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The present article can be considered as a complement to the work of Phys. Rev. D 93, 045002 (2016),
where an nonperturbative approach to QED with x-electric critical potential steps was developed. In the
beginning, we study conditions when in and out spaces of the QED under consideration are unitarily
equivalent. Then, we construct a general density operator with the vacuum initial condition. Such an
operator describes a deformation of the initial vacuum state by x-electric critical potential steps. We
construct reductions of the deformed state to electron and positron subsystems, calculating the loss of the
information in these reductions. We illustrate the general consideration studying the deformation of the
quantum vacuum between two capacitor plates. Finally, we calculate the entanglement measures of these
reduced matrices as von Neumann entropies.
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I. INTRODUCTION

Problems of quantum field theory with external field
violating the vacuum stability are already being studied
systematically for a long time. Recently, they turned out to
be of special attention due to new real possible applications
in astrophysics and physics of nanostructures. A non-
perturbative formulation of QED with the so-called
t-potential electric steps (time-dependent potentials) was
developed in Refs. [1–3] and applied to various model and
realistic physical problems, see, e.g., [4–6]. In the recent
work [7], Gavrilov and Gitman succeeded to construct a
consistent version of QED with the so-called x-electric
critical potential steps (time-independent nonuniform elec-
tric fields of constant direction that are concentrated in
restricted space areas), for which a large area of new
important applications opens, see reviews in [7,8].
However, many principle questions of the formulation still
require detailed clarification. The present work is devoted
to some of them. In the beginning, we study conditions
when in and out spaces of the QED under consideration are
unitarily equivalent. Then, we construct a general density
operator with the vacuum initial condition. Such an
operator describes a deformation of the initial vacuum
state by x-electric critical potential steps. We construct
reductions of the deformed state to electron and positron
subsystems, calculating the loss of the information in these
reductions. We illustrate the general consideration studying
the deformation of the quantum vacuum between two
capacitor plates. In this article, we generally adapt the

notations of the paper [7], where the general theory of QED
with x-electric critical potential steps was developed, and
Ref. [8], where the particular case of a constant electric
field between two capacitor plates was studied. In fact, the
present article can be considered as a complement to the
work [7].

II. UNITARITY IN QED WITH x-ELECTRIC
POTENTIAL STEPS

It was shown in Ref. [7] that in the presence of x-electric
potential steps the quantized Dirac field can be described in
terms of in and out electrons and positrons. Such particles are
characterized by quantum numbers n that can be divided in
five ranges Ωi, i ¼ 1;…; 5. We denote the corresponding
quantum numbers by ni, so that ni ∈ Ωi. The manifold of all
the quantum numbers n is denoted by Ω, so that
Ω ¼ Ω1∪ � � �∪Ω5. The in and out vacua can be factorized

j0; ini¼
Y5
i¼1

⊗

j0; iniðiÞ; j0;outi¼
Y5
i¼1

⊗

j0;outiðiÞ; ð1Þ

where j0; iniðiÞ and j0; outiðiÞ are the partial vacua in the
ranges Ωi. Note that in each range Ωi it is also possible to
factorize vacuum vectors in modes with fixed quantum
number n so that

j0; iniðiÞ ¼
Y
n∈Ωi

j0; iniðiÞn ; j0;outiðiÞ ¼
Y
n∈Ωi

j0;outiðiÞn : ð2Þ

It was shown that all in and out vacua, except the vacua
in the range Ω3 (in the so-called Klein zone) coincide,
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j0; outiðiÞ ¼ j0; iniðiÞ; i ¼ 1; 2; 4; 5;

j0; outið3Þ ≠ j0; inið3Þ: ð3Þ

In what follows, we use the subindex K to denote all the
quantities from the Klein zone, e.g., j0; inið3Þ ¼ j0; iniðKÞ,
Ω3 ¼ ΩK , and so on.
The vacuum-to-vacuum transition amplitude cv ¼

h0; outj0; ini coincides [due to Eq. (3)] with the vacuum-

to-vacuum transition amplitude cðKÞv in the Klein zone,

cv ¼ h0; outj0; ini ¼ cðKÞv ¼ ðKÞh0; outj0; iniðKÞ: ð4Þ

The linear canonical transformation between the in and
out sets of creation and annihilation operators in the Klein
zone (a and b operators are related to electrons and
positrons, respectively) can be written in the following
form:

−anðinÞ ¼ wnðþjþÞ−1½þanðoutÞ þ wnðþ − j0Þþb†nðoutÞ�;
−b†nðinÞ ¼ wnð−j−Þ−1½þb†nðoutÞ − wnðþ − j0ÞþanðoutÞ�;

ð5Þ

where

wðþjþÞn0n ¼ c−1v h0; outjþan0 ðoutÞ−a†nðinÞj0; ini;
wð−j−Þn0n ¼ c−1v h0; outjþbn0 ðoutÞ−b†nðinÞj0; ini; ð6Þ

are relative scattering amplitudes of electrons and posi-
trons, and

wðþ − j0Þn0n ¼ c−1v h0; outjþan0 ðoutÞþbnðoutÞj0; ini;
wð0j −þÞnn0 ¼ c−1v h0; outj−b†nðinÞ−a†n0 ðinÞj0; ini ð7Þ

are relative amplitudes of a pair creation and a pair
annihilation, and

cv ¼ cðKÞv ¼
Y
n

wnð−j−Þ−1: ð8Þ

All the amplitudes can be expressed via the coefficients
gðζjζ0 Þ, which, in turn, are calculated via corresponding
solutions of the Dirac equation with x-electric potential
steps.
An important question is whether in and out spaces are

unitarily equivalent? The answer is positive if the linear
canonical transformation (5) (together with its adjoint
transformation) is proper one. In the latter case, there
exists a unitary operator V, such that

VðaðoutÞ; a†ðoutÞ; bðoutÞ; b†ðoutÞÞV†

¼ ðaðinÞ; a†ðinÞ; bðinÞ; b†ðinÞÞ;
j0; ini ¼ Vj0; outi; V† ¼ V−1: ð9Þ

Let us denote all the out operators via α and all the in
operators via β. Then the linear uniform canonical trans-
formation between these operators can be written as (we
consider the only Fermi case here)

β ¼ ΦαþΨαþ;

ΦΦþ þΨΨþ ¼ 1;

ΦΨT þΨΦT ¼ 0: ð10Þ
According to ([9,10]), transformation (10) is proper one if
Ψ is a Hilbert-Schmidt operator, i.e.,

P
m;njΨmnj2 < ∞. It

is easily to see that Hilbert-Schmidt criterion for the
transformation (5) reads

X
n

�����wnðþ − j0Þ
wnðþjþÞ

����
2

þ
����wnðþ − j0Þ

wnð−j−Þ
����
2
�
< ∞: ð11Þ

As it was shown in Ref. [7],

����wnðþ − j0Þ
wnðþjþÞ

����
2

¼ Na
n;

����wnðþ − j0Þ
wnð−j−Þ

����
2

¼ Nb
n; ð12Þ

where Na
n and Nb

n are differential mean numbers of
electrons and positrons created from the vacuum by the
potential step. Then, the left-hand side of Eq. (11) is the
total number N of particles created from the vacuum, such
that unitarity condition can be written asX

n

ðNa
n þ Nb

nÞ ¼ N < ∞: ð13Þ

Note that in- and out-spaces of the scalar QED in the
presence of critical potential steps are unitarily equivalent
under the same condition.
For realistic external field limited in space and time, this

condition is obviously satisfied.
Inequality (11) derived for QED with x-electric potential

steps can be considered as one more confirmation of the
consistency of the latter theory and correct interpretation of
in and out particles there. One should note that qualitatively
similar result was established in Ref. [2] for QED with
time-dependent electric potential steps.

