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We develop a new semiclassical approach, which starts with the density matrix given by the Euclidean
time path integral with fixed coinciding end points, and proceed by identifying classical (minimal
Euclidean action) path, to be referred to as a flucton, which passes through this end point. Fluctuations
around a flucton path are included, by standard Feynman diagrams, previously developed for instantons.
We calculate the Green function and evaluate the one loop determinant both by direct diagonalization of
the fluctuation equation and also via the trick with the Green functions. The two-loop corrections are
evaluated by explicit Feynman diagrams, and some curious cancellation of logarithmic and polylog terms is
observed. The results are fully consistent with large-distance asymptotics obtained in quantum mechanics.
Two classic examples—quartic double-well and sine-Gordon potentials—are discussed in detail, while
powerlike potential and quartic anharmonic oscillator are discussed in brief. Unlike other semiclassical
methods, like WKB, we do not use the Schrödinger equation, and all the steps generalize to
multidimensional or quantum fields cases straightforwardly.
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I. INTRODUCTION

Semiclassical approximations are well-known tools,
both in quantum mechanical and quantum field theory
applications.
Quantum mechanics itself originated from Bohr-

Sommerfeld quantization conditions, and semiclassical
approximations for the wave function—the WKB and its
extensions—has been developed already in the early days
of its development and are since a standard part of quantum
mechanics textbooks. Unfortunately, extending such meth-
ods beyond one-dimensional cases or those with separable
variables proved to be difficult.
Semiclassical approximations in quantum field theory

developed differently: their starting point is the Feynman
path integrals [1,2], which is infinitely dimensional any-
way, and thus the dimension of quantum mechanics
coordinates or number of quantum fields is of secondary
importance. So, their main advantage over the semiclassical
approaches based on the Schrödinger equation (such as
WKB) is that it can be used in multidimensional cases.
Applications of such methods range from that by Rossi and
Testa [3] in Quantum Field Theory (QFT) to recent studies
of protein folding [4] in statistical mechanics.

Another general advantage of the latter approach is that
path integrals lead to systematic perturbative series, in the
form of Feynman diagrams, with clear rules for each order.
Textbook perturbative approaches for the wave functions
do not have that, and basically are never used beyond say
first and second orders.
Of course, the higher level of generality comes with a

heavy price. While classical part is relatively simple,
already at a one-loop level one needs to calculate deter-
minants of certain differential operators. At two and more
loops Feynman diagrams need to be evaluated on top
of space-time dependent backgrounds: therefore those can
be done in a space-time representation rather than in
the energy-momentum one mostly used in QFT applica-
tions. Most content of this paper is the explicit demon-
stration of how one can do all that, in analytic form, for two
classic examples—quartic double-well and sine-Gordon
potentials.
Let us now outline briefly the history of semiclassical

evaluation of the path integrals in Euclidian time. Polyakov
[5] used the example of symmetric double-well potential
to demonstrate the physical meaning of the celebrated
“instanton” solution in the non-Abelian gauge theories
(he and collaborators discovered shortly before that). For
pedagogical presentation of this material, including the
one-loop corrections, see [6]. Feynman diagrams and two-
loop corrections have been calculated by F. Wöhler and E.
Shuryak [7] for the double-well potential, extended to
three-loops in our recent two papers [8,9] for both the
double-well and sine-Gordon potentials.
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All the development was focused on the phenomenon of
quantum tunneling through the barrier for degenerate
minima. Polyakov’s instanton is the classical path, coming
from one minimum of the potential to the other. The
instanton amplitude, evaluated in the above mentioned
papers in higher orders, are approximations for the path
integral with the end points of the path corresponding to
this arrangement, corresponding physically to a “spectral
gap”, the splitting between the lowest states of opposite
parity for the double-well potential case.
From the theoretical point of view, the instanton ampli-

tudes and perturbative series around them are parts of more
general construction nowadays known as trans-serieswhich
include series at small coupling constant g: powerlike terms

∼gn, exponentially small terms ∼e−
const
g2 , and logarithms of

the coupling multiplied by such exponents, ∼ðlog gÞke−const
g2 .

The issue of a unique definition of such series is related with
the so-called resurgence theory, which provide certain
relations between series near different extrema. Specific
issues related to interplay between the perturbative series for
trivial x ¼ 0 path and instanton-antiinstanton contributions
are extensively discussed e.g. in [10].
Even more general question—whether these trans-series

do define uniquely the whole function, representing the
path integral dependence on its parameters—is the central
issue in rigorous mathematical definition of the QFT’s.
Related to it is the generalized definition of the path
integrals, recently discussed by Witten [11]. No question,
still there remain many open questions related even with
finite-dimensional integrals. Furthermore, even (1þ 0)
dimensional path integrals—quantum mechanical exam-
ples under consideration—still include certain open theo-
retical problems which continue to attract attention of
physicists (and mathematicians) today.
In this paper we move from the well-trotted path of

tunneling theory into a somewhat different direction.
Instead of probability to go through the barrier, we evaluate
the probability to find a quantum system at a certain
position x0 inside a classically forbidden region. It mea-
sures a “strength” of quantum effects, a quantum nature of
the problem. In general, this probability is given by path
integral in which the end points of the path coincide and are
fixed. We will develop a semiclassical theory for this case.
The corresponding classical solutions for it we will call
fluctons, following the old paper of one of us [12] where it
was introduced. Another early paper devoted to the subject
was that by Rossi and Testa [3].
The paper is organized as follows. In Sec. II the general

setting of the problem is explained, and the corresponding
classical solutions, the fluctons, are derived in the Sec. III.
The next Sec. IV treats quantum oscillations around the
classical path to quadratic order, resulting in defining the
corresponding determinant in Sec. V and the Green
function in Sec. VI.

Somewhat unexpectedly, we found that the quantum-
mechanical potential for fluctuations around the flucton in
the double-well problem allows an exact analytic solution
in elementary functions. Therefore we were able to find
analytic expression for the scattering phase and evaluate the
determinant via standard integral over its derivative.
Alternative derivation of the determinant is described in

Sec. VII, in which its derivative over the coupling is related
to a certain Feynman diagram, which is evaluated using the
(closed loop) Green function. Agreement of those results
shows consistency of the determinant and the Green
function. Since this correspondence has never been used
in the instanton problem, we discuss the nontrivial sum rule
for the Green function following from the determinant
value: as shown in Appendix B, the Green function used in
our previous works has passed this test.
In Sec. VIII we evaluate two-loop corrections by direct

evaluation of the diagrams over the flucton background,
with subtracted similar “vacuum diagrams”, fluctuations
around the trivial xðτÞ ¼ 0 vacuum. Surprisingly, all dia-
grams yield analytic answers.While the individual diagrams
contain logs and polylogs, they all cancel in sum, leading to a
rather simple analytic answer [13]. Would this property be
true in two- and higher loop contributions: it is interesting
open question. Expansion of the results obtained for large
displacement x0 is compared with the known asymptotic
expansion of the ground state wave function in Appendix A.
The final Sec. X contains discussion of possible appli-

cations to other problems, in quantum mechanics with
several variables, statistical mechanics and quantum field
theories.

