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We construct the free field representation of irregular vertex operators of arbitrary rank which generates
simultaneous eigenstates of positive modes of Virasoro and W symmetry generators. The irregular vertex
operators turn out to be the exponentials of combinations of derivatives of Liouville or Toda fields, creating
irregular coherent states. We compute examples of correlation functions of these operators and study their
operator algebra.
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I. INTRODUCTION

Primary vertex operators in two-dimensional conformal
field theory are the objects playing a crucial role in the
Alday-Gaiotto-Tachikawa (AGT) conjecture [1], connect-
ing regular Liouville conformal blocks to Nekrasov’s
partition function [2] on the Coulomb branch of N ¼ 2
supersymmetric gauge theories in four dimensions. Among
the interplay between the four dimensional gauge theory
and two dimensional conformal field theory (CFT), there
appears a nontrivial IR fixed point, Argyres-Douglas type
theory [3,4]. This class of theories does not allow marginal
deformations and is described in terms of colliding limit of
the primary vertex operators. The operator of rank q,
obtained from the colliding limit [5,6], generates an
irregular state of rank q when applied to the vacuum.
The irregular state is annihilated by Lk with k > 2q but
becomes a simultaneous eigenstate of positive Virasoro
generators Lk with q ≤ k ≤ 2q. This irregular state is called
Gaiotto state [7] or Whittaker state [8]. The usual regular
primary state corresponds to the rank 0 state
One obvious try to construct the irregular vertex oper-

ators (IVO) or the irregular conformal states was the
construction of the state as the combination of the primary
state and its descendents [7–11]. However, the attempt to
find the irregular state beyond the rank 1 has met a serious
difficulty to fix the coefficient if one uses the fact that the
state is the simultaneous eigenstate of the positive Virasoro
generators only. The state thus constructed has undeter-
mined parameters which should be further fixed by the
consistency condition with the lower mode Lk<q [12].
In this paper we reconsider the irregular vertex operator

directly in termsof free bosonic field representation.To get an
idea, we notes that the two-point conformal block, one

primary vertex operator at infinity and one irregular vertex
operator at the origin, is given as the irregular matrix model
(IMM) [5,13] which has the form of Penner-type matrix
models

Z ¼
Z YN

i¼1

dλi
Y

1≤j<k≤N
ðλj − λkÞ−2b2e−2b

P
i
VðλiÞ ð1:1Þ

where the potential has the logarithmic term together with the
inverse powerlike contributions

VðλiÞ ¼ c0logðλiÞ −
Xq
j¼1

cj
jðλiÞj

: ð1:2Þ

Seiberg-Witten curve obtained from the loop equation of
IMM has the quadratic form and IMM is expected to
reproduce the instanton contributions to the partition func-
tions in the Argyres-Douglas theories according to AGT. The
irregular conformal blocks (ICB) are in general not simple
objects to explore, even though the IMMapproach to the ICB
provides a relatively simple procedure but needs tedious steps
to find ICB working with loop equations. Therefore, it is
desirable to find IVO directly from the eigenvalue constraints
using the (Liouville) free fields and provide ICB in terms of
IVO directly.
The general feature of the potential term of IMM is that

IVO can be represented in terms of modified vertex
operators which contains finite number of derivatives of
the Liouville fields [14]. However, it is yet to be checked if
the modified primary operator indeed represents the irregu-
lar vertex operator. In this paper we construct the free field
representation of IVO explicitly without resorting to the
ICB or IMM but only using the fact that IVO produces
the simultaneous eigenstates of positive generators. For the
Virasoro IVO, one has the conditions:
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½Lk; Iq� ¼ ρkIqðq ≤ k ≤ 2qÞ; ½Lk; Iq� ¼ 0ðk > 2qÞ
ð1:3Þ

where Iq is the IVO of rank q and ρk is the eigenvalue of the
positive mode Virasoro generator Lk.
In case of two or more copies of the Liouville fields as in

the Toda field theories, IVO can have more constraints to
incorporate the higher spin symmetry in addition to (1.3).
For example, with two fields, IVO subjects to the Wð3Þ
symmetry constraints:

½Wð3Þ
k ; Iq� ¼ ωð3Þ

k Iqð2q ≤ k ≤ 3qÞ;
½Wð3Þ

k ; Iq� ¼ 0ðk > 3qÞ ð1:4Þ

whereWð3Þ
k is the kth mode of the spin 3W-current and ωð3Þ

k
is its eigenvalue. The corresponding irregular matrix
models can be obtained from the colliding limit of the
A2 Toda field theory, whose loop equation provides the
cubic form of the Seiberg-Witten curve and flow equations
corresponding to Wð3Þ symmetry [14,15]. It is generally
expected that IMM obtained from the colliding limit of Ar
Toda field theory results in the Seiberg-Witten curve with
the (rþ 1)th power term and flow equations of Wðrþ1Þ
symmetry. The corresponding IVO can be determined by
the generalized constraints due to Wðrþ1Þ symmetry:

½Wðrþ1Þ
k ; Iq� ¼ ωð3Þ

k Iqðrq ≤ k ≤ ðrþ 1ÞqÞ;
½Wðrþ1Þ

k ; Iq� ¼ 0ðk > ðrþ 1ÞqÞ
This paper is organized as follows. In Sec. II, we

consider the case with one free bosonic field which has
Virasoro symmetry. We first develop the free field repre-
sentation of the Virasoro IVO of rank 1 by solving the
Virasoro constraint, reproducing the deformed Penner-type
potential of the matrix model approach. We then extend this
construction to higher ranks and present the general
structure of IVO of arbitrary ranks. The explicit coordinate
dependence of ICB constructed from N-point IVO corre-
lator is given in free field formalism.
In Sec. III, we extend this construction to the system of

two bosonic fields so that IVO obeys the Wð3Þ symmetry.
We explicitly check that IVO of lower rank has the similar
free field representation as in the Virasoro case. The
eigenvalues fix IVO with algebraic polynomial equations.
Section IV is the conclusion where IVO of arbitrary rank

q with Wðrþ1Þ-symmetry is given and its eigenvalues are

presented explicitly in terms of the coefficients of IVO for
Wð3Þ case. In addition, some of physical implications of
IVO are speculated.