III. DEFORMATION OF INITIAL VACUUM STATE

In this section we study deformation of initial vacuum
state under the action of a x-electric potential step.
In the Heisenberg picture, the density operator of the

systemwhose initial state is the vacuum, is given by equation

ρ̂ ¼ j0; inih0; inj: ð14Þ
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The in and out Fock spaces are related by the unitary operator
V, see (9). Then

ρ̂ ¼ Vj0; outih0; outjV†: ð15Þ
In QED with x-electric potential steps the operator V was

constructed in [7]. Since it can be factorized, the density
operator (15) can be factorized as well,

V ¼
Y5
i¼1

VðiÞ; j0; iniðiÞ ¼ VðiÞj0; outiðiÞ;

ρ̂ ¼
Y5
i¼1

VðiÞj0; outiðiÞðiÞh0; outjVðiÞ†: ð16Þ

Due to the specific structure of the operator VðiÞ, i ¼ 1, 2, 4,
5, we have

VðiÞj0; outiðiÞðiÞh0; outjVðiÞ†

¼ j0; outiðiÞðiÞh0; outj ¼ j0; iniðiÞðiÞh0; inj;
i ¼ 1; 2; 4; 5:

The latter relation has clear physical meaning; vacuum states
in the ranges Ω1, Ω2, Ω4, and Ω5 do not change with time.
There is no particle creation there. Let us use the following
notation:

P0 ¼
Y

i¼1;2;4;5

j0; outiðiÞðiÞh0; outj ¼
Y

i¼1;2;4;5

j0; iniðiÞðiÞh0; inj;

ρ̂K ¼ VðKÞPKVðKÞ†; PK ¼ j0; outiðKÞðKÞh0; outj; ð17Þ

then

ρ̂ ¼ P0ρ̂K: ð18Þ

Using the following explicit form of the operator VðKÞ ¼
Vð3Þ derived in Ref. [7],

VðKÞ ¼ exp

�
−
X
n∈ΩK

þa†nðoutÞwnðþ − j0Þþb†nðoutÞ
�

× exp

�
−
X
n∈ΩK

þbnðoutÞ lnwnð−j−Þþb†nðoutÞ
�

× exp

�X
n∈ΩK

þa†nðoutÞ lnwnðþjþÞþanðoutÞ
�

× exp

�
−
X
n∈ΩK

þbnðoutÞwnð0j −þÞþanðoutÞ
�
;

one can derive two alternative expressions for the density
operator ρ̂K.
The first one is a normal form exponential with respect to

the out operators (denoted by ∶…∶),

ρ̂Kjcvj−2 ≕ exp

�
−
X
n∈ΩK

½þa†nðoutÞþanðoutÞ

þ þb†nðoutÞþbnðoutÞ
þ þa†nðoutÞwnðþ − j0Þþb†nðoutÞ

þ þbnðoutÞwnðþ − j0Þ�þanðoutÞ�
�
∶: ð19Þ

Representation (19) can be derived in the following way:
Using (17) and the explicit form of VðKÞ, we can write

ρ̂Kjcvj−2 ¼ exp

�
−
X
n∈ΩK

þa†nðoutÞwnðþ− j0Þþb†nðoutÞ
�

×PK exp

�
−
X
n∈ΩK

þbnðoutÞwnðþ− j0Þ�þanðoutÞ
�
:

ð20Þ

Making use of well-known Berezin representation [9] for a
projection operator PK on the vacuum state,

PK ≕ exp

�
−
X
n∈ΩK

½þa†nðoutÞþanðoutÞ

þ þb†nðoutÞþbnðoutÞ�
�
∶ ð21Þ

and taking into account that the left and the right exponents
in Eq. (20) are already normal ordered, we easily obtain
representation (19).
The second representation reads

