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Supersymmetric electric-magnetic duality in D=3+ 3 and D=5+5
dimensions as foundation of self-dual supersymmetric Yang-Mills theory
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We present electric-magnetic (EM)-duality formulations for non-Abelian gauge groups with N =1
supersymmetry in D =3+ 3 and 5 + 5 space-time dimensions. We show that these systems generate
self-dual N = 1 supersymmetric Yang-Mills (SDSYM) theory in D = 2 + 2. For a N = 2 supersymmetric
EM-dual system in D = 3 + 3, we have the Yang-Mills multiplet (A”[ ,A2") and a Hodge-dual multiplet
(B,u,' . xa"), with an auxiliary tensors C,,,,,’ and K. Here, I is the adjoint index, while A is for the doublet
of Sp(1). The EM-duality conditions are F,,/ = (1/4!)¢,,”*"G ;' with its superpartner duality condition
A4l = —y4!. Upon appropriate dimensional reduction, this system generates SDSYM in D = 2 + 2. This
system is further generalized to D = 5 + 5 with the EM-duality condition F,, = (1/8)¢,,” " *G,, .,/
with its superpartner condition A/ = —y/. Upon appropriate dimensional reduction, this theory also
generates SDSYM in D =2 + 2. As long as we maintain Lorentz covariance, D = 5 + 5 dimensions
seems to be the maximal space-time dimensions that generate SDSYM in D = 2 + 2. Namely, EM-dual
system in D = 5 + 5 serves as the Master Theory of all supersymmetric integrable models in dimensions

1<D<3.
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I. INTRODUCTION

In our recent paper [1], we have presented electric-
magnetic (EM) duality for non-Abelian gauge groups in
D =341 and D =9 + 1 space-time dimensions. These
formulations are based on the recently developed “‘tensor-
hierarchy” formulation for non-Abelian tensors [2—4]. The
EM-duality conditions are such that F,,/ = (1/2)e,,”°G "
inD=3+1orF,'=(1/81)¢,” "G, ,"inD=9+1,
where G,,’ or G, ., ' is a new field strength dual to

the original Yang-Mills (YM)-field strength F uvl , with the
adjoint-representation index /. Before the discovery of
tensor hierarchy [2] and its elaborations [3,4], such for-
mulations with non-Abelian tensors were problematic
because the naive definition of the field strengths G,w’ =
2Dy B, or G,,..,..' =8Dy, B, ., " with the adjoint index
I led to inconsistencies [5].

The tensor-hierarchy formulation was first discovered in
Ref. [2], as the generalization of E4) symmetry for D =
4 + 1 maximal supergravity. Afterward, tensor hierarchies
more elaborated in Ref. [3]. For our purpose, the approach
of our recent paper [4] in four dimensions is of special
relevance. New ingredients in Ref. [4] compared with
the previous works in Refs. [2] and [3] can be sum-
marized as follows. First, the tensor-hierarchy formations
originally presented in Refs. [2] and [3] were either for
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nonsupersymmetric general bosonic systems, or super-
symmetric theories in dimensions such as D =241,
D=4+1 or D=5+1, different from D=3+ 1 of
Ref. [4]. Second, in our paper [4], we presented an explicit
formulation for the supersymmetric non-Abelian tensor in
four dimensions, with the sophisticated combination of three
multiplets: (i) vector multiplet (A,’, A7), (ii) non-Abelian
tensor multiplet (B,,”, x', ¢'), and (iii) compensator vector
multiplet (C,, p’). Even though our system in Ref. [4] is
covered as a special case of more general (but not
necessarily supersymmetric) formulations in Refs. [2]
and [3], we stress that the nontrivial feature of our system
emerges for its supersymmetrization. This is because fixing
an actually working supersymmetric system is a highly
nontrivial procedure in practice. We have carried it out in
Ref. [4] by an explicit supersymmetric non-Abelian system
in four dimensions with the combination of the aforemen-
tioned nontrivial three multiplets.

We emphasize the importance of non-Abelian tensors in
these duality relationships. There has already been con-
siderable research since the 1990s on Abelian duality
symmetries in the case that the relevant tensors carry no
adjoint indices. (cf. Refs. [6,7], and [8]) For example,
Ref. [6] discusses the duality symmetries between the
conventional flux tensor fields and its Hodge duals in
supergravities in D =9+ 1 and D = 10+ 1. In Ref. [7],
the so-called democratic formulation of equal treatments
among tensor fields of different ranks in D8-O8 domain
walls is presented. Reference [8] deals with Hodge dualities
of various forms in (half-)maximal supergravities in diverse
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TABLE L
indices to save space. The symbol =
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Field content of EM-duality formulations. The symbol [n] is for the totally antisymmetric space-time
is for an equality associated with duality.

Space-time SYM HDM Auxiliary tensors Bosonic EM duality

D=3+3 (A", 24" (Basp' 2a") Casps's Kas Fol = + 18 [‘af?ﬁ]

D=54+5 Al 3 o ol -1 N p oA
(45749 (B, 2) “a Ka Fpo' = +gelG s

dimensions. However, the works [6,7], and [8] are all based
on Abelian-type duality symmetries between tensors with-
out adjoint indices. Note that the realization of duality
symmetries among non-Abelian tensors became possible,
only after the consistent formulation of tensor hierarchy
was discovered in Ref. [2] and elaborated upon in Refs. [3]
and [4]. In other words, tensor-hierarchy formulation in
Refs. [2,3], and [4] motivates us to study the duality
symmetries among non-Abelian tensors, as the next natural
and important step.

Independent of tensor-hierarchy formulations [2-4],
considerable development for self-dual supersymmetric
Yang-Mills (SDSYM) theories in D = 2 + 2 space-time
dimensions was accomplished in Refs. [9,10], and [11].
This research direction is traced back to the original
conjecture by M. Atiyah [12] that self-dual Yang-Mills
theory in D =2+ 2 generates all bosonic integrable
models in 1 < D <3 as the Master Theory. This original
conjecture for purely bosonic systems [12] was further
supersymmetrized in D = 2 4 2 in the mid-1990s [9,10].

