt
to write down the appropriate multiply wrapped multi-
particle Lüscher term. It is very encouraging that it almost
works, but the real answer is probably much more
complicated. Some comments in this direction follow:

(i) There is another derivation of Lüscher terms from the
TBA in [44,45]. The leading order (i.e. n ¼ 1) term
there, δEð1Þ, is (14), but they also derive two “next to
leading order” (NLO) terms. One of these, δEð2;1Þ, is
similar to our n ¼ 2 term but with a different trace
structure. The other, δEð2;2Þ, has two momentum
integrals, and a factor of the virtual-virtual S matrix.
The original application of these was at weak

coupling. Naively attempting to evaluate these terms
at strong coupling, we do not see how to obtain the
correct results. For instance for giant magnons, we
can compare them to [46], where we computed n ¼ 2
terms using (13) and saw agreement with string
theory.

(ii) However it seems likely that a better derivation for
terms with n ≥ 2 wrappings may include similar
features: several loop momentum integrals, and fac-
tors of the virtual-virtual S matrix. While the n ¼ 2
term may not be too difficult (from either Feynman
diagrams or from TBA), it seems clear that we will
need to sum all wrappings for the effects studied here.

We stress that our conclusion that the Bethe ansatz is not
complete without massless Lüscher corrections does not
depend on these details. The singly wrapped term (14)
alone produces a correction (24) of the same order as the
mismatch (11) which we set out to explain.

IV. CONCLUSION

The problem we aimed to solve was that the correct one-
loop dressing phase σ•• (as deduced from crossing sym-
metry, and direct semiclassical calculations) does not
produce the correct one-loop energy in the Bethe ansatz,
for circular strings in S3. The solution we found is that
Lüscher F-terms with a massless virtual particle circling the
space contribute without an exponential suppression factor,

at precisely the right orders in 1=J to repair this disagree-
ment. By summing over all wrappings, we are able to
recover the difference almost exactly.
From this we conclude that the suð2ÞBethe equations are

not sufficient to describe the spectrum in this sector: they
must be supplemented by the effect of massless wrapping
terms. This effect is the first place in which the massless
excitations of AdS3 × S3 × T4 do not decouple from the
massive sector.
Our calculation involves the mixed-mass dressing phase

σ•∘, and we show that its classical term has the AFS form.
We observe that this phase is not the limit α → 1 of the one
needed for the scattering of mass α and mass 1 − α particles
in the AdS3 × S3 × S3 × S1 case [42], and in particular
cannot have the Q1Q2 term which seems to be necessary
there.12 We interpret this as more evidence that the
matching of the variables used for that integrable system
to those for AdS3 × S3 × T4 is not simple.
Massless Lüscher terms will also be needed for macro-

scopic solutions in AdS3 × S3 × S3 × S1, where the sit-
uation is very similar: by placing the same resolvent in each
S3 one finds an equally simple suð2Þ sector of the Bethe
equations, and in string theory one can likewise place the
same solution in each S3 [7]. The correct massive dressing
phase there differs only by a factor of 1

2
[17], and the mixed-

mass S matrix is now also known [47]. Further ahead,
similar effects are surely going to be important in learning
to treat “macroscopic massless” solutions in integrability,
as we proposed in [48].
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