ρ̂Kjcvj−2 ¼
Y
n∈ΩK

½1 − þa†nðoutÞwnðþ − j0Þþb†nðoutÞ�

× PK;n½1 − þbnðoutÞwnðþ − j0Þ�þanðoutÞ�;
PK;n ¼ j0; outiðKÞn

ðKÞ
n h0; outj: ð22Þ

Representation (22) can be derived as follows: Using the
fact that operators with different quantum numbers n
commute and using the relation, see, e.g., Ref. [4],

exp ½a†Da� ≕ exp½a†ðeD − 1Þa�∶; ð23Þ

to transform exponents from VðKÞ, we expand then the
obtained expressions in the power series. Since the out-
operators in VðKÞ are Fermi type, these series are reduced to
finite term expressions. Their actions on the vacuum
j0; outiðKÞ can be easily calculated, and using of Eq. (2),
we arrive at Eq. (22).
Finally, we consider the structure of the j0; ini state in

terms of out operators. First of all, we use the fact that the
state vector under discussion is factorized,
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j0; ini ¼ Vj0; outi ¼ j0; ini0j0; iniðKÞ;
j0; ini0 ¼

Y
i¼1;2;4;5

j0; iniðiÞ;

j0; iniðKÞ ¼ VðKÞj0; outiðKÞ: ð24Þ

Then, using the explicit form VðKÞ, we obtain

j0; iniðKÞ
¼ cv

Y
n∈ΩK

½1 − þa†nðoutÞwnðþ − j0Þþb†nðoutÞ�j0; outiðKÞ:

ð25Þ

In each fixed mode n ∈ ΩK , the state vector j0; ini is a
linear superposition of two terms: the vacuum vector in this
mode and a state with an electron-positron pair.

IV. REDUCTIONS TO ELECTRON
AND POSITRON SUBSYSTEMS

It should be stressed that the system under consideration
can be considered as a composed from a subsystem of
electrons anda subsystemofpositrons.One can introduce the
so-called two reduced density operators, ρ̂þ of the electron
subsystem and ρ̂− of the positron subsystem, averaging
complete density operator (14) over all possible positron
states or over all possible electron states, respectively,

ρ̂þ ¼ tr−ρ̂¼
X5
i¼3

X
M

X
fmg∈Ωi

ðiÞ
b hM;outjρ̂jM;outiðiÞb ;

ρ̂− ¼ trþρ̂¼
X3
i¼1

X
M

X
fmg∈Ωi

ðiÞ
a hM;outjρ̂jM;outiðiÞa ;

jM;outiðiÞb ¼ðM!Þ−1=2b†m1
ðoutÞ…b†mMðoutÞj0;outiðiÞb ;

jM;outiðiÞa ¼ðM!Þ−1=2a†m1
ðoutÞ…a†mMðoutÞj0;outiðiÞa : ð26Þ

Vectors j0; outiðiÞa and j0; outiðiÞb are the electron and positron
vacua in the Ωi range, defined by

aðiÞn ðoutÞj0; outiðiÞa ¼ 0;

bðiÞn ðoutÞj0; outiðiÞb ¼ 0; ð27Þ

where aðiÞn ðoutÞ and bðiÞn ðoutÞ are corresponding annihilation
operators of electrons and positrons in this range, respec-
tively. Of course, these electron and positron vacua can be
factorized in quantum modes, as was mentioned already
above. One can see that

j0; outið1;2Þ ¼ j0; outið1;2Þa ¼
Y

n∈Ω1;2

j0; outið1;2Þn;a ;

j0; outið4;5Þ ¼ j0; outið4;5Þb ¼
Y

n∈Ω4;5

j0; outið4;5Þn;b ;

j0; outið3Þ ¼ j0; outiðKÞ ¼ j0; outiðKÞa ⊗ j0; outiðKÞb ;

j0; outiðKÞa ¼
Y
n∈ΩK

j0; outiðKÞn;a ;

j0; outiðKÞb ¼
Y
n∈ΩK

j0; outiðKÞn;b : ð28Þ

Using Eq. (18) and representation (22) for ρ̂K, it is easy
to calculate traces in Eqs. (26) and to obtain thus explicit
forms of the reduced operators ρ̂�:

ρ̂þjcvj−2 ¼
Y
i¼1;2

j0; outiðiÞðiÞh0; outj ⊗
Y
n∈ΩK

½PK;a;n þ jwnðþ − j0Þj2þa†nðoutÞPK;a;n
þanðoutÞ�;

ρ̂−jcvj−2 ¼
Y
i¼4;5

j0; outiðiÞðiÞh0; outj ⊗
Y
n∈ΩK

½PK;b;n þ jwnðþ − j0Þj2þb†nðoutÞPK;b;nþbnðoutÞ�;

PK;a;n ¼ j0; outiðKÞn;a
ðKÞ
n;a h0; outj; PK;b;n ¼ j0; outiðKÞn;b

ðKÞ
n;b h0; outj: ð29Þ

We can also consider a reduction of density operator (18), which occurs due to measurement of a physical quantity by
some classical tool or, in other words, due to decoherence. Suppose that we are measuring the number of particlesNðoutÞ in
the state ρ̂ of the system under consideration. The operator corresponding to this physical quantity is
N̂ðoutÞ ¼ P

5
i¼1 N̂iðoutÞ, where
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N̂1ðoutÞ ¼
X
n∈Ω1

½þa†nðoutÞþanðoutÞ þ −a†nðoutÞ−anðoutÞ�;

N̂2ðoutÞ ¼
X
n∈Ω2

a†nan;

N̂4ðoutÞ ¼
X
n∈Ω4

b†nbn;

N̂3ðoutÞ ¼
X
n∈ΩK

½þa†nðoutÞþa†nðoutÞ þ þb†nðoutÞþbnðoutÞ�;

N̂5ðoutÞ ¼
X
n∈Ω5

½þb†nðoutÞþbnðoutÞ þ −b†nðoutÞ−bnðoutÞ�:

ð30Þ

According to von Neumann [11], the density operator ρ̂
after such a measurement is reduced to the operator ρ̂N of a
form

ρ̂N ¼
X
s

hs; outjρ̂js; outiP̂s;

P̂s ¼ js; outihs; outj; ð31Þ

where js; outi are eigenstates of the operator N̂ðoutÞ with
the eigenvalues s that represent the total number of
electrons and positrons in the state js; outi,

N̂ðoutÞjs; outi ¼ sjs; outi;
js; outi ¼

Y
n∈Ω1

½þa†nðoutÞ�ln;1 ½−a†nðoutÞ�kn;1
Y
n∈Ω2

ða†nÞln;2
Y
n∈Ω4

ðb†nÞln;4

×
Y
n∈Ω5

½þb†nðoutÞ�ln;5 ½−b†nðoutÞ�kn;5
Y
n∈ΩK

½þa†nðoutÞ�ln;3 ½þb†nðoutÞ�kn;3 j0; outi;

s ¼
X
n∈Ω1

ðln;1 þ kn;1Þ þ
X
n∈Ω2

ðln;2Þ þ
X
n∈Ω4

ðln;4Þ þ
X
n∈Ω5

ðln;5 þ kn;5Þ þ
X
n∈ΩK

ðln;3 þ kn;3Þ:

Note that ln;i, kn;i ¼ ð0; 1Þ due to the fact that we deal with
fermions.
Due to the structure of the operator ρ̂, the weights

hs; outjρ̂js; outi are nonzero only for pure states js; outi
with an integer number of pairs inΩK (since the initial state
of the system was a vacuum, and there is no particle
creation outside of the Klein zone). Thus, the operator ρ̂N
takes the form

ρ̂N jcvj−2 ¼ P0 Y
n∈ΩK

½PK;n þ jwnðþ − j0Þj2þa†nðoutÞþb†nðoutÞ

× PK;nþbnðoutÞþanðoutÞ�; ð32Þ
where operators PK;n and P0 were defined in the previous
section, see Eq. (22). Note that the measurement destroys
nondiagonal terms of the density operator (22).
Since the operator V is unitary and the initial state of the

system under consideration is a pure state (the vacuum
state) the density operator (18) describes a pure state as
well. Therefore, its von Neumann entropy is zero.
However, the reduced density operators ρ̂� (29) describe
already mixed states, and their entropies Sðρ̂�Þ are not zero,

Sðρ̂�Þ ¼ −kBtrρ̂� ln ρ̂�: ð33Þ
It is known that this entropy can be treated as a measure of
the quantum entanglement of the electron and positron
subsystems and can be treated as the measure of the
information loss.