SDSYM in D =2 + 2 was also investigated from the
viewpoint that SDSYM in D = 2 + 2 is nothing but the
consistent background [13] for the N = 2 superstring [14].
Thus, SDSYM in D = 2 + 2 [9,10] was motivated by two
important concepts: (i) Master Theory of all supersym-
metric integrable models in 1 < D < 3 and (ii) consistent
backgrounds for N = 2 superstring theory.

The self-duality F,,' = (1/2)¢,,°F,,' in D =242
was further generalized to higher space-time dimensions,
such as six, seven, and eight dimensions with reduced
holonomies SU(3), G,, and SO(7) [15,16]. These reduced
holonomies are required, due to the absence of the € tensor
with only four indices in these higher space-time dimen-
sions. By introducing reduced holonomies, self-dual con-
ditions are modified to F,,' = (1/2)y,,”°F,," in eight
dimensions, where the € tensor in D = 2 + 2 is replaced by
the octonion structure constant y,,”° with only four
indices. These formulations were further supersymmetrized
in our paper [17], as SDSYM multiplets in 6 < D < 8. Itis
not surprising that the quest for the Master Theory of
supersymmetric integrable models is reaching out to higher
and higher space-time dimensions.

On the other hand, our recent paper [1] has shown
that the non-Abelian EM duality works not only in D =
341 but also in D =9 + 1 space-time dimensions [1].
Considering these new developments in the last 20 years,

the next natural step is to consider EM duality in higher
dimensions such as D =5 + 5 that generates SDSYM in
D =2+ 2. In other words, it is imperative to seek EM-
duality formulations in higher dimensions with the aim of
establishing the more fundamental Master Theory yielding
SDSYM in D = 2 + 2 or supersymmetric integrable mod-
elsin 1 < D < 3. The important point here is that the space-
time signature D =5+ 5 is different from D =9 + 1,
which has been already studied in Ref. [1].

In this paper, we take the initial first step in the direction
of supersymmetric EM duality in diverse dimensions
with space-time with nonconventional signatures, such
as D=3+43 or D =5+ 5. We first construct N = (1,0)
supersymmetric EM-duality formulation in D =343
space-time dimensions. Our field content consists of the
usual supersymmetric YM multiplet (SYM) (Aﬁl )
a Hodge-dual multiplet (HDM) (Bw ' 7a"), in addition
and K ap- The (bosomc) EM-

(1/4v)e 000G 1 2 with

to auxiliary tensors C, ﬁ»;,
1 i
- /)o"rﬂ ’

duality condition is F

its superpartner condltlon AA = — 74", We show that by
imposing a set of dimensional-reduction conditions [18]
relating the SYM and HDM the usual N =1 SYM in D =
2 4 2 space-time dimensions emerges.
We next generalize this result to EM-duality formulation
in D=5+5=10. Our field content is a SYM (Aﬁ’,;ll), a
HDM (BA m’ ,#'), in addition to the auxiliary tensors
C .o land K, 4,1~ The (bosonic) EM-duality condition is
/’1 /’sG

A,}a =+ (1/81&;
dition A/ = — 3'. Upon 1mposing appropriate dimensional-
reduction rules, this system again yields N =1 super-
symmetric SDSYM in D =2 + 2. The field contents in
D =343 and D =545 space-time dimensions are
summarized in Table 1 below.

This paper is organized as follows. In the next section,
we present the EM-duality formulation in D =3 + 3. In
Sec. III, we perform the dimensional reduction of this
EM-duality formulation from D = 3 + 3 into SDSYM in
D=2+2 1In Sec. 1V, we present the EM-duality

,A,g’ with its superpartner con-

'"We use the hat symbols for fields and indices associated with
higher space-time dimensions, in order to distinguish them from
the corresponding ones in D =2+ 2. This is the same con-
Ventlon as in Ref. [18]

*We use the symbol = = for an equality related to dualities.
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formulation in D =5+5. In Sec. V, we perform its
dimensional reduction into SDSYM in D =2 + 2. The
concluding remarks are given in Sec. VI. Appendix A is
devoted to the notational clarifications in D =2 +2, D =
343 and D =5 + 5 space-time dimensions. Appendix B
is presented for establishing the notation for D =4 4 2
and D =8 + 2.

II. EM-DUALITY FORMULATION IN
D =3+ 3 SPACE-TIME DIMENSIONS

We first present our EM duality in D = 3 + 3 space-time
dimensions. Our field content is the SYM (AAI ,A41) and
HDM (B;;,", 74"), with auxiliary tensors Cj, 55" and K.
These auxiliary tensor fields are needed for the tensor-
hierarchy formulation [2—4]. The “hat” symbols are used
for fields and indices in D =343, distinguished
from those in D =2+ 2 space-time dimensions.” The
indices 1,J,... = 1,2,...,dim G are for the adjoint repre-
sentation of the YM gauge group G. The indices A, B, ... =
(1),(2) are for the 2 of Sp(1), and they are contracted
by the Sp(1) metric €45, where €(1)(2) = —€(2)1) =€V =
—¢@() = 41, The fermions A,’ and 7,/
Weyl spinors with the
(+j“A[’ +)?A[)'

Our N = 2 supersymmetry transformation rule is*

are both Majorana-

chiralities  7,(A,, 241) =

8oAy" = +(E7A4") = +(E7,A"). (2.1a)
5Q’A1A = ——(}A’W@A)Apa ) (2.1b)

SoBusy' = +(&uspd") + 3K s (G752, (2.1c)
Sola' = +2—14 (#°7%24) G555 (2.1d)
80Chops’ = =45 (&7 ) By 5%, (2.1e)
80K =0 (2.1f)

As in Eq. (2.1a), the contracted Sp(1) indices are omitted

for simplicity. Our field strengths F,G,H, and L are
defined by

Pl = +20pAn" + mflUKA, ALK

ab

(2.2a)

‘We repeat the same hat symbols also in D = 5 + 5 in Sec. IV.
Our conventions are (#,,) = diag(+,+, —, —, +,—), where
i, 0,...=1,2,...,6. For other relationships, see Appendix A.
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Gﬁpﬁ&IE‘F“'DmBDpG] +mCﬁ,;[,5. 6K[/“,FAA]
(2.2b)
Hyopor' = 45D Copon +10fVKF 7 Byon®,  (2.2¢)
I:ﬁf’f’ = +38[MKD/J] (22(1)