II. IRREGULAR VERTEX OPERATOR WITH
VIRASORO SYMMETRY

In this section we demonstrate the explicit construction
for IVO in terms of one free bosonic field. Before we
demonstrate the explicit ansatz, it is useful to comment on
the structure of the answer that we expect and its relation to
the colliding limit.
The irregular blocks of rank q essentially emerge as a

result of the normal ordering qþ 1 Liouville vertex
operators colliding at the same point. Let us consider the
example of two vertex operators first. The operator product
between two exponential operators at points z1 and z2
around z2 is given by

eαϕðz1Þeβϕðz2Þ ¼ ðz12Þ−αβ
X∞
n¼0

ðz12Þn∶ BðnÞ
α ðϕÞeðαþβÞϕ∶ ðwÞ

ð2:1Þ

where z12 ¼ z1 − z2. B
ðnÞ
α are the normalized Bell poly-

nomial of the derivatives of ϕ and are defined as [16]

BðnÞ
α ¼

Xn
p¼1

αp
X

njk1…kp

∂k1ϕ…∂kpϕ

k1!qk1 !…kp!qkp !
: ð2:2Þ

Here the sum is taken over the ordered length p partitions
of n ð1 ≤ p ≤ nÞ: n ¼ k1 þ � � � þ kp; k1 ≤ k2… ≤ kp and
qkj is the multiplicity of an element kj in the partition. The
operator product for three operators at z1, z2, z3 colliding at
z1 is similarly given by

eαϕðz1Þeβϕðz2Þeγϕðz3Þ
¼ ðz2 − z1Þ−αβðz3 − z1Þ−γðαþβÞ

×
X∞
n2¼0

X∞
n1¼0

Xn1
k¼0

ðz2 − z1Þn1ðz3 − z1Þn2−k

×
Γð−βγ þ 1Þ

k!Γð−βγ þ 1 − kÞ ∶ Bðn1−kÞ
β Bðn2Þ

γ eαþβþγ∶ ðz1Þ: ð2:3Þ

One may have in general, for N vertices at z1;…zN
around z1

eα1ϕðz1Þ…eαN ðzNÞ ¼
YN
p¼2

ðzk1Þ−αpðα1þ���αp−1Þ
X

n1;…;nN−1

X
k1;…kN−2

X
q1…:qN−2

ðz21Þn1ðz31Þn2−k1…ðzN1ÞnN−1−kN−2

×
YN−1

j¼1

λfn;k;qg∶ B
ðnj−qjðk1;…kN−1ÞÞ
αjþ1

eðα1þ���þαNÞϕ∶ ðz1Þ ð2:4Þ
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with the q-numbers satisfying

XN−2

j¼1

kj ¼
XN−2

j¼1

qj ð2:5Þ

and λfn;k;qg are some constants which are straightforward to
evaluate but whose explicit form is of no importance to us.
IVO is then obtained by taking the operator product (2.4)
inside correlators and taking the simultaneous limits
zj → z1; j ¼ 2;…; N maintaining

P
αizki finite for

k ¼ 0; 1;…; n. All the operators appearing on the right-
hand side of the operator product (2.4) shall appear in the
expression for IVO; thus, IVO of any rank q must contain
infinite number of terms, having the general form

Iq ∼
X∞

n1;…;nq¼0

λn1…nqe
P

qþ1

j¼1
αjϕBðn1Þ

α1 …B
ðnqÞ
αq ð2:6Þ

where the λ-coefficients must be determined from the
Virasoro constraints (1.3). It is noteworthy that the objects
similar to that type appear in string field theory as analytic
solutions of the equations of motion, presumably describ-
ing the collective higher spin vacuum state [16].
However, taking the colliding limits directly for the

expansion in (2.4) is obviously a tedious procedure and
technically seems to be beyond control in an arbitrary case.
In addition, the products of Bell polynomial operators,
generally lead to tedious recursion relations, and are hard to
solve analytically. Therefore, it shall be better to work in a
different operator basis, namely, a field derivative basis so
that we can apply the Virasoro constraints (1.3) directly to
the operator basis.
To start, we look for the solution IVO of rank one in the

form

I1 ¼
X∞

N1;N2¼0

λN1N2
ϕN1ð∂ϕÞN2 ð2:7Þ

Second and higher derivatives are not allowed since I1
should be annihilated by all the Lk-generators with k > 2:
Note that Lk ¼

H
dz
2iπ z

kþ1TðzÞ and the stress-energy tensor
with background charge Q

TðzÞ ¼ −
1

2
ð∂ϕÞ2 þQ

2
∂2ϕ ð2:8Þ

will have the leading operator product expansion (OPE)
singularity of the order ∼ðz1 − z2Þ−3 with I1 since we
are using the free field normalization hϕðzÞϕðwÞi ¼
− logðz − wÞ.
The solution is obtained if one finds the generating

function Fðx; yÞ of two variables with the same λN1N2
:

Fðx; yÞ ¼
X
N1;N2

λN1N2
xN1yN2 ð2:9Þ

The eigenvalue constraint

½L2; I1� ¼ ρ2I1 ð2:10Þ

leads to the relation

ρ2
X∞

N1;N2¼0

λN1N2
ϕN1ð∂ϕÞN2

¼ −
X∞

N1¼0;N2¼2

N2ðN2 − 1ÞλN1N2
ϕN1ð∂ϕÞN2−2: ð2:11Þ

It is easy to see that this equation is equivalent to a simple
partial differential equation on the generating function
Fðx; yÞ:

∂2
yFðx; yÞ ¼ −ρ2Fðx; yÞ ð2:12Þ

whose general solution is

Fðx; yÞ ¼ ei
ffiffiffiffi
ρ2

p
yfðxÞ: ð2:13Þ

Similarly, the second eigenvalue problem:

½L1; I1� ¼ ρ1I1 ð2:14Þ

leads to the second recursion relation for λ:

ρ1
X∞

N1;N2¼0

λN1N2
ϕN1ð∂ϕÞN2

¼ −
X∞

N1¼1;N2¼1

N1N2λN1N2
ϕN1−1ð∂ϕÞN2−1

þQ
X∞

N1¼1;N2¼1

N2λN1N2
ϕN1ð∂ϕÞN2−1 ð2:15Þ

leading to the second order differential equation on F:

−∂x∂yF þQ∂yF ¼ ρ1F: ð2:16Þ

Substituting the general solution of the first equation and
identifying fðxÞwe find the generating function to be given
by

Fðx; yÞ ¼ eði
ρ1ffiffiffi
ρ2

p þQÞxþi
ffiffiffiffi
ρ2

p
y: ð2:17Þ

Accordingly, substituting for λN1N2
we find that the

expression for IVO of the rank 1

I1 ≕ eði
ρ1ffiffiffi
ρ2

p þQÞϕþi
ffiffiffiffi
ρ2

p ∂ϕ∶ ð2:18Þ

The contribution to the Penner type potential is given by
the log of the leading order OPE term of I1ðz1Þ with a
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regular vertex eαϕðz2Þ. Expanding I1 in terms of ϕ and ∂ϕ
and exponentiating one easily finds

Vðz12Þ ∼
�
i
ρ1ffiffiffiffiffi
ρ2

p þQ

�
logðz12Þ þ i

ffiffiffiffiffi
ρ2

p
z12

ð2:19Þ

reproducing the known result from the matrix model
approach, which leads to the identification of the potential
coefficients with the eigenvalues.
Next, let us consider the rank 2 case. The eigenvalue

constraints for the rank 2 are

½Lk; I2� ¼ ρkI2; ðk ¼ 2; 3; 4Þ
½Lk; I2� ¼ 0; ðk > 4Þ: ð2:20Þ

Accordingly, the ansatz for the rank 2 will be

I2 ¼
X

N1;N2;N3

λN1N2N3
ϕN1ð∂ϕÞN2ð∂2ϕÞN3 ð2:21Þ

since I2 is by construction annihilated by all Lk for k ≥ 5.
With the generating function

Fðx; y; zÞ ¼
X

N1;N2;N3

λN1N2N3
xN1yN2zN3 :

the eigenvalue constraints for k ¼ 2, 3 and 4 lead, in turn to
the characteristic 3 PDE’s

−4∂2
zF ¼ ρ4F

−2∂y∂zF ¼ ρ3F

−2∂x∂zF − ∂2
yF þ 3

2
∂zF ¼ ρ2F: ð2:22Þ

The solution of the system is

F ¼ e
iffiffiffi
ρ4

p ððρ2−
ρ2
3

ρ4
Þþ3

2
QÞxþi

ρ3ffiffiffi
ρ4

p yþi
2

ffiffiffiffi
ρ4

p
z; ð2:23Þ

leading to IVO:

I2 ¼ e
iffiffiffi
ρ4

p ððρ2−
ρ2
3
ρ4
Þþ3

2
QÞϕþi

ρ3ffiffiffi
ρ4

p ∂ϕþi
2

ffiffiffiffi
ρ4

p ∂2ϕ ð2:24Þ

with the corresponding contributions to the Penner’s
potential:

Vðz12Þ ∼
iffiffiffiffiffi
ρ4

p
��

ρ2 −
ρ23
ρ4

�
þ 3

2
Q

�
logðz12Þ

þ i
ρ3ffiffiffiffiffi
ρ4

p z12−1 þ
i
2

ffiffiffiffiffi
ρ4

p
z12−2: ð2:25Þ

It is not difficult to extend the same pattern to the higher
ranks. For the rank 3, the IVO ansatz will include the third
derivatives of the Liouville field:

I2 ¼
X

N1;N2;N3;N4

λN1N2N3N4
ϕN1ð∂ϕÞN2ð∂2ϕÞN3ð∂3ϕÞN4 :

ð2:26Þ

The generating function will have 4 variables and satisfy
the system of 4 linear second order differential equations.
The computation similar to the above gives the answer for
the rank 3 irregular block in terms of the irregular vertex
operator:

I3 ¼ e
iffiffiffi
ρ6

p fðρ3−ρ4ρ5
ρ6

þρ3
5

ρ2
6

−2iQ ffiffiffiffi
ρ6

p Þϕþðρ4−
ρ2
5
ρ6
Þ∂ϕþρ5

2
∂2ϕþρ6

6
∂3ϕg ð2:27Þ

with the related contribution to the Penner’s potential

V3ðz12Þ ∼
iffiffiffiffiffi
ρ6

p
��

ρ3 −
ρ4ρ5
ρ6

þ ρ35
ρ26

− 2iQ
ffiffiffiffiffi
ρ6

p �
logðz12Þ

þ
�
ρ4 −

ρ25
ρ6

�
z12−1 þ

ρ5
2
z12−2 þ

ρ6
6
z12−3

�
:

ð2:28Þ
It is now not difficult to guess the general structure of the

answer for an arbitrary rank q: IVO of the rank q is given by

Iq ≕ e
P

q
k¼0

αk∂kϕ∶ ð2:29Þ
with the related Penner type potential contribution

Vqðz12Þ ∼ α0 logðz12Þ þ
Xq
k¼1

αqðz12Þ−k ð2:30Þ

where

−i ffiffiffiffiffiffiffi
ρ2q

p
αk ¼

ρqþk

k!
þ

Xq−k−1
m¼1

ð−1Þm
ρm2q

X
j¼1

X
ð2mþ1Þqþkjq1…qj

× nq1…qjρq1…ρqj −
i ffiffiffiffiffiffiffi

ρ2q
p ðqþ 1ÞQ

2
δk0

−i ffiffiffiffiffiffiffi
ρ2q

p
αq ¼

ρ2q
q!

ð2:31Þ

with 0 ≤ k ≤ q − 1. nq1…qj are positive integers and the
second sum in the expression

P
ð2mþ1Þqþkjq1…qj

is taken
over all possible length j ordered partitions of

ð2mþ 1Þqþ k ¼ q1 þ � � � þ qj

such that q ≤ q1 ≤ … ≤ qj ≤ 2q with the subsequent
summation over the lengths. Irregular conformal state
obtained by IVO of the form (2.29) has the simultaneous
eigenvalues ρk of Lkðk ¼ q;…; 2qÞ whose relation with α-
coefficients are given in terms of qþ 1 algebraic equations.
The objects of the type (2.29) were also considered in [17]
in a different context, as well as in [18].
In addition, IVO of the form (2.29) provides the N-point

ICB:
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hIq1ðz1Þ…IqN ðzNÞi¼
�YN

l¼1

∶ e
Pql

kl¼0
α
ðqlÞ
kl

∂klϕðzlÞ∶
�

ð2:32Þ

where qlðl ¼ 1;…; NÞ are the ranks of IVO. Below we
shall compute this correlator in the limit of zero Liouville
cosmological constant, i.e. in the free field limit. This
calculation still holds at nonzero constant, as long as long

as the neutrality condition
P

1≤l≤Nα
ðqlÞ
0 ¼ Q holds. Despite

that, the free field calculation still makes sense even when
the neutrality condition is not satisfied, since the irregular
blocks are the objects essentially appearing in the process
of perturbative expansion in the screening operator, and, as
such, get inserted inside the free field correlators.
To compute the holomorphic correlator, consider the

functional integral

hIq1ðz1Þ…IqN ðzNÞi

¼ Z−1
Z

Dϕ
YN
l¼1

e
Pql

kl¼0
α
ðqlÞ
kl

∂klϕðzlÞe−
1
8π

R
d2z∂ϕ∂̄ϕ:

ð2:33Þ

This integral can be written as

hIq1ðz1Þ…IqN ðzNÞi

¼
Z

Dϕe
R

d2z 1
8π∂ϕ∂̄ϕþϕ

P
N
l¼1

Pql
kl¼0

α
ðqlÞ
kl

ð−1Þkl∂klz δð2Þðz−zlÞ

ð2:34Þ

where we took the exponential insertions at zl inside the z-
integral by using the δ-functions δð2Þðz − zlÞ and integrated
kl times by parts for each derivative field ∂klϕ. This integral
is now the Gaussian integral with the linear source term

jðz; z̄Þ ¼
XN
l¼1

Xql
kl¼0

αðqlÞkl
ð−1Þkl∂kl

z δð2Þðz − zlÞ ð2:35Þ

and its value simply equals to that of the generating
functional

WðjÞ ¼ e
R

d2z
R

d2wjðz;z̄Þjðw;w̄ÞGðjz−wjÞ ð2:36Þ

with Gðjz − wjÞ ¼ − log jz − wj2 Substituting for jðz; z̄Þ,
integratingagainbyparts for each term in the sumtobring the
derivatives of the delta-functions into the delta-functions—
and finally integrating out the delta-functions, we obtain:

hIq1ðz1Þ…IqN ðzNÞi

¼ e
1
2

P
N
l1¼1

P
N
l2¼1

Pql1
kl1

¼0

Pql2
kl2

¼0
α
ðql1 Þ
kl1

α
ðql2 Þ
kl2

R
d2z

R
d2wδð2Þðz−zl1 Þδð2Þðw−zl2 Þ∂

kl1
z ∂kl2w Gðjz−wjÞ

¼
Y

l1;l2¼1;l1≠l2

ðzl1 − zl2Þ−α
qðl1Þ
0

α
qðl2Þ
0 e

1
2

P
N
l1¼1

P
N
l2¼1;l1≠l2

Pql1
kl1

¼0

Pql2
kl2

¼0

ð−1Þkl1 ðkl1þkl2
−1Þ!α

ðql1 Þ
kl1

α
ðql2 Þ
kl2

ðzl1−zl2 Þ
kl1

þkl2 : ð2:37Þ

This is the general answer. For example, applied to the three-point function of the rank 2 blocks, it gives:

hI2ðz1ÞI2ðz2ÞI2ðz3Þi ¼ ½ðz1 − z2Þðz1 − z3Þðz2 − z3Þ�
1
ρ4
ðρ2−

ρ2
3

ρ4
þQ

2
Þe

ρ2
3
ρ4
ð 1

ðz1−z2Þ2
þ 1

ðz1−z3Þ2
þ 1

ðz2−z3Þ2
Þþ6ρ4ð 1

ðz1−z2Þ4
þ 1

ðz1−z3Þ4
þ 1

ðz1−z2Þ4
Þ ð2:38Þ

where ρ2;3;4 are the eigenvalues of L2;3;4 respectively. Note
that the exponent only contains the even powers of the
inverse zij, as it should be (otherwise the answer would
have been unphysical since for close zi and zj interchang-
ing points would e.g. make an infinitely large exponent out
of infinitely small).