II. GENERAL SETTING

By definition the Feynman path integral gives the density
matrix in quantum mechanics [1]

ρðxi; xf; ttotÞ ¼
Z

xðttotÞ¼xf

xð0Þ¼xi

DxðtÞeiS½xðtÞ�=ℏ: ð1Þ

Here S is the usual classical action of the problem, e.g.

S ¼
Z

ttot

0

dt

�
m
2

�
dx
dt

�
2 − VðxÞ

�
;

for a particle of mass m in a static potential VðxÞ provides
the weight of the paths in (1). Now let us move from
quantum mechanics to statistic mechanics, from quantum
system to thermal system, from density matrix to prob-
ability. Step one is to rotate time into its Euclidean
version τ ¼ it. Step two is to define τ on a circle with
circumference β ¼ τtot. Such periodic time is known
as the Matsubara time, and the density matrix of quantum
system is related to probability for thermal system with
temperature
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T ¼ ℏ=β: ð2Þ

Periodicity of the path implies that there is only one
end parameter xi ¼ xf ¼ x0. The ensemble of such paths
represent equilibrium quantum statistical mechanics at
temperature T or at T → 0, the ground state of the quantum
system. See details of such setting in [2] and many other
sources on statistical field theory.
The main object we will be studying in this paper is the

diagonal matrix elements of the density matrix in coor-
dinate representation, giving the probability for the specific
coordinate value x0 (of the field ϕ0) to be found in this
ensemble. The basic expression for it we will use below is a
path integral with end points fixed and they coincided

Pðx0; βÞ ¼
Z

xðβÞ¼x0

xð0Þ¼x0

DxðτÞe−SE½xðτÞ�=ℏ; ð3Þ

thus, we will consider all (closed) trajectories starting and
ending at x0, where SE ¼ R β

0 dτ½m
2
ðdxdτÞ2 þ VðxÞ�. There are

two basic limits of this expression (3). One is at large β, or
low T. Using standard definition of the density matrix in
terms of states with definite energy

Pðx0; βÞ ¼
X
n

jψnðx0Þj2e−Enβ; ð4Þ

one sees that this limit P corresponds to the lowest—the
ground state

Pðx0; β → ∞Þ ∼ jψ0ðx0Þj2: ð5Þ

In the opposite case of small β the circle is small, and one
can ignore time dependence of the paths. In this limit

Pðx0; βÞ ∼ e−
Vðx0Þ
T ; ð6Þ

corresponding to classical thermal distribution in a poten-
tial V. Needless to say, the expression is correct for any T.

III. THE CLASSICAL PATHS: FLUCTONS

For pedagogical reasons, we will proceed using particu-
lar examples, for which expressions can be simple enough
to allow analytic evaluation of all quantities. The main
idea is that in Euclidean time the effective potential flips
and the classical minimum becomes a maximum. Therefore
classical paths with E ¼ 0 “slipping down” from a maxi-
mum to any point exist.
A. It is hard not to start with the harmonic oscillator, as

the first example. One can always select units in which the
particle mass m ¼ 1 and the oscillator frequency ω ¼ 1, so
that our Lagrangian is written as

LE ¼ _xðτÞ2
2

þ xðτÞ2
2

: ð7Þ

Note that, for positivity, the Euclidean sign change we
apply not to the kinetic, but to the potential term. Anyway,
in time τ the oscillator does not oscillate but relaxes, the
classical equation of motion (EOM) produces solutions of
the kind eτ, e−τ. The flucton solution at E ¼ 0 on a circle
with circumference β can be easily found as their super-
position satisfying

xð0Þ ¼ xðβÞ ¼ x0; ð8Þ

namely,

xfluctonðτÞ ¼ x0
ðeβ−τ þ eτÞ
eβ þ 1

ð9Þ

defined for τ ∈ ½0; β�. At low T (or large β) it is convenient,
due to periodicity in τ, to shift its range to τ ∈ ½−β=2; β=2�.
At zero T ¼ 1=β the range becomes infinitely large, and the
solution becomes simply x0e−jτj. At high T, on the other
hand, the “thermal circle” gets small β → 0, it can be just
approximated by x0.
The classical action of such a path is

Sflucton ¼ x20 tanh

�
β

2

�
; ð10Þ

it tells us that the particle distribution,

Pðx0Þ ∼ exp

�
− x20
cothðβ

2
Þ

�
; ð11Þ

is Gaussian at any temperature. Note furthermore, that the
width of the distribution,

hx2i ¼ 1

2
coth

�
β

2

�
¼ 1

2
þ 1

eβ − 1
; ð12Þ

can be recognized as the ground state energy plus one due
to thermal excitation. These results are, of course, very
well-known, see e.g. Feynman’s statistical mechanics [2].
B. Our next example is the symmetric powerlike

potential

V ¼ g2

2
x2N; N ¼ 1; 2; 3;…; ð13Þ

for which we discuss only the zero temperature
β ¼ 1=T → ∞ case. The (Euclidean) classical equation
at zero energy _x2

2
¼ VðxÞ has the following solution:

xfluctðτÞ ¼
x0

ð1þ gðN − 1ÞxN−1
0 jτjÞN−1 ; x0 > 0; ð14Þ
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with the action

S½xfluct� ¼
2gxNþ1

0

N þ 1
; ð15Þ

hence

Pðx0Þ ∼ exp

�
− 2gxNþ1

0

N þ 1

�
; ð16Þ

which is in a complete agreement withWKB asymptotics at
x0 → ∞ [14].
C. The third example is the anharmonic oscillator

potential

V ¼ 1

2
x2ð1þ gx2Þ; g > 0; ð17Þ

at zero temperature β ¼ 1=T → ∞. The classical flucton
solution with the energy E ¼ 0 is given by

xfluctðτÞ ¼
ffiffiffi
g

p
x0

coshðτÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gx20

p
sinhðτÞ ; ð18Þ

which leads to the flucton action

S½x0� ¼
2

3

ð1þ gx20Þ
3
2 − 1

g
: ð19Þ

In the limit g → 0 we recover the action of the harmonic
oscillator and at x0 → ∞ we obtain

