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String bit models provide a possible method to formulate a string as a discrete chain of pointlike string
bits. When the bit number M is large, a chain behaves as a continuous string. We study the simplest case
that has only one bosonic bit and one fermionic bit. The creation and annihilation operators are adjoint
representations of the UðNÞ color group. We show that the supersymmetry reduces the parameter number
of a Hamiltonian from 7 to 3 and, at N ¼ ∞, ensures a continuous energy spectrum, which implies the
emergence of one spatial dimension. The Hamiltonian H0 is constructed so that in the large N limit it
produces a world sheet spectrum with one Grassmann world sheet field. We concentrate on the numerical
study of the model in finite N. For the Hamiltonian H0, we find that the would-be ground energy states
disappear at N ¼ ðM − 1Þ=2 for odd M ≤ 11. Such a simple pattern is spoiled if H has an additional term
ξΔH which does not affect the result of N ¼ ∞. The disappearance point moves to higher (lower) N when
ξ increases (decreases). Particularly, the �ðH0 − ΔHÞ cases suggest a possibility that the ground state
could survive at large M and M ≫ N. Our study reveals that the model has stringy behavior: when N is
fixed and large enough, the ground energy decreases linearly with respect toM, and the excitation energy is
roughly of order M−1. We also verify that a stable system of Hamiltonian �H0 þ ξΔH requires ξ ≥∓ 1.

DOI: 10.1103/PhysRevD.93.106004

I. INTRODUCTION

The idea of string bits, proposed over two decades ago
[1], is one approach to formulate string theory. In this
formulation, strings in D-dimensional spacetime are chain-
like objects comprised of pointlike entities, string bits,
moving in space of d ¼ D − 2 dimensions. The dynamics
of the string bits is chosen to retain the Galilei symmetry
described by the group Galilei ðd; 1Þ. While one spatial
coordinate is missing and the Lorentz invariance is not built
in a priori, both of them are regained in the critical
dimension when the number of string bits is large enough.
Thereby, string theory emerges. Since the physics in
(dþ 1)-dimensional space is described by physics in d-
dimensional space, the string bit models provide an
implementation of ’t Hooft’s holography hypothesis [2–4].
Such an idea is motivated by the discretization of a

continuous string. Consider a string in lightcone coordi-
nates [5,6],

x� ¼ x0 � x1ffiffiffi
2

p ; x ¼ ðx2;…; xdþ1Þ;

where x is the transverse coordinates; the Hamiltonian of
the string reads [7,8]

P− ¼ 1

2

Z
Pþ

0

dσ½p2 þ T2
0x

02�; ð1Þ

where P� are the momenta conjugate to x∓ coordinates. In
analogy to (1), a harmonic chain of M string bits, each of
which has mass m, is described by the Hamiltonian

H ¼ 1

2m

XM
k¼1

½p2
n þ T2

0ðxnþ1 − xnÞ2�: ð2Þ

Under the Galilei transformation xk → xk þ Vkxþ, the
timelike coordinate xþ and the mass of each string bit
are invariant. Consequently, Pþ ¼ Mm can be considered
as the Newtonian mass of the bit chain. For M → ∞, Pþ
behaves like a continuous variable of which the conjugate
can be interpreted as the missing coordinate x−. If the
bound states for a many-bit system are closed linear chains
and the excitation energies scale as 1=M for large M,
Lorentz invariance is regained and leads to a Poincaré
invariant dispersion relation P− ¼ ðP2 þ μ2Þ=ð2PþÞ. It is
noteworthy that such bound states can be achieved in the
context of the ’t Hooft large N limit [9,10].
However, the Hamiltonian (2) for a bosonic closed string

bit chain leads to inevitable instability. The ground state
energy of such a system in the limit M → ∞ is given by

EG ¼ 2dT0M
mπ

− πdT0

6Mm
þOðM−3Þ:

The first term can be dropped as the bit number is
conserved in string interaction [11]. Because of the
negative OðM−1Þ term, a long closed bit chain tends to
split into multiple smaller chains for a lower energy state.
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This instability issue can be fixed by introducing super-
symmetry [12–17]. In supersymmetry, string bits are
multiplets with both bosonic and fermionic degrees of
freedom [18,19]. It turns out that, for models with d
bosonic and s fermionic world sheet degrees of freedom,
the ground energy becomes [20]

EG ¼ ðs − dÞπT0

6Mm
:

It implies that the system is stable for s > d and unstable
for s < d. The supersymmetric case s ¼ d gives rise to
exact cancellation between bosonic and fermionic contri-
butions for all M.
To set up the dynamics of the superstring bit model, we

employ ’t Hooft’s large N limit and follow the standard
second-quantized formalism [21]. A general superstring bit
annihilation operator is an N × N matrix denoted by

ðϕ½a1…an�ÞβαðxÞ; n ¼ 0;…; s;

where each ai is a spinor index running over s values and
α; β ¼ 1;…; N are color indices for the adjoint represen-
tation of the color group SUðNÞ. ϕ is bosonic for even n
and fermionic for odd n. The square bracket in the subscript
denotes complete antisymmetric relation among ai indices.
For superstring theory, the Poincaré symmetry demands
s ¼ d ¼ 8.
In Ref. [22], Thorn and one of us studied the simplest

case of the model with d ¼ 0, s ¼ 1, where there are N2

bosonic annihilation operators ðaβαÞ and N2 fermionic
annihilation operators ðbβαÞ, with corresponding creation
operators defined as āβα ≡ ðaαβÞ† and b̄βα ≡ ðbαβÞ†. These
operators satisfy the (anti)commutation relations,

½aβα; āδγ � ¼ δδαδ
β
γ ; fbβα; b̄δγg ¼ δδαδ

β
γ ; ð3Þ

and all others vanishing. With these creation operators, we
can build trace states as follows. Introduce the vacuum state
j0i annihilated by all the aβα and bβα. We can act on j0iwith a
sequence of ā and b̄ to obtain a nonvacuum state with color
indices. Finally, we take the trace of the creation operators
to obtain a color-singlet state. Each creation operator in the
trace state is interpreted as a string bit. Trace states with an
even number of b̄ are bosonic states, while those with an
odd number of b̄ are fermionic states. To give a few
examples, Trā3j0i, Trā2Trāj0i, and Trāb̄2j0i are 3-bit
bosonic trace states; Trā b̄ j0i and TrāTrb̄j0i are 2-bit
fermionic trace states. Note that, because of the property of
the trace and the anticommutation relation in (3), some of
such expressions are not a valid trace state, for example,
Trb̄ b̄ j0i ¼ −Trb̄ b̄ j0i ¼ 0. Clearly, the number of trace
states increases exponentially as M increases. In
Appendix B, we provide a formula to count the single

trace states and an algorithm to calculate the number of
trace states, including both single and multiple trace states.
In Appendix A, we list all the different bosonic trace states
from 1 bit to 7 bits.
The Hamiltonian of the toy model in Ref. [22] is chosen

to be a linear combination of single trace operators

Trā2a2; Trb̄2b2; Trb̄2a2; Trā2b2;

Trā b̄ba; Trā b̄ab; Trb̄ āba; Trb̄ āab; ð4Þ

with coefficients scaling as 1=N. Such a choice ensures the
action of the Hamiltonian to the trace states survives at the
large N limit. It then studied a special form of such a
Hamiltonian,

H0 ¼
2

N
Tr½ðā2 − ib̄2Þa2 − ðb̄2 − iā2Þb2 þ ðā b̄þb̄ āÞba

þ ðā b̄−b̄ āÞab�; ð5Þ

which produces the Green-Schwarz Hamiltonian [18,23] at
N ¼ ∞. By the variational method, it shows that the ground
states of the Hamiltonian only survive at N > ðM − 1Þ=2.
Then, a numerical study of the Hamiltonian at M ¼ 3 is
performed.
In this paper, we will investigate more general forms of

the supersymmetric Hamiltonian and their energy spectrum
at the large N limit. We will perform a numerical study of
the Hamiltonian H0 for M ≤ 11. We will plot the
energy levels as a function of N at fixed values of M
and show numerically that the would-be ground state
disappears at N ≤ ðM − 1Þ=2 for odd M ≤ 11. Such a
pattern is spoiled when we add to H0 an additional ΔH
term, which does not affect the large N limit. For the
Hamiltonians �ðH0 − ΔHÞ, the disappearance of the
ground state occurs at N < ðM − 1Þ=2, which might
suggest that the ground states can survive when M is large
andN is much smaller thanM. We will also plot the ground
energy and excitation energy as a function of M at fixed N
to check whether the system manifests stringy behavior.
For stringy behavior, the ground energy should be a linear
function ofM with negative slope and the excitation energy
proportional to M−1 with positive coefficient. It turns out
that, for N large enough, the ground energies do drop
almost linearly. For excitation energies, although there are
not enough data for an unquestioned pattern, it still shows
tendencies to go roughly as M−1 when N is large.
The rest of this paper is organized as follows. In Sec. II,

we discuss the general constraint on a supersymmetric
Hamiltonian. In Sec. III, we investigate the energy spec-
trum of the system in the large N limit. In Sec. IV, we
compute the energy spectrum at finite N numerically and
present the plots from the numerical study. The
Hamiltonian H0 and its variations will be studied in the
section. The main text is closed with a section of a summary
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and conclusion. Finally, we include seven appendices
covering technical details.

II. SUPERSYMMETRIC HAMILTONIAN

In the toy model with d ¼ 0, s ¼ 1, while the spacetime
supersymmetry is explicitly broken, there still exists a form
of supersymmetry between bosonic and fermionic trace
states. As the mathematical proof in Appendix B shows, the
numbers of bosonic and fermionic trace states are equal at
any value of M. This is not a coincidence. The physical
interpretation is that the bit number operator M ¼
Trðāaþ b̄bÞ commutes with the supersymmetry operator

Q ¼ exp

�
iπ
4

�
Trābþ exp

�
− iπ

4

�
Trb̄a: ð6Þ

Also we notice that M ¼ Q2. A Hamiltonian H is
supersymmetric if ½H;Q� ¼ 0. As we will show in the
next section, a nice feature of the supersymmetric
Hamiltonian is that its excitation energy vanishes at
large M.
Now, let us investigate possible forms of a supersym-

metric Hamiltonian and generalizations of H0. The general
form of a Hermitian Hamiltonian built out of the trace
operators in (4) reads

H ¼ 1

N
½c1Trā2a2 þ c2Trb̄2b2 þ iz1Trā2b2 − iz�1Trb̄

2a2

þ c3Trā b̄ baþ c4Trb̄ ā ab

þ z2Trā b̄ abþ z�2Trb̄ ā ba�; ð7Þ

where ci are real and zi are complex. Imposing the
constraint ½H;Q� ¼ 0 yields1

8>>><
>>>:

ℑz1 ¼ ℑz2
c1 − c2 ¼ 2ℜz2
c3 − c4 ¼ 2ℜz1
c1 þ c2 ¼ c3 þ c4

; ð8Þ

which implies that a supersymmetric Hamiltonian can be
written as

H ¼ H0 þ
2ξ

N
Trðā b̄ baþ b̄ ā abþ ā2a2 þ b̄2b2Þ

þ 2η

N
Trðb̄2a2 þ ā2b2 þ iā b̄ ab − ib̄ ā baÞ

þ 2ζ

N
Trðib̄2a2 − iā2b2 − ā b̄ baþ b̄ ā abÞ; ð9Þ

where ξ, η, ζ are real parameters. Note that each term in (9)
is Hermitian and supersymmetric.

