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Numerical study of the simplest string bit model
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String bit models provide a possible method to formulate a string as a discrete chain of pointlike string
bits. When the bit number M is large, a chain behaves as a continuous string. We study the simplest case
that has only one bosonic bit and one fermionic bit. The creation and annihilation operators are adjoint
representations of the U(N) color group. We show that the supersymmetry reduces the parameter number
of a Hamiltonian from 7 to 3 and, at N = oo, ensures a continuous energy spectrum, which implies the
emergence of one spatial dimension. The Hamiltonian H|, is constructed so that in the large N limit it
produces a world sheet spectrum with one Grassmann world sheet field. We concentrate on the numerical
study of the model in finite N. For the Hamiltonian H,, we find that the would-be ground energy states
disappear at N = (M — 1)/2 for odd M < 11. Such a simple pattern is spoiled if H has an additional term
EAH which does not affect the result of N = 0. The disappearance point moves to higher (lower) N when
£ increases (decreases). Particularly, the +(H, — AH) cases suggest a possibility that the ground state
could survive at large M and M > N. Our study reveals that the model has stringy behavior: when N is
fixed and large enough, the ground energy decreases linearly with respect to M, and the excitation energy is
roughly of order M~!. We also verify that a stable system of Hamiltonian +H, + £AH requires £ >F 1.
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I. INTRODUCTION

The idea of string bits, proposed over two decades ago
[1], is one approach to formulate string theory. In this
formulation, strings in D-dimensional spacetime are chain-
like objects comprised of pointlike entities, string bits,
moving in space of d = D — 2 dimensions. The dynamics
of the string bits is chosen to retain the Galilei symmetry
described by the group Galilei (d,1). While one spatial
coordinate is missing and the Lorentz invariance is not built
in a priori, both of them are regained in the critical
dimension when the number of string bits is large enough.
Thereby, string theory emerges. Since the physics in
(d + 1)-dimensional space is described by physics in d-
dimensional space, the string bit models provide an
implementation of ’t Hooft’s holography hypothesis [2—4].

Such an idea is motivated by the discretization of a
continuous string. Consider a string in lightcone coordi-
nates [5,6],

+
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where x is the transverse coordinates; the Hamiltonian of
the string reads [7,8]
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where P* are the momenta conjugate to xT coordinates. In
analogy to (1), a harmonic chain of M string bits, each of
which has mass m, is described by the Hamiltonian

NS R B -x) @)

k=1

H =
2m

Under the Galilei transformation x* — x* + VAxT, the
timelike coordinate x™ and the mass of each string bit
are invariant. Consequently, P* = Mm can be considered
as the Newtonian mass of the bit chain. For M — oo, P™
behaves like a continuous variable of which the conjugate
can be interpreted as the missing coordinate x—. If the
bound states for a many-bit system are closed linear chains
and the excitation energies scale as 1/M for large M,
Lorentz invariance is regained and leads to a Poincaré
invariant dispersion relation P~ = (P? + p?)/(2P"). It is
noteworthy that such bound states can be achieved in the
context of the 't Hooft large N limit [9,10].

However, the Hamiltonian (2) for a bosonic closed string
bit chain leads to inevitable instability. The ground state
energy of such a system in the limit M — oo is given by

- 2dT0M ﬂdTO
 mnm 6Mm

Eg +O(M3).

The first term can be dropped as the bit number is
conserved in string interaction [11]. Because of the
negative O(M~") term, a long closed bit chain tends to
split into multiple smaller chains for a lower energy state.
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This instability issue can be fixed by introducing super-
symmetry [12-17]. In supersymmetry, string bits are
multiplets with both bosonic and fermionic degrees of
freedom [18,19]. It turns out that, for models with d
bosonic and s fermionic world sheet degrees of freedom,
the ground energy becomes [20]

(s —d)=T,

E. =
G 6Mm

It implies that the system is stable for s > d and unstable
for s < d. The supersymmetric case s = d gives rise to
exact cancellation between bosonic and fermionic contri-
butions for all M.

To set up the dynamics of the superstring bit model, we
employ 't Hooft’s large N limit and follow the standard
second-quantized formalism [21]. A general superstring bit
annihilation operator is an N X N matrix denoted by

(¢[a1...a,,])g<x)’

where each q; is a spinor index running over s values and
a,p=1,...,N are color indices for the adjoint represen-
tation of the color group SU(N). ¢ is bosonic for even n
and fermionic for odd n. The square bracket in the subscript
denotes complete antisymmetric relation among a; indices.
For superstring theory, the Poincaré symmetry demands
s=d=28.

In Ref. [22], Thorn and one of us studied the simplest
case of the model with d = 0, s = 1, where there are N2

bosonic annihilation operators (afi) and N? fermionic

n=20,...,s,

annihilation operators (bg), with corresponding creation
operators defined as @) = (ag)’ and b= (b§)T. These
operators satisfy the (anti)commutation relations,

e ag) = 538, (b B} =88, (3)
and all others vanishing. With these creation operators, we
can build trace states as follows. Introduce the vacuum state
|0) annihilated by all the a” and b?. We can act on |0) with a
sequence of @ and b to obtain a nonvacuum state with color
indices. Finally, we take the trace of the creation operators
to obtain a color-singlet state. Each creation operator in the
trace state is interpreted as a string bit. Trace states with an
even number of b are bosonic states, while those with an
odd number of b are fermionic states. To give a few
examples, Tra*|0), Tra’Tra|0), and Trab?|0) are 3-bit
bosonic trace states; Tra b |0) and TraTrb|0) are 2-bit
fermionic trace states. Note that, because of the property of
the trace and the anticommutation relation in (3), some of
such expressions are not a valid trace state, for example,
Trb b |0) = —Trb b |0) = 0. Clearly, the number of trace
states increases exponentially as M increases. In
Appendix B, we provide a formula to count the single
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trace states and an algorithm to calculate the number of
trace states, including both single and multiple trace states.
In Appendix A, we list all the different bosonic trace states
from 1 bit to 7 bits.

The Hamiltonian of the toy model in Ref. [22] is chosen
to be a linear combination of single trace operators

Tra2a?,

Tra b ba,

Trb?b?,
Trabab,

Trl_92a2,
Trbaba,

Tra2b?,
Trbaab, (4)

with coefficients scaling as 1/N. Such a choice ensures the
action of the Hamiltonian to the trace states survives at the
large N limit. It then studied a special form of such a
Hamiltonian,

which produces the Green-Schwarz Hamiltonian [18,23] at
N = 0. By the variational method, it shows that the ground
states of the Hamiltonian only survive at N > (M —1)/2.
Then, a numerical study of the Hamiltonian at M = 3 is
performed.

In this paper, we will investigate more general forms of
the supersymmetric Hamiltonian and their energy spectrum
at the large N limit. We will perform a numerical study of
the Hamiltonian H, for M <11. We will plot the
energy levels as a function of N at fixed values of M
and show numerically that the would-be ground state
disappears at N < (M —1)/2 for odd M < 11. Such a
pattern is spoiled when we add to H an additional AH
term, which does not affect the large N limit. For the
Hamiltonians +(H,— AH), the disappearance of the
ground state occurs at N < (M —1)/2, which might
suggest that the ground states can survive when M is large
and N is much smaller than M. We will also plot the ground
energy and excitation energy as a function of M at fixed N
to check whether the system manifests stringy behavior.
For stringy behavior, the ground energy should be a linear
function of M with negative slope and the excitation energy
proportional to M~! with positive coefficient. It turns out
that, for N large enough, the ground energies do drop
almost linearly. For excitation energies, although there are
not enough data for an unquestioned pattern, it still shows
tendencies to go roughly as M~! when N is large.

The rest of this paper is organized as follows. In Sec. II,
we discuss the general constraint on a supersymmetric
Hamiltonian. In Sec. III, we investigate the energy spec-
trum of the system in the large N limit. In Sec. IV, we
compute the energy spectrum at finite N numerically and
present the plots from the numerical study. The
Hamiltonian H|, and its variations will be studied in the
section. The main text is closed with a section of a summary
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and conclusion. Finally, we include seven appendices
covering technical details.

II. SUPERSYMMETRIC HAMILTONIAN

In the toy model with d = 0, s = 1, while the spacetime
supersymmetry is explicitly broken, there still exists a form
of supersymmetry between bosonic and fermionic trace
states. As the mathematical proof in Appendix B shows, the
numbers of bosonic and fermionic trace states are equal at
any value of M. This is not a coincidence. The physical
interpretation is that the bit number operator M =
Tr(aa + bb) commutes with the supersymmetry operator

0 =exp (%) Trab + exp (— %) Trba. (6)

Also we notice that M = Q>. A Hamiltonian H is
supersymmetric if [H, Q] = 0. As we will show in the
next section, a nice feature of the supersymmetric
Hamiltonian is that its excitation energy vanishes at
large M.

Now, let us investigate possible forms of a supersym-
metric Hamiltonian and generalizations of H(. The general
form of a Hermitian Hamiltonian built out of the trace
operators in (4) reads

1 _ _
H== [c1Tra*a® + ¢, Trb?b* + iz Tra*b* — iz Trb*a®

+ csTrab ba + c4Trb a ab

+ z,Trab ab + z3Trb a bal, (7)

where ¢; are real and z; are complex. Imposing the
constraint [H, Q] = 0 yields'

SZ[ = SZQ

cp—c, =20z, 8
c3—cy =20z ®
cit+cy =c3+cy

which implies that a supersymmetric Hamiltonian can be
written as

2 - _ _
H:H0+N§Tr(abba+baab+c‘z2a2+b2b2)
M 722 20 T 7
+NTr(ba +a*b* +iabab—ibaba)

20

—l—NTr(il_?zaz —ia’b* —abba+ baab), 9)

where &, , { are real parameters. Note that each term in (9)
is Hermitian and supersymmetric.