S½xfluctðτÞ� ¼
2

ffiffiffi
g

p
3

x30 þ
1ffiffiffi
g

p x0 − 2

3g
þO

�
1

x0

�
ð20Þ

in complete agreement with the asymptotic expansion of the
ground state wave function squared (see Appendix A) [15].
However, for the most detailed studies we select two

other examples.
D. One is the quartic one-dimensional potential

VðxÞ ¼ λðx2 − η2Þ2; ð21Þ

with two degenerate minima. Tunneling between them is
described by a well-known instanton solution

xinstðτÞ ¼ η tanh

�
1

2
ωðτ − τcÞ

�
; ð22Þ

assuming that ω2 ¼ 8λη2. Note that the instanton has an
arbitrary time location τc, while the flucton does not.
We will discuss both the weak coupling limit of small λ,

and the strong coupling limit of large λ. In fact, the
transition between them happens when the instanton
action S½xinstðτÞ� ¼ 1=12λ is larger or smaller than one,
respectively.

Standard steps are selecting units for η such that ω ¼ 1
and shifting the coordinate by it,

xðτÞ ¼ yðτÞ þ η; ð23Þ

so that the potential (21) takes the form

V ¼ yðτÞ2
2

ð1þ
ffiffiffiffiffi
2λ

p
yðτÞÞ2; ð24Þ

corresponding to harmonic oscillator well at small y.
The flucton solution, the minimal action path for the path

integral (3), in which the path is forced to pass through the
point x0 at τ ¼ 0 now takes the form

yfluctðτÞ ¼
x0

ejτjð1þ ffiffiffiffiffi
2λ

p
x0Þ −

ffiffiffiffiffi
2λ

p
x0

: ð25Þ

We remind that in zero T case, or infinite circle β → ∞,
τ ∈ ð−∞;∞Þ, and the solution exponentially decreases to
both infinities, see Fig. 1. Its generalization to finite T is
straightforward.
The action of this solution is

S½yfluct� ¼ x20

�
1þ 2

ffiffiffiffiffi
2λ

p
x0

3

�
; ð26Þ

and thus in the leading semiclassical approximation the
probability to find the particle at x0 takes the form

4 2 0 2 4
0.0

0.5

1.0

1.5

2.0

4 2 0 2 4
0

2

4

6

8

10

12

FIG. 1. Time dependence of the classical flucton solution
yfluctðτÞ, see (25) (upper plot) and the corresponding potential
ð1þWÞ, see (37) of the fluctuations (lower plot), both for
x0 ¼ 2, λ ¼ 0.1.
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Pðx0Þ ∼ exp

�
−x20 − 2

ffiffiffiffiffi
2λ

p

3
x30

�
: ð27Þ

In the weak coupling limit only the first term remains,
corresponding to the Gaussian ground state wave function
of the harmonic oscillator. In the strong coupling limit the
second term is dominant, and the distribution then corre-
sponds to a well-known cubic dependence on the coor-
dinate. These classical-order results are of course the same
as one gets from a standard WKB approximation.
When jx0j < η the classical flucton solution can be

constructed from the pieces of the instanton and anti-
instanton solutions. In this region, fluctons, instantons and
anti-instantons are distinct classical paths, all contributing
to the path integral (3).
E. Our last example is the sine-Gordon potential

V ¼ 1

g2
ð1 − cosðgxÞÞ; ð28Þ

with infinite number of degenerate vacua. Tunneling
between adjacent vacua is described by the well-known
instanton solution

xinstðτÞ ¼
4

g
arctanðeτÞ: ð29Þ

In the zero temperature case, or very large circle β → ∞,
the flucton solution has a very simple form

xfluctðτÞ ¼
4arccot½eτ cotðgx0

4
Þ�

g
: ð30Þ

The classical action for this solution is

S½xfluct� ¼
16 sin2ðgx0

4
Þ

g2
; ð31Þ

and, thus, in the leading semiclassical approximation the
probability to find the particle at x0 takes the form

Pðx0Þ ∼ exp

�
− 16sin2ðgx0

4
Þ

g2

�
: ð32Þ

IV. FLUCTUATIONS AROUND THE
CLASSICAL PATH

Now we turn to quantum fluctuations around the
classical path

yðτÞ ¼ yfluctðτÞ þ fðτÞ: ð33Þ

Let us put this expression into the action and expand it to
the needed order in f. But before we do so, let us remind
the reader that, by the definition, all paths should pass

through the same point at τ ¼ 0 and, thus, there is an
important condition

fð0Þ ¼ 0; ð34Þ

which is absent in the instanton case. Since the classical
path is a local minimum of the action, therefore there is no
term Oðf1Þ. Small fluctuations are described by the
Lagrangian

L ¼
_fðτÞ2
2

þ V 00ðyfluctÞ
fðτÞ2
2

þOðf3Þ; ð35Þ

where we used a short hand notations V 00ðyfluctÞ ¼
∂2VðyÞ=∂y2jy¼yfluct . Its variation leads to a Schrödinger-
like equation with the potential V 00.
For a harmonic oscillator this potential V 00 is just a

constant, so in this case the fluctuations do not depend on
the classical path. Higher order derivatives of V all vanish,
hence, in this case all fluctuations are just Gaussian.
For quartic double-well potential for the famous classical

solution xinstðtÞ (22), the instanton, the potential entering in
(35) has the well-known form

V 00ðyfluctÞ ¼ ω2

�
1 − 3

2 cosh2ðωτ=2Þ
�
: ð36Þ

This potential is one of few exactly solvable quantum
mechanical problems. There are two bound states, the
famous zero mode with eigenvalue zero and another state
with eigenvalue 3

4ω2, as well as the continuum of unbound
states with eigenvalue above ω2. Since one has the analytic
expression for the scattering phase δp, the determinant has
been evaluated so to say “by definition", using a complete
set of states, for a review see e.g. [6]. A new relation
between the determinant and the Green function for the
instanton we will discuss in Appendix B.
In the case of the flucton classical solution (25) the

potential of the fluctuations we put into the form

V 00ðyfluctÞ ¼ 1þW;

where

W ¼ 6Xð1þ XÞejτj
ðejτj − X þ XejτjÞ2 : ð37Þ

The classical path depends on three parameters of the
problem, λ; x0 and ω (which we already put to 1): but in W
the first two appear in one combination only

X ≡ x0
ffiffiffiffiffi
2λ

p
: ð38Þ

This observation will be important in Sec. V.
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An example of ðW þ 1Þ is shown in Fig. 1 (lower plot).
Note that W exponentially decreases at large τ.
In the sine-Gordon case the potential of the fluctuations

has the following form:

V 00ðyfluctÞ¼
1

ð1þe−2τtan2ð ~XÞÞ2
× ½1þe−4τtan4ð ~XÞ−6e−2τtan2ð ~XÞ�; τ> 0;

ð39Þ

where the relevant combination of parameters is

~X ≡ gx0
4

; ð40Þ

cf. (38).