The Hamiltonian H0 is the special case of (9) when
ξ ¼ η ¼ ζ ¼ 0. But we can also obtain a generalization of
H0 by keeping a twisted ξ term. As noted in Ref. [22], we
are free to add the terms

ΔH0 ¼ 1

N
Tr½2ξ1ā b̄ baþ 2ξ2b̄ ā ab

þ ðξ1 þ ξ2Þðā2a2 þ b̄2b2 − ~MÞ�; ð10Þ
to a Hamiltonian without affecting the large N limit. Here,
~M is a supersymmetric term given by2

~M ¼ Trðāaþ b̄bÞ − 1

N
ðTrāTraþ Trb̄TrbÞ:

Setting ξ1 − 1 ¼ ξ2 þ 1 ¼ ξ, we obtain a supersymmetric
ΔH0 term which equals the ξ term in (9) minus a ~M term.
Therefore, H0 can be generalized to

H ¼ H0 þ ξΔH; ð11Þ
where

ΔH ¼ 2

N
Tr½ā b̄ baþ b̄ ā abþ ā2a2 þ b̄2b2 − ~M�:

In (11), H0 makes aOð1Þ contribution, while ΔH makes
only a Oð1NÞ contribution. The values of ξ are constrained
by the requirement that a well-defined Hamiltonian should
be stable for large M. The Trā2a2 term can produce about
M2 terms by attacking the trace state TrāMj0i. This would
cause a dangerous instability if the coefficient of Trā2a2 is
negative. To maintain a positive Trā2a2 term, we must
choose ξ ≥ −1. Therefore, we obtain a form of the well-
defined Hamiltonian,

H ¼ H0 þ ξΔH; ξ ≥ −1: ð12Þ
In addition to (12), there exists another form of the

supersymmetric Hamiltonian. As suggested in Ref. [22],
we can replace H0 with −H0 and obtain

H ¼ −H0 þ ξΔH; ξ ≥ 1; ð13Þ

where the constraint ξ ≥ 1 comes from the stability
condition.
One might wonder if there exist other supersymmetric

operators that are capable of stabilizing −H0 and make
only Oð1NÞ contributions. As suggested by Ref. [1], one
possibility is to use the Trāaāa operator, which also
produces about M2 terms when acting on TrāMj0i. A
combination like

1Appendix D details the calculation of ½H;Q�.

2Reference [22] uses the bit operator M ¼ Trðāaþ b̄bÞ
instead of ~M in ΔH0. Our calculation shows that, in order for
ΔH0 to vanish in the large N limit, M must be replaced by ~M.
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H0 ¼ 2

N
Trðāaāaþ b̄bāa − ābb̄aÞ

meets such a requirement. However, as Appendix E shows,
H0 equals ΔH for all trace states, i.e.,

ðH0 − ΔHÞjAny trace statei ¼ 0:

While we are not sure if there exist other variations of H0,
for the time being, we leave the question for further
research and only study Hamiltonians as (12) and (13)
in this paper.

III. ENERGY SPECTRUM IN LARGE N LIMIT

In this section, we will study the energy spectrum of our
toy string bit model in the largeN limit by both analytic and
numerical methods. We first show that the supersymmetry
guarantees the excitation energy to be vanishing at large M
and then present the energy spectrum graphically.

A. General H

For convenience, we introduce a super creation operator
using a Grassmann anticommuting number θ,

ψðθÞ ¼ āþ b̄θ; b̄ ¼ − d
dθ

ψ ; ā ¼
�
1 − θ

d
dθ

�
ψ :

We then choose

jθ1θ2 � � � θMi ¼ Tr½ψðθ1Þψðθ2Þ � � �ψðθMÞ�j0i ð14Þ

to be a basis of M-bit single trace states. A general single
trace energy eigenstate at large N reads

jEi ¼
Z

dMθΨðθ1 � � � θMÞjθ1θ2 � � � θMi; ð15Þ

where Ψðθ1 � � � θMÞ is the wave function in terms of θi.
Under the cyclic transformation, θi → θiþ1, jθ1 � � � θMi is
invariant, and the Jacobi dMθ obtain a factor of ð−1ÞM−1. It
follows that we can constrain the wave function by a cyclic
symmetry,

Ψðθ1θ2 � � � θMÞ ¼ ð−1ÞM−1ΨðθMθ1 � � � θM−1Þ: ð16Þ

In the basis (14), the leading term of trace operators in (4)
can be expressed in terms of θi and

d
dθi
, as shown in Eqs.

(9) to (16) of Ref. [22], by which we rewrite (7) in the large
N limit as

Hjθ1 � � � θMi ¼ ĥjθ1 � � � θMi þO
�
1

N

�
;

ĥ ¼
XM
k¼1

�
iz1θkþ1θk − iz†1

d
dθk

d
dθkþ1

þ z2θk
d

dθkþ1

þ z†2θkþ1

d
dθk

þ ð−2c1 þ c3 þ c4Þθk
d
dθk

þ ðc1 þ c2 − c3 − c4Þθk
d
dθk

θkþ1

d
dθkþ1

�
þ c1M:

ð17Þ

Performing integration by parts as

Z
dMθΨðθ1 � � � θMÞĥjθ1θ2 � � � θMi

¼
Z

dMθhΨðθ1 � � � θMÞjθ1θ2 � � � θMi;

we obtain

h ¼
XM
k¼1

�
iz1θkþ1θk − iz†1

d
dθk

d
dθkþ1

− z2θk
d

dθkþ1

− z†2θkþ1

d
dθk

þ ð2c1 − c3 − c4Þθk
d
dθk

�
þ ðc3 þ c4 − c1ÞM;

where for simplicity we drop the quartic term, which
vanishes automatically under the supersymmetry constraint
(8). We then introduce the Fourier transforms

αn ¼
1ffiffiffiffiffi
M

p
XM
k¼1

θke2πikn=M;

βn ¼
1ffiffiffiffiffi
M

p
XM
k¼1

d
dθk

e2πikn=M; n ¼ 0;…M − 1;

θk ¼
1ffiffiffiffiffi
M

p
XM−1

n¼0

αne−2πikn=M;

d
dθk

¼ 1ffiffiffiffiffi
M

p
XM−1

n¼0

βne−2πikn=M; k ¼ 1;…M;

satisfying

fαn; βmg ¼ δmþn;M þ δm;0δn;0:

A little algebra yields
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h ¼
XM−1

n¼1

�
ðz1αnαM−n þ z†1βnβM−nÞ sin

2nπ
M

þ 2ðc −ℜðz2e2πin=MÞÞαnβM−n
�

þ 2ðc −ℜz2Þα0β0 þ ðc1 − 2cÞM;

where we have defined c ¼ c1 − 1
2
ðc3 þ c4Þ. Note that we

have c ¼ ℜz2 under the supersymmetry constraint (8).
We now find the ladder operators of h, which we denote

as Lk. We use the ansatz Lk ¼ aαk þ bβk and impose the
constraint

½h; Lk� ¼ ϵkLk: ð18Þ

By direct calculation, we have

½h; aαk þ ibβk� ¼ 2

�
adk þ bz1 sin

2kπ
M

�
αk

þ 2

�
az†1 sin

2kπ
M

− bdM−k
�
βk;

where dk ≡ c −ℜðz2e2πik=MÞ. Constraint (18) yields
8>>><
>>>:

2

�
adk þ bz1 sin

2kπ
M

�
¼ aϵk

2

�
az†1 sin

2kπ
M

− bdM−k
�

¼ bϵk:

ð19Þ

Let us first consider the k ¼ 0 case. If d0 ≡ c −ℜz2 ≠ 0,
there are two solutions:

when a ≠ 0; b ¼ 0; ϵ0 ¼ 2ðℜz2 − cÞ;
when a ¼ 0; b ≠ 0; ϵ0 ¼ −2ðℜz2 − cÞ:

The corresponding ladder operators are α0 and β0, respec-
tively. If c −ℜz2 ¼ 0, i.e., the supersymmetry case, then a,
b can be any value, and ϵ0 ¼ 0, which implies there is no
ladder operator for k ¼ 0. In the supersymmetry case, the
linear combination expðiπ

4
Þα0 þ exp ð− iπ

4
Þβ0 is just the

supersymmetry operator (6).
For k ≠ 0, we solve for ϵk,

ϵ�k ¼ 2ℑz2 sin
2kπ
M

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
c −ℜz2 cos

2kπ
M

�
2

þ jz1j2sin2
2kπ
M

s
:

In general, ϵk is finite at large M, and the energy levels are
discrete. But under the supersymmetry constraint (8),

ϵ�k ¼ 4

�
−ℑz1 cos πkM �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðℜz2Þ2sin2

kπ
M

þ jz1j2cos2
kπ
M

r �

× sin
kπ
M

; ð20Þ

which vanishes for finite k at large M. Therefore, super-
symmetry ensures a continuous energy spectrum and
stringy behavior.

B. H =H0

In the case of H ¼ H0, we have c1 ¼ −c2 ¼ c3 ¼−c4 ¼ c ¼ 2, z1 ¼ z2 ¼ 2, and

ϵ�k ¼ �8 sin
kπ
M

;

r�k ≡ a
b
¼ tan

kπ
M

� sec
kπ
M

; k ¼ 1;…;M − 1:

As rþM=2 ¼ ∞ and r−M=2 ¼ 0, we choose the raising and
lowering operators to be

Lþ
k ¼ αk þ

1

rþk
βk; L−

k ¼ r−k αk þ βk; k ¼ 1;…;M − 1:

Now, we can construct the ground function, which is
annihilated by all lowering operators. Observing that

L−
k ð1þ r−k αkαM−kÞ ¼ L−

M−kð1þ r−k αkαM−kÞ ¼ 0

and that α0 commutes with all L−
k , we obtain ground wave

functions,

Φb
M ¼

Y⌊M=2⌋

k¼1

ð1þ r−k αkαM−kÞ;

Φf
M ¼ α0

Y⌊M=2⌋

k¼1

ð1þ r−k αkαM−kÞ;

with ⌊M=2⌋ the integral part of M=2. Clearly Φb
M is

bosonic, and Φf
M is fermionic. A direct calculation shows

they have the same eigenvalue

EG ¼ −4XM−1

k¼1

sin
kπ
M

¼ −4 cot π

2M
: ð21Þ

For each k < M=2, we have four different choices to attack
the ground functions, i.e., using 1, Lþ

k , L
þ
M−k, and Lþ

k L
þ
M−k,

which correspond to the energy level increasing by 0, ϵþk ,
ϵþk , and 2ϵþk . For k ¼ M=2, there are two choices to attack
ΦM, by 1 and Lþ

M=2, with energy increments of 0 and ϵþM=2.
Therefore, for each choice of ground function, the energy
levels can be written as
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EðfηkgÞ ¼ EG þ 8
X⌊M=2⌋

k¼1

sin
kπ
M

þ 8
X⌊M=2⌋

k¼1

ηk sin
kπ
M

¼ 8
X⌊M=2⌋

k¼1

ηk sin
kπ
M

þ
�
0 for odd M

4 for even M
ð22Þ

ηk ¼ −1; 0; 0; 1; for k < M=2; ηM=2 ¼ −1; 0: ð23Þ

Here, we reproduced Eqs. (94) and (95) of Ref. [22] with a
different approach.
Now, consider the cyclic constraint (16). The

eigenfunctions should be changed by a factor of
ð−1ÞM−1 under the transformation αk → exp ð2ikπ=MÞαk
and βk → exp ð2ikπ=MÞβk. Clearly the ground eigenfunc-
tion ΦM is invariant under the transformation, and Lþ

k
changes as Lþ

k → exp ð2ikπ=MÞLþ
k , from which it follows

that ηk must satisfy

XM=2

ηk¼0

k ¼
�
nM; for odd M

ðnþ 1
2
ÞM; for even M

; n ¼ 0; 1; 2; � � � :

ð24Þ

This constraint has several interesting consequences:
(i) For odd M, the lowest energy state of the

M-bit system is comprised of M-bit single trace

states, which are generated by setting all ηk to −1,
i.e.,

Emin¼Eð1Þ
min¼−4cot π

2M
¼−8M

π
þ 2π

3M
þOðM−3Þ;

ð25Þ

where we use the superscript (1) to denote single
trace states.

(ii) For even M, the lowest energy of single trace states,

Eð1Þ
min, is achieved when ηM=2 ¼ 0 and all other

ηk ¼ −1; while the lowest energy state of the system
is comprised of double trace states with each trace of
M=2 bits (if M=2 is even, the two traces are of
M=2 − 1 and M=2þ 1 bits). So we have

Eð1Þ
min ¼ − 8M

π
þ 2π

3M
þ 8þOðM−3Þ;

Emin ¼ Eð2Þ
min ¼ − 8M

π
þ 4π

3M
þOðM−2Þ:

When M=2 is even, the lowest energy states have
extra degeneracy, because the bosonic ground func-
tions can be Φb

M=2−1Φb
M=2þ1 and Φf

M=2−1Φ
f
M=2þ1.

(iii) For largeM, the excitation energy is very small, and
the discrete energy levels become a continuous
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FIG. 1. The energy levels of single trace states (red lines) and triple trace states (yellow lines) at M ¼ 11, M ¼ 21, M ¼ 51, and
M ¼ 101 and the large N limit. The blue dashed line is the threshold for multitrace states energy when M ¼ ∞.
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energy band. The difference of Eð1Þ
min between odd

and evenM is much large than the excitation energy,
which implies only odd-bit chains participate in the
low energy physics. Particularly, it also means a low
energy odd-bit chain cannot decay into two chains.