'Appendix D details the calculation of [H, Q).
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The Hamiltonian H, is the special case of (9) when
& =n ={ = 0. But we can also obtain a generalization of
H, by keeping a twisted & term. As noted in Ref. [22], we
are free to add the terms

1 _ _
AH' = Ti26abba +26baab
+ (& + &) (@%a* + b*p> — M)],  (10)

to a Hamiltonian without affecting the large N limit. Here,
M is a supersymmetric term given by2

M = Tr(aa + bb) — % (TraTra + TrbTrb).

Setting & — 1 =&, + 1 = £, we obtain a supersymmetric
AH' term which equals the & term in (9) minus a M term.
Therefore, H, can be generalized to

H=Hy+ EAH, (11)

where

AH = %Tr[&i)ba +baab + ad® + b*b* — M.

In (11), Hy makes a O(1) contribution, while AH makes
only a O(%) contribution. The values of & are constrained
by the requirement that a well-defined Hamiltonian should
be stable for large M. The Tra?a? term can produce about
M? terms by attacking the trace state Tra"|0). This would
cause a dangerous instability if the coefficient of Tra’a? is
negative. To maintain a positive Tra’a® term, we must
choose & > —1. Therefore, we obtain a form of the well-
defined Hamiltonian,

H = Hy+ éAH, E>—1. (12)
In addition to (12), there exists another form of the
supersymmetric Hamiltonian. As suggested in Ref. [22],
we can replace H, with —H, and obtain
H = —-H,+ ¢AH, E>1, (13)
where the constraint £>1 comes from the stability
condition.

One might wonder if there exist other supersymmetric
operators that are capable of stabilizing —H( and make
only O(3) contributions. As suggested by Ref. [1], one
possibility is to use the Traaaa operator, which also
produces about M? terms when acting on Tra"|0). A
combination like

2Referenge [22] uses the bit operator M = Tr(aa + bb)
instead of M in AH’. Our calculation shows that, in order fpr
AH'’ to vanish in the large N limit, M must be replaced by M.
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2 - -
H = NTr(aaZm + bbaa — abba)

meets such a requirement. However, as Appendix E shows,
H' equals AH for all trace states, i.e.,

(H' — AH)|Any trace state) = 0.

While we are not sure if there exist other variations of H,
for the time being, we leave the question for further
research and only study Hamiltonians as (12) and (13)
in this paper.

III. ENERGY SPECTRUM IN LARGE N LIMIT

In this section, we will study the energy spectrum of our
toy string bit model in the large N limit by both analytic and
numerical methods. We first show that the supersymmetry
guarantees the excitation energy to be vanishing at large M
and then present the energy spectrum graphically.

A. General H

For convenience, we introduce a super creation operator
using a Grassmann anticommuting number 6,

_ - d _ d
w(0) =a -+ bo, b——%y/, a= <1—¢9d€>y/.

We then choose

010, - - - 0y1) = Tr[y (0,)y(6,) - - - w(6y)]|0)  (14)

to be a basis of M-bit single trace states. A general single
trace energy eigenstate at large N reads

IE) = / MOU(0, - 0,)|0,0 - 0,). (15

where W(6, ---0,,) is the wave function in terms of 6;.
Under the cyclic transformation, 8; — 6;,, |6, - - - 6y) is
invariant, and the Jacobi d™@ obtain a factor of (—1)M~!. It
follows that we can constrain the wave function by a cyclic
symmetry,

U060, 0y) = (=)™ "W (040, - Opy_y). (16)

In the basis (14), the leading term of trace operators in (4)
can be expressed in terms of 6; and d‘—é_, as shown in Egs.
(9) to (16) of Ref. [22], by which we rewrite (7) in the large

N limit as
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. 1
H|6, -9M>_h|91---9M>+O<N>,
M
. d d d
h = 1210310 — i2] ————— 4 250, ———
;[’Z‘ O g o, P a0y
d d
+ 2560k41 0, +(2¢; + 3+ 04)91(76](
+ (e + )0 d 0 + oM
C CHr — C3 — C, —_— e— C .
1 2 3 4 kdgk k+1 d0k+1 1
(17)

Performing integration by parts as

/ MOV(6, - --0,)h10,6, - - Oy)

:/dMQh\IJ<61"'GM)|61‘92"'9M>v

we obtain
M
d d d
h= 1710410,
;[’Zl T R 0, d0, T T a6y,
. d
— 20,1 T@+ (2¢) —c3— 04)91%79]C

+ (03 +C4—Cl)M,

where for simplicity we drop the quartic term, which
vanishes automatically under the supersymmetry constraint
(8). We then introduce the Fourier transforms

1 X .
a, = 9k62mkn/M,
ﬂ 1 i/l: d 2xikn/M 0 M—1
=— —e , n=0,..M-—1,
! \/M k=1 dek
1 M—1
91< — a e—Zﬂikn/M’
\/M n=0 !
d 1 = :
— = e 2mikn/M =1, ..M,
a6, ~ i 2"
satisfying
{an’ﬂm} = 5m+n.M + 6m,05n,0~

A little algebra yields
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M—1
. 2nrx
h pr— _ f _ 1 —
n§=1 |:(ZlanaM n+ZlﬂnﬂM n)SlIl M

+ 2(C - SR(Z2e2m-n/M))amﬂan
+ Z(C - mZz)aoﬂo + (Cl — 2C)M,
where we have defined ¢ = ¢; — 1 (c3 + ¢4). Note that we
have ¢ = Mz, under the supersymmetry constraint (8).
We now find the ladder operators of /&, which we denote

as L;. We use the ansatz L; = aa; + bf, and impose the
constraint

[h, L] = €;Ly. (18)

By direct calculation, we have
2k
[h, aay =+ lbﬂk] = Z(Gdk + bZl sin Wﬂ) ay
2kn
2( az}sin=— —bd :
+ (azl sin i M_k>ﬂk
where d; = ¢ — N (z,e>**/M). Constraint (18) yields

2k
2 <adk + bzy sinﬁ) = aey
" (19)
. T
2 <GZI smﬁ — bdM—k> = b€k.

Let us first consider the k = 0 case. If dy = ¢ — Nz, # 0,
there are two solutions:

when a # 0, b=0,

b#0,

€0 =2Mz, —¢);

when a = 0, €p = —2(Nz, —¢).

The corresponding ladder operators are a and f, respec-
tively. If c — Mz, = 0, i.e., the supersymmetry case, then a,
b can be any value, and ¢; = 0, which implies there is no
ladder operator for kK = 0. In the supersymmetry case, the
linear combination exp(F)ay + exp (—%)f, is just the
supersymmetry operator (6).

For k # 0, we solve for ¢,

. 2kxn
€ =23z; sin——
M

2km\ 2 2knm
+2 —N —_— 4 [2sin? =,
\/<c 75 COS M) + |z;|*sin M

In general, ¢, is finite at large M, and the energy levels are
discrete. But under the supersymmetry constraint (8),

PHYSICAL REVIEW D 93, 106004 (2016)

k k k
et =4 (—i‘sz] cos% + \/(S)’{zz)zsin2 Mﬂ + |z1|*cos? Aj[[>

k
xsin~ (20)
M

which vanishes for finite k at large M. Therefore, super-
symmetry ensures a continuous energy spectrum and
stringy behavior.

B. H=H,

In the case of H = H,, we have c¢; = —c, =c¢3 =
—cy=c=2,7, =2y =2, and

k
ef ::|:8sin—ﬂ,
M
k k
r,fsg:tan—ﬂisec—ﬂ, k=1,...M—1
b M M

As r;I )= and ry, n= 0, we choose the raising and
lowering operators to be

1
L;:ak+r—+ﬁk, L;:r;ak+ﬂk, kzl,,M—l
k

Now, we can construct the ground function, which is
annihilated by all lowering operators. Observing that

L]:(l + r,:akaM_k) = L/T/I—k(l + r;akaM_k) =0

and that oy commutes with all L,”, we obtain ground wave
functions,

LM/2]
b = H (14 ryaan_yg),
k=1
; [M/2]
D), = ap H (1 + ryapap ),
k=1

with |M/2] the integral part of M/2. Clearly ®%, is
bosonic, and @*;,, is fermionic. A direct calculation shows
they have the same eigenvalue

M—1
km T
E;=-4 in— = —4 cot—. 21
G kEZI sin cot > (21)

For each k < M /2, we have four different choices to attack
the ground functions, i.e., using 1, L}, L}, ,,and L7 L}, ,,
which correspond to the energy level increasing by 0, €,
€/, and 2¢;. For k = M2, there are two choices to attack
Py, by 1and L, /2> With energy increments of 0 and €y /2
Therefore, for each choice of ground function, the energy
levels can be written as

106004-5



GAOLI CHEN and SONGGE SUN

[M/2] - [M/2] ko
E =E;+8 sin— + 8 sin —
({ﬂk}) G kz:; M ; Mk M

[M/2]
k 0 for odd M
i { (22)

=8 sin— +
kz::l T M 4 for even M

m=-—1,0,0,1, for k <M/2; nmp =—1,0. (23)
Here, we reproduced Eqgs. (94) and (95) of Ref. [22] with a
different approach.

Now, consider the cyclic constraint (16). The
eigenfunctions should be changed by a factor of
(—=1)M=1 under the transformation a; — exp (2ikz/M )y
and f; — exp (2ikz/M)p,. Clearly the ground eigenfunc-
tion ®,, is invariant under the transformation, and L;
changes as L, — exp (2ikn/M)L;", from which it follows

that #;, must satisfy

M/2 nM, for odd M
> k= | . on=0,1,2,-.
= (n+3)M, for even M

(24)

This constraint has several interesting consequences:
(i) For odd M, the lowest energy state of the
M-bit system is comprised of M-bit single trace

M=11
400
= 300
X
-
s 200
g
)
|
& 100
0
0 0.5 1
M=51
ig——F-
= 300
X
=
s 200
g
]
|
m 100
0
0 0.5 1

FIG. 1.

(i)

(iii)

(B — Enin) X M

(F — Epin) X M
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states, which are generated by setting all #;, to —1,
1.e.,

8M 2
Epin=EY = _dcot—=-"24 =0 4

;= M—3
mmn 2M z  3M of )

(25)

where we use the superscript (1) to denote single
trace states.