III. TODA GENERALIZATIONS AND Wn
SYMMETRIES FOR IRREGULAR

CONFORMAL BLOCKS

There was an insightful observation made in [10,14,15]
that, when the Liouville theory is extended to A2 Toda
model containing two copies of the scalar field, the

irregular conformal block of such a model possesses
additional symmetries related to Wð3Þ algebra. Therefore,
irregular state will be the eigenstate not only of Virasoro
generators Ln with q ≤ n ≤ 2q but also of eigenvalues of

the Wð3Þ
n generators with 2q ≤ n ≤ 3q. This property has

been demonstrated explicitly in the random matrix model
approach. However, its generalization to higher WðnÞ

symmetry remain somewhat uncontrollable, As we shall
demonstrate below, the whole construction and its gen-
eralizations become much more simple and transparent in
the vertex operator formalism using the manifest free-
field representation. The free-field representation for
irregular rank q conformal blocks involving r scalar
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fields, leading to irregular vertex operators of the type
(2.29), is given by

Iqjr ¼
X∞

Nð1Þ
1
…NðrÞ

q ¼0

λ
Nð1Þ

1
…Nð1Þ

q jNð2Þ
1
…Nð2Þ

q j…jNðrÞ
1
…NðrÞ

q
ðϕð1ÞÞNð1Þ

1

×…ð∂qϕð1ÞÞNð1Þ
q ×… × ðϕðrÞÞNðrÞ

1 …ð∂qϕðrÞÞNðrÞ
q :

ð3:1Þ

For simplicity, let us start from the most elementary
nontrivial case q ¼ r ¼ 2, relevant to the Wð3Þ IVO, whose
emergence was already observed in the matrix model
approach [14,15]. We shall look for the free field realization
of this block in the form:

I2j2 ¼
X∞

N1;N2;N3¼0;P1;P2;P3¼0

λN1N2N3jP1P2P3
∶

ϕN1

1 ð∂ϕ1ÞN2ð∂2ϕ1ÞN3

× ϕP1

2 ð∂ϕ2ÞP2ð∂2ϕ2ÞP3∶ ð3:2Þ

with the stress-energy tensor

T ¼
X2
i¼1

�
−
1

2

�
∂ϕiÞ2 þ

1

2
Qi∂2ϕi

�
ð3:3Þ

and the W3-current

jw ¼
X2
i;j;k¼1

ðνi∂3ϕi þ νij∂2ϕi∂ϕj þ νijk∂ϕi∂ϕj∂ϕkÞ ð3:4Þ

where the ν-coefficients will be determined below from the
condition that jw is a dimension 3 primary field.
The generating function Fðx1; x2; x3jy1; y2; y3Þ for I2j2 is

thus the function of 6 variables that is to be determined
from 3 Virasoro constraints and 3Wð3Þ constraints. We start
from the Virasoro constraints first. As in the case of a single
field, I2j2 is the eigenvalue of L2, L3 and L4 and, since it
does not contain higher than second derivatives of the Toda
fields, it is by construction annihilated by all higher Ln’s.
As before, consider the L4-eigenvalue problem first. As

before, by simple straightforward calculation the eigen-
value problem leads to the recursion.
The constraint ½L4; I2j2� ¼ ρ4I2j2 results in the relation

− 4
X∞

N1;N2¼0;N3¼2;P1;P2¼0;P3¼2

ðN3ðN3 − 1Þ

þ P3ðP3 − 1ÞÞλN1N2N3jP1P2P3
∶

ϕN1

1 ð∂ϕ1ÞN2ð∂2ϕ1ÞN3−2ϕP1

2 ð∂ϕ2ÞP2ð∂2ϕ2ÞP3−2∶

¼ ρ4
X

N1;N2;N3¼0;P1;P2;P3¼0

λN1N2N3jP1P2P3
∶

ϕN1

1 ð∂ϕ1ÞN2ð∂2ϕ1ÞN3ϕP1

2 ð∂ϕ2ÞP2ð∂2ϕ2ÞP3∶ ð3:5Þ

which is equivalent to the second order PDE for the
generating function:

ð∂2
x3 þ ∂2

y3ÞFðx1; x2; x3jy1; y2; y3Þ
¼ −

ρ4
4
Fðx1; x2; x3jy1; y2; y3Þ: ð3:6Þ

The general solution is given as

Fðx1; x2; x3jy1; y2; y3Þ ¼ eiαx3þiβy3Fð2Þðx1; x2jy1; y2Þ ð3:7Þ

with α and β coefficients satisfying

α2 þ β2 ¼ ρ4
4
: ð3:8Þ

Similarly, the second eigenvalue problem, ½L3; I2j2� ¼
ρ3I2j2, leads to the second PDE