V. THE FLUCTON DETERMINANT

The operator governing quadratic around flucton is

Of≡−f̈ðτÞ þ V 00ðyfluctÞfðτÞ; ð41Þ

where the derivative has already been described above (37).
At large jτj the nontrivial part of the potential disappears
and solutions have a generic form

ψpðτÞ ∼ sinðpτ þ δpÞ; ð42Þ

where for momentum p, only the scattering phase δp
depends on the potential. The eigenvalues of the operatorO
are, for the double well example (37), simply,

λp ¼ 1þ p2; ð43Þ

and the determinant DetO is their infinite product. Its
logarithm is the sum

logDetO ¼
X
n

logð1þ p2
nÞ; ð44Þ

where the sum is taken over all states satisfying zero
boundary condition on the boundary of some large box.

Taking the path integral over fluctuations around the
classical path, in the Gaussian approximation, leads to the
following standard expression:

Pðx0Þ ¼
exp ð−S½xflucton�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DetðOfluctonÞ
p × ½1þOðtwo andmore loopsÞ�;

ð45Þ
withOflucton ¼ O defined in (41). In this section we discuss
numerical evaluation of the determinant: another method
will be discussed in the Sec. V, after we will derive the
corresponding Green function for the fluctuations in
Sec. VI. Calculation of two and more loop corrections
via Feynman diagrams will be discussed in Sec. VIII.
As it is well-known, the nontrivial part of the problem is

not in the eigenvalues themselves, but in the counting of
levels. Standard method (see e.g. § 77 of [16]) vanishing
boundary conditions at the boundary of some large box, at
τ ¼ L, leads to

pnLþ δpn
¼ πn; n ¼ 1; 2;…: ð46Þ

At large L and n one can replace summation to an integral,
resulting in the generic expression

logDetO ¼
X
n

logð1þ p2
nÞ ¼

Z
∞

0

dp
π

dδp
dp

logð1þ p2Þ:

ð47Þ
After using a few different numerical methods for

particular values of the parameter X, we discovered that
there exists an exact (non-normalized) analytic solution for
the eigenfunctions of the operator (41) in the form

ψpðτÞ ∼ sin ðpτ þ Δðp; τÞÞFðp; τÞ; ð48Þ

with the following two functions

Δðp; τÞ ¼ arctan
� −3pð1þ 2XÞ
1 − 2p2 þ 6X þ 6X2

�
þ arctan

�
N
D

�
;

where

N ¼ 3p½1þ 2X þ X2 − X2e−2τ�;
D ¼ ð2p2 − 1Þð1þ X2Þ − 2e−τð2ð1þ p2Þ − e−τð2p2 − 1ÞÞX þ ð2p2 − 1Þe−2τ − 4e−τð1þ p2Þ;

Fðp; τÞ ¼ 1

ðeτ − X þ eτXÞ2 × ½e4τð1þ 5p2 þ 4p4Þ þ 4e3τð1þ p2Þð2 − 4p2 þ eτð1þ 4p2ÞÞX

þ 6e2τð3þ p2 þ 4p4 þ 4eτð1 − p2 − 2p4Þ þ e2τð1þ 5p2 þ 4p4ÞÞX2 þ 4eτð2ð1 − p2 − 2p4Þ
þ 6e2τð1 − p2 − 2p4Þ þ 3eτð3þ p2 þ 4p4Þ þ e3τð1þ 5p2 þ 4p4ÞÞX3 þ ð1þ 5p2 þ 4p4

þ 8eτð1 − p2 − 2p4Þ þ 8e3τð1 − p2 − 2p4Þ þ 6e2τð3þ p2 þ 4p4Þ þ e4τð1þ 5p2 þ 4p4ÞÞX4�1=2:
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It is important that at τ ¼ 0 the solution (48) goes to zero:
according to the flucton definition, all fluctuations at this
point must vanish (34). It is the condition which fixes the
scattering phase.
At large time, where all terms with decreasing exponents

in Δðp; τÞ disappear and the remaining constant terms
define the scattering phase, we need

δp ¼ arctan

�
3pð1þ 2XÞ

1 − 2p2 þ 6X þ 6X2

�
− arctan

�
3p

1 − 2p2

�
:

ð49Þ
Comments:

(i) the scattering phase is OðpÞ at small p;
(ii) it is Oð1=pÞ at large p and, thus, there must be a

maximum at some p;
(iii) for X ¼ 0 two terms in (49) cancel out. This needs to

be the case since in this limit the nontrivial potential
W of the operator (41) also disappears;

(iv) at large time the amplitude F (48) goes to a constant,
as it should.

The arctan-function provides an angle, defined modulo the
period, and thus it experiences jumps by π. Fortunately, its
derivative dδp=dp entering the determinant (47) is single-
valued and smooth. The momentum dependence of the
integrand of this expression for X ¼ 4 is shown in Fig. 2(a).
Analytic evaluation of the integral (47) was not successful,
the results of the numerical evaluation are shown by points
in Fig. 2(b). However, the guess 2 logð1þ XÞ, shown by
the curve in Fig. 2(b) happens to be accurate to numerical
accuracy, and thus it must be correct. We will demonstrate
that it is exact below.
Since the calculation above includes only a half of the time

line, τ > 0, and the other half is symmetric, the complete
result for the logDetO should be doubled. Substituting (49)
to (47) we obtain a (surprisingly simple) exact result

DetðOÞ ¼ ð1þ XÞ4: ð50Þ
Note that at X ¼ 0we return to the harmonic oscillator case.