For even M, the lowest energy of single trace states,
Er(él)n is achieved when 7/, =0 and all other
nr = —1; while the lowest energy state of the system
is comprised of double trace states with each trace of
M/2 bits (if M/2 is even, the two traces are of
M/2—1 and M/2 + 1 bits). So we have

(1) -3
E . - + +8+0O(M™),
min 3M ( )
) SM 4r 5
E . =FE" —+—+0M
o min T 3M (M)

When M/2 is even, the lowest energy states have
extra degeneracy, because the bosonic ground func-

; b b f v
tions can be <I>1‘,[/271<I>A,1/2+1 and <I>M/271<I>M/2+1.
For large M, the excitation energy is very small, and
the discrete energy levels become a continuous

M=21

400

300

200

100

M=101
400

300

200

100

0
0 0.5 1

The energy levels of single trace states (red lines) and triple trace states (yellow lines) at M = 11, M =21, M = 51, and

M = 101 and the large N limit. The blue dashed line is the threshold for multitrace states energy when M = oo.
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energy band. The difference of ES-)

., between odd
and even M is much large than the excitation energy,
which implies only odd-bit chains participate in the
low energy physics. Particularly, it also means a low
energy odd-bit chain cannot decay into two chains.

Now, let us consider the first excitation energy of the odd M
system. From the above analysis, there are no double trace
states in the low energy region, so we consider the triple
trace states. From (25), the lowest energy of triple trace
states is achieved when each trace has M/3 bits. Hence, we
have

8M l6x
__+—

E]:
M

+O(M™2),

from which it follows that the energy gap between the
ground energy (25) and first excitation energy is %. If Mis
divisible by 3, the first excitation energy has no extra

degeneracy. If M =3n £ 1, it has extra degeneracy: for

M =3n+1, the bosonic ground function can be
b @b, @b and @/ @, b for M =3n+1,

b

the bosonic ground function can be ®°_ P> &

and ®_ &/ @/ .

Figure 1 shows the energy spectrum at N = oo for M at
11, 21, 51, and 101. In the plot, energy states are
represented by horizontal lines, with the red color for
single trace states and yellow color for triple trace states.
The vertical coordinate is M x (E — E,,), the product of
M with the difference between energy level and the lowest
energy. The threshold for triple trace states is a blue line.

From the figure, it is clear that the energy gaps go smaller
as M increases and the energy levels become continuous at
large M. The energy of single trace states tends to distribute
near multiples of 192, and the first excitation energy appears

M
near 56—M”. The energy levels of triple trace states are even

denser than single trace states. At M = 101, they almost
filled the gap between consecutive single trace energy
levels. All these behaviors illustrate that the chains behave
as continuous strings at large M.

IV. ENERGY SPECTRUM AT FINITE N

In this section, we show numerically how the energy
levels change with respect to N and the bit number M. We
first introduce the methods to calculate the energy states of
the system. We then analyze the result of the original
Hamiltonian H = H, for which the M = 3 case has been
investigated in Ref. [22]. Next, we move to the
Hamiltonians of the form H = H, + £AH and investigate
how the parameter ¢ affects the energy levels. Finally, we
explore the Hamiltonians of the form H = —H + £AH.
For each case, we first analyze the change of energy levels
with respect to N when M is fixed and then with respect to
M when N is fixed.
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positive norm
~ — zero norm
: negative norm

s} N

-10

! ! L L L L ! ! ! !
0O 01 02 03 04 05 06 07 08 09 1
1/N

L L L L )
11 12 13 14 15

FIG. 2. Lowest five energy states of the 3-bit system with
Hamiltonian H = H,,.

positive norm
~ -~ zero norm

negative norm
5 T T T L L L
) 01 02 03 04 05 06 07 08 09 1 11 1.2
1/N

FIG. 3. Lowest five eigenstates of H at M =5 for H = H,,.

A. H matrices

We have two methods to calculate the energy states of
the system.3 Both methods involve the H matrix defined as

Hli) = > 1) M

where |i) and |j) are M-bit trace states. Note that, since the
trace state basis is not orthonormal, H is not the
Hamiltonian matrix and even not Hermitian.

The first method, used in Ref. [22], is to calculate the
eigenvalues of the H from the equation

*In this subsection, we just state the properties of these two
methods. The relevant mathematical proofs are provided in
Appendix F.
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o2+ -40r
24+ —45t+
-26 -50
_28 H positive norm —55H positive norm
— —Zeronorm —  — Zeronorm

------ negative norm + negative norm

304 I I I L L L —60 I I L J
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1/N 1/N
FIG. 4. Lowest five eigenstates of H at M =7 for H = H,,.

H|E) = E|E). (26) (1) If G is positive definite, i.e., all its eigenvalues

The relation between eigenvalues of H and of the
Hamiltonian matrix is determined by the norm matrix,

G = (ilj), as follows:

are positive, there is a one-to-one correspondence
between the eigenvalues of 7 and the Hamiltonian.
In this case, all the eigenstates of H are physical and
have positive norm, which is defined as

-16 -20
-30
-18 .
I
_20}+ - B
-
N -50
22+
. 60
24} -70
—80F - -
-26
_90}F
-281 -
-100
-30[ — —
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— — zero norm — - —zero norm
- negative norm -~ negative norm
-32 I I L L -120 I I I L L J
0 0.1 0.2 0.3 0.4 05 06 07 08 09
1/N 1/N

FIG. 5.

Lowest five eigenstates of H at M =9 for H = H,,
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FIG. 6. Lowest five eigenstates of H at M = 11 for H = H,,
(E|E) = E v (il j)v) = vT G (i) When N is an integer and less than M, the
7 norm matrix G is positive semidefinite; i.e., some
for an eigenstate |E) = ;|i)»’. Our numerical eigenvalues are zero, and the others are positive.
1 ° . . .
calculation shows that when N > M the norm matrix In this case, only those eigenstates of H with
G is always positive definite. positive norm correspond to energy states of the

. . . . . _32 . . . . . .
0.1 0.2 0.3 0.4 0.5 0 005 01 015 02 025 03

1/N 1/N

FIG. 7. Lowest five eigenstates of H for H = Hy at M = 4, 6, 8, 10.
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Hamiltonian, while those eigenstates of H with zero
norm are unphysical.

(iii) When N is a noninteger and less than M, the norm
matrix G is indefinite; i.e., G has both positive and
negative eigenvalues. There is a subtlety in this case.
The eigenstates of H can be of positive norm, of zero
norm, and of negative norm. The negative norm
eigenstates of H stem from their coupling to ghost
states, the eigenstates of G of which the eigenvalues
are negative. The zero and negative norm eigenstates
are still unphysical. But positive norm eigenstates
cannot be simply taken as energy states anymore. A
positive norm eigenstate is a physical energy state if
it is orthogonal to every ghost state.

From the above statements, we should treat positive norm
eigenstates of H physical when N is large enough or a small
integral. Moreover, the eigenvalues of H can be nonreal.
This occurs for both positive-semidefinite and indefinite
cases. For a nonreal eigenvalue of H, the norm of its
eigenstate must be zero, and its complex conjugate is also
an eigenvalue of H.

60
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- = —=N=10 .
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5 e
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FIG. 9. (E, —Ej) x M as a function of M.
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H = H,
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Change of physical ground states with respect to M for fixed N. Only the ground energies at odd M are sampled.

The second method is to solve a generalized eigenvalue
problem,

(GH)|E) = EGIE). (27)

This method is helpful for filtering unphysical states when
G is positive semidefinite. If G is a full-rank matrix, this is a
regular generalized eigenvalue problem. If G is not a full-
rank matrix, to solve the equation, we need to remove some
rows and columns from G and G'H. If the rank of G is r, we
can pick r independent rows and columns from G and
(G'H) to form two r X r matrices as

N G
5 Giiy G, Gy,
G - )
i ii, 0 Gy
(GH)iyi,  (GH);ip, (GH)i,i,
. (GH).,;, (GH),,;, (GH),,;
GH =
(GH),;,  (GH), i, (GH); ;.

Then, Eq. (27) becomes

(GH)|E) = EGIE).
the eigenvalues of which are all
physical.

The first method is used to investigate the change of
eigenstates, including both physical and unphysical states,
with respect to N for fixed M, while the second one is for
the change of physical energy levels with respect to M for

fixed N. For different values of M, we calculated the H
and G matrices, the entries of which are expressed in

and eigenstates
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H=Hy+0.5AH

H = Hy+3AH

0.5 1 1.5
1/N

FIG.
and 3.

terms of N. Then, we solve Eq. (26) or (27) to find its
eigenstates. Since the number of trace states increases
exponentially as M increases, it is only feasible to perform
the calculation for small M. The highest value of M
we study is 11, at which ‘H and G are 1473 x 1473
matrices".

B. H=H,

Let us first consider the case of odd M. Figures 2—6
show the lowest five eigenvalues of H as a function of
1/N for odd M from 3 to 11. We use different line styles
for different norm types: solid, dotted, and dash-dotted
curves correspond to positive, negative, and zero norm
eigenstates, respectively. Dash-dotted curves are actually
associated with two complex eigenvalues which are
conjugate to each other and hence represent only the

*The source code of the project can be found in Ref. [24].

0 0.5 1 1.5 2
1/N

10. Eigenvalues of H matrices at M =3 for Hamiltonian H = Hy+ £AH, with ¢{=-1, —0.6, —0.1, 0.5, 1,

real part of the eigenvalues. For higher M, the eigenval-
ues decline dramatically in higher 1/N, which would
squeeze the lower 1/N part into a small vertical size. To
show more details in lower 1/N, we split some plots into
a lower 1/N part and a higher 1/N part, between which
curves of the same color represent the same eigenstate.
See Fig. 4 as an example.