ð∂x2∂x3 þ ∂y2∂y3ÞF ¼ −
ρ3
2
F: ð3:9Þ

Finally, the third eigenvalue constraint, ½L2; I2j2� ¼ ρ2I2j2
leads to the third PDE on F:

2ð∂x1∂x3 þ ∂y1∂y3ÞF þ ð∂2
x2 þ ∂2

y2ÞF
− ðQ1∂x3 þQ2∂y3ÞF ¼ −ρ2F: ð3:10Þ

The general solution of the three PDE’s (3.6), (3.9),
(3.10) is given in terms of the generating function

Fðx1; x2; x3jy1; y2; y3Þ ¼ exp

�
i
4

	
ρ2 − iQ1α − iQ2β −

ðρ3
4
þ λÞ2
α2

−
ðρ3
4
− λÞ2
β2

þ ξ

α



x1

þ i
4

	
ρ2 − iQ1α − iQ2β −

ðρ3
4
þ λÞ2
α2

−
ðρ3
4
− λÞ2
β2

−
ξ

β



y1

þ i

	ðρ3
4
þ λÞx2
α

þ ðρ3
4
− λÞy2
β

þ αx3 þ βy3


�
ð3:11Þ

and, accordingly, IVO is given as
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I2j2 ≕ e
i
4
fρ2−iQ1α−iQ2β−

ðρ3
4
þλÞ2
α2

−
ðρ3
4
−λÞ2
β2

þξ
αgϕ1þi

ðρ3
4
þλÞ∂ϕ1
α þiα∂2ϕ1∶ × ∶ e

i
4
fρ2−iQ1α−iQ2β−

ðρ3
4
þλÞ2
α2

−
ðρ3
4
−λÞ2
β2

−ξ
βgϕ2þi

ðρ3
4
−λÞ∂ϕ2
β þiβ∂2ϕ2∶ ð3:12Þ

where 3 constants: λ, ξ and one of α or β [related by (3.8)] are not yet fixed and must be determined from the remaining
W3-current constraints.
To apply the W constraint, we need to fix the coefficients in jw current (3.4) first. To make W3, jw the dimension 3

primary field, Generically, the OPE of Tðz1Þ with jwðz2Þ has the form:

Tðz1Þjwðz2Þ ∼ z−512 ð12νjQj − 2νjjÞ þ z−412 ∂ϕjð−6νj − 3νiji þ 3Qiν
ijÞ

þ z−312 f∂2ϕjð−6νj þ νjiQiÞ þ ∂ϕi∂ϕjð−2νij þ 3νijkQkÞg ð3:13Þ

(all the upper and lower indices are equivalent, distin-
guished merely for the convenience of the notations) To
make the W3-current dimension 3 we have four relations

6νjQj − νjj ¼ 0

−2νj − νiji þQiν
ij ¼ 0

−6νj þ νjiQi ¼ 0

−2νij þ 3νijkQk ¼ 0: ð3:14Þ

Note that νijk is symmetric by construction; a priori νij is
not necessarily symmetric, however, the last equation in
(3.14) imposes the symmetry condition on νij. The system
(3.14) is thus consistent, being the system of 8 linear
equations for 9 variables (an extra variable corresponds to
the overall normalization of jw, that is fixed by the
normalization of Wð3Þ-algebra). The jw current (3.4) is
thus completely fixed by (3.14).

The final step to construct the rank 2 IVO with Wð3Þ-
symmetry is to solve the eigenvalue problems for I2j2 with

respect to jw modes: jwðzÞ ¼
P

nz
−n−3Wð3Þ

n . Namely, I2j2
must be the simultaneous eigenvector of Wð3Þ

k with k ¼ 4,
5, 6 and annihilated by higher modes. As in the Virasoro
case, the annihilation constraint is automatically ensured by
the manifest form of the ansatz (3.2). The W-constraints on
I2j2 lead to extra 3 linear partial differential equations of the
third order on the generating function F, allowing us to fix
the remaining unknown constants in (3.11). Namely,
applying (3.4) to (3.2) and proceeding precisely as
explained above, we obtain the system of 3 extra differ-
ential equations on F. For the eigenvalue problem

½Wð3Þ
6 ; I2j2� ¼ ω6I2j2; ð3:15Þ

we have

�
3ν111∂3

x3 þ 2ν112∂2
x3∂y3 þ 2ν122∂x3∂2

y3 þ 3ν222∂3
y3 þ

ω6

8

�
Fðx1; x2; x3jy1; y2; y3Þ ¼ 0: ð3:16Þ

For the eigenvalue problem

½Wð3Þ
5 ; I2j2� ¼ ω5I2j2; ð3:17Þ

we have

�
ν111ð6∂2

x3∂x1 þ 3∂2
x2∂x3Þ þ ν112ð2∂x3∂y3∂x1 þ ∂2

x2∂y3 þ ∂x2∂x3∂y2 þ 2∂2
x3∂y1Þ

þ ν122ð2∂x3∂y3∂y1 þ ∂2
y2∂x3 þ ∂y2∂y3∂x2 þ 2∂2

y3∂x1Þ

þ ν222ð6∂2
y3∂y1 þ 3∂2

y2∂y3Þ þ
ω5

4

�
Fðx1; x2; x3jy1; y2; y3Þ ¼ 0: ð3:18Þ

And finally, for the eigenvalue problem

½Wð3Þ
4 ; I2j2� ¼ ω4I2j2; ð3:19Þ
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we have