VI. THE GREEN FUNCTION OF THE
FLUCTUATIONS AROUND THE FLUCTON

SOLUTION

The general procedure for the inversion of the operator
(41), leading to aGreen function, is different for the instanton

and flucton cases. In the instanton case the inversion is only
possible in the subspace normal to the zero mode, leading to
specific difficulties. The flucton problemwe discuss now has
no shift symmetry (no translation invariance) and thus no
zero modes. Needless to say that this symmetry is killed by
the boundary condition at the fixed moment, fðτ ¼ 0Þ ¼ 0.
The corresponding equation to be solved thus is

−∂2Gðτ1; τ2Þ
∂τ21 þ V 00ðyfluctðτ1ÞÞGðτ1; τ2Þ ¼ δðτ1 − τ2Þ:

ð51Þ

The homogeneous equation (with zero rhs) has two
solutions

f0ðτÞ ¼
eτ

ðeτð1þ XÞ − XÞ2 ; ð52Þ

and

f1ðτÞ ¼
e−τ

2ðX − eτð1þ XÞÞ2 ð8X
3ð1þ XÞeτ þ 12X2ð1þ XÞ2τe2τ − 8Xð1þ XÞ3e3τ þ ð1þ XÞ4e4τ − X4Þ: ð53Þ

(Hereafter we only discuss the half line τ > 0). The first solution—would be zero mode if shift be allowed—is
exponentially decreasing at large time, the second one is increasing in time. Standard construction immediately yields the
following Green function

0 5 10 15 20–0.6
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0.0
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0 20 40 60 80 1000
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FIG. 2. The integrand of (47), logð1þ p2Þdδp=dp, versus p,
for X ¼ 4, see upper plot. The integral (47) vs parameter X:
points are numerical evaluation, line is defined in the text, see
lower plot.
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Gðτ1; τ2Þ ¼
e−jτ1−τ2j

2ðeτ1ð1þ XÞ − XÞ2ðeτ2ð1þ XÞ − XÞ2 ½8e
1
2
ðτ1þτ2þ3jτ1−τ2jÞX3ð1þ XÞ

− 8e
1
2
ð3τ1þ3τ2þjτ1−τ2jÞXð1þ XÞ3 þ e2ðτ1þτ2Þð1þ XÞ4 − 6eðτ1þτ2þjτ1−τ2jÞX2ð1þ XÞ2jτ1 − τ2j

þ eðτ1þτ2þjτ1−τ2jÞð6X4ðτ1 þ τ2Þ þ 12X3ð1þ τ1 þ τ2Þ þ 6X2ð3þ τ1 þ τ2Þ þ 4X − 1Þ − e2jτ1−τ2jX4�; ð54Þ

for τ1; τ2 > 0. Similarly, in the sine-Gordon problem the same standard construction yields the following Green function:

Gðτ1; τ2Þ ¼
1

8ðcoshðτ1Þ þ cosð2 ~XÞ sinhðτ1ÞÞ
×

1

ðcoshðτ2Þ þ cosð2 ~XÞ sinhðτ2ÞÞ

×

�
2ðτ1 þ τ2 − jτ2 − τ1jÞsin2ð2 ~XÞ þ 8 cosð2 ~XÞsinh2

�
1

2
ðτ1 þ τ2 − jτ2 − τ1jÞ

�

þ ð3þ cosð4 ~XÞÞ sinhðτ1 þ τ2 − jτ2 − τ1jÞ
�
; ð55Þ

for τ1; τ2 > 0.

VII. RELATING THE DETERMINANT AND THE
GREEN FUNCTION

The method we will use in this section relies on the
following observation. When the fluctuation potential
depends on some parameter, it can be varied. In the case
at hand (37), the potential we write as

Vflucton ¼ 1þWðX; τÞ
depends on the combination (38). Its variation resulting in
extra potential

δVflucton ¼
∂W
∂X δX ð56Þ

is a perturbation: its effect can be evaluated by the
following Feynman diagram:

∂ logDetðOfluctonÞ
∂X ¼

Z
dτGðτ; τÞ ∂VfluctonðτÞ

∂X ; ð57Þ

containing derivative of the potential as a vertex and the
“loop”, the same point Green function, at τ1 ¼ τ2 ¼ τ, see
Fig. 3. This relates the determinant and the Green function
[17]: if the rhs of it can be calculated, the derivative over X
can be integrated back.

In the quartic double-well problem the “Green function
loop” propagator is

Gðτ; τÞ ¼ 1

2ðX − eτð1þ XÞÞ4
× ð−X4 þ 8eτX3ð1þ XÞ − 8e3τXð1þ XÞ3
þ e4τð1þ XÞ4 þ e2τð−1þ 4X þ 18X2 þ 12X3

þ 12X2ð1þ XÞ2τÞÞ; ð58Þ

and the “vertex”

∂VfluctonðτÞ
∂X ¼ 6eτðX þ eτð1þ XÞÞ

ð−X þ eτð1þ XÞÞ3 : ð59Þ

With these expressions one can evaluate the rhs of the
relation (57), and adding the same expression for negative
time, one gets the result

∂ logDetðOfluctonÞ
∂X ¼ 4

1þ X
; ð60Þ

which exactly agrees with the result (50) from the direct
evaluation of the determinant using the phase shift. So, the
Green function has passed a very nontrivial test, and we
conclude that it is ready to be used for evaluation of two and
higher loop diagrams.
In the sine-Gordon problem the corresponding simplified

expression for Gðτ; τÞ is

Gðτ; τÞ ¼ 1

4ð1þ e2τ þ ðe2τ − 1Þ cosð2 ~XÞÞ2
× ½4ðe2τ − 1Þ2 cosð2 ~XÞ − cosð4 ~XÞ
þ e4τð3þ cosð4 ~XÞÞ þ 8e2ττsin2ð2 ~XÞ − 3�:

ð61Þ
FIG. 3. Symbolic one-loop diagram, including variation of the
fluctuation potential δV and the simplified “single-loop” Green
function Gðτ; τÞ.