Using the normalization condition for the reduced
density operators, trρ̂� ¼ 1, the relation (23), definitions
for differential mean numbers of particles Na

n and anti-
particles Nb

n created from vacuum

Na
n ¼ trρ̂þa

†
nðoutÞanðoutÞ;

Nb
n ¼ trρ̂−b

†
nðoutÞbnðoutÞ; ð34Þ

and the fact that

Na
n ¼ Nb

n ¼ Ncr
n ;

jwnðþ − j0Þj2 ¼ Ncr
n ð1 − Ncr

n Þ−1: ð35Þ

We can calculate traces in Eqs. (33) and rewrite RHS in
these equations as

Sðρ̂�Þ ¼
X
n∈ΩK

Sn;

Sn ¼ −kB½ð1 − Ncr
n Þ ln ð1 − Ncr

n Þ þ Ncr
n lnNcr

n �: ð36Þ

The von Neumann-reduced density operator (32) also
describes the mixed state; making use of the fact that the
pure states j0; outiðKÞn and þa†nðoutÞþb†nðoutÞj0; outiðKÞn are
orthogonal and normalized, it is not difficult to show that
the von Neumann entropy Sðρ̂NÞ of the mixed state (32)
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coincides with the entropies Sðρ̂�Þ of the reduced density
operators ρ̂�.
The differential mean number of fermions created Ncr

n
can vary only within the range (0,1). The partial entropy Sn
for given n in Eq. (36) is symmetric with respect to value of
Ncr

n . It reaches maximum at Ncr
n ¼ 1=2 and turns to zero at

Ncr
n ¼ 1 and Ncr

n ¼ 0. This fact can be interpreted as
follows: In the case of Ncr

n ¼ 0, there are no particles
created by the external field, and the initial vacuum state in
the mode remains unchanged. The case Ncr

n ¼ 1 corre-
sponds to the situation when a particle is created with
certainty. The maximum of Sn, corresponding to
Ncr

n ¼ 1=2, is associated with the state with the maximum
amount of uncertainty.

V. DEFORMATION OF THE QUANTUM VACUUM
BETWEEN TWO CAPACITOR PLATES

Here, we illustrate the general consideration considering
the deformation of the quantum vacuum between two
infinite capacitor plates separated by a finite distance L.
Some aspects of particle creation by the constant electric
field between such plates (this field is also called L-
constant electric field) were studied in Ref. [8]. The latter
field is a particular case of x-electric potential step. Thus,
we consider the L-constant electric field in d ¼ Dþ 1

dimensions. We chose EðxÞ ¼ ðEi; i ¼ 1;…; DÞ,
E1 ¼ ExðxÞ, E2;…;D ¼ 0,

ExðxÞ ¼

8>><
>>:

0; x ∈ ð−∞;−L=2�
E ¼ const > 0; x ∈ ð−L=2; L=2Þ
0; x ∈ ½L=2;∞Þ

:

The potential energy of an electron in the L-electric field
under consideration is

UðxÞ ¼

8>><
>>:

UL ¼ −eEL=2; x ∈ ð−∞;−L=2�
eEx; x ∈ ð−L=2; L=2Þ
UR ¼ eEL=2; x ∈ ½L=2;∞Þ

: ð37Þ

The magnitude of the corresponding x-electric is U ¼ eEL.
We are interested in the critical steps, for which