Now, let us consider the first excitation energy of the oddM
system. From the above analysis, there are no double trace
states in the low energy region, so we consider the triple
trace states. From (25), the lowest energy of triple trace
states is achieved when each trace hasM=3 bits. Hence, we
have

E1 ¼ − 8M
π

þ 16π

M
þOðM−2Þ;

from which it follows that the energy gap between the
ground energy (25) and first excitation energy is 16π

3M. IfM is
divisible by 3, the first excitation energy has no extra
degeneracy. If M ¼ 3n� 1, it has extra degeneracy: for
M ¼ 3nþ 1, the bosonic ground function can be
Φb

n−1Φb
nþ1Φ

b
nþ1 and Φf

n−1Φ
f
nþ1Φ

b
nþ1; for M ¼ 3nþ 1,

the bosonic ground function can be Φb
n−1Φb

n−1Φb
nþ1

and Φb
n−1Φ

f
n−1Φ

f
nþ1.

Figure 1 shows the energy spectrum at N ¼ ∞ for M at
11, 21, 51, and 101. In the plot, energy states are
represented by horizontal lines, with the red color for
single trace states and yellow color for triple trace states.
The vertical coordinate is M × ðE − EminÞ, the product of
M with the difference between energy level and the lowest
energy. The threshold for triple trace states is a blue line.
From the figure, it is clear that the energy gaps go smaller

as M increases and the energy levels become continuous at
largeM. The energy of single trace states tends to distribute
near multiples of 16πM , and the first excitation energy appears
near 16π

3M. The energy levels of triple trace states are even
denser than single trace states. At M ¼ 101, they almost
filled the gap between consecutive single trace energy
levels. All these behaviors illustrate that the chains behave
as continuous strings at large M.

IV. ENERGY SPECTRUM AT FINITE N

In this section, we show numerically how the energy
levels change with respect to N and the bit number M. We
first introduce the methods to calculate the energy states of
the system. We then analyze the result of the original
Hamiltonian H ¼ H0, for which the M ¼ 3 case has been
investigated in Ref. [22]. Next, we move to the
Hamiltonians of the form H ¼ H0 þ ξΔH and investigate
how the parameter ξ affects the energy levels. Finally, we
explore the Hamiltonians of the form H ¼ −H0 þ ξΔH.
For each case, we first analyze the change of energy levels
with respect to N when M is fixed and then with respect to
M when N is fixed.

A. H matrices

We have two methods to calculate the energy states of
the system.3 Both methods involve theH matrix defined as

Hjii ¼
X
j

jjiHji;

where jii and jji are M-bit trace states. Note that, since the
trace state basis is not orthonormal, H is not the
Hamiltonian matrix and even not Hermitian.
The first method, used in Ref. [22], is to calculate the

eigenvalues of the H from the equation
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FIG. 2. Lowest five energy states of the 3-bit system with
Hamiltonian H ¼ H0.
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FIG. 3. Lowest five eigenstates of H at M ¼ 5 for H ¼ H0.

3In this subsection, we just state the properties of these two
methods. The relevant mathematical proofs are provided in
Appendix F.
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HjEi ¼ EjEi: ð26Þ

The relation between eigenvalues of H and of the
Hamiltonian matrix is determined by the norm matrix,
G ¼ hijji, as follows:

(i) If G is positive definite, i.e., all its eigenvalues
are positive, there is a one-to-one correspondence
between the eigenvalues of H and the Hamiltonian.
In this case, all the eigenstates ofH are physical and
have positive norm, which is defined as
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FIG. 4. Lowest five eigenstates of H at M ¼ 7 for H ¼ H0.
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FIG. 5. Lowest five eigenstates of H at M ¼ 9 for H ¼ H0.
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hEjEi ¼
X
ij

vi�hijjivj ¼ v†Gv

for an eigenstate jEi ¼ P
ijiivi. Our numerical

calculation shows that whenN ≥ M the norm matrix
G is always positive definite.

(ii) When N is an integer and less than M, the
norm matrix G is positive semidefinite; i.e., some
eigenvalues are zero, and the others are positive.
In this case, only those eigenstates of H with
positive norm correspond to energy states of the
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FIG. 6. Lowest five eigenstates of H at M ¼ 11 for H ¼ H0.
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FIG. 7. Lowest five eigenstates of H for H ¼ H0 at M ¼ 4, 6, 8, 10.
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Hamiltonian, while those eigenstates ofH with zero
norm are unphysical.

(iii) When N is a noninteger and less than M, the norm
matrix G is indefinite; i.e., G has both positive and
negative eigenvalues. There is a subtlety in this case.
The eigenstates ofH can be of positive norm, of zero
norm, and of negative norm. The negative norm
eigenstates of H stem from their coupling to ghost
states, the eigenstates of G of which the eigenvalues
are negative. The zero and negative norm eigenstates
are still unphysical. But positive norm eigenstates
cannot be simply taken as energy states anymore. A
positive norm eigenstate is a physical energy state if
it is orthogonal to every ghost state.

From the above statements, we should treat positive norm
eigenstates ofH physical whenN is large enough or a small
integral. Moreover, the eigenvalues of H can be nonreal.
This occurs for both positive-semidefinite and indefinite
cases. For a nonreal eigenvalue of H, the norm of its
eigenstate must be zero, and its complex conjugate is also
an eigenvalue of H.

The second method is to solve a generalized eigenvalue
problem,

ðGHÞjEi ¼ EGjEi: ð27Þ

This method is helpful for filtering unphysical states when
G is positive semidefinite. IfG is a full-rank matrix, this is a
regular generalized eigenvalue problem. If G is not a full-
rank matrix, to solve the equation, we need to remove some
rows and columns fromG andGH. If the rank ofG is r, we
can pick r independent rows and columns from G and
ðGHÞ to form two r × r matrices as

~G ¼

0
BBBBB@

Gi1i1 Gi1i2 � � � Gi1ir

Gi2i2 Gi2i2 � � � Gi2ir

..

. ..
. ..

. ..
.

Giri1 Giri2 � � � Girir

1
CCCCCA;

~GH ¼

0
BBBBBB@

ðGHÞi1i1 ðGHÞi1i2 � � � ðGHÞi1ir
ðGHÞi2i2 ðGHÞi2i2 � � � ðGHÞi2ir

..

. ..
. ..

. ..
.

ðGHÞiri1 ðGHÞiri2 � � � ðGHÞirir

1
CCCCCCA
:

Then, Eq. (27) becomes

ð ~GHÞjEi ¼ E ~GjEi;

the eigenvalues and eigenstates of which are all
physical.
The first method is used to investigate the change of

eigenstates, including both physical and unphysical states,
with respect to N for fixed M, while the second one is for
the change of physical energy levels with respect to M for
fixed N. For different values of M, we calculated the H
and G matrices, the entries of which are expressed in
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FIG. 8. Change of physical ground states with respect to M for fixed N. Only the ground energies at odd M are sampled.
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terms of N. Then, we solve Eq. (26) or (27) to find its
eigenstates. Since the number of trace states increases
exponentially as M increases, it is only feasible to perform
the calculation for small M. The highest value of M
we study is 11, at which H and G are 1473 × 1473
matrices4.

B. H =H0

Let us first consider the case of odd M. Figures 2–6
show the lowest five eigenvalues of H as a function of
1=N for odd M from 3 to 11. We use different line styles
for different norm types: solid, dotted, and dash-dotted
curves correspond to positive, negative, and zero norm
eigenstates, respectively. Dash-dotted curves are actually
associated with two complex eigenvalues which are
conjugate to each other and hence represent only the

real part of the eigenvalues. For higher M, the eigenval-
ues decline dramatically in higher 1=N, which would
squeeze the lower 1=N part into a small vertical size. To
show more details in lower 1=N, we split some plots into
a lower 1=N part and a higher 1=N part, between which
curves of the same color represent the same eigenstate.
See Fig. 4 as an example.
From these figures, we see several features of the

eigenstates of H. At N ¼ ∞, the ground states are
nondegenerate, while the first excited states are non-
degenerate for M divisible by 3 and degenerate other-
wise. This is consistent with the analytic discussion of
the previous section. As 1=N increases, degeneracies are
broken, and the solid curves turn to dotted or dash-dotted
curves, which implies the disappearance of physical
states. If a physical state disappears at an integer value
N ¼ n, it also disappears at N ¼ n − 1; n − 2, etc.
For convenience, we denote as N�

M the maximum value
of N where the first disappearance of the ground state
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FIG. 10. Eigenvalues of H matrices at M ¼ 3 for Hamiltonian H ¼ H0 þ ξΔH, with ξ ¼ −1, −0.6, −0.1, 0.5, 1,
and 3.

4The source code of the project can be found in Ref. [24].
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occurs for bit number M. From the figures, we see that
N�

M ¼ ðM − 1Þ=2 for M ≤ 11. If it is true for all M, it
follows that, for ground states surviving, N must increase
linearly as M increases. The eigenvalues drop dramati-
cally at large 1=N, as the right parts of Figs. 4 to 6 show.
But it does not imply the decrease of energy levels, since
all these eigenstates are actually unphysical.
For even M, we have similar plots as Fig. 7. At N ¼ ∞,

the lowest eigenstates are degenerate for M ¼ 4 and 8 and
nondegenerate forM ¼ 6 and 10. It is again consistent with
our analysis in the previous section. The lowest states also
disappear when N is small. But unlike the odd M case,
there is no simple formula to determine N�

M. The reason is
that the lowest energy of EðηiÞ in (22) is excluded by the
cyclic constraint (24).
We now consider the physical ground energy as a

function of M when N is fixed, shown as Fig. 8. The
physical ground states have different trends at different
values of N. For N ¼ 1, the physical ground state climbs
significantly. This is consistent with analytical calcula-
tion, which shows the ground state is a quadratic function
of M when N ¼ 1. For N ¼ 2, the ground state only goes

up slightly. When N ≥ 3, it turns downward. For large N,
the physical ground energy drops almost linearly with
respect to M at rate −8=π, as predicted by Eq. (25). This
indicates the system becomes stringy when N is large
enough.
Figure 9 shows how the excitation energy changes

with respect to M for fixed N. The vertical axis of Fig. 9
is M × ðE1 − E0Þ, where E1 − E0 is the gap between the
first excited energy and lowest energy. For stringy
behavior, M × ðE1 − E0Þ should be constant for large
M. Though we only calculate up to M ¼ 11, we still see
the trend that, for N large enough, M × ðE1 − E0Þ is
almost a constant between 15 and 20. As a reference, the
analytic prediction of the gap at N ¼ ∞ is 16π=3M. That
being said, there is no inconsistency between the numeri-
cal results and stringy behavior.

C. Variations of H

In this subsection, we will analyze the energy levels of
two variations of the Hamiltonian, H ¼ H0 þ ξΔH
and H ¼ −H0 þ ξΔH.
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FIG. 13. Eigenvalues of H for H ¼ −H0 þ 1.5ΔH. For each M, the ground state disappears at N ¼ M − 1.
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Figure 10 shows the eigenvalues of H as a function of
1=N when M ¼ 3 and the Hamiltonian is of the form
H ¼ H0 þ ξΔH. As ξ increases, the disappearance point of
the highest eigenstate moves in the small N direction: for
ξ ¼ −1, it is at N ¼ 2; for ξ ¼ −0.6, it is at N ¼ 1; when
ξ ≥ −0.1, the disappearance point occurs after N < 1=2.
The disappearance point of the ground state, N�

3, moves in
the opposite direction: for −1 ≤ ξ ≤ −0.1, N�

3 ¼ 1; for
ξ ¼ 0.5, 1 < N�

3 < 2; for ξ ¼ 3, N�
3 ¼ 2.