ESCOBAR-RUIZ, SHURYAK, and TURBINER PHYSICAL REVIEW D 93, 105039 (2016)

105039-8



Evaluating the one-loop diagram Fig. 3, we arrive at the
result

logDetðOfluctonÞ ¼ 4 tan½ ~X�: ð62Þ

For the powerlike potential (13) the “Green function
loop” takes the form

Gðτ; τÞ ¼ −1þ ðN − 1ÞX1τ þ ð1þ X1ð1 − NÞτÞ 2N
1−N

ð3N − 1ÞX1

;

ð63Þ
where

X1 ¼ gxN−1
0 ;

and the “vertex” reads

∂VfluctonðτÞ
∂X1

¼ 2ð2N − 1ÞNX1

ððN − 1ÞτX1 − 1Þ3 ; ð64Þ

ðτ < 0Þ. Hence, we obtain the result

logDetðOfluctonÞ ¼
2N

N − 1
logX1:

In the case of the anharmonic oscillator (17) the “Green
function loop” is

Gðτ;τÞ¼ ðsinhðτÞþ coshðτÞX2Þ
4X2ðcoshðτÞþ sinhðτÞX2Þ4
× ½−6τX2ðsinhðτÞþ coshðτÞX2Þð−1þX2

2Þ
þ sinhðτÞð4þX2½sinhð2τÞþ3ð−3þ coshð2τÞÞX2

þ3sinhð2τÞX2
2þð5þ coshð2τÞÞX3

2�Þ�; ð65Þ

where

X2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gx20

q
;

while the “vertex” is given by

∂VfluctonðτÞ
∂X2

¼ 12ðsinhðτÞ þ coshðτÞX2Þ
ðcoshðτÞ þ sinhðτÞX2Þ3

; ð66Þ

ðτ > 0Þ. Thus,

logDetðOfluctonÞ ¼ 2 log½X2ð1þ X2Þ�:

VIII. HIGHER ORDER FEYNMAN DIAGRAMS

Now, using only the tools from quantum field theory, the
Feynman diagrams in the flucton background, we compute
the two-loop correction to the density matrix (45) for the

double-well potential. In principle, the higher order dia-
grams are evaluated by standard rules.
Unlike the calculations near the instanton solution [7,8],

in the case of flucton there are no zero modes and related
Jacobian, so all diagrams follow from the Lagrangian. In
the quartic double-well potential, the flucton-based Green
function (54) was determined above, and the only vertices
are triple and quartic ones

v3ðτÞ ¼
6

ffiffiffiffiffi
2λ

p ðX þ eτð1þ XÞÞ
−X þ eτð1þ XÞ ; ð67Þ

v4 ¼ 24λ: ð68Þ

The loop corrections in (45) are written in the form

½1þOðtwo and more loopsÞ� ¼ 2
X∞
n¼0

Bnλ
n; B0 ¼

1

2
;

where Bn ¼ BnðXÞ. Like in the calculations near the
instanton solution, we need to separate the finite flucton-
related contribution for each diagram from the infinite
(time-divergent) contribution without it. This is done by
subtracting the same expression with “vacuum vertices”

v3;0 ¼ 6
ffiffiffiffiffi
2λ

p
; ð69Þ

v4;0 ¼ 24λ; ð70Þ

2 4 6 8 10
X

3

2

1

0

1

a b1 b2

b2

b1

a

FIG. 5. The two-loop diagrams a; b1; b2 and the two-loop
correction B1 ≡ aþ b1 þ b2 as a function of variable X (38).

b1 b a
2

−
12

111

8 8

FIG. 4. Diagrams contributing to the two-loop correction
B1 ¼ aþ b1 þ b2. The signs of contributions and symmetry
factors are indicated.
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and the “vacuum propagator”

G0 ¼ Gðτ1; τ2Þ
����
X→0

¼ e−jτ1−τ2j
2

− e−τ1−τ2
2

: ð71Þ

[Note that (71) differs from the vacuum propagator in the
instanton problem where the second term in the rhs is

absent. In particular, it is no longer translational invariant
because of the extra boundary condition at τ1 ¼ τ2 ¼ 0 for
fluctuations at the fixed point x0.]
The two-loop correction B1 we are interested in can be

written as the sum of three diagrams, see Fig. 4, diagram a
which is a one-dimensional integral and diagrams b1 and b2
corresponding to two-dimensional ones.
Explicitly, we have

a≡− 1

8λ
v4

Z
∞

0

½G2ðτ; τÞ −G2
0ðτ; τÞ�dτ ¼

3

560X2ð1þ XÞ4

×

�
24X − 60X2 − 520X3 − 1024X4 − 832X5 − 245X6 þ 24ð1þ XÞ2ð1þ 2XÞð−1þ 6Xð1þ XÞÞ logð1þ XÞ

þ 288X2ð1þ XÞ4PolyLog
�
2;

X
1þ X

��
; ð72Þ

here PolyLog½n; z� ¼ P∞
k¼1 z

k=kn is the polylogarithm function and

b1 ≡ 1

12λ

Z
∞

0

Z
∞

0

½v3ðτ1Þv3ðτ2ÞG3ðτ1; τ2Þ − v3;0v3;0G3
0ðτ1; τ2Þ�dτ1dτ2

¼ 1

280X2ð1þ XÞ4 ×
�
−24X þ 60X2 þ 520X3 þ 1024X4 þ 832X5 þ 245X6

þ 24ð1þ XÞ2ð1 − 4X − 18X2 − 12X3Þ logð1þ XÞ − 288X2ð1þ XÞ4PolyLog
�
2;

X
1þ X

��
; ð73Þ

b2 ≡ 1

8λ

Z
∞

0

Z
∞

0

½v3ðτ1Þv3ðτ2ÞGðτ1; τ1ÞGðτ1; τ2ÞGðτ2; τ2Þ − v3;0v3;0G0ðτ1; τ1ÞG0ðτ1; τ2ÞG0ðτ2; τ2Þ�dτ1dτ2

¼ − 1

560X2ð1þ XÞ4 ×
�
24X − 60X2 þ 1720X3 þ 5136X4 þ 4768X5 þ 1435X6

þ 24ð1þ XÞ2ð−1þ 4X þ 18X2 þ 12X3Þ logð1þ XÞ þ 288X2ð1þ XÞ4PolyLog
�
2;

X
1þ X

��
: ð74Þ

Eventually, the two-loop correction takes an amazingly
simple form,

B1 ≡ aþ b1 þ b2 ¼ −Xð4þ 3XÞ
ð1þ XÞ2 ; ð75Þ

all log and PolyLog terms disappear. The results of
calculations are shown on Fig. 5.