From these figures, we see several features of the
eigenstates of H. At N = oo, the ground states are
nondegenerate, while the first excited states are non-
degenerate for M divisible by 3 and degenerate other-
wise. This is consistent with the analytic discussion of
the previous section. As 1/N increases, degeneracies are
broken, and the solid curves turn to dotted or dash-dotted
curves, which implies the disappearance of physical
states. If a physical state disappears at an integer value
N =n, it also disappears at N=n—1,n—2, etc.
For convenience, we denote as Nj, the maximum value
of N where the first disappearance of the ground state
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FIG. 11. Lowest five eigenstates of H for H = Hy— AH at M =5,7, 9, 11.
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FIG. 12. Change of physical ground energy with respect to M at fixed N.
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FIG. 13.

occurs for bit number M. From the figures, we see that
Ny =(M—1)/2 for M < 11. If it is true for all M, it
follows that, for ground states surviving, N must increase
linearly as M increases. The eigenvalues drop dramati-
cally at large 1/N, as the right parts of Figs. 4 to 6 show.
But it does not imply the decrease of energy levels, since
all these eigenstates are actually unphysical.

For even M, we have similar plots as Fig. 7. At N = oo,
the lowest eigenstates are degenerate for M = 4 and 8 and
nondegenerate for M = 6 and 10. It is again consistent with
our analysis in the previous section. The lowest states also
disappear when N is small. But unlike the odd M case,
there is no simple formula to determine N},. The reason is
that the lowest energy of E(1;) in (22) is excluded by the
cyclic constraint (24).

We now consider the physical ground energy as a
function of M when N is fixed, shown as Fig. 8. The
physical ground states have different trends at different
values of N. For N = 1, the physical ground state climbs
significantly. This is consistent with analytical calcula-
tion, which shows the ground state is a quadratic function
of M when N = 1. For N = 2, the ground state only goes

Eigenvalues of H for H = —H, + 1.5AH. For each M, the ground state disappears at N = M — 1.

up slightly. When N > 3, it turns downward. For large N,
the physical ground energy drops almost linearly with
respect to M at rate —8/x, as predicted by Eq. (25). This
indicates the system becomes stringy when N is large
enough.

Figure 9 shows how the excitation energy changes
with respect to M for fixed N. The vertical axis of Fig. 9
is M x (E| — Ey), where E| — E, is the gap between the
first excited energy and lowest energy. For stringy
behavior, M x (E; — E;) should be constant for large
M. Though we only calculate up to M = 11, we still see
the trend that, for N large enough, M x (E; — E,) is
almost a constant between 15 and 20. As a reference, the
analytic prediction of the gap at N = oo is 16z/3M. That
being said, there is no inconsistency between the numeri-
cal results and stringy behavior.

C. Variations of H

In this subsection, we will analyze the energy levels of
two variations of the Hamiltonian, H = Hy + £AH
and H = —Hy+ £AH.
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Figure 10 shows the eigenvalues of H as a function of
1/N when M =3 and the Hamiltonian is of the form
H = Hy+ £AH. As & increases, the disappearance point of
the highest eigenstate moves in the small N direction: for
E=—1,1itis at N = 2; for £ = —0.6, it is at N = 1; when
& > —0.1, the disappearance point occurs after N < 1/2.
The disappearance point of the ground state, N3, moves in
the opposite direction: for —1 <& < —0.1, Nj = 1; for
£=051<Nj<2for£=3, Ny =2.

Since all eigenstates of H are physical when N > M,
the largest value of Nj, is M — 1. Particularly, for
M <11, we find Nj; =M —1 can be achieved when

PHYSICAL REVIEW D 93, 106004 (2016)

& > 2. Nj, is minimal when £ = —1, the lower bound of
£ under the stabilization constraint. The £ = —1 case is
shown in Fig. 11. While Nj, = (M — 1)/2 still holds for
M =5 and 7, N5 = 2 and N}, = 3 spoil the pattern. We
do not have results for M > 11, but it seems that M /N,
could be large for large M. If it is true, it means that the
ground eigenstates could survive when M is large
and N < M.

Figure 12 shows the change of physical ground energy
with respect to M for a fixed value of N. Note that
only ground energies at odd M are evaluated. The
ground energies have different trends for & < —1,

M=3
107
5 -
w0
-5 T —
-10 : -10 - : : :
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

0 0.1 0.2 0.3 0.4 0.5

1/N

0 0.1 0.2 0.3 0.4 0.5
1/N

FIG. 14. Eigenvalues of H for H = —H,+ AH and 3 <M < 10.
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£=—1,and £ > —1: when & = —1, the ground energies
decrease almost linearly for all N; when & < —1, the
ground energies decline faster than linearly, which
implies the system is not stable; when &> —1, the
ground energy first declines and then increases for small
N, and it declines linearly for large N. It follows that the
system has stringy behavior if £>—1 and N is not
too small.

For H = —H, + £AH, in the large N limit, the maximum
value of E(5;) in (22) is allowed for both odd and even M.
Consequently, the ground eigenstates are nondegenerate for
all M, as showninFig. 13 for H = —H + 1.5AH. Fromthe
figure, we see that Ny, = M — 1.

£ has a similar impact on N}, as the H = Hy + EAH
case. Figure 14 plots the eigenstates of H for £ = 1, when
N3, is minimal. There is no simple pattern for Nj,: for odd
M, N5 =2, Ny =2, N; =3, and Ng = 3; for even M,
N3 =3,N{ =2, Ng = 2, and Nj, = 3. It seems to suggest
that the ground eigenstate could survive when M is large
and N < M.

Figure 15 shows the change of physical ground energy
with respect to M at fixed N for H=—H,+ £AH.
It is similar to the H = Hy+ ¢ AH case. When
£ = 0.5, the system is not stable at finite N as the curves
decline faster than linearly. £ = 1 is the marginal case, in
which all the physical ground energies drop almost
linearly. When &= 1.5 or £ =3, the curves for small
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Physical ground energy of —Hy + £AH at £ =0.5, 1, 1.5, 3 and N = 3,5, 10, 20, co.

N are zig-zag, and particularly, when £ =3 and N = 3,
the trend is slightly upward. It implies that the system is
stable for large M.

V. SUMMARY AND CONCLUSION

In this paper we have studied the string bit model with
s =1, d =0. We studied possible forms of the super-
symmetric Hamiltonian and their excitation energies in
the large N limit. We also performed a numerical study
of energy levels at finite N for Hamiltonians H = +£H+
EAH, where, at N = co, AH vanishes and H, produces the
Green-Schwarz Hamiltonian.

We showed that the supersymmetry plays a crucial
role in the model. The general Hamiltonian is chosen
to be a linear combination of eight single trace
operators, which contain two consecutive creation oper-
ators followed by two annihilation operators. With the
supersymmetry constraint, we reduce the number of
parameters in the Hamiltonian to 3. Another interesting
consequence of supersymmetry is that, after imposing the
supersymmetry constraint on the Hamiltonian, the exci-
tation energy becomes of order M~!, which implies the
energy spectrum of the model is continuous when M
is large.

In finite N, we numerically studied the energy spec-
trum of the model up to M < 11. There exists a maximal
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integer Nj, that when N < N}, the would-be ground
energy eigenstate of the M-bit system is unphysical.
For H = H, and odd M < 11, the numerical computation
shows Nj, = (M —1)/2. If such a simple relation holds
for all odd M, then, at large M, the surviving of ground
state requires N to be large as well. For
H==+Hy,+.AH, Nj, increases (decreases) as ¢&
increases (decreases). The maximum value of Nj, is
(M —1). The minimum of Nj, is achieved when H =
+Hy F AH because of the stabilization constraint
£ >7F 1. In the minimum cases, one find that N}, is less
than (M —1)/2 when 7 <M < 11. If such a trend
continues for M > 11, it means that the ground energy
state might be able to survive at very large M
and M > N.

For fixed finite N and H = £H, + (AH, the system is
stable only when & > 1. The ground energy drops almost
linearly with respect to M when £ > 1 and faster than
linearly when & < 1. The numerical computation also
reveals the excitation energy is roughly proportional to
M~'. While we do not have data for M > 11, the trend is
still evident. These properties indicate that the model has
stringy behavior when & > 1.

Two bosonic states:

PHYSICAL REVIEW D 93, 106004 (2016)

The numerical computation is performed up to M = 11.
The bottleneck is the calculation of norm matrices. Our
algorithm has O(M!) time complexity for computing each
entry of the matrix. It needs significant improvement for
numerical computation of higher M. This is one of the
issues we need to address in future research.

We can also extend our work in other directions. Our
strategy can be applied to the model with s > 1,d = 0, or
d >0 cases. We can also analytically calculate 1/N
expansion of the model, in which some progress has been
made by Ref. [25].
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APPENDIX A: BOSONIC TRACE STATES

1. 1 bit

One bosonic state:

[1) = Tra|0).

|2) = TraTra|0).

3. 3 bits

Five bosonic states:

|1) =Traaa|0) |2) = TraTraa |0) |3) = TraTraTral0)
|4) = Trabb|0)  |5) = TrbTrab|0).
4. 4 bits
Ten bosonic states:
|1) =Traaaalo) |2) = TraTraaal0)  |3) = TraaTraa|o)
|4) = TraTraTraa|0)  |5) = TraTraTraTral0)  |6) = Traab b |0)
|7) = TraTra b b |0) |8) = TrbTraab|0)  |9) = TraTrbTrab|0)
|10) = TrbTrb b b |0).
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5. 5 bits

Twenty-one bosonic states:

|y =Traaaaal0) [2)=TraTraaaal0) |3)=TraaTraaalo)

)
|4) = TraTraTraaa |0) |5) = TraTraaTraa |0) |6) = TraTraTraTraa |0)
|7) = TraTraTraTraTral0)  |8) = Traaabb|0)  |9) = Traabab|0)
[10) = TraTraabb|0)  |11) =TrbTraaab|0)  |12) = TraaTrab b |0)
|13) = TrabTraab |0) |14) = TraTraTra b b |0) |15) = TraTrbTr aaz‘; |0)
|16) = TrbTraa Tra b |0) |17) = TraTraTrbTra b |0) |18) = Trab bbb |0)
[19) = TrbTrab b b |0) |20) = Tra b Trb b b |0) 121) = TraTrbTr 1313;3 |0).