Since all eigenstates of H are physical when N ≥ M,
the largest value of N�

M is M − 1. Particularly, for
M ≤ 11, we find N�

M ¼ M − 1 can be achieved when

ξ ≥ 2. N�
M is minimal when ξ ¼ −1, the lower bound of

ξ under the stabilization constraint. The ξ ¼ −1 case is
shown in Fig. 11. While N�

M ¼ ðM − 1Þ=2 still holds for
M ¼ 5 and 7, N�

9 ¼ 2 and N�
11 ¼ 3 spoil the pattern. We

do not have results for M > 11, but it seems that M=N�
M

could be large for large M. If it is true, it means that the
ground eigenstates could survive when M is large
and N ≪ M.
Figure 12 shows the change of physical ground energy

with respect to M for a fixed value of N. Note that
only ground energies at odd M are evaluated. The
ground energies have different trends for ξ < −1,
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FIG. 14. Eigenvalues of H for H ¼ −H0 þ ΔH and 3 ≤ M ≤ 10.
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ξ ¼ −1, and ξ > −1: when ξ ¼ −1, the ground energies
decrease almost linearly for all N; when ξ < −1, the
ground energies decline faster than linearly, which
implies the system is not stable; when ξ > −1, the
ground energy first declines and then increases for small
N, and it declines linearly for large N. It follows that the
system has stringy behavior if ξ ≥ −1 and N is not
too small.
ForH ¼ −H0 þ ξΔH, in the largeN limit, the maximum

value of EðηiÞ in (22) is allowed for both odd and even M.
Consequently, the ground eigenstates are nondegenerate for
allM, as shown in Fig. 13 forH ¼ −H0 þ 1.5ΔH. From the
figure, we see that N�

M ¼ M − 1.
ξ has a similar impact on N�

M as the H ¼ H0 þ ξΔH
case. Figure 14 plots the eigenstates of H for ξ ¼ 1, when
N�

M is minimal. There is no simple pattern for N�
M: for odd

M, N�
3 ¼ 2, N�

5 ¼ 2, N�
7 ¼ 3, and N�

9 ¼ 3; for even M,
N�

4 ¼ 3, N�
6 ¼ 2, N8 ¼ 2, and N�

10 ¼ 3. It seems to suggest
that the ground eigenstate could survive when M is large
and N ≪ M.
Figure 15 shows the change of physical ground energy

with respect to M at fixed N for H ¼ −H0 þ ξΔH.
It is similar to the H ¼ H0 þ ξΔH case. When
ξ ¼ 0.5, the system is not stable at finite N as the curves
decline faster than linearly. ξ ¼ 1 is the marginal case, in
which all the physical ground energies drop almost
linearly. When ξ ¼ 1.5 or ξ ¼ 3, the curves for small

N are zig-zag, and particularly, when ξ ¼ 3 and N ¼ 3,
the trend is slightly upward. It implies that the system is
stable for large M.

V. SUMMARY AND CONCLUSION

In this paper we have studied the string bit model with
s ¼ 1, d ¼ 0. We studied possible forms of the super-
symmetric Hamiltonian and their excitation energies in
the large N limit. We also performed a numerical study
of energy levels at finite N for Hamiltonians H ¼ �H0þ
ξΔH, where, at N ¼ ∞, ΔH vanishes and H0 produces the
Green-Schwarz Hamiltonian.
We showed that the supersymmetry plays a crucial

role in the model. The general Hamiltonian is chosen
to be a linear combination of eight single trace
operators, which contain two consecutive creation oper-
ators followed by two annihilation operators. With the
supersymmetry constraint, we reduce the number of
parameters in the Hamiltonian to 3. Another interesting
consequence of supersymmetry is that, after imposing the
supersymmetry constraint on the Hamiltonian, the exci-
tation energy becomes of order M−1, which implies the
energy spectrum of the model is continuous when M
is large.
In finite N, we numerically studied the energy spec-

trum of the model up to M ≤ 11. There exists a maximal
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FIG. 15. Physical ground energy of −H0 þ ξΔH at ξ ¼ 0.5, 1, 1.5, 3 and N ¼ 3; 5; 10; 20;∞.
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integer N�
M that when N ≤ N�

M the would-be ground
energy eigenstate of the M-bit system is unphysical.
For H ¼ H0 and odd M ≤ 11, the numerical computation
shows N�

M ¼ ðM − 1Þ=2. If such a simple relation holds
for all odd M, then, at large M, the surviving of ground
state requires N to be large as well. For
H ¼ �H0 þ ξΔH, N�

M increases (decreases) as ξ
increases (decreases). The maximum value of N�

M is
(M − 1). The minimum of N�

M is achieved when H ¼
�H0 ∓ ΔH because of the stabilization constraint
ξ ≥∓ 1. In the minimum cases, one find that N�

M is less
than ðM − 1Þ=2 when 7 < M ≤ 11. If such a trend
continues for M > 11, it means that the ground energy
state might be able to survive at very large M
and M ≫ N.
For fixed finite N and H ¼ �H0 þ ξΔH, the system is

stable only when ξ ≥∓ 1. The ground energy drops almost
linearly with respect to M when ξ ≥∓ 1 and faster than
linearly when ξ <∓ 1. The numerical computation also
reveals the excitation energy is roughly proportional to
M−1. While we do not have data for M > 11, the trend is
still evident. These properties indicate that the model has
stringy behavior when ξ ≥∓ 1.

The numerical computation is performed up to M ¼ 11.
The bottleneck is the calculation of norm matrices. Our
algorithm has OðM!Þ time complexity for computing each
entry of the matrix. It needs significant improvement for
numerical computation of higher M. This is one of the
issues we need to address in future research.
We can also extend our work in other directions. Our

strategy can be applied to the model with s > 1; d ¼ 0, or
d > 0 cases. We can also analytically calculate 1=N
expansion of the model, in which some progress has been
made by Ref. [25].
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APPENDIX A: BOSONIC TRACE STATES

1. 1 bit

One bosonic state:

j1i ¼ Trāj0i:

2. 2 bits

Two bosonic states:

j1i ¼ Trā ā j0i j2i ¼ TrāTrāj0i:

3. 3 bits

Five bosonic states:

j1i ¼ Trā ā ā j0i j2i ¼ TrāTrā ā j0i j3i ¼ TrāTrāTrāj0i
j4i ¼ Trā b̄ b̄ j0i j5i ¼ Trb̄Trā b̄ j0i:

4. 4 bits

Ten bosonic states:

j1i ¼ Trā ā ā ā j0i j2i ¼ TrāTrā ā ā j0i j3i ¼ Trā āTrā ā j0i
j4i ¼ TrāTrāTrā ā j0i j5i ¼ TrāTrāTrāTrāj0i j6i ¼ Trā ā b̄ b̄ j0i
j7i ¼ TrāTrā b̄ b̄ j0i j8i ¼ Trb̄Trā ā b̄ j0i j9i ¼ TrāTrb̄Trā b̄ j0i
j10i ¼ Trb̄Trb̄ b̄ b̄ j0i:
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5. 5 bits

Twenty-one bosonic states:

j1i ¼ Trā ā ā ā ā j0i j2i ¼ TrāTrā ā ā ā j0i j3i ¼ Trā āTrā ā ā j0i
j4i ¼ TrāTrāTrā ā ā j0i j5i ¼ TrāTrā āTrā ā j0i j6i ¼ TrāTrāTrāTrā ā j0i
j7i ¼ TrāTrāTrāTrāTrāj0i j8i ¼ Trā ā ā b̄ b̄ j0i j9i ¼ Trā ā b̄ ā b̄ j0i

j10i ¼ TrāTrā ā b̄ b̄ j0i j11i ¼ Trb̄Trā ā ā b̄ j0i j12i ¼ Trā āTrā b̄ b̄ j0i
j13i ¼ Trā b̄Trā ā b̄ j0i j14i ¼ TrāTrāTrā b̄ b̄ j0i j15i ¼ TrāTrb̄Trā ā b̄ j0i
j16i ¼ Trb̄Trā āTrā b̄ j0i j17i ¼ TrāTrāTrb̄Trā b̄ j0i j18i ¼ Trā b̄ b̄ b̄ b̄ j0i
j19i ¼ Trb̄Trā b̄ b̄ b̄ j0i j20i ¼ Trā b̄Trb̄ b̄ b̄ j0i j21i ¼ TrāTrb̄Trb̄ b̄ b̄ j0i:

6. 6 bits

Forty-four bosonic states:

j1i¼Trā ā āā āā j0i j2i¼TrāTrāā āā āj0i j3i¼TrāāTrā āā āj0i
j4i¼Trā ā āTrā āā j0i j5i¼TrāTrāTrā āā āj0i j6i¼TrāTrā āTrā āā j0i
j7i¼Trā āTrāāTrā āj0i j8i¼TrāTrāTrāTrāā āj0i j9i¼TrāTrāTrā āTrāā j0i

j10i¼TrāTrāTrāTrāTrāā j0i j11i¼TrāTrāTrāTrāTrāTrāj0i j12i¼Trā āā āb̄ b̄ j0i
j13i¼Trā ā āb̄ āb̄ j0i j14i¼TrāTrā āā b̄b̄ j0i j15i¼TrāTrā āb̄ āb̄ j0i
j16i¼Trb̄Trāā āā b̄j0i j17i¼TrāāTrāā b̄b̄ j0i j18i¼Trāb̄Trā āā b̄j0i
j19i¼Trā ā āTrā b̄b̄ j0i j20i¼TrāTrāTrāā b̄b̄ j0i j21i¼TrāTrb̄Trā āā b̄j0i
j22i¼TrāTrāāTrā b̄b̄ j0i j23i¼TrāTrā b̄Trā āb̄ j0i j24i¼Trb̄Trā āTrā āb̄ j0i
j25i¼Trb̄Trāb̄Trā āā j0i j26i¼TrāTrāTrāTrāb̄ b̄j0i j27i¼TrāTrāTrb̄Trā āb̄ j0i
j28i¼TrāTrb̄Trā āTrā b̄j0i j29i¼TrāTrāTrāTrb̄Trāb̄ j0i j30i¼Trāā b̄b̄ b̄b̄ j0i
j31i¼Trā b̄ āb̄ b̄b̄ j0i j32i¼Trāb̄ b̄ā b̄b̄ j0i j33i¼TrāTrā b̄b̄ b̄b̄ j0i
j34i¼Trb̄Trāā b̄b̄ b̄j0i j35i¼Trb̄Trāb̄ āb̄ b̄j0i j36i¼Trāb̄Trāb̄ b̄b̄ j0i
j37i¼Trā ā b̄Trb̄ b̄b̄ j0i j38i¼Trāb̄ b̄Trāb̄ b̄j0i j39i¼TrāTrb̄Trāb̄ b̄ b̄j0i
j40i¼TrāTrāb̄Trb̄ b̄b̄ j0i j41i¼Trb̄Trā āTrb̄ b̄b̄ j0i j42i¼Trb̄Trā b̄Trā b̄b̄ j0i
j43i¼TrāTrāTrb̄Trb̄ b̄b̄ j0i j44i¼Trb̄Trb̄ b̄b̄ b̄b̄ j0i:
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7. 7 bits

Eighty-nine bosonic states:

j1i ¼ Trā ā ā ā ā ā ā j0i j2i ¼ TrāTrā ā ā ā ā ā j0i j3i ¼ Trā āTrā ā ā ā ā j0i
j4i ¼ Trā ā āTrā ā ā ā j0i j5i ¼ TrāTrāTrā ā ā ā ā j0i j6i ¼ TrāTrā āTrā ā ā ā j0i
j7i ¼ TrāTrā ā āTrā ā ā j0i j8i ¼ Trā āTrā āTrā ā ā j0i j9i ¼ TrāTrāTrāTrā ā ā ā j0i
j10i ¼ TrāTrāTrā āTrā ā ā j0i j11i ¼ TrāTrā āTrā āTrā ā j0i j12i ¼ TrāTrāTrāTrāTrā ā ā j0i
j13i ¼ TrāTrāTrāTrā āTrā ā j0i j14i ¼ TrāTrāTrāTrāTrāTrā ā j0i j15i ¼ TrāTrāTrāTrāTrāTrāTrāj0i
j16i ¼ Trā ā ā ā ā b̄ b̄ j0i j17i ¼ Trā ā ā ā b̄ ā b̄ j0i j18i ¼ Trā ā ā b̄ ā ā b̄ j0i
j19i ¼ TrāTrā ā ā ā b̄ b̄ j0i j20i ¼ TrāTrā ā ā b̄ ā b̄ j0i j21i ¼ Trb̄Trā ā ā ā ā b̄ j0i
j22i ¼ Trā āTrā ā ā b̄ b̄ j0i j23i ¼ Trā āTrā ā b̄ ā b̄ j0i j24i ¼ Trā b̄Trā ā ā ā b̄ j0i
j25i ¼ Trā ā āTrā ā b̄ b̄ j0i j26i ¼ Trā ā b̄Trā ā ā b̄ j0i j27i ¼ Trā b̄ b̄Trā ā ā ā j0i
j28i ¼ TrāTrāTrā ā ā b̄ b̄ j0i j29i ¼ TrāTrāTrā ā b̄ ā b̄ j0i j30i ¼ TrāTrb̄Trā ā ā ā b̄ j0i
j31i ¼ TrāTrā āTrā ā b̄ b̄ j0i j32i ¼ TrāTrā b̄Trā ā ā b̄ j0i j33i ¼ TrāTrā ā āTrā b̄ b̄ j0i
j34i ¼ Trb̄Trā āTrā ā ā b̄ j0i j35i ¼ Trb̄Trā b̄Trā ā ā ā j0i j36i ¼ Trb̄Trā ā āTrā ā b̄ j0i
j37i ¼ Trā āTrā āTrā b̄ b̄ j0i j38i ¼ Trā āTrā b̄Trā ā b̄ j0i j39i ¼ TrāTrāTrāTrā ā b̄ b̄ j0i
j40i ¼ TrāTrāTrb̄Trā ā ā b̄ j0i j41i ¼ TrāTrāTrā āTrā b̄ b̄ j0i j42i ¼ TrāTrāTrā b̄Trā ā b̄ j0i
j43i ¼ TrāTrb̄Trā āTrā ā b̄ j0i j44i ¼ TrāTrb̄Trā b̄Trā ā ā j0i j45i ¼ Trb̄Trā āTrā āTrā b̄ j0i
j46i ¼ TrāTrāTrāTrāTrā b̄ b̄ j0i j47i ¼ TrāTrāTrāTrb̄Trā ā b̄ j0i j48i ¼ TrāTrāTrb̄Trā āTrā b̄ j0i
j49i ¼ TrāTrāTrāTrāTrb̄Trā b̄ j0i j50i ¼ Trā ā ā b̄ b̄ b̄ b̄ j0i j51i ¼ Trā ā b̄ ā b̄ b̄ b̄ j0i
j52i ¼ Trā ā b̄ b̄ ā b̄ b̄ j0i j53i ¼ Trā ā b̄ b̄ b̄ ā b̄ j0i j54i ¼ Trā b̄ ā b̄ ā b̄ b̄ j0i
j55i ¼ TrāTrā ā b̄ b̄ b̄ b̄ j0i j56i ¼ TrāTrā b̄ ā b̄ b̄ b̄ j0i j57i ¼ TrāTrā b̄ b̄ ā b̄ b̄ j0i
j58i ¼ Trb̄Trā ā ā b̄ b̄ b̄ j0i j59i ¼ Trb̄Trā ā b̄ ā b̄ b̄ j0i j60i ¼ Trb̄Trā ā b̄ b̄ ā b̄ j0i
j61i ¼ Trb̄Trā b̄ ā b̄ ā b̄ j0i j62i ¼ Trā āTrā b̄ b̄ b̄ b̄ j0i j63i ¼ Trā b̄Trā ā b̄ b̄ b̄ j0i
j64i ¼ Trā b̄Trā b̄ ā b̄ b̄ j0i j65i ¼ Trā ā b̄Trā b̄ b̄ b̄ j0i j66i ¼ Trā b̄ b̄Trā ā b̄ b̄ j0i
j67i ¼ Trb̄ b̄ b̄Trā ā ā b̄ j0i j68i ¼ TrāTrāTrā b̄ b̄ b̄ b̄ j0i j69i ¼ TrāTrb̄Trā ā b̄ b̄ b̄ j0i
j70i ¼ TrāTrb̄Trā b̄ ā b̄ b̄ j0i j71i ¼ TrāTrā b̄Trā b̄ b̄ b̄ j0i j72i ¼ TrāTrā ā b̄Trb̄ b̄ b̄ j0i
j73i ¼ TrāTrā b̄ b̄Trā b̄ b̄ j0i j74i ¼ Trb̄Trā āTrā b̄ b̄ b̄ j0i j75i ¼ Trb̄Trā b̄Trā ā b̄ b̄ j0i
j76i ¼ Trb̄Trā ā āTrb̄ b̄ b̄ j0i j77i ¼ Trb̄Trā ā b̄Trā b̄ b̄ j0i j78i ¼ Trā āTrā b̄Trb̄ b̄ b̄ j0i
j79i ¼ TrāTrāTrb̄Trā b̄ b̄ b̄ j0i j80i ¼ TrāTrāTrā b̄Trb̄ b̄ b̄ j0i j81i ¼ TrāTrb̄Trā āTrb̄ b̄ b̄ j0i
j82i ¼ TrāTrb̄Trā b̄Trā b̄ b̄ j0i j83i ¼ TrāTrāTrāTrb̄Trb̄ b̄ b̄ j0i j84i ¼ Trā b̄ b̄ b̄ b̄ b̄ b̄ j0i
j85i ¼ Trb̄Trā b̄ b̄ b̄ b̄ b̄ j0i j86i ¼ Trā b̄Trb̄ b̄ b̄ b̄ b̄ j0i j87i ¼ Trb̄ b̄ b̄Trā b̄ b̄ b̄ j0i
j88i ¼ TrāTrb̄Trb̄ b̄ b̄ b̄ b̄ j0i j89i ¼ Trb̄Trā b̄ b̄Trb̄ b̄ b̄ j0i:

APPENDIX B: COUNTING PROBLEMS ON TRACE STATES

How many trace states are there for a fixed bit numberM? In this Appendix, we will first count the single trace states and
then the trace states which includes both single and multiple trace states.
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1. Counting single trace states

There are 2M combinations of an M-bit string consisting
of ā; b̄. By the property of trace, a trace state is equivalent to
its cyclic permutations. For example, Trb̄ ā and Trā b̄ are
equivalent states, and so are Trb̄ ā ā b̄ and Trā ā b̄ b̄.
Actually, the latter case differs by a negative sign,

Trā ā b̄ b̄ ¼ −Trb̄ ā ā b̄ :
The rule is that each swap of two b̄ introduces a minus sign.
It follows that some trace states are vanishing, for exam-
ple, Trb̄ b̄ ¼ −Trb̄ b̄ ¼ 0.
To count the single trace states, we need the following

definition and theorem [26].
Definition.—Given a groupG acting on a set X, the orbit

of x ∈ X is the set Gx ¼ fg · xjg ∈ Gg. The set of orbits is
denoted by X=G.
In our case, the cyclic group CM is the group G. X is the

2M combinations of M-bit operators, and x corresponds to
one particular combination. X=G is the set of different
combinations under the action of the cyclic group.
Theorem (Burnside’s counting theorem).—If G is a

finite group acting on a finite set X, then

jX=Gj ¼ 1

jGj
X
g∈G

jFixðgÞj;

where FixðgÞ is the set of x that is invariant under action of
g, i.e.,

FixðgÞ ¼ fx ∈ Xjg · x ¼ xg:

To find the number of states, we need to find jFixðgÞj for
each group member.
We first consider the odd M case. Let ck ∈ CM; k

¼ 1; 2; � � �M, be the group member that shifts k operators
from the tail of the trace to the beginning. The identity of
the group is e ¼ cM. Let ðM; kÞ denote the greatest
common divisor of M and k. For group member ck, we
equally partition the M bits into M=ðM; kÞ consecutive
parts: the first part starts from bit 1 to bit ðM; kÞ, the second
part starts from bit ðM; kÞ þ 1 to bit 2ðM; kÞ, etc. Under the
action of ck, the ith part transfers as

ith part →

�
iþ k

ðM; kÞ
�
th part:

The trace is invariant under ck if and only if all the parts are
identical to each other. For a bosonic single trace state, each
of such parts needs to be bosonic, from which it follows
that

jFixðckÞj ¼
X
eveni

� ðM; kÞ
i

�
¼ 1

2
2ðM;kÞ: ðB1Þ

Similarly, for a fermionic single trace state, each of such
parts needs to be fermionic,

jFixðckÞj ¼
X
oddi

� ðM; kÞ
i

�
¼ 1

2
2ðM;kÞ; ðB2Þ

which implies there is the same number of bosonic and
fermionic single trace states for odd M. By Burnside’s
theorem, this number is given by

SM ¼ 1

2M

XM
k¼1

2ðM;kÞ: ðB3Þ

For evenM, let us first consider the fermionic states. For
a group member ck, jFixðckÞj ¼ 0 ifM=ðM; kÞ is even. The
reason is that an odd number of b̄ cannot be equally
partitioned into even parts. Therefore, only odd M=ðM; kÞ
contributes to jFixðckÞj, which is still given by (B2). And
Eq. (B3) becomes

SM ¼ 1

2M

X
M=ðM;kÞ is odd

2ðM;kÞ: ðB4Þ

Let i ¼ M=ðM; kÞ; Eq. (B4) can be written as

SM ¼ 1

2M

X
oddi;ijM

φðiÞ2M
i ; ðB5Þ

where φðiÞ is the Euler totient function and ijM meansM is
divisible by i. We see that Eq. (B3) can also be written as
Eqs. (B4) and (B5).
For bosonic states, because there exist vanishing states,

like Trā b̄ ā b̄ ¼ −Trā b̄ ā b̄ ¼ 0, the number of bosonic
states equals the number of even-b̄ states minus the number
of vanishing states. Consider the number of even-b̄ states,
which is denoted as BM for convenience. For a group
member ck, we partition M bits equally into M=ðM; kÞ
consecutive parts with each part ðM; kÞ bits: ifM=ðM; kÞ is
odd, we need an even number of b̄ in each part; ifM=ðM; kÞ
is even, there can be any number of b̄ in each part, from
which it follows that

BM ¼ 1

M

� X
M=ðM;kÞ is odd

2ðM;kÞ−1 þ
X

M=ðM;kÞ is even
2ðM;kÞ

�

¼ 1

2M

� X
odd i;ijM

φðiÞ2M
i þ 2

X
even i;ijM

φðiÞ2M
i

�
: ðB6Þ

Now, consider the number of vanishing states, which is
denoted as VM. For each ck, we again partition M bits into
M=ðM; kÞ consecutive parts. If M=ðM; kÞ is even and all
parts are identical with an odd number of b̄, then it is a
vanishing state. But this does not cover all the possibilities.
If ðM; kÞ is even, we can perform finer partition: divide M-
bits into 2M=ðM; kÞ parts with each part of ðM; kÞ=2 bits. If
all the 2M=ðM; kÞ parts are the same and contain an odd
number of b̄, it is a vanishing state. We can continue to
perform the finer partition i times until ðM; kÞ=2i is odd.
There is a difference between odd M=ðM; kÞ and even
M=ðM; kÞ: it needs to perform at least one finer partition for
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odd M=ðM; kÞ, while for even M=ðM; kÞ it does not.
Therefore, the number of vanishing states reads

VM ¼ 1

M

X
odd M=ðM;kÞ

� X
i≥1 and 2ijðM;kÞ

2
ðM;kÞ
2i

−1
�

þ 1

M

X
even M=ðM;kÞ

� X
i≥0 and 2ijðM;kÞ

2
ðM;kÞ
2i

−1
�

¼ 1

2M

�X
k

� X
i≥1;2ijðM;kÞ

2
ðM;kÞ
2i

�
þ

X
even M=ðM;kÞ

2ðM;kÞ
�

¼ 1

2M

�X
k

� X
i≥1;2ijðM;kÞ

2
ðM;kÞ
2i

�
þ

X
even i;ijM

φðiÞ2M
i

�
: ðB7Þ

Let ðM; kÞ=2i ¼ M
j ; then we have 2

ijj and ðM; kÞ ¼ 2iM=j.