IX. SUMMARY

The combined results for the probability to find a
particle at point x0 in the quartic double-well potential at
zero temperature is

Pðx0Þ ∼
e−X2

2λ−X3
3λ

ð1þ XÞ2
�
1 − λ

Xð4þ 3XÞ
ð1þ XÞ2 þOðλ2Þ

�
; ð76Þ

where, we remind X ¼ ffiffiffiffiffi
2λ

p
x0. Note that X ¼ −1 is indeed

a singularity of the potential in the unphysical domain.
The x0 dependence of (76) is plotted in Fig. 6 by the thick

line. The thin line is asymptotics derived in Appendix A:
since x0-independent constant remained unknown we

0.0 0.5 1.0 1.5 2.0 2.5 3.0
10 8

10 6

10 4

0.01

1

FIG. 6. The probability Pðx0Þ to find particle at location x0 for
λ ¼ 0.1. The thick line is our result (76), thin line is asymptotics
derived in Appendix A.
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normalized it to our curve at large distances. Their com-
parison shows good agreement for x0 > 1.
Although derived semiclassically, and thus formally

valid for large flucton action only, our answer is also
obviously correct at small x0, where it merges with the
answer for a harmonic oscillator.
For brevity of the paper we only calculated Pðx0Þ at

coordinates outside the two minima. If the barrier is
sufficiently large, semiclassical calculation of this proba-
bility can also be extended to the region between the
minima. In this case, as noted already in [12], there are four
distinct classical trajectories going through a point: instan-
ton, anti-instanton, and two different fluctons, relaxing to
the left and right minima. Since contributions of those are
additive and have different actions, the probability should
be then written as their respective sums.
For completeness we present the corresponding proba-

bility Pðx0Þ in the case of powerlike potential (13),

Pðx0Þ ∼
exp½− 2gjx0jNþ1

Nþ1
�

jx0jN
; ð77Þ

and the anharmonic oscillator case (17)

Pðx0Þ ∼
exp½− 2

3

X3
2
−1
g �

X2ð1þ X2Þ
; X2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gx20

q
; ð78Þ

and the sine-Gordon potential

Pðx0Þ ∼
exp½−16 sin2ð ~XÞ

g2 �
exp½2 tanð ~XÞ� ; ~X ¼ gx0

4
: ð79Þ

X. DISCUSSION

In this section we discuss, without a detailed solution,
several potential approximations of the developed method.
The simplest extension of what was already done is to

QM/SM multidimensional problems in the cases in which
the variables can be separated. For example, multidimen-
sional motion with a spherically symmetric potential VðrÞ,
r2 ¼ P

ix
2
i , the flucton is a classical path along the radial

direction, easily calculated from energy conservation (as in
the 1D case). However, in this case also one can use WKB
or similar approximations as well.
The next problem can be multidimensional anharmonic

oscillators, perturbed say by certain cubic and quartic
terms. Physical problems of this type are e.g. vibrational
states of the multiatomic molecules. Let us further note that
the additional appeal of our approach is the fact that in a
realistic case the temperature T and oscillation quanta ℏωi
are often comparable: so a generalization to finite-T
fluctons is fully needed. Of course, in this case energy
conservation is not enough, and a flucton solution should
be found from the second-order equations of motion (in

Euclidean time) numerically. This solution should start at a
given point of interest x0 and relax to the bottom of the
potential (the classical vacuum).
An example in which there are additional integrals of

motion can be interesting to study as well. For example, an
electron in a field of two static Coulomb centers has
nontrivial integral of motion containing the “velocities”
(first order time derivatives) of coordinates. Since the
motion is in a plane, using the energy and this integral
should allow us to use the first order equations and perhaps
find the flucton solution.
One would also like to promote the semiclassical method

to QFT. In this case the path integral in d-dimensions has a
“boundary value” at τ ¼ 0 in the form of some (d − 1)-
dimensional field configurations ϕð0; ~xÞ.
To give a simple example, consider a scalar field with

λϕ4=4! theory in four dimensions. A flucton can be made of
two pieces of Fubini-Lipatov “instantons” [22,23], shifted
away from the τ ¼ 0 plane by some equal distance T=2

ϕinst ¼ 4
ffiffiffiffiffi
3λ

p ρ

x2 þ ρ2
; ð80Þ

ϕfluctonðxÞ ¼ θðτÞϕinstðτ þ T=2Þ þ θð−τÞϕinstðτ − T=2Þ:
ð81Þ

A configuration at the plane in a certain spherically
symmetric “bump”, with a width ρ and a height 1=ρ,
and the corresponding action is Oð1=λÞ.
The fluctuations around classical fluctons are described

by the quadratic form operator

ODϕ≡−∂m∂mϕþ V 00ðyfluctÞϕðxÞ; ð82Þ

which includes a Laplacian in all d dimensions. In cases
(like the one just mentioned) when the flucton is locally
made of instanton solutions, the operator is locally the
same, but one should keep in mind that the corresponding
Green functions are very different. Indeed, instantons have
zero modes and issues related to the orthogonality to those,
while in the flucton case the configuration is fixed at τ ¼ 0
and thus no zero modes are present. (Therefore, one should
not use known instanton Green functions.)
Finally, let us remind themain flucton idea, applied for any

theory. At τ ¼ 0 one may put any d − 1 dimensional field
configuration, and then complement it by a d-dimensional
classical solution, leading to it from the classical vacuum.
The exponent of its action provides the probability of the
configuration to appear in a quantum (or thermal) ensemble.
Of course, inmany cases, the flucton can be constructed from
pieces of knownclassical solutions, for example out of pieces
of an instanton and an anti-instanton.
In gauge theories the coordinates are gauge fields AμðxÞ,

and the (d − 1)-dimensional field configuration in question
should better possess some special properties, which would
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be gauge independent. An example of a topologically
important (d − 1)-dimensional property can be the famous
Chern-Simons number NCS. Specifically, the so-called
sphalerons [24] are solutions with NCS ¼ 1=2: there is a
large literature devoted to the calculations of the probability
of its occurrence in quantum or thermal ensembles. We
think its calculation by the flucton method would be of
interest.
The fluctons should not be confused with other d-

dimensional paths leading to sphalerons. In particular, in
[25] such paths have been constructed via some four-
dimensional instanton-antiinstanton “streamline” configu-
rations. This construction is different from fluctons,
because the four-dimensional instanton-antiinstanton con-
figuration used satisfies a “streamline equation” different
from classical Yang-Mills equations of motion. It can be
called “forced tunneling”, and its objective is to produce
d − 1 configurations with zero kinetic energy, called the
“turning points” configurations, ready to be continued into
a Minkowski time.
We hope to be able to address some of these problems in

detail in our subsequent publications.