These field strengths satisfy their proper Bianchi identities
(BIds):

D[ﬁﬁflﬁ][ = O, (233)
A oA 1 .
D[;)Gﬂf)ﬁ%][ = —|—§mHﬁw3% 2L/41/[)F ] (23b)
[) H I — 5 IJKF JG K 23
pHspeen) = T35 i Gpaey - (2.3¢)

Note that the right side of Eq. (2.3c) vanishes upon the use
of EM duality in Eq. (2.9a) below. The arbitrary variations
of our field strengths are

6F ;" = +2Dy (A", (2.4a)
5Gfu?/36’ +4DU’( Dpé ]I) + m(SC‘,;,;,A,;,I)
—6(6K35)Fys — 4(5/3@’)1; s (2.4Db)
8Hyspos' = +5Dp(8C; p54") = 10fVK (8B 5," ) F o™
+ 5K (BAL) Gy pox . (2.4¢)
8L 5" = +30,(5K ;). (2.4d)
where
8Bysp" = 6By, — 3(6A,")K . (2.5a)
6Cpops’ = 0C0p5" +4fVK(AR")B; 5. (2.5b)

Accordingly, the , transformations of our field strengths
are

S8oF 5" = =2(&9Dy "), (2.6a)

80Gisps’' = — HEpapDad’), (2.6b)
5QH,2,;[;&% = —IOfHK(EA 5 Aﬁﬁj)f«‘&ﬂ’(

+ 5K Epp)Gopan.  (2.60)

Note that Eq. (2.1e) leads to 5chusﬁa = 0 so that the m-

linear term in 5QG,; 556 is absent. Also, the (6oK)F and
(89A)L terms in Eq. (2.6b) vanish, when the duality-related
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equations (2.9) below are used. Eventually, only one term
with D 7 remains.

Following the general tensor-hierarchy formulations
[2-4], the YM-gauge and proper gauge transformations
for A,B, C, and K fields are

5TAﬁ[ - Dﬁ&l,
81(Busy'. Cosp' Kpp) = —mflKad (B ,K. Cp5,%,0),
(2.7a)
Su(A Basy Crops' Kp)
= (0.3DpBsy" . —6 /YK F " By 0 <. 0). (2.70)

fu”/) =(0, —m?ﬁaﬁ],“f)[ﬁ%ﬁa]l,o),
(2.7¢)

A

Sk(A Byoy! Casps' Kp) = (0, 3k Fy 5. 0,20pk7).
(2.7d)

Note that SKB,; s ﬁ’ # 0. It is straightforward to confirm by

Eq. (2.4) that all the field strengths F, G, H, and L are
invariant under &y, oy, and Jk.

The closure among &y, 67, 6y, Oy, and g are
confirmed as

[5Q1 ’6Q2] = 5}’3 + 6T3 + 5U3 + 5V3 + 5K3»

"3 D ~ Y. 3
a0 = =8B, aopt =—5Cs00"
& =-8Ky;, + &, (2.8a)
[60.60] =6v. Ty’ = —3f”K(é?[ﬁjj)ﬂyp]K, (2.8b)
[60.6k] = by, Bui' = +2(é}’[ﬁ;11)f<z:]v (2.8¢)
[67,.61,] = Or,. oy = —f"*ajaf, (2.8d)
[60.67]) = [60. 6y] = 67,6y = 67, 6v] = [6y. y]
= [5U175U2] = [5v175v2] = [5K175K2]
= [67. 6] = [6y.6k] = [6v. k] = 0. (2.8¢)

These are just parallel to the EM duality in D =3+ 1
and D =941 in Ref. [1].

The most important supersymmetric EM-duality con-
ditions and field equations in D = 3 + 3 are’

*We use the symbol = for a field equation.
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R | PP
I * A DET 1
po' = €T Gpais
' (2.9a)
G I* 1, pofr 1
aops 56,23,3& pé s
Ia' = =4l (2.9)
A A D A
DyF" = + ~mflUK (3 7,25), (2.9¢)
pil=0, By =o, (2.9d)
N « 1 . ~
HMDPGTI =+ Ef”K(/l 7ﬁﬂﬁ&%’1[()’ (296)
L,,=0. (2.9f)

The consistency of Eq. (2.9) with N = 2 supersymmetry
(2.1) is easily confirmed by varying the former under the
latter transformation. A typical nontrivial case is Eq. (2.9e):

? A~ 1 N A
0=14¢ |:Hﬂ13f)?r%1 — > R ﬂDﬁ&%’lK)]
= +10f”K(é}A’Wﬁjj)F&%]K + 5fUK<§}A’[ﬁ/Alj)Gaﬁaf]k

1 5. 4
- f”K {5 (Wﬁw)ijj] 7;20/”;&%/1[(

=S EP o pah) Vg™ = 10K (8955507 ) F 5]
(2.10)

As is easily seen, the duality-associated relations and field
equations in Eq. (2.9) are similar to our EM duality in
Minkowskian D = 5 + 1 dimensions [1].

Some of the duality-related equations in Eq. (2.9) are
also used for the closure of gauge algebra. For example, in
the commutator [8y ,80,]Cs555', We need a sophisticated
relationship,

[_4f”K(é_27A/[ﬁ;1])(élyﬁﬁ&])?K)] - (1 <2)

* 1 203 A ~ * [P

= +§fUK§ (A P2aopsh’) = + EHzppps’s  (2.11)
where use is made of the duality-related Eqgs. (2.9b) and
(2.9e). Relevantly, we have also used the nontrivial gamma
identities,

(2.12)

where the spinorial indices a, 13, ¢, d carry the same
chirality in D = 3 4 3. Equation (2.12) is confirmed by
multiplying it by two independent matrices for the indices

b e, namely, (7)2¢ and (7/@W)be.