6. 6 bits

Forty-four bosonic states:

|l)=Traaaaaal0) |[2)=TraTraaaaal0) |3)=TraaTraaaal0)

|4) =TraaaTraaa|0) |5)=TraTraTraaaa|0) |6)=TraTraaTraaal0)

|7) =TraaTraaTraa|0) |8)=TraTraTraTraaa|0) |9)=TraTraTraaTraal0)
|10y =TraTraTraTraTraa|0) |11)=TraTraTraTraTraTral0) |12)=Traaaabb|0)
|13)=Traaabab|0) |14)=TraTraaabb|0) |15)=TraTraabab|0)

|16) =TrbTraaaab|0) |17)=TraaTraabb|0) |18)=TrabTraaab|0)

|19y =TraaaTrabb|0) |20)=TraTraTraabb|0) [21)=TraTrbTraaab|0)
|22) =TraTraaTrabb|0) [23)=TraTrabTraab|0) |24)=TrbTraaTraab|0)
|25) =TrbTrabTraaal0) [26) =TraTraTraTrabb|0) |27)=TraTraTrbTraab|0)
|28) =TraTrbTraaTrab|0) [29) =TraTraTraTrbTrab|0) |30)=Traabbbb|0)
|31)=Trababbb|0) [32)=Trabbabb|0) |33)=TraTrabbbb|0)

|34) =TrbTraabbb|0) [35)=TrbTrababb|0) |36)=TrabTrabbb|0)
|37)=TraabTrbbb|0) |38)=TrabbTrabb|0) |39)=TraTrbTrabbb|0)

|40) =TraTrabTrbbb|0) |41)=TrbTraaTrbbb|0) |42)=TrbTrabTrabb|0)
|43) =TraTraTrbTrbbb|0) |44) =TrbTrbbbbb|0).
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7. 7 bits

Eighty-nine bosonic states:

y=Traaaaaaal0) |2) = TraTraaaaaa |0) |3) = TraaTraaaaa|0)
)=TraaaTraaaal0) |5) = TraTraTraaaaa |0) |6) = TraTraaTraaaa|0)
) =TraTraaaTraaa|0) |8) = TraaTraaTraaa |0) |9) = TraTraTraTraaaa |0)

|10) = TraTraTraa Traa a|0) |11) = TraTraaTraaTraa |0) |12) = TraTraTraTraTraa a |0)
|13) = TraTraTraTra a Tra a |0) |14) = TraTraTraTraTraTra a |0) |15) = TraTraTraTraTraTraTral0)
|16) = Traaaaabb|0) |17) = Traaaabab|0) |18) = Traaabaabh|0)

|19) = TraTraaaab b |0) |20) = TraTraaab ab|0) |21) = TrbTraaaaab |0)

|22) = TraaTraaab b |0) |23) = TraaTraabab|0) |24) = TrabTraaaab |0)

|25) = TraaaTraab b |0) |26) = TraabTraaab|0) |27) = TrabbTraaaa |0)

|28) = TraTraTraaab b |0) |29) = TraTraTraabab |0) |30) = TraTrbTraaaab |0)

|31) = TraTraaTraab b |0) |32) = TraTrab Traaab |0) |33) = TraTraaaTra b b |0)

|34) = TrbTraaTraaab |0) |35) = TrbTrabTraaaa |0) |36) = TrbTraaaTraab |0)

|37) = Traa TraaTrab b |0) |38) = Traa Tra b Traa b |0) |39) = TraTraTraTraab b |0)

|40) = TraTraTrbTraaab|0)  |41) = TraTraTraaTrabb|0)  |42) = TraTraTrabTraab |0)
|43) = TraTrbTraaTraab|0)  |44) = TraTrbTrabTraaal0)  |45) = TrbTraaTraaTra b |0)
|46) = TraTraTraTraTrab b |0) |47) = TraTraTraTrbTraa b |0) |48) = TraTraTrbTraa Tra b |0)
|49) = TraTraTraTraTrbTra b |0) |50) = Traaab bbb |0) |S1) = Traababbb|0)

|52) = Traabbabb|0) |53) = Traabbbab|0) |54) = Trabababb|0)

|55) = TraTraabb b b |0) |56) = TraTrabab b b|0) |57) = TraTrabbab b |0)

|58) = TrbTraaab b b |0) |S9) = TrbTraabab b|0) |60) = TrbTraabbab |0)

|61) = TrbTrababab|0) |62) = TraaTrab bbb |0) |63) = TrabTraa bbb |0)

|64) = TrabTrabab b|0) |65) = TraabTrabb b |0) |66) = TrabbTraabb|0)

|67) = TrbbbTraaab |0) |68) = TraTraTra bbb b |0) |69) = TraTrbTraab b b |0)

|70) = TraTrbTrabab b |0) |71) = TraTra b Tra b b b |0) |72) = TraTraa b Trb b b |0)

|73) = TraTrab bTra b b |0) |74) = TrbTraaTrab b b |0) |75) = TrbTra b Traa b b |0)

|76) = TrbTraaaTrb b b |0) |77) = TrbTraabTra b b |0) |78) = TraaTra b Trb b b |0)
|79) = TraTraTrbTrab b b |0) |80) = TraTraTra b Trb b b |0) |81) = TraTrbTraa Trb b b |0)
|82) = TraTrbTra b Tra b b |0) |83) = TraTraTraTrbTrb b b |0) |84) = Trabbbbbb|0)

|85) = TrbTrab bbb b |0) |86) = TrabTrbb bbb |0) |87) = TrbbbTrabb b |0)

|88) = TraTrbTrb bbb b |0) |89) = TrbTrab bTrb b b |0).

APPENDIX B: COUNTING PROBLEMS ON TRACE STATES

How many trace states are there for a fixed bit number M? In this Appendix, we will first count the single trace states and
then the trace states which includes both single and multiple trace states.
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1. Counting single trace states

There are 2™ combinations of an M-bit string consisting
of @, b. By the property of trace, a trace state is equivalent to
its cyclic permutations. For example, Trb @ and Tra b are
equivalent states, and so are Trbaab and Traabb.
Actually, the latter case differs by a negative sign,

Traabb = —Trbaab.

The rule is that each swap of two b introduces a minus sign.
It follows that some trace states are vanishing, for exam-
ple, Trbb = —Trb b = 0.

To count the single trace states, we need the following
definition and theorem [26].

Definition.—Given a group G acting on a set X, the orbit
of x € X is the set Gx = {g - x|g € G}. The set of orbits is
denoted by X/G.

In our case, the cyclic group Cy, is the group G. X is the
2M combinations of M-bit operators, and x corresponds to
one particular combination. X/G is the set of different
combinations under the action of the cyclic group.

Theorem (Burnside’s counting theorem)—If G is a
finite group acting on a finite set X, then

éZIFiX(g)I,

geG

1X/G| =

where Fix(¢g) is the set of x that is invariant under action of
g, 1.e.,
Fix(g) = {x € X|g-x = x}.

To find the number of states, we need to find |Fix(g)| for
each group member.

We first consider the odd M case. Let ¢, € Cy. k
=1,2,---M, be the group member that shifts k operators
from the tail of the trace to the beginning. The identity of
the group is e = cy. Let (M,k) denote the greatest
common divisor of M and k. For group member c¢;, we
equally partition the M bits into M/(M, k) consecutive
parts: the first part starts from bit 1 to bit (M, k), the second
part starts from bit (M, k) + 1 to bit 2(M, k), etc. Under the
action of ¢y, the ith part transfers as

k
jth part | + ———— | th part.
= (14
The trace is invariant under c; if and only if all the parts are
identical to each other. For a bosonic single trace state, each
of such parts needs to be bosonic, from which it follows
that

IFix(cy)| = Z(Wj k)> _ %2(M~k), (BI)

eveni l

Similarly, for a fermionic single trace state, each of such
parts needs to be fermionic,
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Fixteg| = (1) = Jams,

oddi !

(B2)

which implies there is the same number of bosonic and
fermionic single trace states for odd M. By Burnside’s
theorem, this number is given by

1 M
Sy ==y 20K,
M ZM;

For even M, let us first consider the fermionic states. For
a group member ¢y, |Fix(c;)| = 0if M/(M, k) is even. The
reason is that an odd number of b cannot be equally
partitioned into even parts. Therefore, only odd M/(M, k)
contributes to |Fix(c)|, which is still given by (B2). And
Eq. (B3) becomes

(B3)

1
Sy=5- Y 200 (B4)
M M/(M.k) is odd
Let i = M/(M, k); Eq. (B4) can be written as
1 u
= — )27 B
Su=gr > 0l (B3)

oddi.i|M

where (i) is the Euler totient function and i|M means M is
divisible by i. We see that Eq. (B3) can also be written as
Egs. (B4) and (BS).

For bosonic states, because there exist vanishing states,
like Trabab = —Trabab = 0, the number of bosonic
states equals the number of even-b states minus the number
of vanishing states. Consider the number of even-b states,
which is denoted as By, for convenience. For a group
member c¢;, we partition M bits equally into M/ (M, k)
consecutive parts with each part (M, k) bits: if M /(M. k) is
odd, we need an even number of b in each part; if M/ (M, k)
is even, there can be any number of b in each part, from
which it follows that

By = % <M/( dooooWb-ty R

2(MJ<)>
M k) is odd M/(M k) is even

:ﬁ< S et ¥ (p(i)z%).

odd i,i|M even i,i|M

(B6)

Now, consider the number of vanishing states, which is
denoted as V. For each c;, we again partition M bits into
M/(M, k) consecutive parts. If M/(M, k) is even and all
parts are identical with an odd number of b, then it is a
vanishing state. But this does not cover all the possibilities.
If (M, k) is even, we can perform finer partition: divide M-
bits into 2M / (M, k) parts with each part of (M, k)/2 bits. If
all the 2M /(M. k) parts are the same and contain an odd
number of b, it is a vanishing state. We can continue to
perform the finer partition i times until (M, k)/2' is odd.
There is a difference between odd M/(M, k) and even
M/ (M, k): it needs to perform at least one finer partition for
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odd M/(M,k), while for even M/(M, k) it does not.
Therefore, the number of vanishing states reads

> %)

odd M/(M.k) <i21 and 2/|(M k)

2 (3 )

even M/(M k) \i>0 and 2¢|(M k)

w2 X ) >

VM:_

2(MJ<>]

ko Ni>1,27|(M k) even M/(M k)
1 (L] N\ A M
g 2( X ) 5 e o)
ko Ni>1,27|(M k) even i,ilM

Let (M, k)/2' =" then we have 2'| j and (M, k) = 2'M/ .
The number of k satisfying (M, k) = 2'M/j is equal to

st -old)

Now, the first term inside the parentheses of Eq. (B7) can be
written as

Z( > 2@)— > {Zq:(zi)zﬂ} (BS)

ko Ni>1,21|(M k) even j,j|M “i>1,21|j

With the following property of the function ¢,

o= {

if m is even
. . b
if m is odd

we see that

Z go(§> =@(j), if jis even.
i>1,21]j
Now, Eq. (B8) becomes

S X )= % w0t

ko Nix1.2|(M.k)
from which it follows that
1 N\ AM
V= " Z @(i)27.
even i,i|M
The difference of Eqgs. (B6) and (B7) is
1 M
Su=By—Vu=5- Z @(i)27,
2M odd i.ilM

which is the same as the formula for fermionic states.