U ¼ eEL > 2m ð38Þ

and the vacuum is unstable in the Klein zone.
We consider a particular case with a sufficiently large

length L between the capacitor plates,

ffiffiffiffiffiffi
eE

p
L ≫ max f1; Ec=Eg: ð39Þ

Here, Ec ¼ m2=e is the critical Schwinger field. In what
follows, we conditionally call this approximation a large

work approximation. Such a kind of x-electric step repre-
sents a regularization for a constant uniform electric field
and is suitable for imitating a small-gradient field.
It was shown in Ref. [8] that the main particle production

occurs in an inner subrange ~ΩK of the Klein zone,
~ΩK ⊂ ΩK ,

~ΩK∶jp0j=
ffiffiffiffiffiffi
eE

p
<

ffiffiffiffiffiffi
eE

p
L=2 − K; λ < K2⊥;

λ ¼ p2⊥ þm2

eE
;

ffiffiffiffiffiffi
eE

p
L ≫ K ≫ K2⊥ ≫ maxf1; Ec=Eg;

ð40Þ

where K and K⊥ are any given positive numbers satisfying
the condition (40).
The differential number of particles with quantum

numbers n ∈ ~ΩK created from the vacuum reads

Ncr
n ¼ e−πλ½1þOðjξ1j−3Þ þOðjξ2j−3Þ�;

ξ1 ¼
−eEL=2 − p0ffiffiffiffiffiffi

eE
p ;

ξ2 ¼
eEL=2 − p0ffiffiffiffiffiffi

eE
p : ð41Þ

We recall that, in fact, the quantum numbers n that label
electron and positron states in general formulas gather
several quantum numbers,

n ¼ ðp0;p⊥; σÞ; p⊥ ¼ ðp2;…; pDÞ; ð42Þ

where for an electron p0 is its energy, for a positron −p0 is
its energy, and for an electron p⊥ denotes its transversal
components of the momentum, whereas for a positron −p⊥
denotes its transversal components of the momentum. For
an electron σ is its spin polarization, and for a positron −σ
is its spin polarization. Note that the electron and positron
in a pair created by an external field have the same quantum
numbers n.
The quantity (41) is almost constant over a wide range of

energy p0 for any given λ < K2⊥, for these quantum
numbers we can assume Ncr

n ≈ e−πλ. In the limiting case
of the large work approximation,

ffiffiffiffiffiffi
eE

p
L → ∞, one obtains

the well-known result for particle creation by a constant
uniform electric field Ncr

n ¼ e−πλ, see Refs. [12–14].
In the approximation under the consideration, the total

number of particles created from the vacuum is given by a
sum (integral) over n ∈ ~ΩK,

Ncr ¼
X
n∈ΩK

Ncr
n ≈

X
p⊥;p0∈ ~ΩK

X
σ

Ncr
n

¼ JðdÞTV⊥
ð2πÞd−1

Z
~ΩK

dp0dp⊥Ncr
n ; ð43Þ
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where JðdÞ ¼ 2½d=2�−1 is a spin summation factor, V⊥ is the
(d − 2)-dimensional spatial volume in hypersurface
orthogonal to the electric field direction, and T is the
time duration of the electric field. The integration over p0

results in

Ncr ¼ JðdÞTV⊥LeE
ð2πÞd−1

Z
~ΩK

dp⊥e−πλ: ð44Þ

Integrating Eq. (44) over p⊥, we obtain that the total
number of created from the vacuum particles in the large
work approximation has the form

Ncr ¼ JðdÞTVðeEÞd=2
ð2πÞd−1 exp

�
−π

Ec

E

	
; ð45Þ

where V ¼ LV⊥ is the volume inside of the capacitor (the
volume occupied by the electric field).
It is obvious that Ncr < ∞, when the values V and T are

finite or, in other words, when regularization of the finite
volume and finite time of the field action is used. Looking
on the condition (13), we see that the x-electric potential
step, which represents the electric field inside of the
capacitor, does not violate the unitarity in QED.
Let us estimate the information loss of the reduced states

of the deformed vacuum, which can be calculated as
entropies (36) of these states,. Using the same summation
rule as in (43), one can write

Sðρ̂�Þ ¼ −kB
JðdÞTV⊥
ð2πÞd−1

Z
ΩK

dp0dp⊥½Ncr
n lnNcr

n

þ ð1 − Ncr
n Þ lnð1 − Ncr

n Þ�: ð46Þ

For Fermi particles under the consideration, Ncr
n ≤ 1.