105041-4
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III. DIMENSIONAL REDUCTION FROM
D=34+3TOD=2+2

Our dimensional-reduction rule from D = 3 + 3 into
D = 2 + 2 is summarized as

Al=at Al=0 (@=56).  (3.la)
PO /ITA[ AT )(TAI
= Ik Xa = Ik
Aa XA
. [ €
oA :( TA), (A.B.--- = (1),(2)). (3.1b)
(:‘lA
0 1 * 7 1 __ 1 1
oy =he =54
2
i Eae = = 3e)
1) =XLE) > Nk
1
Erl) = €] (2 = —F€, Mo ==, =), (3.1d
(1) 1) /A rs(4.x') = ( 2'), )
ho' =k =ne' =0’ =ee =e0=0.
(3.1e)
(?u)&b = (},ﬂ)ahézl (ln] - Tv ‘L)
(Aﬁ)ab ; (?S)ab = (VS)ab(Gl)tj’ (31f)
(76)a” = i(rs)."(02)
(77)a" = P1o3ase)a” = —(rs)a"(03) /.
éai, = Cab(o'z)ij = +éb&’ (3.1g)
(Aﬂ)&l;:(Yu)ab(JZ)ij: (Aﬁ)éa’

ba
3.1h)
Biss' =A,1 B, =0, B,, =B, (3.1
é;wSG =2m 13[,/\»] , C/u/pal = mepal =0, (3.1j)
K,=ZK,n=0, Ky=+1, (3.1k)
8By’ = +i(Erupr') = +€u,"(00A,").  (3.11)

For space-time indices, we use fi = (u,a),0 = (v, /), -+,

where p,v,---=1, 2, 3, 4, and a,p,--- =15, 6. For
fermionic indices, we use a= (a, i),@ =(b,j),
a,b,---=1,2,....4,and i, j,--- = 1, |. The equality with

= is associated with dimensional reductions, EM, or Hodge
dualities. The charge-conjugation matrix C apinD=3+3

PHYSICAL REVIEW D 93, 105041 (2016)

is symmetric, consistent with the flipping property (A4a).
The charge-conjugation matrix in D =2 + 2 is antisym-

metric: C,, = —Cp,. Accordingly, we also have®
F I * 1 po 1* 1
G/u/56 = +§€/w Fpa :F/w ’ (328')
F.' =F.,4 =0, (3.2b)
G/Aupo'l = 01 ﬁuupo‘al = I:I;wp561 = 01 (320)
Lyy=Lua=L,s56=0, (3.2d)
Pil=0, DBy=0 (3.2¢)

In particular, the SDSYM conditions in D = 2 4 2 [10] are
satisfied,

Ful = 436 Foll, v = =), (33)
with N = 1 supersymmetry

SpA, = —i(ey,A"). (3.4a)

5ol = —% (Pve)F . (3.4b)

As atypical example of our dimensional reduction, consider
A1 17.
0pA, "

?

~ TAA A AR ~ Y
5QA/4[ = 5QAﬂI = (GAYMAI) = 224 (7)a 13’le

. 0 —i\ [ M4
:—@A,QA
E ”“(H 0)(@’)

= +i(ery,Aa") = i(8,7,414")
= —iErde’) = iEendm')

e ) )
(Q.E.D.). (3.5)

A nontrivial example is Eq (3.11) confirmed as

®The symbol = is used for field equations.
"The symbol = is used for equalities under question.
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5QB/AL//)I =+ (EA?uup}?Al) + 3f<[m/| (éA?|p]/1AI)

* o 0 —i )(TAI
=ty o ) (i)

=+iE )Yt 1)) HiE @ et 1))

= (G5 e () (G5 e ()
=i upr) = +€u,° (6pA,") (Q.E.D.).
(3.6)

The consistency of this with G =0in Eq. (3.2¢) is also

confirmed as

uvpo

0= 5QGIM//70] = +4D[}4|(5QB\D/J0']1) + m(éQC/wpo‘[)
- 6(6QkU¢U)FP6]I - 4(57/&1\11)[:\14)6]
= +4D[}4 [+i(éyupa])(l)]

= +i€,,(EDy') =0 (Q.ED.)., (3.7)

where the y-field equation (3.2e) has been used.
The crucial role by the nonzero value Ksq = +1 (3.1k) is

played in (A},M(,I :
?

F 1 = G;UJSGI ; + 28[}4311]561 + szl‘,KAﬂJADK

uv

+ méﬂy%] - IA{SGFMDI (383)
= +28[HAD]I + 2mf”KA”JAyK + 28[1114”]1 - F;wl
—F,! (Q.ED.). (3.8b)

In particular, Ksq = +1 contributes to the last term in
Eq. (3.8a). It is also interesting that the rank 2 of K ap
coincides with that of the two extra dimensions accom-
modating kaﬂ = €qp-

As for H ﬁl...ﬁgl , all of its components become zero as in
Eq. (3.2¢), despite the A-bilinear term (2.9¢) in the original
D =3+ 3. This is because there is no A-bilinear term
sandwiching an odd number of y matrices by A/ with the
negative chirality in D =2 + 2.

The dimensional reduction for the fermionic fields A’ and

Al ¥ A
7' = —# also works,

PHYSICAL REVIEW D 93, 105041 (2016)

The nonzero components are Spiq(1)! = (1/v/2)8pA and
Sody)! = (1/ \/E)ég/ll , so that both of them consistently
yield (3.4b), as desired. As for §p%, it is just parallel to
6Q/A11 because 5Q;?’ in Eq. (2.1d) already is equivalent to
—5Q/A11 in Eq. (2.1b) by the use of the duality (2.9a). So, its
confirmation is skipped here.

IV. EM-DUALITY FORMULATION IN D=5 +35

We can generalize the field-content patternin D = 3 4 3
to D =545 space-time dimensions, based on general
tensor-hierarchy formulation [2—4]. Our field content is the

SYM (A,’,7") and HDM (B [7A]I ,#'), with auxiliary tensors
C[a’ and K [6A]' The fermions have the positive chirality:
yi1(A,x") = +(A', ¥). Note that the rank 6 of the K field is
the same as the number of extra dimensions, six out of ten
dimensions.