In summation, we conclude that there is an equal number
of bosonic and fermionic states for a given bit number M
and both can be written as
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1 M
= — 27‘
Su M E »(n)

odd n,n|M

(B9)

2. Counting trace states
Now, consider the general trace states, including single

and multiple trace states. Let TE,?,)V be the number of r-bit
bosonic trace states built out of single trace states of bits
less than or equal to m. Tfnl,), is defined similarly for
fermionic trace states. We can build the recursive relation of
Tfnb,)r as follows. Out of r string bits, we can assign i X m
bits to i bosonic m-bit single trace states and j X m bits to j
fermionic m-bit single trace states provided (i + j)m < r.
There are (Slt") ways to pick i fermionic m-bit single trace
states and (SJ;’ ~1) ways to pick j bosonic m-bit single trace
states. The remaining r — (i + j)m bits need to be built out

of single trace states of bits less than m. Summation over all
non-negative 7, j yields

S\ [ S+ j—1 .
b) m m ((b+i)mod2)
Tnr = Z < : >< . >Tml,r(i+j)m'

(i+j)m<r l J
(B10)

We can actually drop the superscript of 7" because Tﬁ,?,),

equals Tﬁ,?,), for all m, r. It can be proved by mathematical

induction that for m = 1 the only r-bit bosonic state is

(Tra)"|0) and the only r-bit fermionic state is

(Tra)"~'Trb|0), which implies TQ = Tﬁlz If TE,?)_“ =
(1

T

m—1,r
for T,(,?ﬁ)r and T,(,?,),, from which it follows that T,(,?,)r = T,(,?,)r
holds for all values of m, r. Therefore, we can simply write

(B10) as
S\ (S, +j—1
(i4j)m<r l J

holds for all 7, then Eq. (B10) gives the same result

Tor= Y

The number of M-bit bosonic or fermionic trace states is
simply

We use a computer program to calculate the values of Sy,
and T, as shown in Table I. The results reveal that when M
is large

2M—1

M ’

Sy — Ty — (07261768212 - - ) x 2M.

The limit of S,, shows that almost all the single trace states
have M different cyclic permutations when M is large. This
is not surprising; the density of the single trace with certain
cyclic symmetry goes down as M increases. T, increases
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TABLE I. Number of trace states.

PHYSICAL REVIEW D 93, 106004 (2016)

M Sy Ty Sy x M/2M Ty /2M

1 1 1 0.500000000000 0.500000000000
2 1 2 0.500000000000 0.500000000000
3 2 5 0.750000000000 0.625000000000
4 2 10 0.500000000000 0.625000000000
5 4 21 0.625000000000 0.656250000000
6 6 44 0.562500000000 0.687500000000
7 10 89 0.546875000000 0.695312500000
8 16 180 0.500000000000 0.703125000000
9 30 365 0.527343750000 0.712890625000
10 52 734 0.507812500000 0.716796875000
11 94 1473 0.504882812500 0.719238281250
20 26216 761282 0.500030517578 0.726015090942
30 17895736 779724424 0.500001087785 0.726174958050
40 13743895360 798439834644 0.500000000466 0.726176799293
50 11258999068468 817602415099946 0.500000000001 0.726176820986
60 9607679205074672 837224873334502342 0.500000000001 0.726176821223

as 2M with a magic prefactor we do not understand, which
could be an interesting mathematical problem to explore.

APPENDIX C: RANK OF NORM MATRIX

The rank of norm matrix G;; = (i|) is the dimension of
the trace state space and also the number of energy levels of
the system. In this section, we show some interesting
patterns of the rank of norm matrix. We only focus on the
norm matrix of M-bit bosonic trace states, which is a T, x
T, real symmetric matrix. By supersymmetry, the norm
matrix of M-bit fermionic trace state space has the same
rank as the one of M-bit bosonic trace state space.

We generate the norm matrices for M < 11 and calculate
their ranks numerically. We find that when N > M G has
full rank and when N < M it is rank deficient. As N
changes from M to 1, the rank of G changes from T, to 1.
We arrange the ranks of norm matrices for M < 11 and
N < M as a number triangle as below:

1 6 9 10
1 8 17 20 21
1 10 31 40 43 44
1 12 49 76 85 88 &9
1 14 75 140 167 176 179 180
1 16 109 252 325 352 361 364 365
1 18 147 436 621 694 721 730 733 734
1 20 193 724 1165 1360 1433 1460 1469 1472 1473

The number at the ith row and jth column is the rank of G
for M = iand N = j. For convenience, we denote it as R, ;.

We immediately see several patterns: Ry = Ty,
Ryy—1 =Ty —1, Ry =1, and for M greater than 1,
Ry, = 2M — 2. If we define R;, = 0, then we can define
new variables D;; = R;; — R, ;_;, which represent the
change of G’s rank when M =i and N change from j to
J — 1. We arrange D;; as another number triangle as below:

1 5 3 1
1 79 31
19 21 9 3 1
1 11 37 2719 3 1
1 13 61 65 27 9 3 1
1 15 93 143 73 27 9 3 1
1 17 129 289 18 73 27 9 3 1
1 19 173 531 441 195 73 27 9 3 1

Going through each row from right to left, we find the
following sequence:

1, 3, 9, 27, 73, 195,---

For odd M, the sequence starts from N = M and ends at
N = (M + 1)/2; for even M, the sequence starts from N =
M and ends at N = M/2. This means that, no matter what
the value M is, the changes of G’s rank from N to N — 1 for
N > M are the same.

Since we only obtain the norm matrices for M < 11, we
do not know the next number of the sequence. Finding the
pattern of the sequence is an interesting problem for future
research.
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APPENDIX D: CALCULATION OF [H, Q]

In this section, let us find the constraint of the super-
symmetric Hamiltonian, i.e., the condition for [H, Q] = 0,
where

Q =exp <%ﬂ> Trab + exp (— %) Trba.

We first calculate the commutation between Q and each
trace operator in (4). We have

[Tra*b?, Trab] = Tra’b*Trab — TrabTra*b* = 0,
[Tra’b?, Trba] = Tra*b*Trba — TrbaTra’b?
= Tra*ba — Trba*a + :Tra*b*Trba:
— (Trba b* + Trbb*a + :Tra*b*Trba:)
= Tra*(ba — ab) — Tr(b a+a b)b?,
where :Tra’b*Trba: denotes the normal ordering of

Tra?b*Trba. As we see, the normal ordering terms cancel
|
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out. This occurs for all the trace operators. So in the
following calculation, we simply drop the normal ordering
terms in most cases. From above two results, it follows that

[Tra’b?, Q] =exp <—i%) [Tra’b?, Trba)
=exp (—i%) [Tra®(ba—ab)—Tr(ba+ab)b?).

We repeat the calculation for the other trace operators as
follows:
[Trb>a?, Trab] = Trb*a*Trab — TrabTrb’a?
= Trb*ab + Trab*bh — Tra b a® + Traa’b
= Trb*(ab + ba) + Tr(ba—ab)a?,
[Trb%a?, Trba] = 0,

from which it follows that

[Trb*a?, Q] = exp <z%> [Trba?, Trab)

=exp <z%> [Trb?(ab + ba) + Tr(ba—ab)a?).

[Tra*a?, Trab] = Tra*a*Trab — TrabTra’a®

= Traab + Tra*ba + :Tra?a*Trab: — TrabTra*a®

= Tra*(ab + ba),

[Tra’a®, Trba] = Tra*a*Trba — TrbaTra’a®

= Tra%a*Trba — Trb a a®> — Tra b a®> — : TrbaTra%a?:

= -Tr(ab+ba)a?,

from which it follows that

[Tra*a?, Q] = exp <l%> [Tra’a?, Trab) + exp (—i%) [Tra*a?, Trba]

[Trb?b?, Trab] = Trb*b*Trab — TrabTrb*b?

=Tr(ba—ab)b?,

[Trb?b?, Trba] = Trb*b*Trba — TrbaTrb*b?

(D1)
ANy ¥ .
=exp (i Tra*(ab + ba) — exp —iy Tr(ab+ba)a*.
= Trb*b*Trab — Tra b b> + Trb a b* — : TrabTrb*bh*:
= Trb*ba — Trb*ab + : Trb*b*Trba: — TrbaTrb?b?
(D2)

= Trb?(ba — ab),

from which it follows that
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[Trb?b?, Q] = exp (i Z) [Trb?b?, Trab] + exp (—i %) [Trb?b?, Trba]

= exp (z%) Tr(ba—ab)b* + exp <—i%> Trb?*(ba — ab).
[Trb a ba, Trab] = Trb a baTrab — TrabTrb a ba
=Trbabb + :TrbabaTrab: — Traaba + :TrabTrbaba:
=Trbabb + :TrbabaTrab: — Traaba — :Trb a baTrab:
=Trbabb —Traaba,
[Trb @ ba, Trba) = Trb a baTrba — TrbaTrb a ba
=Trbaa®> — :TrbabaTrba: + Trb bba — :TrbaTrb a ba:
=Trbaa* — :TrbabaTrba: + Trb b ba + :Trb a baTrba:
=Trbaa®+ Trb b ba,

from which it follows that

[Trb a ba, Q] = exp (i > [Trb a ba, Trab] + exp (—i %) [Trb a ba, Trbal

IR

= exp <z%> [Trb @ bb — Tra a bal

+ exp <—i %) [Trb a a* + Trb b ba).