�
ν111ð6∂2

x3∂x1 þ 3∂2
x2∂x3Þ þ ν112ð2∂x1∂x3∂y3 þ ∂x2∂x3∂y2 þ 2∂2

x3∂y1Þ þ ν122ð2∂x3∂y1∂y3 þ ∂x3∂2
y2 þ 2∂x1∂2

y3Þ

þ ν222ð6∂2
y3∂y1 þ 3∂2

y2∂y3Þ þ 3ν11∂2
x3 þ 6ν12∂x3∂y3 þ 3ν22∂2

y3 þ
ω4

4

�
Fðx1; x2; x3jy1; y2; y3Þ ¼ 0: ð3:20Þ

From the 3 PDE with the form F in (3.11) give the following algebraic constraints on the remaining constants:

3ν111α
3 þ 3ν222β

3 þ ν112α
2β þ ν122αβ

2 þ iω6

16
¼ 0 ð3:21Þ

3ν111α

�
ρ3
4
þ λ

�
þ 3ν222β

�
ρ3
4
− λ

�
þ ν112

�
α2

β

�
ρ3
4
− λ

�
þ β

�
ρ3
4
þ λ

��
þ ν122

�
β2

α

�
ρ3
4
þ λ

�
þ α

�
ρ3
4
− λ

��
þ iω5

8
¼ 0

ð3:22Þ

ν111

�
3

2
α2
�
ρ2 − iQ1α − iQ2β −

1

α2

�
ρ3
4
þ λ

�
2

þ 1

β2

�
ρ3
4
− λ

�
2
�
þ 3β

�
ρ3
4
þ λ

�
þ ξ

α

�

þ ν222

�
3

2
β2
�
ρ2 − iQ1α − iQ2β −

1

α2

�
ρ3
4
þ λ

�
2

þ 1

β2

�
ρ3
4
− λ

�
2
�
þ 3α

�
ρ3
4
þ λ

�
−
ξ

β

�

þ ν112

�
1

2
αβ

�
ρ2 − iQ1α − iQ2β −

1

α2

�
ρ3
4
þ λ

�
2

þ 1

β2

�
ρ3
4
− λ

�
2

þ ξ

α

�
þ β

α2

�
ρ3
4
þ λ

�
2

þ 1

β

�
ρ3
4
þ λ

��
ρ3
4
− λ

�

þ α2

2

�
ρ2 − iQ1α − iQ2β −

1

α2

�
ρ3
4
þ λ

�
2

þ 1

β2

�
ρ3
4
− λ

�
2

−
ξ

β

�
ν122

�
1

2
αβ

�
ρ2 − iQ1α − iQ2β −

1

α2

�
ρ3
4
þ λ

�
2

þ 1

β2

�
ρ3
4
− λ

�
2

−
ξ

β

�
þ α

β2

�
ρ3
4
− λ

�
2

þ 1

α

�
ρ3
4
þ λ

��
ρ3
4
− λ

�
þ β2

2

�
ρ2 − iQ1α − iQ2β −

1

α2

�
ρ3
4
þ λ

�
2

þ 1

β2

�
ρ3
4
− λ

�
2

þ ξ

α

��
þ 3ν11α

2 þ 3ν22β
2 þ 6ν12αβ þ

iω4

4
¼ 0: ð3:23Þ

This system of cubic algebraic equations fixes the remain-
ing coefficients and fully defines the Virasoro and W3

irregular vertex operator.

IV. CONCLUSION

In this paper we have constructed an explicit form of the
irregular vertex operator with Virasoro and W-symmetry.
Given the irregular vertex operators, constructed in this
work, it is straightforward to read off the associate Penner
type potentials whose random matrix model has the
Seiberg-Witten curves corresponding to the 4d gauge
theories. Although in the text we limited the explicit
examples to the Virasoro cases and to the W3-case of rank
2, it is not difficult to see the pattern for the general WðNÞ
with arbitrary rank q. The vertex operators would generally
contain N − 1 Toda fields and involve the derivatives of
orders up to q:

INjq ≕ e
P

N−1
a¼1

P
q
k¼0

αajk∂kϕðaÞ
∶ ð4:1Þ

This IVO again generates the simultaneous eigenstate
of Ln for q ≤ n ≤ 2q with eigenvalues ρn (annihilated

by the higher Ln’s) and of the expansion modes WðsÞ
n for

ðs − 1Þq ≤ n ≤ sq with eigenvalues λðsÞn (annihilated by

higherWðsÞ
n ). TheW current with the integer spin 3≤ s≤N

has the form

jðsÞw ðzÞ≡X
n

WðsÞ
n

znþs

¼
XN
r¼1

X
sjp1…pr

X
fa1;…;arg

νðsÞa1…arjp1…pr
∂p1ϕða1Þ…∂prϕðarÞ

ð4:2Þ

where the sum is taken over the ordered partitions of
s ¼ p1 þ � � � þ pr; 1 ≤ p1… ≤ pr with the lengths 1 ≤
r ≤ N and 1 ≤ a1 ≤ a2…: ≤ ar ≤ N − 1. The coefficients

νðsÞa1…arjp1…pr
are determined by N − 2 systems of linear
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algebraic equations (one per each s) stemming from

the primary field constraints for each jðsÞw . Once the
ν-coefficients are fixed, the αajk coefficients are related

to νðsÞa1…arjp1…pr
and the eigenvalues ρn and λðsÞn by the

system ðN − 1Þðqþ 1Þ algebraic (nonlinear) equations,
exactly matching the number of the coefficients.
These algebraic constraints altogether (for ν and for α)

fully determine the WN irregular blocks related to the
degree N Seiberg-Witten curves in Argyres-Douglas the-
ories. Given the coefficients in the irregular vertex oper-
ators, it is straightforward to establish their relation to
eigenvalues of Virasoro generators and W generators. For
simplicity, we shall demonstrate it for the Wð3Þ irregular
vertex operator of an arbitrary rank. However, the compu-
tation below is straightforward to establish for the arbitrary
n case. Let us consider the irregular vertex operator (4.1)
for the Wð3Þ-case and expand it in series of ϕ and its
derivatives:

I3jq ≕ e
P

2

a¼1

P
q
k¼0

αajk∂kϕðaÞ

¼
Y2
a¼1

Yq
ka¼0

X∞
Najka¼0

ðαajka∂kaϕaÞNajka

Najka!
: ð4:3Þ

Applying the stress-energy tensor to (4.3) and reexponen-
tiating we obtain for ½Lr; I3jq� ¼ ρrI3jq with q ≤ r ≤ 2q
where

ρr ¼ −
X2
a¼1

X
paþqa¼r;0≤pa;qa≤q

ðpaÞ!ðqaÞ!αajpa
αajqa

þQ
2
ðpa þ 1Þ!αajpa

δpajq: ð4:4Þ

Finally, applying ½Wð3Þ
r ; I3jq� ¼ ωrI3jq we have

ωr ¼ −
X2
i;j;k¼1

� X
miþpjþqk¼r;0≤mi;pj;qk≤q

σijkνijkmi!pj!qk!αijmi
αjjpj

αkjqk

þ
X

miþpj¼r;0≤mi;pj≤q−1
mi!ðpj þ 1Þ!αijmi

αjjpj
þ ðrþ 2Þ!νiαijr

�
ð4:5Þ

where σijk is the symmetric factor, symmetric in the i, j, k
and σ111 ¼ σ222 ¼ 3!, σ112 ¼ σ122 ¼ 2!. The relations (4.4)
and (4.5) reproduce those obtained earlier in [18] using a
different approach, by direct application of the operator
product expansion to the colliding limit of regular vertex
operators.
It is straightforward to check that the irregular states

created by the irregular vertex operators are coherent, i.e.
are the eigenstates of the spin 1 conserving current ∂ϕ (note
that, just as spin 2 conserving current TðzÞ, conserving spin
1 is not a primary field if Q ≠ 0). Indeed, expanding the
general irregular operator (4.1) in series similarly to (4.3)
and reexponentiating, it is easy to verify the OPE

∂ϕðbÞðzÞINjqðwÞ ¼ −
Xq
k¼0

αbjkk!
ðz − wÞk INjqðwÞ þ regular ð4:6Þ

from which the coherent state property follows.
The exponents for the irregular vertices of the type (4.3),

whose explicit examples have been constructed in our
work, can of course be expanded in powers of the
derivatives of ϕðaÞ, leading to combinations of these

derivatives acting on regular vertex operators e
P

a
αaj0ϕðaÞ

in Toda theories. These terms can be classified according to
total conformal dimensions h carried by the derivatives

acting on the regular vertex. Each dimension h’s contri-
bution to the expansion can be cast as some combination of
products of the negative Virasoro and W-current modes

∼L−h1…L−hpW
ðs1Þ
−hpþ1

W
ðsqÞ
−hpþq

acting on the regular vertex.

where hk; k ¼ 1…pþ q are the elements of the length
pþ q partitions of h.
This generalizes the expansion of the irregular states in

terms of the Virasoro descendants of the primaries
created by regular vertex operators, discussed in
[10,14,15] to WðNÞ-case. Note that, in this descendent
expansion approach, the expansion coefficients were not
completely fixed even in the rank 2 Virasoro case from
the eigenvalue constraint. One needs further consistency
conditions with the lower Virasoro mode [12]. As seen in
this free field approach, the expansion coefficients for the
irregular vertex operators should be determined com-
pletely without resorting to other conditions. The diffi-
culty simply is related with the fact that if the descendent
decomposition has more variables than the number of
eigenvalue constraints.
The irregular vertex operators and the irregular blocks,

studied in this paper, appear to be quite fascinating objects
by themselves, and may be of interest far beyond AGT
conjecture and Liouville/Toda theories. First of all, from the
AdS=CFT point of view it seems plausible that the irregular
blocks may be string-theoretic duals of some important
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classes of local composite operators on the gauge/CFT side,
e.g. such as ∼Tμ1ν1…Tμnνn . On the other hand, the operators
of this sort must correspond to higher spin modes in AdS
with mixed symmetries. As Tμν is the CFT dual of the
graviton vertex operator [19], the operators like ∼Tn can be
understood as the colliding limit of n gravitons, i.e. a rank n
irregular block, generalized to string theory. Being non-
primaries, these objects are of course not in the Becchi-
Rouet-Stora-Tyutin (BRST) cohomology and therefore are
essentially off-shell. On the other hand, they constitute a
subclass of operators which is far richer than the subspace
of primaries, but appear to have very nice and controllable
behavior under global conformal transformations. As such,
they may play an important role in string field theory (SFT),
being crucial elements for finding new classes of analytic
solutions. Given that SFT is currently our best hope to
advance toward background independent formulation of
string theory, and that analytic solutions constitute a crucial
ingredient in such a formulation, one can anticipate that the
irregular blocks may be of importance and interest in

describing various nonperturbative backgrounds in string
theory (such as collective higher spin vacuum states).
Ultimately, the deeper understanding of the irregular blocks
may be an important step toward understanding the inter-
plays between two-dimensional and four-dimensional the-
ories which at the moment still largely retain the status of
conjectures.
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