Our supersymmetry transformation rule is

~

oA = +(E7,4"). (4.1a)

5 1,
Soa = +5(F7e)F,,", (4.1b)
5QBH1"'ﬁ7I = +(éAu] -/27)?1) + 7K[ﬁ] s (é‘}mﬂﬁ, (4.10)
bof! =~ (FIR)G L = ~ L0y (414)

ol 8 2 o &
80C " = =875 (873, 47) By, <. (SQC[QI —0),

(4.1e)
5K;, -, = 0. (4.1)

Similar to D = 3 + 3, the field strengths F,G, H,and L are
defined by

Fopl = +20pA50" + mfUKA, ALK, (4.2a)
A I _ AR i P I r A
Gfll“'ﬁs = +8DW1B/}2'“/A48] + mcﬁl‘“ﬁs - 28K[f41‘“f45 Azfs]
(4.2b)
Hy, 5" =+9Dy, Gy ) + 3615 Fy 5. By X
(4.2c)
Lﬁ]...ﬁ7 = +76m1Kﬁ2...ﬁ71 (42d)
These field strengths satisfy their proper Blds
Dmﬁap][ =0, (4.3a)
” A 1 . n N
I _ I i
D[ﬁlGﬁz“'%] = +§m g T 4L[f41"'l77 figito] > (43b)
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2 I K
D[ﬁlHﬁz ] =+3 f”KF[#lﬂz G 3oflio]

(4.3¢)
Note that the right side of Eq. (4.3c) vanishes under the EM
duality (4.9a) below.

Compared with D = 3 4 3, there are differences as well
as similarities. Similarities are such as the number of
multiplets: SYM and HDM, in addition to the auxiliary
fields C and K. The difference is that the rank of the B, C ,
and K fields are increased. Other features are parallel to the
D = 3 4 3 case, such as the general variations of our field
strengths,

8F 5" = 42Dy (84,"), (4.4a)
8Gy,.a," = +8Dy;, (8B, )+m(36‘f,]..ﬁ81)
- 28<5K[141 ﬂs) ﬂ7ﬂ8] - 8(5A[ﬁ11)Lﬁ2'“ﬁs]’
(4.4Db)
SH;,.," = +9Dyp, (6C;,.5,)") = 365 (5B, " )
+9fK(8A, )Gy K. (4.4¢)
5i’f41"'ﬁ7 = +7a[ﬁ] (5Kl42'“ﬁ7])’ (44d)
where
SBQI..A,%[ = 53,”4] 771 - 7(6A[ﬁl )Kﬂz ﬁ7] (45&)
6Cp . p = 0C; 5 + 8K (8Ap, )B4k, (4.5b)
Their 6, transformations are
SoFys! = —2(&7uDyl"). (4.6a)
A % o(3n I
860G, pg = — 8(€7 Viyiin D ]/1 ) (4.6b)
SoHpz," = =368 .4 ) Fagi®
+ 9f”K(€7[ﬁ]/11) flz"'ﬁg]K’
SoL ~=0. (4.6¢)

[7]

Asin D =3 + 3, the m5,C, (5,K)F, and (5,A)L terms in
Eq. (4.6b) all vanish, when the duality-related equa-
tions (4.9) below have been used, leaving only one term.

Slmllarly, the YM- -gauge and proper gauge transforma-
tions for A, B, C, and K fields are

A

8rA;" = Dyal,
or(BA.C K ~) = —mflKe! (B K, C[SA]K, 0).

4.7a
7 8 e 7] ( )

PHYSICAL REVIEW D 93, 105041 (2016)
D 1 _ 2 P 1
5UB/71 7 +7D[f41ﬁﬁz )

oy il :_zgfleF[lllﬂzj/}m ﬂs ’ (47b)
5V g ﬂs +8D[}11yﬂ2“‘ﬁ8]l’
5\/3;}1,.,,271 = —my,;l...;hl, (470)
5KK i — +68[/41 fo ﬂs]
5KB/4| 7 *+21K[M1 fis ﬂ6ﬂ7] (47d)
To save space, we skipped other invariants, such as

5UA/21 =0. As in D =343, it is straightforward to
confirm that all of our field strengths are invariant under
oy, Oy, and O.

As in the previous D = 3 + 3 case, the closure of gauge
algebra is confirmed as

[5Q1 ’ 5Q2] = 5P3 + 5T3 + 5U3 + 5‘/3 + 6K3’
&= +2(8,7",), &= —%Aﬁlv
~3 _ hp N _ %y
/77,2,---,261 = 3319,21-..;,61, }’;l”.ﬁ/ = _§3C”ﬁ1--~ﬁ71’
B gy = ~E3Kop, g, +2(8077,5,82), (4.8a)
[5Q’ 5U} = 5V’ },;ﬂl"'fhl = fIJK((:‘]/[ﬂ]/IJ)ﬁM ﬂ7] ’
(4.8b)
[SQ’ 6K] =0y, Aﬁl“'ﬁcl = _6kW| s (é,\ﬁo]zl)’ (480)
[67,.0r,] = O1,. al = —f%alak (4.8d)
[60.67]) = [60. 6y = 67,6y = 67, 6v] = [6y. by]
= [5U175U2] = [5v1’5v2] = [5K1’5K2]
= [67.6k] = [0y, 6k] = [6v. 0k] = 0. (4.8¢)

These are just parallel to the EM duality in D = 3 + 1 and
D =9+ 1 in Ref. [1].

The most crucial supersymmetric EM-duality conditions
and field equations in D =5+ 5 are

. 1. . . . 1.
I E s pepsly, WL JdE _Zp avp 1
HY +8 KU P1pPs G[g] 26[8] F vo

(4.9a)
A=y (4.9b)
D;F, +-mfVE(A 5,45) (4.9¢)
pi'=0, DBy =0, (4.9d)

i I * L ik 37, sk
J Loy K3 9K, (4.9¢)

[ 2 [l
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Ly, =0. (4.9f)
The consistency of these equations with N = (1,0) super-
symmetry is confirmed, just as in D = 3 + 3. Especially,
the variation of Eq. (4.9¢) under Eq. (4.1) is parallel to
D =343, which we skip here. The duality and field
equations in Eq. (4.9) are just parallel to the Minkowskian
casein D=9+1 [1].