The number of k satisfying ðM; kÞ ¼ 2iM=j is equal to

φ

�
M

2iM=j

�
¼ φ

�
j
2i

�
:

Now, the first term inside the parentheses of Eq. (B7) can be
written as

X
k

� X
i≥1;2ijðM;kÞ

2
ðM;kÞ
2i

�
¼

X
even j;jjM

� X
i≥1;2ijj

φ

�
j
2i

�
2
M
j

�
: ðB8Þ

With the following property of the function φ,

φð2mÞ ¼
�
2φðmÞ if m is even

φðmÞ if m is odd
;

we see that

X
i≥1;2ijj

φ

�
j
2i

�
¼ φðjÞ; if j is even:

Now, Eq. (B8) becomes

X
k

� X
i≥1;2ijðM;kÞ

2
ðM;kÞ
2i

�
¼

X
even j;jjM

φðjÞ2M
j ;

from which it follows that

VM ¼ 1

M

X
even i;ijM

φðiÞ2M
i :

The difference of Eqs. (B6) and (B7) is

SM ¼ BM − VM ¼ 1

2M

X
odd i;ijM

φðiÞ2M
i ;

which is the same as the formula for fermionic states.
In summation, we conclude that there is an equal number

of bosonic and fermionic states for a given bit number M
and both can be written as

SM ¼ 1

2M

X
odd n;njM

φðnÞ2M
n : ðB9Þ

2. Counting trace states

Now, consider the general trace states, including single

and multiple trace states. Let Tð0Þ
m;r be the number of r-bit

bosonic trace states built out of single trace states of bits

less than or equal to m. Tð1Þ
m;r is defined similarly for

fermionic trace states. We can build the recursive relation of

TðbÞ
m;r as follows. Out of r string bits, we can assign i ×m

bits to i bosonicm-bit single trace states and j ×m bits to j
fermionic m-bit single trace states provided ðiþ jÞm ≤ r.
There are ðSmi Þ ways to pick i fermionic m-bit single trace
states and ðSmþj−1

j Þways to pick j bosonicm-bit single trace
states. The remaining r − ðiþ jÞm bits need to be built out
of single trace states of bits less thanm. Summation over all
non-negative i, j yields

TðbÞ
m;r ¼

X
ðiþjÞm≤r

�
Sm
i

��
Sm þ j − 1

j

�
TððbþiÞmod2Þ
m−1;r−ðiþjÞm:

ðB10Þ

We can actually drop the superscript of T because Tð0Þ
m;r

equals Tð0Þ
m;r for all m, r. It can be proved by mathematical

induction that for m ¼ 1 the only r-bit bosonic state is
ðTrāÞrj0i and the only r-bit fermionic state is

ðTrāÞr−1Trb̄j0i, which implies Tð0Þ
1;r ¼ Tð1Þ

1;r . If Tð0Þ
m−1;r ¼

Tð1Þ
m−1;r holds for all r, then Eq. (B10) gives the same result

for Tð0Þ
m;r and Tð0Þ

m;r, from which it follows that Tð0Þ
m;r ¼ Tð0Þ

m;r

holds for all values of m, r. Therefore, we can simply write
(B10) as

Tm;r ¼
X

ðiþjÞm≤r

�
Sm
i

��
Sm þ j − 1

j

�
Tm−1;r: ðB11Þ

The number of M-bit bosonic or fermionic trace states is
simply

TM ¼ TM;M: ðB12Þ
We use a computer program to calculate the values of SM

and TM, as shown in Table I. The results reveal that whenM
is large

SM →
2M−1
M

; TM → ð0.7261768212 � � �Þ × 2M:

The limit of SM shows that almost all the single trace states
haveM different cyclic permutations whenM is large. This
is not surprising; the density of the single trace with certain
cyclic symmetry goes down as M increases. TM increases

GAOLI CHEN and SONGGE SUN PHYSICAL REVIEW D 93, 106004 (2016)

106004-20



as 2M with a magic prefactor we do not understand, which
could be an interesting mathematical problem to explore.

APPENDIX C: RANK OF NORM MATRIX

The rank of norm matrix Gij ¼ hijji is the dimension of
the trace state space and also the number of energy levels of
the system. In this section, we show some interesting
patterns of the rank of norm matrix. We only focus on the
norm matrix ofM-bit bosonic trace states, which is a TM ×
TM real symmetric matrix. By supersymmetry, the norm
matrix of M-bit fermionic trace state space has the same
rank as the one of M-bit bosonic trace state space.
We generate the norm matrices forM ≤ 11 and calculate

their ranks numerically. We find that when N ≥ M G has
full rank and when N < M it is rank deficient. As N
changes from M to 1, the rank of G changes from TM to 1.
We arrange the ranks of norm matrices for M ≤ 11 and
N ≤ M as a number triangle as below:

The number at the ith row and jth column is the rank ofG
forM ¼ i andN ¼ j. For convenience, we denote it as Ri;j.

We immediately see several patterns: RM;M ¼ TM,
RM;M−1 ¼ TM − 1, RM;1 ¼ 1, and for M greater than 1,
RM;2 ¼ 2M − 2. If we define Ri;0 ¼ 0, then we can define
new variables Di;j ¼ Ri;j − Ri;j−1, which represent the
change of G’s rank when M ¼ i and N change from j to
j − 1. We arrange Dij as another number triangle as below:

Going through each row from right to left, we find the
following sequence:

1; 3; 9; 27; 73; 195; � � � :
For odd M, the sequence starts from N ¼ M and ends at
N ¼ ðM þ 1Þ=2; for evenM, the sequence starts from N ¼
M and ends at N ¼ M=2. This means that, no matter what
the valueM is, the changes ofG’s rank from N to N − 1 for
N ≥ M are the same.
Since we only obtain the norm matrices for M ≤ 11, we

do not know the next number of the sequence. Finding the
pattern of the sequence is an interesting problem for future
research.

TABLE I. Number of trace states.

M SM TM SM ×M=2M TM=2M

1 1 1 0.500000000000 0.500000000000
2 1 2 0.500000000000 0.500000000000
3 2 5 0.750000000000 0.625000000000
4 2 10 0.500000000000 0.625000000000
5 4 21 0.625000000000 0.656250000000
6 6 44 0.562500000000 0.687500000000
7 10 89 0.546875000000 0.695312500000
8 16 180 0.500000000000 0.703125000000
9 30 365 0.527343750000 0.712890625000
10 52 734 0.507812500000 0.716796875000
11 94 1473 0.504882812500 0.719238281250
20 26216 761282 0.500030517578 0.726015090942
30 17895736 779724424 0.500001087785 0.726174958050
40 13743895360 798439834644 0.500000000466 0.726176799293
50 11258999068468 817602415099946 0.500000000001 0.726176820986
60 9607679205074672 837224873334502342 0.500000000001 0.726176821223
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APPENDIX D: CALCULATION OF ½H;Q�
In this section, let us find the constraint of the super-

symmetric Hamiltonian, i.e., the condition for ½H;Q� ¼ 0,
where

Q ¼ exp
�
iπ
4

�
Trābþ exp

�
− iπ

4

�
Trb̄a:

We first calculate the commutation between Q and each
trace operator in (4). We have

½Trā2b2;Trāb� ¼ Trā2b2Trāb − TrābTrā2b2 ¼ 0;

½Trā2b2;Trb̄a� ¼ Trā2b2Trb̄a − Trb̄aTrā2b2

¼ Trā2ba − Trbā2aþ ∶Trā2b2Trb̄a∶

− ðTrb̄ ā b2 þ Trb̄b2āþ ∶Trā2b2Trb̄a∶Þ
¼ Trā2ðba − abÞ − Trðb̄ āþā b̄Þb2;

where ∶Trā2b2Trb̄a∶ denotes the normal ordering of
Trā2b2Trb̄a. As we see, the normal ordering terms cancel

out. This occurs for all the trace operators. So in the
following calculation, we simply drop the normal ordering
terms in most cases. From above two results, it follows that

½Trā2b2;Q�¼ exp
�
−iπ

4

�
½Trā2b2;Trb̄a�

¼ exp

�
−iπ

4

�
½Trā2ðba−abÞ−Trðb̄āþā b̄Þb2�:

We repeat the calculation for the other trace operators as
follows:

½Trb̄2a2;Trāb� ¼ Trb̄2a2Trāb − TrābTrb̄2a2

¼ Trb̄2abþ Trab̄2b − Trā b̄ a2 þ Trāa2b̄

¼ Trb̄2ðabþ baÞ þ Trðb̄ ā−ā b̄Þa2;
½Trb̄2a2;Trb̄a� ¼ 0;

from which it follows that

½Trb̄2a2; Q� ¼ exp

�
i
π

4

�
½Trb̄2a2;Trāb�

¼ exp

�
i
π

4

�
½Trb̄2ðabþ baÞ þ Trðb̄ ā−ā b̄Þa2�:

½Trā2a2;Trāb� ¼ Trā2a2Trāb − TrābTrā2a2

¼ Trā2abþ Trā2baþ ∶Trā2a2Trāb∶ − TrābTrā2a2

¼ Trā2ðabþ baÞ;
½Trā2a2;Trb̄a� ¼ Trā2a2Trb̄a − Trb̄aTrā2a2

¼ Trā2a2Trb̄a − Trb̄ ā a2 − Trā b̄ a2 − ∶Trb̄aTrā2a2∶

¼ −Trðā b̄þb̄ āÞa2; ðD1Þ

from which it follows that

½Trā2a2; Q� ¼ exp

�
i
π

4

�
½Trā2a2;Trāb� þ exp

�
−i π

4

�
½Trā2a2;Trb̄a�

¼ exp

�
i
π

4

�
Trā2ðabþ baÞ − exp

�
−i π

4

�
Trðā b̄þb̄ āÞa2:

½Trb̄2b2;Trāb� ¼ Trb̄2b2Trāb − TrābTrb̄2b2

¼ Trb̄2b2Trāb − Trā b̄ b2 þ Trb̄ ā b2 − ∶TrābTrb̄2b2∶

¼ Trðb̄ ā−ā b̄Þb2;
½Trb̄2b2;Trb̄a� ¼ Trb̄2b2Trb̄a − Trb̄aTrb̄2b2

¼ Trb̄2ba − Trb̄2abþ ∶Trb̄2b2Trb̄a∶ − Trb̄aTrb̄2b2

¼ Trb̄2ðba − abÞ; ðD2Þ

from which it follows that
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½Trb̄2b2; Q� ¼ exp

�
i
π

4

�
½Trb̄2b2;Trāb� þ exp

�
−i π

4

�
½Trb̄2b2;Trb̄a�

¼ exp

�
i
π

4

�
Trðb̄ ā−ā b̄Þb2 þ exp

�
−i π

4

�
Trb̄2ðba − abÞ:

½Trb̄ ā ba;Trāb� ¼ Trb̄ ā baTrāb − TrābTrb̄ ā ba

¼ Trb̄ ā bbþ ∶Trb̄ ā baTrāb∶ − Trā ā baþ ∶TrābTrb̄ ā ba∶

¼ Trb̄ ā bbþ ∶Trb̄ ā baTrāb∶ − Trā ā ba − ∶Trb̄ ā baTrāb∶

¼ Trb̄ ā bb − Trā ā ba;

½Trb̄ ā ba;Trb̄a� ¼ Trb̄ ā baTrb̄a − Trb̄aTrb̄ ā ba

¼ Trb̄ ā a2 − ∶Trb̄ ā baTrb̄a∶þ Trb̄ b̄ ba − ∶Trb̄aTrb̄ ā ba∶

¼ Trb̄ ā a2 − ∶Trb̄ ā baTrb̄a∶þ Trb̄ b̄ baþ ∶Trb̄ ā baTrb̄a∶

¼ Trb̄ ā a2 þ Trb̄ b̄ ba; ðD3Þ

from which it follows that

½Trb̄ ā ba;Q� ¼ exp

�
i
π

4

�
½Trb̄ ā ba;Trāb� þ exp

�
−i π

4

�
½Trb̄ ā ba;Trb̄a�

¼ exp

�
i
π

4

�
½Trb̄ ā bb − Trā ā ba�

þ exp

�
−i π

4

�
½Trb̄ ā a2 þ Trb̄ b̄ ba�:

½Trā b̄ ab;Trāb� ¼ Trā b̄ abTrāb − TrābTrā b̄ ab

¼ −Trā b̄ b2 þ ∶Trā b̄ abTrāb∶ − Trā2abþ ∶TrābTrā b̄ ab∶

¼ −Trā b̄ b2 − Trā2ab;

½Trā b̄ ab;Trb̄a� ¼ Trā b̄ abTrb̄a − Trb̄aTrā b̄ ab

¼ Trā b̄ a2 − ∶Trā b̄ abTrb̄a∶ − Trb̄2ab − ∶Trā b̄ abTrb̄a∶

¼ Trā b̄ a2 − Trb̄2ab; ðD4Þ

from which it follows that

½Trā b̄ ab;Q� ¼ exp

�
i
π

4

�
½Trā b̄ ab;Trb̄a� þ exp

�
−i π

4

�
½Trā b̄ ab;Trāb�

¼ exp

�
i
π

4

�
½−Trā b̄ b2 − Trā2ab� þ exp

�
−i π

4

�
½Trā b̄ a2 − Trb̄2ab�:

½Trā b̄ ba;Trāb� ¼ Trā b̄ baTrāb − TrābTrā b̄ ba

¼ Trā b̄ bbþ ∶Trā b̄ baTrāb∶ − Trā2baþ ∶TrābTrā b̄ ba∶

¼ Trā b̄ bb − Trā2ba;