This allows us to expand the logarithm in the rhs of
Eq. (46) in powers of Ncr

n . Thus, we represent the term
ð1 − Ncr

n Þ lnð1 − Ncr
n Þ as follows:

ð1 − Ncr
n Þ lnð1 − Ncr

n Þ ¼ −ð1 − Ncr
n Þ

X∞
l¼1

l−1ðNcr
n Þl: ð47Þ

Using (47) in Eq. (46), we obtain the following inter-
mediate result:

Sðρ̂�Þ ¼ kB
JðdÞTV⊥
ð2πÞd−1

Z
ΩK

dp0dp⊥
�
−Ncr

n lnNcr
n

þ ð1 − Ncr
n Þ

X∞
l¼1

l−1ðNcr
n Þl

�
: ð48Þ

As we have mentioned before, the considerable amount
of particles is created only in the subrange ~ΩK ∈ ΩK , where
terms proportional to jξ1;2j−3 are small and can be
neglected, allowing us to use the leading-order approxi-
mation Ncr

n ≈ e−πλ in the rhs of Eq. (48). Then, we obtain

Sðρ̂�Þ ≈ kB
JðdÞTVeE
ð2πÞd−1

Z
~ΩK

dp⊥
�
πλe−πλ þ ð1 − e−πλÞ

X∞
l¼1

l−1e−πλl
�

if d > 2;

Sðρ̂�Þ ≈ kB
TVeE
2π

Að2; Ec=EÞ if d ¼ 2;

Að2; Ec=EÞ ¼ fπEc=E exp ð−πEc=EÞ − ½1 − exp ð−πEc=EÞ� ln ½1 − exp ð−πEc=EÞ�g: ð49Þ

In the dimensions d > 2 the integration over the trans-
versal components of the momentum can be easily per-
formed. Outside of the subrange ~ΩK , the integrand is very
small, so that we can extend the integration limits of p⊥ to
the infinity. Thus, we finally get

Sðρ̂�Þ ≈ kB
JðdÞTVðeEÞd=2

ð2πÞd−1 Aðd; Ec=EÞ if d > 2; ð50Þ

where the factor Aðd; Ec=EÞ has the form

Aðd; Ec=EÞ ¼ ðπEc=Eþ d=2 − 1Þ expð−πEc=EÞ

þ
X∞
l¼1

½l−d=2 − l−1ðlþ 1Þð2−dÞ=2

× expð−πEc=EÞ� expð−πlEc=EÞ: ð51Þ

For example, estimations of this factor for strong field
Ec=E ≪ 1 and critical field Ec=E ¼ 1 with d ¼ 4, 3 are
Að4; 0Þ ¼ π2=6, Að4; 1Þ ≈ 0; 22, Að3; 0Þ ≈ 0; 93, and
Að3; 1Þ ≈ 0; 20. In the case of a weak field, Ec=E ≫ 1,
the entropy is exponentially small for any d,

Aðd; Ec=EÞ ≈ ðπEc=Eþ d=2Þ exp ð−πEc=EÞ:
One can note that the large work approximation (50)

obtained for Sðρ̂�Þ in the case of the x-electric step under
consideration coincides with the same approximation for
Sðρ̂�Þ in the case of the t-electric step with an uniform
electric field that is acting during a finite time interval T
(the so called T-constant field) obtained in Ref. [6]. This
observation confirms the fact that the T-constant and L-
constant fields produce equal physical effects in the large
work approximation (or as T → ∞ and L → ∞), such that
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it is possible to consider these fields as regularizations of a
constant uniform electric field given by two distinct gauge
conditions for electromagnetic potentials. Obviously, exact
expressions for the entropies Sðρ̂�Þ differ in the general
case.
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