V. DIMENSIONAL REDUCTION FROM
D=5+5TO D=2+2

Our dimensional reduction and truncation rule from
D =5+51into D =2+ 2 is summarized as

AL =4, Al =0 (a=5,...10), (5.1a)
= ()
’Iil ﬁﬂ%l
1 1
N N\« [ 0
x’z( ,)=< ,>, (5.1b)
4 ﬁ3)(¢
.(Gl 0) _(62 0)
ap =1 , a =1 ,
o o] (0] 0)
(0]
a3 Ei<03 ), (5.1¢c)
0 03
(O I (0 =il
ﬂl_l(lz 0)’ ﬁz_l(z’lz 0 )
L, O
=i , 5.1d
s <0 —12> (5:1d)
Apdy = —0pgly = €pqrr,
BoBy = —6,4ls — €pyur. (p.g.r=1,2,3), (5.1¢)
M 1 €
« 1O ] . 110 L 1[0
= - = — 1: —_— — —
A 1 €
(5.1f)
s 2 Lz & 1,1 I
67«:5(6,0,0,6), }/5(/1 ’)():_<A ’)()’
€ys = €, ys€ = —€, (5.1g)

PHYSICAL REVIEW D 93, 105041 (2016)

(Pu)a” =7, ® 03 @ L,

(Aﬁ)&i, * (}74+m)aj; =1, ®0; Q fa,,, (m=1,23)
(Fr4n)a” =75 ® L ® B, (n=1,2)
(710)a" = =75 ® 03 ® fs,
(5.1h)
(711)a" = P12asers0.10 = —ils ® 6 ® .
C,; = C® 03 ® wp, (5.1i)
(Ay)&i) =7, ® 1, ® mp,
(75)"" = iC ® 02 ® a3y,
(76)*" = ~iC ® 03 ® I,
(7)"" = C¥()e" = { (77)*F = —iC ® 67 ® p),
(7)*" =15 ® 03 ® wfs,
(}79)&2 =—Ys @03 Q ap,
(710)2? =75 ® I, ® mp.
(5.1j)
Bﬂ56789,10] = Al l:}/wa[ =0,
B, 2B, =-e.,A, (5.1K)
Cusersone’ =2m710,A,1, G = Cop 20, (5.10)
Kser80.10 = +1, (5.1m)
SoBup = €, (Er, 1)),
SoBuss = —8pB,e = — (er,A).  (5.1n)

. A x I
while all other components of K, ..., and 5y B;;, are zero.

-~ ~

X R . 31 R A
The B;;, 5(1/7!)6,2@[713[7?’ and C; 5(1/8!)eﬁﬁl81c[871
are the Hodge duals of BWA]I and C[SA]I , respectively. For

space-time indices, we use = (u,a), v = (v,f), -,
where u,v,---=1,2,3,4, and a,5,---=15,6,7, 8, 9,
10. The matrix 7, stands for an n X n unit matrix. The
charge-conjugation matrix éai; in D =545 is antisym-
metric, consistent with the flipping property (A9a).
Relevantly, all the matrix components in Eq. (5.1j) are
symmetric, consistent with Eq. (A9a). The matrices a, and
B, (p = 1,2, 3) are 4 x 4 matrices. The specification of i
and 7' in Eq. (5.1b) is to satisfy the Weyl-spinor con-
ditions 7, (A", 7") = (+41, +37).

Our objective now 1is to reproduce the N =1 SDSYM
system in D =2+ 2 [10],
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r
T * As the next nontrivial example, we compute 5y B,s5 °:
Fu' = 4560/ Fy'. ys(ly) = =Wy, (5.20) P P 00 s
5 1 An s oA
8oB,ss = +(é7,757s7")
Sod,! = —(er, ), (5.2b) =—[e(r,03)(018321) (v5P1) (03022)7"]
01 ){TI
=—(&4,&4B3)y < >0’3<
. "\10 Baxy!
o' = +§ (re)F,,'. (5.2¢) = =2(&y7,Pra3x1")
5!
As a representative example of our dimensional reduction, o3 O 0 ,
. AL =+4+—(¢,0,0,€ =+(€ .
we consider §pA,": 2( ) (0 _03) 0 (Erur’)
Y

SoA, = 6A’ +(&9,2"
0 0 +(é7,4") (5.6)

_(é¢,€¢ﬂ3)(h"3)<"3“2ﬂ2)( . )

1 z .
Pary We skip the parallel case for 5QB,,691. The 6QBW)679,101 is
—(&r7,0Pa ) — (E17,B300P25304") obtained by the Hodge duality:
/11
N . - U _
212009 ( 0 —i02> 1o 80 Byupa19.10" = ~Eups70.10" 00 Bass = +(Eyupx").
== = (€,0,0,€ ~
2 "\ tie, 0 )2|0 (57)
/1[

1 1 This is used to confirm 5QGW,,;679,101 =0:
= —E(E,O,O,é)yﬂ/ll —E(E,O,O,E)yﬂll

. o
=—(ér,A") (Q-E.D.). (53)  0=80Gupe79.10' = +4D} (80 Blupoisro.i0)
+ m(SCﬂU/)5679,101)

Simtil.ar. 1to D =3+3, the (SQBW) in Eq. (5.1n) is = +4D[ﬂ\(é7|vm])(1)
nontrivial: _ .
=+€,,,EDY) =0 (Q.E.D.). (5.8)
5 fgW ) +(§7W pf/ )+ K » pf’ (éﬁ pU ) As in D = 3 + 3, we perform the dimensional reduction
L 5 (y0,03) (G30050)7 on G,w56789,101 , as the last crucial confirmation:
- nvp®3 3042
72 A
<€¢ €¢ﬂ3 Yuwp%2P2 (ﬂ Y ) Fy I= G/w56789 10 = 28[/1B 56789, 10
3 ¢ N
4 +2mf IJKA[ﬂ y]56789,10K
1 o —iey\1] 0 - k56789.10FuyK + méﬂl/56789.101
=-2-(¢,0,0,¢ - *
D) (6 6)}’,@ < ic, 0 > ) 0 ol Za[ﬂAy]I + 2mf1JKA”JADK
)(1 _ (2(9[#14”]] + mfIJKAMJAUK)
= +E1ux’) = — €4,  ErA). (5.4) +m(2m~'9y,A,")
=F,! (Q.ED.). (5.9)
Needless to say, this is Hodge dual to
As for the dimensional reduction for fermion A/ , 1t s just
A - arallel to the D = 3 + 3 case:
80B,se780.10" = —(E7,A"). 55 P *
. ¥Since there are many indices in Bﬁ]“ﬁ/ , we use its Hodge-
consistent with 5,A4,' = 6,B "'in Eq. (5.1K). dual components.
0 0D,56789,10 q p
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>

A7 /AHI o ooan o 1, 7
5QA :6Q R :E( f‘”) 20 :E(yﬂyé‘)Fﬂy

B3dy!
v I
€4 1 ( r ETF/w )

kos) (Yo ) == .
(5.10)

e
|

N =

pser

As desired, this yields the A-transformation rule,

VI. CONCLUDING REMARKS

In this paper, we have presented supersymmetric EM-
duality formulations in D =343 and D =5+5. We
have shown that both these formulations generate N = 1
SDSYM in D =242, after appropriate dimensional
reductions.