[Tra b ab, Trab) = Tra b abTrab — TrabTra b ab
= —Trabb*+ :TrababTrab: — Tra*ab + :TrabTra b ab:
= —Tra b b? — Tra2ab,

[Tra b ab, Trba) = Tra b abTrba — TrbaTra b ab
=Traba® — :TrababTrba: — Trb*ab — :Tra b abTrba:
= Tra b a®> — Trb2ab,

from which it follows that

T

4) [Tra b ab, Trba] + exp <—i Z) [Tra b ab, Trab)

[Tra b ab, Q] = exp (i

exp (l%) [~Tra b b*> — Tra*ab) + exp <—i%> [Tra b a> — Trb*ab).

[Tra b ba, Trab] = Tra b baTrab — TrabTra b ba
=Trabbb + :TrabbaTrab: — Tra’ba + :TrabTra b ba:
= Tra b bb — Tra*ba,

[Tra b ba, Trba] = Tra b baTrba — TrbaTra b ba
= Trabaa — :TrabbaTrba: — Trb b ba — :Tra b baTrba:
= Tra b aa — Trb*ba,

from which it follows that
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[Tra b ba, Q] = exp <i %) [Tra b ba, Trab) + exp <—i %) [Tra b ba, Trbal

=exp <z%) [Tra b bb — Tra’ba) + exp (—i%) [Tra b aa — Trb*ba).
[Trb @ ab, Trab] = Trb a abTrab — TrabTrb a ab

= —Trba b?* — Tra’ab,
[Trb @ ab, Trba) = Trb a abTrba — TrbaTrb a ab

= Trbaa® + Trb2ab,

from which it follows that
[Trb @ ab, Q] = exp <i %) [Trb @ ab, Trab] + exp (—i %) [Trb a ab, Trba)

=exp (i %) [~Trb @ b> — Tra*ab) + exp (—i %) [Trb a a® + Trb*ab). (D7)

As mentioned in the main text, the general form of Hermitian Hamiltonian is

1 _ _ _ _ _ _
H= N [c1Tra*a® + ¢, Trb*b* + iz Tra*b? — iz{Trb*a® + c3Trab ba + c4Trba ab + z;Tra b ab + z3Trb a ba).

With the above calculation, we have

Nexp (%) [H, Q] = ¢,[iTra®(ab + ba) — Tr(ab +b a)a*] + c,[iTr(ba—ab)b* + Trb*(ba — ab))

+ iz [Tra®(ba — ab) — Tr(b a+a b)b?| + z;[Trb*(ab + ba) + Tr(ba—ab)a?]

+ ¢3[i(Tra b bb — Tra*ba) + Tra b aa — Trb*ba) + c4[i(—Trb a b* — Tra*ab) + Trb a a® + Trb*ab]

+ 2,[i(—=Tra b b* — Tra*ab) + Tra b a> — Trb*ab] + z3[i(Trb a bb — Tra*ba) + Trb a a* + Trb*bal
=i(c, —z1—cy—2)Tra*ab — (¢; — 7, — ¢y — 25)Trbaa® + i(c, + z, — ¢3 — z3) Tra*ba

—(c1+zj—c3—2)Traba® — (c; — 7} — ¢4 + 25)Trb?ab + i(cy — 2 — ¢4 + 23) Tra b b?

+(ca+ 2} —c3+23)Trb*ba —i(cy + 71 — ¢35 + 25) Tra b b2

Then, [H, Q] = 0 yields where

cr—z1—¢—2=0 - B B 1 . _
Citz—c—2=0 M = Tr(aa + bb) —N(TraTra—l-TrbTrb).
—Zi—c4+2,=0"

We first prove that
C2+ZT—C3+Z§:O

_ 2
from which Eq. (8) follows. N(H'— AH) = TrG", (E1)

where the color operator Gg is defined as
APPENDIX E: PROOF OF

(H' — AH)|any trace state)=0

Gl = (aa — :aa: + bb — :bb:)s;
AH and H' are defined as

then it is sufficient to prove that

2 - - - -

AH = —Tr[abba + baab + a*a*> + b*b*> — M|, p
N Gq|Any trace state) = 0. (E2)

2 _ -

H' = —Tr(aaaa + bbaa — abba),
y Trl@ada +bbaa —abba) Expanding TrG? yields
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TrG? = Tr(aa — :aa:)* + Tr(bb — :bb:)? + 2Tr(bb — :bb:)(aa — :aa:).

Expanding each term of the right-hand side, we obtain

Tr(aa — :aa:)?* = Traaaa + Tr(:aa

a::aa:)—Tr(aa:aa: + :aa:aa)

= 2Tr(:aaaa:) + 2NTraa — (2Tra’*a* + TraTra),
Tr(bb — :bb:)? = Tr(bbbb + :bb: :bb:) — Tr(bb:bb: + :bb:bb)
= 2NTrbb — 2(Trb*b?* + TrbTrb),
Tr(bb — :bb:)(aa — :aa:) = Trbbaa + Tr(:abba:) — Tr(ab ba + b aab).

It follows that

TrG? = 2Tr(:@aaa: + bbaa + :abba:) — 2Tr(abba + baab + a*a* + b*b?)
+ 2NTr(aa + bb) — 2TraTra — 2TrbTrb
= 2Tr(aaaa + bbaa — abba) — 2Tr(ab ba + baab + a*a® + b*b> — M)

= N(H' — AH).

Now let us prove (E2). It is easy to check that
(@h. G = &,8, — 8,3,
(Bl G2) = B85, — 3B
Let X be an M-bit chain,

Xo= &% Syl H=a or

ol

then

X ) (X, GO (Rir -+ Xpg Ve

I
NIE
&)

[Xe. G

X )O((%:)980 — 67 (%:)0) (X1 -+ Emp

—~
=1

:Flﬂa

S

(Fy X ) (R - Tpg)5 + (Xy - Xag )85,
p

_ (EM: (&%) (E o Ta)d+ 3 (% "‘)_CM)i)

i=2

= (561"')7M)55g—5e(5€1 e Xy)
On the other hand,
B i
[Xh, G]10) = X4G2|0) — GoX4|0) = —G2X4|0),

from which it follows that

GIXA|0) = (&) (&) X)) — (% -+ %ay)I52)]0).
Taking the trace on the indices of X yields
GoTrX|0) = 0.
Therefore, we proved (E2).

APPENDIX F: HAMILTONIAN EIGENVALUE
PROBLEM

This section proves several claims on the eigenvalue
problems of H,

(H—E)V =0, (F1)

where V is a vector and H is given by
Hli) = Z|j>Hji- (F2)
J

First, let us prove the following two claims:
(1) If Eis an eigenvalue of H, its complex conjugate E*
is also an eigenvalue of H.
(ii) If E is not real, it must have VGV = 0, where G is
the norm matrix G;; = (il /).

Proof—Using (F2), we have

(ilH|j) =Y (ilkyHy; = (GH),;.
k

Since H is Hermitian, we also have
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(i|H|j) = ZH (klj) = (H'G),

l]’

which implies
GH =H'G. (F3)

Left multiplying Eq. (FI) by G and taking the complex
conjugate yields

VI(H'G — E*G) = 0. (F4)

Using Eq. (F3) and taking the transpose of Eq. (F4), we
obtain

(HT — E)GV* = 0.

Since H has the same eigenvalues as H’, E* is an
eigenvalue of H.
Using (F1), we have

= V'GHV,
(E*VH)GV = VIH'GV,

EVIGV = VIG(EV)
E*VIGV =

from which it follows that

(E—E*)VIGV = VI (GH -H'G)V = 0.

Therefore, if E is not real, it must have VIGV = 0. m
The remaining claims are related to whether or not G is
positive semidefinite. Let us discuss them case by case.

1. Positive-semidefinite G matrix

If G is a positive-semidefinite matrix, all its eigenvalues
are non-negative. There exists an orthonormal basis span-
ning the trace state space. Suppose there are r trace states
[1),....]r), with dimension p <r. We can build an
orthonormal basis |i} using a p x r matrix S,

{i| = ZSij<j|,

1<i<p, 1<j<r, (F5)

where the basis and the matrix S satisfy

{ilj} = ZS<k|l>S = (SGS)ij = 0.

In this basis, the p x p Hamiltonian matrix H is given by
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Hij = {i |H |j }

= _SulklH|))S),
k.l
= Zsik<k|m>Hm151Tj

k.l.m

The eigenvalues of the Hamiltonian are given by the
equation

(H—E)W =0, (F7)

where W is a p-dimensional vector. We claim:
(i) Every eigenvalue of H is an eigenvalue of H.
(i1) An eigenvalue E of H with an eigenvector V is also
an eigenvalue of H if and only if VIGV > 0.

Proof.
|i} so that

S
iV = ijs
iy ={;

This can be done by extending the p X r matrix Stoanr X r
invertible matrix R. The matrix R can be constructed as
follows. We pick any invertible r x r matrix which contains
§ as the first p rows. For the (p + 1)th row vector, R, |, we

p+1GR for each i < p. If RPHGR» #0, we

replace R, with R, — (Rerl GR))R;. In this way, R,

will be orthogonal to all the first p row vectors, and since the

We extend the p basis vectors |i} to r vectors

ifi,j<p

ifi>p or j>p

calculate R

dimension of the state space is p, R’ » +1GR must be zero.