½Trā b̄ ba;Trb̄a� ¼ Trā b̄ baTrb̄a − Trb̄aTrā b̄ ba

¼ Trā b̄ aa − ∶Trā b̄ baTrb̄a∶ − Trb̄ b̄ ba − ∶Trā b̄ baTrb̄a∶

¼ Trā b̄ aa − Trb̄2ba; ðD5Þ

from which it follows that
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½Trā b̄ ba;Q� ¼ exp

�
i
π

4

�
½Trā b̄ ba;Trāb� þ exp

�
−i π

4

�
½Trā b̄ ba;Trb̄a�

¼ exp

�
i
π

4

�
½Trā b̄ bb − Trā2ba� þ exp

�
−i π

4

�
½Trā b̄ aa − Trb̄2ba�:

½Trb̄ ā ab;Trāb� ¼ Trb̄ ā abTrāb − TrābTrb̄ ā ab

¼ −Trb̄ ā b2 − Trā2ab;

½Trb̄ ā ab;Trb̄a� ¼ Trb̄ ā abTrb̄a − Trb̄aTrb̄ ā ab

¼ Trb̄ ā a2 þ Trb̄2ab; ðD6Þ
from which it follows that

½Trb̄ ā ab;Q� ¼ exp

�
i
π

4

�
½Trb̄ ā ab;Trāb� þ exp

�
−i π

4

�
½Trb̄ ā ab;Trb̄a�

¼ exp

�
i
π

4

�
½−Trb̄ ā b2 − Trā2ab� þ exp

�
−i π

4

�
½Trb̄ ā a2 þ Trb̄2ab�: ðD7Þ

As mentioned in the main text, the general form of Hermitian Hamiltonian is

H ¼ 1

N
½c1Trā2a2 þ c2Trb̄2b2 þ iz1Trā2b2 − iz�1Trb̄

2a2 þ c3Trā b̄ baþ c4Trb̄ ā abþ z2Trā b̄ abþ z�2Trb̄ ā ba�:

With the above calculation, we have

N exp

�
iπ
4

�
½H;Q� ¼ c1½iTrā2ðabþ baÞ− Trðā b̄þb̄ āÞa2� þ c2½iTrðb̄ ā−ā b̄Þb2 þ Trb̄2ðba− abÞ�

þ iz1½Trā2ðba− abÞ− Trðb̄ āþā b̄Þb2� þ z�1½Trb̄2ðabþ baÞ þ Trðb̄ ā−ā b̄Þa2�
þ c3½iðTrā b̄ bb− Trā2baÞ þ Trā b̄ aa− Trb̄2ba� þ c4½ið−Trb̄ ā b2 − Trā2abÞ þ Trb̄ ā a2 þ Trb̄2ab�
þ z2½ið−Trā b̄ b2 − Trā2abÞ þ Trā b̄ a2 − Trb̄2ab� þ z�2½iðTrb̄ ā bb− Trā2baÞ þ Trb̄ ā a2 þ Trb̄2ba�

¼ iðc1 − z1 − c4 − z2ÞTrā2ab− ðc1 − z�1 − c4 − z�2ÞTrb̄ ā a2 þ iðc1 þ z1 − c3 − z�2ÞTrā2ba
− ðc1 þ z�1 − c3 − z2ÞTrā b̄ a2 − ðc2 − z�1 − c4 þ z2ÞTrb̄2abþ iðc2 − z1 − c4 þ z�2ÞTrā b̄ b2
þ ðc2 þ z�1 − c3 þ z�2ÞTrb̄2ba− iðc2 þ z1 − c3 þ z2ÞTrā b̄ b2:

Then, ½H;Q� ¼ 0 yields8>>><
>>>:

c1 − z1 − c4 − z2 ¼ 0

c1 þ z1 − c3 − z�2 ¼ 0

c2 − z�1 − c4 þ z2 ¼ 0

c2 þ z�1 − c3 þ z�2 ¼ 0

;

from which Eq. (8) follows.

APPENDIX E: PROOF OF
ðH0 − ΔHÞjany trace statei= 0

ΔH and H0 are defined as

ΔH ¼ 2

N
Tr½ā b̄ baþ b̄ ā abþ ā2a2 þ b̄2b2 − ~M�;

H0 ¼ 2

N
Trðāaāaþ b̄bāa − ābb̄aÞ;

where

~M ¼ Trðāaþ b̄bÞ − 1

N
ðTrāTraþ Trb̄TrbÞ:

We first prove that

NðH0 − ΔHÞ ¼ TrG2; ðE1Þ

where the color operator Gβ
α is defined as

Gβ
α ¼ ðāa − ∶aā∶þ b̄b − ∶bb̄∶Þβα;

then it is sufficient to prove that

Gβ
αjAny trace statei ¼ 0: ðE2Þ

Expanding TrG2 yields
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TrG2 ¼ Trðāa − ∶aā∶Þ2 þ Trðb̄b − ∶bb̄∶Þ2 þ 2Trðb̄b − ∶bb̄∶Þðāa − ∶aā∶Þ:

Expanding each term of the right-hand side, we obtain

Trðāa − ∶aā∶Þ2 ¼ Trāaāaþ Trð∶aā∶∶ aā∶Þ − Trðāa∶aā∶þ ∶aā∶āaÞ
¼ 2Trð∶āaāa∶Þ þ 2NTrāa − ð2Trā2a2 þ TrāTraÞ;

Trðb̄b − ∶bb̄∶Þ2 ¼ Trðb̄bb̄bþ ∶bb̄∶∶bb̄∶Þ − Trðb̄b∶bb̄∶þ ∶bb̄∶b̄bÞ
¼ 2NTrb̄b − 2ðTrb̄2b2 þ Trb̄TrbÞ;

Trðb̄b − ∶bb̄∶Þðāa − ∶aā∶Þ ¼ Trb̄bāaþ Trð∶ābb̄a∶Þ − Trðā b̄ baþ b̄ ā abÞ:

It follows that

TrG2 ¼ 2Trð∶āaāa∶þ b̄bāaþ ∶ābb̄a∶Þ − 2Trðā b̄ baþ b̄ ā abþ ā2a2 þ b̄2b2Þ
þ 2NTrðāaþ b̄bÞ − 2TrāTra − 2Trb̄Trb

¼ 2Trðāaāaþ b̄bāa − ābb̄aÞ − 2Trðā b̄ baþ b̄ ā abþ ā2a2 þ b̄2b2 − ~MÞ
¼ NðH0 − ΔHÞ:

Now let us prove (E2). It is easy to check that

½āβα; Gδ
γ � ¼ āβγ δδα − δβγ āδα;

½b̄βα; Gδ
γ � ¼ b̄βγ δδα − δβγ b̄δα:

Let X be an M-bit chain,

Xβ
α ¼ ðx̄1x̄2 � � � x̄MÞβα; x̄i ¼ ā or b̄;

then

½Xβ
α;Gδ

γ �¼
XM
i¼1

ðx̄1 �� � x̄i−1Þβσ½x̄σρ;Gδ
γ �ðx̄iþ1 �� � x̄MÞρα

¼
XM
i¼1

ðx̄1 �� � x̄i−1Þβσððx̄iÞσγ δδρ−δσγ ðx̄iÞδρÞðx̄iþ1 � �� x̄MÞρα

¼
XM−1

i¼1

ðx̄1 �� � x̄iÞβγ ðx̄iþ1 �� � x̄MÞδαþðx̄1 �� � x̄MÞβγ δδα

−
�XM

i¼2

ðx̄1 � �� x̄i−1Þβγ ðx̄i �� � x̄MÞδαþδβγ ðx̄1 �� � x̄MÞδα
�

¼ðx̄1 �� � x̄MÞβγ δδα−δβγ ðx̄1 �� � x̄MÞδα:

On the other hand,

½Xβ
α; Gδ

γ �j0i ¼ Xβ
αGδ

γ j0i −Gδ
γX

β
αj0i ¼ −Gδ

γX
β
αj0i;

from which it follows that

Gδ
γX

β
αj0i ¼ ðδβγ ðx̄1 � � � x̄MÞδα − ðx̄1 � � � x̄MÞβγ δδαÞj0i:

Taking the trace on the indices of X yields

Gδ
γTrXj0i ¼ 0:

Therefore, we proved (E2).

APPENDIX F: HAMILTONIAN EIGENVALUE
PROBLEM

This section proves several claims on the eigenvalue
problems of H,

ðH − EÞV ¼ 0; ðF1Þ

where V is a vector and H is given by

Hjii ¼
X
j

jjiHji: ðF2Þ

First, let us prove the following two claims:
(i) If E is an eigenvalue ofH, its complex conjugate E�

is also an eigenvalue of H.
(ii) If E is not real, it must have V†GV ¼ 0, where G is

the norm matrix Gij ¼ hijji.

Proof.—Using (F2), we have

hijHjji ¼
X
k

hijkiHkj ¼ ðGHÞij:

Since H is Hermitian, we also have
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hijHjji ¼
X
k

H†
ikhkjji ¼ ðH†GÞij;

which implies

GH ¼ H†G: ðF3Þ

Left multiplying Eq. (F1) by G and taking the complex
conjugate yields

V†ðH†G − E�GÞ ¼ 0: ðF4Þ

Using Eq. (F3) and taking the transpose of Eq. (F4), we
obtain

ðHT − E�ÞGV� ¼ 0:

Since H has the same eigenvalues as HT , E� is an
eigenvalue of H.
Using (F1), we have

EV†GV ¼ V†GðEVÞ ¼ V†GHV;

E�V†GV ¼ ðE�V†ÞGV ¼ V†H†GV;

from which it follows that

ðE − E�ÞV†GV ¼ V†ðGH −H†GÞV ¼ 0:

Therefore, if E is not real, it must have V†GV ¼ 0. ▪
The remaining claims are related to whether or not G is

positive semidefinite. Let us discuss them case by case.

1. Positive-semidefinite G matrix

If G is a positive-semidefinite matrix, all its eigenvalues
are non-negative. There exists an orthonormal basis span-
ning the trace state space. Suppose there are r trace states
j1i;…; jri, with dimension p ≤ r. We can build an
orthonormal basis jig using a p × r matrix S,

fij ¼
X
j

Sijhjj; 1 ≤ i ≤ p; 1 ≤ j ≤ r; ðF5Þ

where the basis and the matrix S satisfy

fijjg ¼
X
k;l

ShkjliS ¼ ðSGSÞij ¼ δij:

In this basis, the p × p Hamiltonian matrix H is given by

Hij ≡ fijHjjg
¼

X
k;l

SikhkjHjliS†lj

¼
X
k;l;m

SikhkjmiHmlS
†
lj

¼ ðSGHS†Þij: ðF6Þ

The eigenvalues of the Hamiltonian are given by the
equation

ðH − EÞW ¼ 0; ðF7Þ

where W is a p-dimensional vector. We claim:
(i) Every eigenvalue of H is an eigenvalue of H.
(ii) An eigenvalue E of H with an eigenvector V is also

an eigenvalue of H if and only if V†GV > 0.