Our results indicate that self-dual YM and SDSYM
systems or supersymmetric integrable modelsin 1 < D <3
form merely the subsets of EM-duality systems in D =
3+ 3 or D =5+ 5. Furthermore, if we maintain Lorentz
covariance,9 D = 10 is the maximal space-time dimension
for the SYM multiplet. Therefore, D = 5 4 5 seems to be
the maximal space-time dimension for EM duality. In
this sense, the D =5 + 5 EM-duality system may well
serve as the Master Theory of SDSYM in D =2+42
[9,10], generating all supersymmetric integrable models
inl<D<3.

All our results are based on the recently developed
tensor-hierarchy formulation [2—4]. Before this formu-
lation, the formulation of the dual tensor in the adjoint

representations, such as our G;;,5' or G ~' had incon-
e 8]

sistencies [5]. Because of this problem, one way to proceed
was to use the so-called reduced holonomies, such as
SO(7), G,, SU(3), and SU(2), respectively, in eight,
seven, six, and four dimensions [15-17]. The self-duality
relationships in these formulations are of the type

Fu' = (1/2)r,7°F, !, where ;7% is a certain tensor
invariant under the reduced holonomies, such as the
octonion structure constant in the case of SO(7) or G,.
After the discovery [2] of tensor-hierarchy and sub-
sequent elaborations [3,4], it is no longer necessary to
restrict oneself only to the second-rank field strength
F,!, as one can use more general tensor field strength

w
with adjoint indices, such as G, 5 or G[S/]\’ , so that the

it

EM duality is F;," = (1/4!)@,;9[416;@’ in D=3+3 or

~
A

0o = (1/8!)6/3,;[8]6}[871 in D=5+5. Also, one does

not need reduced holonomies or sophisticated octonion
structure constants [20] any longer. Our EM dualities in

°If we give up Lorentz covariance, we can go evento D > 11
by introducing null vectors [19].
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higher dimensions respect full Lorentz covariance,
which can be easily established with straightforward
manipulations.

Some readers might wonder why we have to go to higher
space-time dimensions, by regarding the D = 5 + 5 theory
as more fundamental theory than the D =2 4+ 2 SDSYM
theory. To answer this question, we stress the following
points. First, in conventional SYM theories, it has already
been well known that the D =941 SYM is more
fundamental than SYM in D = 3 + 1. Second, we note
the parallel structures between D =9+ 1 and D =5+5
or between D =3 + 1 and D = 2 4 2. By combining the
first and second points, it is natural to regard the D =
5 + 5 EM-duality-symmetric theory as the more funda-
mental theory than the D =2 42 SDSYM theory. Even
though we have not presented any “new” integrable
models in dimensions 4 < D < 9 generated by our theory
in D =5+35, examples such as these may well help us
find some integrable sectors of the hypothetical non-
Abelian D =5+ 1 superconformal field theory [21]
describing multiple M5 brane. From these viewpoints,
we claim our theory may well be the Grand Master Theory
in D=5+15, which generates the Master Theory in
D = 2 + 2. In other words, Grand Master Theory in D =
545 may well be more fundamental than the Master
Theory in D =2 + 2.

When Atiyah and Ward presented their first works in
Ref. [12], there was no SDSYM known evenin D = 2 + 2,
but only nonsupersymmetric self-dual YM theory was
known. Therefore, there was no motivation to consider
going to higher dimensions such as D =5+ 5. It is the
parallel structure between the D =941 (or D =3+1)
and D =545 (or D =2+ 2) combined with supersym-
metries that strongly motivates the studies of these higher-
dimensional duality-symmetric and supersymmetric
theories.

As careful readers may have noticed, it is not mere
coincidence that the ranks of our K-tensor fields are the
same as the numbers of extra space-time dimensions, i.e, 2
(or 6) for D =3+ 3 (or D =5+ 5). This is because the
nonzero value for Ksq (or K 56789.10) Plays an important role
for establishing the consistency of our dimensional reduc-
tions in the resulting SDSYM in D = 2 + 2 dimensions.
These features may well be closely related to supergravity
[22], or a superstring, such as the N = 2 superstring [23],
extended objects, and M theory [24]. From these view-
points, we expect deeper significance of our EM formu-
lations in these higher dimensions associated with SDSYM
inD=2+2.

APPENDIX A: NOTATIONS IN
D=2+2,D=3+3, ANDD=5+5

In this Appendix, we clarify our notations in D = 2 + 2,
D=343,and D=5+35.
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1. Notation in D=2 + 2

Our metric for D = 2 + 2is (,,) = diag(+, +,—, =) so
that €'2* = +1 and y5 = y,7,7374 [10]. Relevantly, we
have

1 n vyl n v 12
e, = ()M (A = )15y 5, e
(Ala)
-1 n(n—1)/2
Yin] = +( ) €™ ol ?s- (Alb)

The flipping and Hermitian-conjugate properties for two
Majorana-Weyl spinors y and p in D =2 4 2 are

(@r"lp) = +(=1)" D2 (prly)

= —(=1)0 2y, (A2a)

(wrp)" = +(gr"p). (A2b)

Typical examples are (yp)=-+(pw)=+(p)". (#r'p)=

—(py*w)=+(@y*p)T, etc. Especially, any fermion bilinear
is Hermitian needing no imaginary unit { in its front.