Repeating this process for the rest rows, we obtain the
invertible square matrix R.
The new basis is

{lll = Rl]<.] ’
which satisfy
{ilj}y =

(RGRT)ij = (Ip 7] Orfp)ij’ (FS)

where I, is the p x p identity matrix and O,_, is the

(r — p) x (r — p) zero matrix. In the new basis, we define

a matrix,
H=RGHR'=H®O,_,. (F9)

Clearly, if E is an eigenvalue of H with eigenvector W, it is
also an eigenvalue of H,
(H-E)W =0, (F10)

with the eigenvector W’ satisfying
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if1<i<p

W, = {Wi’ (F11)

' 0, ifp<i<r

With relations (F9) and (F8), the left-hand side of Eq. (F10)
can be expressed as
(H—E)W = RGHR'W' —E(1, ® O,_,)W

= RGHR'W' — ERGR'W'

=R(H"— E)GR'W'

=RH' —E)R'(I,®0,_,)W

=R(H'—E)R"'W'". (F12)

Since R is invertible, we obtain
(HT —E)R™'W' = 0.

R~'W’ cannot be zero as R~ is invertible and W’ # 0. As E
is real, E is an eigenvalue of H' and H.

Conversely, if E is an eigenvalue of H with eigenvector
V, we have

RG(H—E)V =0.
The right-hand side can be expressed as

RG(H — E)V = RG(HR" — ER")R™-'V
=MH-ET,®0, )RV
=MH-E)(1,®0, )RV,

from which it follows that

(H-E)(I,®0,_,)R™'V =0. (F13)
To let E be an eigenvalue of H, we need W' =
(I, ® O,_,)R™™'V to be a nonzero vector. By calculating
the norm of W',

WiW = VIR™(1, ® 0, )RV
= ViGV,

we find that E is an eigenvalue of H if and only if
VIGV > 0. Under this constraint, as H = H & O, , E
is also an eigenvalue of H. [

2. Non-positive-semidefinite G

If G is not a positive-semidefinite matrix, at least one of
its eigenvalues is negative. There does not exist an
orthonormal basis in the trace state space. Suppose the r x
r matrix G has p positive eigenvalues, g negative eigen-
values, and s =r— p —g¢g zero eigenvalues. We can
properly choose a unitary matrix R so that the new basis
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|i} satisfies

{i|j}/ = (RGRT)ij = (Ip 7] _Iq @ Os)ij’

where |[1},....|p} are positive norm-square states,
lp+1},....|p+¢q} are negative norm-square states,
and |[p +¢g+1},....|r} are zero norm states. The neg-

ative norm-square states are also called ghost states. The
existence of a ghost state implies the Hamiltonian is not
unitary.

In analogy with (F6) and (F9), we define H and H by

and
H=RGHR =H® O,.

We claim:

(1) If E is an eigenvalue of H with eigenvector W, it is
an eigenvalue of ‘H when W does not couple with
any ghost state.

(i) If E is an eigenvalue of H with eigenvector V, it
is an eigenvalue of H when E=0 or
V'abs(G)V = V'GV > 0, where the function abs
is defined as

|g1‘

|92
abs(G) = U' . U,

|9l

with

91

n

being the eigendecomposition of G.

The condition V'abs(G)V = VIGV implies that, in the
basis where G is diagonal, V does not couple with any
ghost state. According to our numerical calculation, G is
not positive semidefinite only when N < M and is not
integer. The numerical calculation shows that, except the
E = 0 case, the condition V'abs(G)V = VTGV is usually
not satisfied when G is not positive semidefinite. The proof
of the claims is given as follows.

Proof—If E is an eigenvalue of H with eigenvector W,
E is also an eigenvalue of H with the eigenvector defined as
W;:{W” ?fISzSpj—q. (F14)

0, ifp+g<i<r
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In analogy with (F12), we have

(H—E)W' =RGHR'W —E(1,,,®0,)W
=RGHR'W'—E(RGR"+20,®1,®0,)W
=R(H—E)GR'W'—-2E(0,®1,®0,)W
:R(H—E)R‘1 (I,, ®-1, d0,)W

—2E(Op eI, D O,)W'.

If the following conditions are satisfied, E is an eigenvalue

of H:

{ (O,, o1, o,)w =0
(I, -1, ®0)W #0°

With (F14) and W # 0, it implies that, if

(0, ®1,)W =0, (F15)

E is an eigenvalue of H. Equation (F15) is a constraint
under which the eigenvector does not couple with the ghost
states.

Conversely, if E is an eigenvalue of H with eigenvector
v,

RG(H—-E)V =0.
The left-hand side of the equation can be expressed as

RG(H — E)V = RGHR'R™'V — ERGR'R™-'V
=HR™'V—-E(1,®-1,® O0,)R"'V
=(H- E)(Ip+q ® Os)RT_lv

+2E(0, @1, ® O)R™'V
= (H—-E)W +2EW",

where we have defined

W=(1,.,®0)R"V,
W'=(0,®1,®0,)R"'V.
If E=0,0r W # 0 and W’ = 0, E is an eigenvalue of H.
W’ # 0 implies
WiW =VIR™'(1,,, ® O,)R™'V
=VR'(I,®-1,®0,)R"'V
= V'R"'RGR'RT-'V

=ViGV > 0, (F16)

where we use the constraint W’ = 0 in the second equality.
With the equation
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200, ® I, ® O,) = (RGR")? — RGR",
W"” = 0 is equivalent to
VI(GR'RG — G)V =0. (F17)
Combining constraints (F16) and (F17), we find that, if
VIGR'RGV = V'GV > 0,

E is an eigenvalue of H.

The matrix GR'RG seems to be dependent on R, but
actually it only depends on G. Indeed, any unitary trans-
formation R — UR does not change GR'RG. In general, if
the eigendecomposition of G is

g1
92
G=U" U, Uiu =1,
9n
we can choose R as
LU, ifg+#0
Ri — { |g:] X
Ui, if ;=0
Then, we obtain
|91|
|gz|
GR'RG = U ) U,
|G|
which clearly only depends on G. [

APPENDIX G: ALGORITHMS

The numerical computation is performed by C + + and
the matlab program. We use the C + + program to generate
the norm matrices and H matrices and then use matlab to
find eigenvalues and eigenstates. Here, we introduce the
algorithms for generating trace states, calculating norm
matrices, and building H matrices.

1. Generate trace states

Trace states are represented by integer numbers. The
bosonic and fermionic creation operators are mapped to 0
and 1, respectively. Then, an M-bit single trace state is
mapped as an M-bit binary number, and a multiple trace
state is an array of integers. Because of the cyclic
symmetry, a single trace state corresponds to several
integers. Among these integers we choose the smallest
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integer. For example, Tra b b |0) is mapped to (011), = 3
rather than (110), = 6. We then go through all integers
between 0 and 2 — 1. A number is a single trace state only
when it meets two conditions:

(i) There is no cyclic rotation on this integer producing
a smaller integer.

(i) The corresponding trace state is nonvanishing. A
trace state is vanishing if it can be partitioned into an
even number of identical consecutive parts, each of
which has an odd number of b. For example,
Trb b b b |0) vanishes as it can be partitioned into
four bs.

After generating all single trace states, we can build
multiple trace states out of single trace states. The pro-
cedure is similar to the recursive relation (B11) for
calculating the number of trace states.

2. Calculate norm matrices

To build a norm matrix, we need to calculate (i[j) for
each pair of states i, j. The norm can be calculated as
follows. If two M-bit states i, j do not have the same
number of b, then (i|j) = 0. Otherwise, if both have n
fermionic operators, there are n!(M — n)! ways to contract
their color indices. Take Tra a b b |0) and TraTra b b |0) as
an example. We first write the states as

Traabb|0) = aha aybyb3)0),
bb|0) = alakblb)|0).

Using the commutation and anticommutation relations, we
can expand the norm into 2! x 2! = 4 terms,

(0|TrbbaaTraTra b b |0) = (0|bab), ayaﬁa’akbl b7]0)
= 56550656455}, —
+ 873187457545,

The sign of each term is determined by how many times a
swap occurs among b and b: an odd (even) number of
swaps produces a negative (positive) sign. The first term
can be written as

555088, 5,58}, = (5,51,526%) (848,) (575},

where Kronecker delta functions are put into three groups.
The contraction of the indices in each group produces a
factor of N, which implies the first term is equal to N°.
Repeating the procedure, we obtain

(0|TrbbaaTraTra b b |0) = 2N? — 2N.

Finally, the result is normalized by multiplying 1/N*,
which yields 2/N —2/N?3.

6.5/6%)
— 55561,
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Our algorithm simply simulates the procedure and hence
has O(M!) time complexity to calculate each entry of a
norm matrix. For numerical computation of higher M, we
need to improve time complexity significantly.

3. Build H matrices

To build H matrices, we need to calculate the action
of trace operators on trace states. Let us take an
example that the trace operator is TrAab, where A is
any creation operator chain. To calculate TrAabTrS|0),
we need to find all possible ways to partition S into the
form BaChD or BbCaD, where B, C, D are any creation
operator chains. Each partition corresponds to one
way to contract the indices among annihilation and
creation operators. The results of these two contraction
schemes are

TrAabTrBbCaD|0) — (—1)*(ABbCD=ADBCO) T ADBTrC|0),

(G1)

TrAabTrBaCbD|0) — (—1)*(ABCbD=ALCDE)TrACTrDB|0),
(G2)

where 7(ABbCD — AbDBC) denotes the number of
swaps occurring among the fermionic operators as the

chain being reordered from ABbCD to AbDBC. Let f(A)
denote the number of  in A; then,
7(ABbCD — AbDBC) = f(B) + f(D)f(BC).

The complete result of TrAabTrS|0) can be written as

TrAabTrS|0)
_ Z (—1)=(ABBCD=ABDBO) Ty A D BT C|0)
BbCaD=S
N Z ABCbD—»AbCDB)TrACTI'DB’O>
BaChD=S

In analogy with (G1) and (G2), for two trace states, we have

TrAabTrBaCTrDbE|0)
- (~1 )n(ABCDEEﬁAECBED)TrA CBED|0),
TrAabTrBbCTrDaE|0)
N (_1)n(ABECDEeABEDCB)TI.AEDCB|O>.
The algorithm takes O(M?) to calculate one row of the
H matrix. Since there are about 2¥ trace states, it takes

O(M?2M) to build an H matrix, which is much faster than
building a norm matrix.
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