Proof.——We extend the p basis vectors jig to r vectors
jig0 so that

fijjg0 ¼
�
δij; if i; j ≤ p

0; if i > p or j > p
:

This can be done by extending thep × rmatrix S to an r × r
invertible matrix R. The matrix R can be constructed as
follows. We pick any invertible r × rmatrix which contains
S as the first p rows. For the (pþ 1)th row vector, Rpþ1, we
calculate R†

pþ1GRi for each i ≤ p. If R†
pþ1GRi ≠ 0, we

replace Rpþ1 with Rpþ1 − ðR†
pþ1GRiÞRi. In this way, Rpþ1

will be orthogonal to all the firstp row vectors, and since the
dimension of the state space is p, R†

pþ1GR must be zero.
Repeating this process for the rest rows, we obtain the
invertible square matrix R.
The new basis is

fij0 ¼ Rijhjj; 1 ≤ i; j ≤ r;

which satisfy

fijjg0 ¼ ðRGR†Þij ¼ ðIp ⊕ Or−pÞij; ðF8Þ

where Ip is the p × p identity matrix and Or−p is the
ðr − pÞ × ðr − pÞ zero matrix. In the new basis, we define
a matrix,

H ¼ RGHR† ¼ H ⊕ Or−p: ðF9Þ

Clearly, if E is an eigenvalue ofH with eigenvectorW, it is
also an eigenvalue of H,

ðH − EÞW0 ¼ 0; ðF10Þ

with the eigenvector W0 satisfying
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W0
i ¼

�
Wi; if 1 ≤ i ≤ p

0; if p < i ≤ r
: ðF11Þ

With relations (F9) and (F8), the left-hand side of Eq. (F10)
can be expressed as

ðH − EÞW0 ¼ RGHR†W0 − EðIp ⊕ Or−pÞW0

¼ RGHR†W0 − ERGR†W0

¼ RðH† − EÞGR†W0

¼ RðH† − EÞR−1ðIp ⊕ Or−pÞW0

¼ RðH† − EÞR−1W0: ðF12Þ

Since R is invertible, we obtain

ðH† − EÞR−1W0 ¼ 0:

R−1W0 cannot be zero as R−1 is invertible andW0 ≠ 0. As E
is real, E is an eigenvalue of H† and H.
Conversely, if E is an eigenvalue of H with eigenvector

V, we have

RGðH − EÞV ¼ 0:

The right-hand side can be expressed as

RGðH − EÞV ¼ RGðHR† − ER†ÞR†−1V
¼ ðH − EðIp ⊕ Or−pÞÞR†−1V
¼ ðH − EÞðIp ⊕ Or−pÞR†−1V;

from which it follows that

ðH − EÞðIp ⊕ Or−pÞR†−1V ¼ 0: ðF13Þ

To let E be an eigenvalue of H, we need W0 ≡
ðIp ⊕ Or−pÞR†−1V to be a nonzero vector. By calculating
the norm of W0,

W0†W0 ¼ V†R†−1ðIp ⊕ Or−pÞR†−1V
¼ V†GV;

we find that E is an eigenvalue of H if and only if
V†GV > 0. Under this constraint, as H ¼ H ⊕ Or−p, E
is also an eigenvalue of H. ▪

2. Non-positive-semidefinite G

If G is not a positive-semidefinite matrix, at least one of
its eigenvalues is negative. There does not exist an
orthonormal basis in the trace state space. Suppose the r ×
r matrix G has p positive eigenvalues, q negative eigen-
values, and s ¼ r − p − q zero eigenvalues. We can
properly choose a unitary matrix R so that the new basis

jig0 satisfies

fijjg0 ¼ ðRGR†Þij ¼ ðIp ⊕ −Iq ⊕ OsÞij;

where j1g0;…; jpg0 are positive norm-square states,
jpþ 1g0;…; jpþ qg0 are negative norm-square states,
and jpþ qþ 1g0;…; jrg0 are zero norm states. The neg-
ative norm-square states are also called ghost states. The
existence of a ghost state implies the Hamiltonian is not
unitary.
In analogy with (F6) and (F9), we define H and H by

Hij ¼ fijHjjg; 1 ≤ i; j ≤ pþ q

and

H ¼ RGHR† ¼ H ⊕ Os:

We claim:
(i) If E is an eigenvalue of H with eigenvector W, it is

an eigenvalue of H when W does not couple with
any ghost state.

(ii) If E is an eigenvalue of H with eigenvector V, it
is an eigenvalue of H when E ¼ 0 or
V†absðGÞV ¼ V†GV > 0, where the function abs
is defined as

absðGÞ ¼ U†

0
BBBBBB@

jg1j
jg2j

. .
.

jgnj

1
CCCCCCA
U;

with

G ¼ U†

0
BBBBB@

g1
g2

. .
.

gn

1
CCCCCAU

being the eigendecomposition of G.
The condition V†absðGÞV ¼ V†GV implies that, in the
basis where G is diagonal, V does not couple with any
ghost state. According to our numerical calculation, G is
not positive semidefinite only when N < M and is not
integer. The numerical calculation shows that, except the
E ¼ 0 case, the condition V†absðGÞV ¼ V†GV is usually
not satisfied when G is not positive semidefinite. The proof
of the claims is given as follows.
Proof.—If E is an eigenvalue of H with eigenvector W,

E is also an eigenvalue of H with the eigenvector defined as

W0
i ¼

�
Wi; if 1 ≤ i ≤ pþ q

0; if pþ q < i ≤ r
: ðF14Þ
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In analogy with (F12), we have

ðH−EÞW0 ¼RGHR†W0−EðIpþq⊕OsÞW0

¼RGHR†W0−EðRGR†þ2Op⊕Iq⊕OsÞW0

¼RðH−EÞGR†W0−2EðOp⊕Iq⊕OsÞW0

¼RðH−EÞR−1ðIp⊕−Iq⊕OsÞW0

−2EðOp⊕Iq⊕OsÞW0:

If the following conditions are satisfied, E is an eigenvalue
of H:

� ðOp ⊕ Iq ⊕ OsÞW0 ¼ 0

ðIp ⊕ −Iq ⊕ OsÞW0 ≠ 0
:

With (F14) and W ≠ 0, it implies that, if

ðOp ⊕ IqÞW ¼ 0; ðF15Þ

E is an eigenvalue of H. Equation (F15) is a constraint
under which the eigenvector does not couple with the ghost
states.
Conversely, if E is an eigenvalue of H with eigenvector

V,

RGðH − EÞV ¼ 0:

The left-hand side of the equation can be expressed as

RGðH − EÞV ¼ RGHR†R†−1V − ERGR†R†−1V
¼ HR†−1V − EðIp ⊕ −Iq ⊕ OsÞR†−1V
¼ ðH − EÞðIpþq ⊕ OsÞR†−1V
þ 2EðOp ⊕ Iq ⊕ OsÞR†−1V

¼ ðH − EÞW0 þ 2EW00;

where we have defined

W0 ≡ ðIpþq ⊕ OsÞR†−1V;
W00 ≡ ðOp ⊕ Iq ⊕ OsÞR†−1V:

If E ¼ 0, or W0 ≠ 0 and W00 ¼ 0, E is an eigenvalue of H.
W0 ≠ 0 implies

W0†W0 ¼ V†R−1ðIpþq ⊕ OsÞR†−1V
¼ V†R−1ðIp ⊕ −Iq ⊕ OsÞR†−1V
¼ V†R−1RGR†R†−1V
¼ V†GV > 0; ðF16Þ

where we use the constraintW00 ¼ 0 in the second equality.
With the equation

2ðOp ⊕ Iq ⊕ OsÞ ¼ ðRGR†Þ2 − RGR†;

W00 ¼ 0 is equivalent to

V†ðGR†RG −GÞV ¼ 0: ðF17Þ

Combining constraints (F16) and (F17), we find that, if

V†GR†RGV ¼ V†GV > 0;

E is an eigenvalue of H.
The matrix GR†RG seems to be dependent on R, but

actually it only depends on G. Indeed, any unitary trans-
formation R → UR does not change GR†RG. In general, if
the eigendecomposition of G is

G ¼ U†

0
BBBBB@

g1
g2

. .
.

gn

1
CCCCCAU; U†U ¼ I;

we can choose R as

Ri ¼
� 1ffiffiffiffiffi

jgij
p Ui; if gi ≠ 0

Ui; if gi ¼ 0
:

Then, we obtain

GR†RG ¼ U†

0
BBBBB@

jg1j
jg2j

. .
.

jgnj

1
CCCCCAU;

which clearly only depends on G. ▪

APPENDIX G: ALGORITHMS

The numerical computation is performed by Cþþ and
the matlab program. We use the Cþþ program to generate
the norm matrices and H matrices and then use matlab to
find eigenvalues and eigenstates. Here, we introduce the
algorithms for generating trace states, calculating norm
matrices, and building H matrices.

1. Generate trace states

Trace states are represented by integer numbers. The
bosonic and fermionic creation operators are mapped to 0
and 1, respectively. Then, an M-bit single trace state is
mapped as an M-bit binary number, and a multiple trace
state is an array of integers. Because of the cyclic
symmetry, a single trace state corresponds to several
integers. Among these integers we choose the smallest
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integer. For example, Trā b̄ b̄ j0i is mapped to ð011Þ2 ¼ 3
rather than ð110Þ2 ¼ 6. We then go through all integers
between 0 and 2M − 1. A number is a single trace state only
when it meets two conditions:

(i) There is no cyclic rotation on this integer producing
a smaller integer.

(ii) The corresponding trace state is nonvanishing. A
trace state is vanishing if it can be partitioned into an
even number of identical consecutive parts, each of
which has an odd number of b̄. For example,
Trb̄ b̄ b̄ b̄ j0i vanishes as it can be partitioned into
four b̄ s.

After generating all single trace states, we can build
multiple trace states out of single trace states. The pro-
cedure is similar to the recursive relation (B11) for
calculating the number of trace states.

2. Calculate norm matrices

To build a norm matrix, we need to calculate hijji for
each pair of states i, j. The norm can be calculated as
follows. If two M-bit states i, j do not have the same
number of b̄, then hijji ¼ 0. Otherwise, if both have n
fermionic operators, there are n!ðM − nÞ! ways to contract
their color indices. Take Trā ā b̄ b̄ j0i and TrāTrā b̄ b̄ j0i as
an example. We first write the states as

Trā ā b̄ b̄ j0i ¼ āβαā
γ
βb̄

ρ
γ b̄αρj0i;

TrāTrā b̄ b̄ j0i ¼ āiiā
k
j b̄

l
kb̄

j
l j0i:

Using the commutation and anticommutation relations, we
can expand the norm into 2! × 2! ¼ 4 terms,

h0jTrbbaaTrāTrā b̄ b̄ j0i ¼ h0jbραbγρaβγaαβāiiākj b̄lkb̄jl j0i
¼ δβjδ

k
γδ

α
i δ

i
βðδρl δjαδγkδlρ − δρkδ

l
αδ

γ
lδ

j
ρÞ

þ δβi δ
i
γδ

α
jδ

k
βðδρl δjαδγkδlρ − δρkδ

l
αδ

γ
lδ

j
ρÞ:

The sign of each term is determined by how many times a
swap occurs among b and b̄: an odd (even) number of
swaps produces a negative (positive) sign. The first term
can be written as

δβjδ
k
γδ

α
i δ

i
βδ

ρ
l δ

j
αδ

γ
kδ

l
ρ ¼ ðδβjδiβδαi δjαÞðδkγδγkÞðδρl δlρÞ;

where Kronecker delta functions are put into three groups.
The contraction of the indices in each group produces a
factor of N, which implies the first term is equal to N3.
Repeating the procedure, we obtain

h0jTrbbaaTrāTrā b̄ b̄ j0i ¼ 2N3 − 2N:

Finally, the result is normalized by multiplying 1=N4,
which yields 2=N − 2=N3.

Our algorithm simply simulates the procedure and hence
has OðM!Þ time complexity to calculate each entry of a
norm matrix. For numerical computation of higher M, we
need to improve time complexity significantly.

3. Build H matrices

To build H matrices, we need to calculate the action
of trace operators on trace states. Let us take an
example that the trace operator is TrAab, where A is
any creation operator chain. To calculate TrAabTrSj0i,
we need to find all possible ways to partition S into the
form BāCb̄D or Bb̄CāD, where B, C, D are any creation
operator chains. Each partition corresponds to one
way to contract the indices among annihilation and
creation operators. The results of these two contraction
schemes are

TrAabTrBb̄CāDj0i→ ð−1ÞπðABb̄CD→Ab̄DBCÞTrADBTrCj0i;
ðG1Þ

TrAabTrBāCb̄Dj0i→ ð−1ÞπðABCb̄D→Ab̄CDBÞTrACTrDBj0i;
ðG2Þ

where πðABb̄CD → Ab̄DBCÞ denotes the number of
swaps occurring among the fermionic operators as the
chain being reordered from ABb̄CD to Ab̄DBC. Let fðAÞ
denote the number of b̄ in A; then,

πðABb̄CD → Ab̄DBCÞ ¼ fðBÞ þ fðDÞfðBCÞ:

The complete result of TrAabTrSj0i can be written as

TrAabTrSj0i
¼

X
Bb̄CāD¼S

ð−1ÞπðABb̄CD→Ab̄DBCÞTrADBTrCj0i

þ
X

BāCb̄D¼S

ð−1ÞπðABCb̄D→Ab̄CDBÞTrACTrDBj0i:

In analogy with (G1) and (G2), for two trace states, we have

TrAabTrBāCTrDb̄Ej0i
→ ð−1ÞπðABCDb̄E→Ab̄CBEDÞTrACBEDj0i;

TrAabTrBb̄CTrDāEj0i
→ ð−1ÞπðABb̄CDE→Ab̄EDCBÞTrAEDCBj0i:

The algorithm takes OðM2Þ to calculate one row of the
H matrix. Since there are about 2M trace states, it takes
OðM22MÞ to build an H matrix, which is much faster than
building a norm matrix.
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