2. Notation in D=3+ 3

Our convention in D = 3 + 3 with the metric (77;;) =

diag(+. +.—. —.+.—) is like 212346 =41 with 75 =
Y17273747576 = 7123456 SO that
1 A nla Dyeen A ~ A ~
a ﬁl"'ﬁs-n[ ]e[n]”l Vo-n — —(—])"(6 — n)!(s[ﬁ]”l .. .5%_"]’/6-;1’
(A3a)
-1 n(n—1)/2 —
}A, N ( ) & ’\[6_”]]’}/\}’}7. (A3b)

W (6-m)! w e

According to the general categorizations in arbitrary space-
time dimensions (s space and ¢ time coordinates) [25,26],
the spinors in s =t =3 = s—¢ =8 (mod8) are either
Majorana (or pseudo-Majorana) spinors with the parame-
ters € =41, n=+41 (or ¢ =+1, n =—1), following
the notation in Ref. [26]. For our objective in this paper,
we choose Majorana spinors with ¢ = +1, n = +1.
Accordingly, the flipping and Hermitian-conjugate proper-
ties for two Majorana spinors y and p are

(Br"lp) = —en' ™ (= 1) ==t /2 (Bplnly)

o~

— —(=1) R Gy, (Ada)

Gip)T = +en™ " (Gip) = +(@@7"p).  (Adb)

where the middle sides are the expressions for the general
€, n, t, and n. The typical examples of Eq (A4a) are

PHYSICAL REVIEW D 93, 105041 (2016)

(rp) = —(py) and (§ri*p) = +(p7*yr), while Eq. (Adb)
means that any fermionic bilinears are Hermitian so that we
need no imaginary unit i in front.
For our system of N = (2, 0) supersymmetry, we need to
impose the Weyl conditions on our fermions,
77(21.2") = (+4' 42"), (AS)
and double the number of fermions. This is very similar to
the conventional case of Yang-Mills multipletin D =5 + 1
[27,28]. Equation (A4a) yields the flipping property
(é,7#&,) = +(&,"¢;) which is not acceptable for the
closure of supersymmetry because it should be antisym-

metric under €; <> €,. This is accomplished by introducing
the Sp(1) indices A, B, - - - such that

-~ o~

@471"pa) = B (7" pa), (A6)
where e*? is the Sp(1) metric: eV =—ePV) =t¢(;) 5 =
—€()1)="1. In this paper, we omit the contracted Sp(1)
indices, e.g., (71"p) = (F71"p,) to save space. In other
words, after the Sp(1) contractions, Eq. (A4) is modified to

~ ~

(571pa) = ent 7 (=1 D2 30

= (1) D2 (AP, (A7a)

W@ 71pa)" = +en " (@71 pa) = + (@71 pa).  (ATb)

In particular, Eq. (A7a) guarantees the antisymmetry
(81*77824) = —(8:,*7;814) for the closure of supersym-
metry, as desired.

3. Notation in D=5 +5

Our D=5+5 has the metric (7j;;)= diag(+.
+,— = +.+. 4, -, — ), with &'2967%.10 — 41" and

AAAAAAAAAA

LI [;]\A Dy+B1o-n
YRR AT 6[’;]\
=—(10=n)!(=1)"8, " -+ &, Pon, (ASa)
-1 n(n—1)/2 e .
) e 101y — 9y, (A8b)

Y = (10 =n)! [ [10-n]
InD=5+5wehave s=r=5=s5s—1r=8 (mod 8) = ¢ =
n=+1 (or ¢ =+1, n =—1) for Majorana (or pseudo-
Majorana) spinors. For our purpose, we choose Majorana
spinors with € =5 = +1. Accordingly, the flipping and
Hermitian-conjugate properties are similar to Eq. (A4),
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(571p) = —enf =" (=1){= =472 5

-~

= +(=1)" 2 (B, (A9a)

W7"p)" = +en'™" (97"p) = +(@7"p).  (A9D)
for Majorana spinors. The difference in signature between
Egs. (A9a) and (A4a) is caused by the difference in 7. The
typical examples of Eq. (A9a) are (yp) = +(py) and
(@7"p) = —(p7™pr), while Eq. (A9b) necessitates no imagi-
nary unit in front of fermionic bilinears. For our purpose of
N = (1,0) supersymmetry in D =5+ 5, we impose the
Weyl conditions on our fermions:

P2 = (+2 4. (A10)

APPENDIX B: OTHER SIGNATURES
D=4+2AND D=8 +2

In the main text, we have studied the casesof D =3 + 3
and D =545 with the same number of the + and —
signatures (s = ¢). However, we mention other possible
options for space-time signatures for EM dualities, in
particular, in D =442 and D =8 4 2.

1. Example of D=4 1 2

For example, the case of D =4 +2 gives s =4, t =
2=>s5s—t=2=>e¢=n=-1 for pseudo-symplectic
Majorana spinors [26]. The flipping and Hermitian proper-
ties are

(7 p) = =en' " (=1) =023l

= — (= 1)/ (B gl (Bla)
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A7 pp)" = Fen (A7 pp) = —(=1)" (G5 pp).
(B1b)

Therefore, compared with the D = 3 + 3 case in Eq. (A7),
we get

(WA71pa) = et (=1) =D (A )

= +(=1)"D2 (ARl ), (B2a)
@A71p4)T = +en™ (A7 p) = —(=1)" (5471 p,).
(B2b)

In other words, only the Hermitian conjugate has different
signs. Since the flipping property is equally valid for the
closure (¢,47#&,4) = —(&,27"¢,4), the EM duality in D =
4 4 2 is an alternative possible Master Theory for SDSYM
in D =2 4 2 dimensions.

2. Example of D=8 + 2

Another example is D=842 with s=8, r=2=
s—t=6=¢=+1, n=—1 for pseudo-Majorana spinors
[26]. Accordingly, we get

(F7417) = —ent (=)= D/2 30T

= +(=1)" D2 (Bl (B3a)

(F71p)" = +en " (ilp) = +(=1)"(F7"1p).  (B3b)
Equation (B3a) is exactly the same as Eq. (A9a), while
Eq. (B3b) is equivalent to Eq. (A9b) by replacing y* by iy*.
This is simply equivalent to the switch from the signature
8 + 2 to 2 + 8. Therefore, the EM duality in D = 8 + 2 is
equally important as the possible Master Theory for
supersymmetric integrable models in 1 < D < 3.
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