APPENDIX A: ASYMPTOTICS AT LARGE X

While in the rest of the paper we only apply tools
available in QFT settings, that is path integrals, in this
appendix we still return to the Schrödinger equation, which
has the form (here as in the text ℏ ¼ 1; m ¼ 1)

�
− 1

2
∂2
y þ VðyÞ − E

�
Ψ ¼ 0; ∂y ≡ d

dy
; ðA1Þ

where the double-well potential in shifted coordinates we
use is

VðyÞ ¼ y2

2
þ

ffiffiffiffiffi
2λ

p
y3 þ λy4: ðA2Þ

Note that it smoothly goes to the harmonic oscillator at
λ → 0. Introducing the phase ϕðyÞ ¼ − logΨðyÞ we move
to the Riccati equation,

∂2
yϕ − ð∂yϕÞ2 ¼ 2E − 2VðyÞ; ðA3Þ

to which one can plug the asymptotic expansion at jyj → ∞
and obtain all the coefficients (cf. [26])

ϕ ¼ 1

3

ffiffiffi
2

p ffiffiffi
λ

p
jyjy2 þ 1

2
y2 − d log jyj2

þ 1þ 2E

2
ffiffiffiffiffi
2λ

p 1

jyj −
1

8λy2
þ…; ðA4Þ

where d ¼ 1=2. The first two terms in the expansion are
classical coming from classical Hamilton-Jacobi equation,
the log-term reflects an intrinsic property of the Laplacian:

y is zero mode or kernel, this term comes from the
determinant, asymptotically the determinant behaves like
jyj2, where d is degree with which it enters to the wave
function. Note that a constant, Oðx00Þ term is absent: it can
not be obtained from the Riccati equation containing
derivatives only. Note also that so far the energy remains
undefined: to find it one needs to solve the equation to all x.
The last terms are true quantum corrections, decreasing at
large distances. Intrinsically, this expansion corresponds to
the ground state: it implies that the eigenphase ϕ has no
logarithmic singularities at real y. Quantization for the
Riccati equation implies a search for solutions growing at
large ywith a finite number of logarithmic singularities at a
real finite y. For the nth excited state the first two growing
terms in (A4) remains unchanged while the log-term gets
an integer coefficient, ðnþ 1Þ log jyj, see [26].
Multiplying by 2 (the path integral is for the density

matrix, or wave function squared) one finds, as expected,
that the first two terms coincide with the classic action of
the flucton. For the determinant one needs to expand at
large x0

logð1þ
ffiffiffiffiffi
2λ

p
x0Þ ¼ logðx0Þ þ logð

ffiffiffiffiffi
2λ

p
Þ þ 1ffiffiffiffiffi

2λ
p

x0
þ…;

ðA5Þ

and observe that the leading term agrees with the log jyj
term in the asymptotic expansion (A4).
The two-loop correction B1λ found in the text (75)

expands in inverse powers of x0 as follows

−λXð4þ 3XÞ
ð1þ XÞ2 ¼ −3λþ

ffiffiffiffiffi
2λ

p

x0
þ…; ðA6Þ

where X ¼ ffiffiffiffiffi
2λ

p
x0, see (38).

In order to compare the 1=x0 terms in the last two
expressions one needs to substitute the ground state energy
to OðλÞ accuracy

E ¼ 1

2
− 2λþ…; ðA7Þ

to the Oð 1x0Þ term in (A4). After that one finds agreement

with both Oð 1x0Þ terms given in (A5) and (A6).
Finally, let us add a comment about the WKB expres-

sion, in which the semiclassical wave function has in front
1=

ffiffiffiffiffiffiffiffiffiffi
pðxÞp

where p is momentum. While at large x its
leading asymptotics is correct, as well as that of our
determinant, the WKB one has an unphysical singularity
at the turning point. Our determinant, on the other hand, is a
smooth function of x0, and it correctly reproduces the
fluctuations till small x0, where it joins with the harmonic
oscillator behavior.
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APPENDIX B: THE SUM RULE FOR THE
INSTANTON GREEN FUNCTION

While the instanton path (22) depends on both param-
eters of the quartic potential, λ and ω, in the corresponding
fluctuation potential (36) the coupling constant λ drops out.
As a result, the spectrum and thus the determinant does not
depend on λ. Therefore, the method we used in the main
text to calculate the determinant via its derivative over λ
cannot be used.
Nevertheless one can still differentiate the determinant

over the remaining parameter ω. As we will show
below, it produces a nontrivial sum rule for the Green
function.
The basis for the sum rule is the relation

∂
∂ω2

logDet0ðOinstantonÞ ¼ −
Z

dτGðτ; τÞ ∂V instanton

∂ω2
;

ðB1Þ

where Det0 stands for determinant with the zero mode
excluded. Its value, normalized to that of the oscillator, is
known [6]

Det0Oinstanton

DetOosc
¼ 1

12ω2
; ðB2Þ

and so the lhs of the relation above is −1=ω2.
Unfortunately, this derivative does not depend on the
numerical coefficient 1=12, which we would like to
calculate, so this sum rule is less useful than the one we
used for fluctons in the main text.
The derivative of the potential (36) over ω is calculated

directly. The Green’s function Gðx; yÞ on top of the
instanton solution [7,27] is

Gðx;yÞ¼G0ðx;yÞ
�
2−xyþ1

4
jx−yjð11−3xyÞþðx−yÞ2

�

þ 3

8ω
ð1−x2Þð1−y2Þ

�
logð2G0ðx;yÞÞ−11

3

�
;

ðB3Þ
expressed in variables x ¼ tanhðωτ1

2
Þ; y ¼ tanhðωτ2

2
Þ, in

which the familiar Green function G0 ¼ 1
2ω e

−ωjt1−t2j of
the harmonic oscillator looks as follows:

G0ðx; yÞ ¼ 1

2ω

1 − jx − yj − xy
1þ jx − yj − xy

: ðB4Þ

We only needs it at the equal arguments τ1 ¼ τ2, so it
simplifies. Also one needs to regularize the Green function,
by subtracting that of the oscillator, resulting in

Ginstðτ; τÞ −G0ðτ; τÞ ¼ −7þ 4 coshðτωÞ
8ωcosh4ðτω=2Þ : ðB5Þ

But even with the simplification, the integrand of the rhs of
the sum rule (B1) is rather complicated, see Fig. 7. And yet
it integrates to the unit answer, as the sum rule requires,
providing an additional test to the Green function.
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