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We study the question of whether two frames of a given physical theory are equivalent or not in the
presence of quantum corrections. By using field theory arguments, we claim that equivalence is broken in
the presence of anomalous symmetries in one of the frames. This is particularized to the case of the relation
between the Einstein and Jordan frames in scalar-tensor theories used to describe early Universe dynamics.
Although in this case a regularization that cancels the anomaly exists, the renormalized theory always
develops a nonvanishing contribution to the S matrix that is present only in the Jordan frame, promoting the
different frames to different physical theories that must be UV completed in a different way.
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I. INTRODUCTION

Physics is a universal way of describing phenomena in
our Universe. In particular, it is a field that is able to make
predictions about events to come. For this property to be
satisfied, the main requirement for any physical theory is
that these predictions cannot depend on the observer who
makes them nor on the ruler she uses. Indeed, Galilean
relativity as well as the special and general theories of
relativity contain this assumption deep in their core.
There is some tension, however, when quantum field

theory enters into game. It has been known for some time
[1] that the generator of 1PI diagrams, the quantum
effective action, is not invariant under field reparametriza-
tions, and even its invariance under internal gauge sym-
metries has generated some controversy [2–4].
In recent years, observations of experiments like the

WMAP or the Planck satellites [5] have opened a window
to study cosmological phenomena which occur close to the
Planck scale, where the first corrections to classical
observables coming from quantum gravitational dynamics
may play an important role. The most famous example of
this is inflation, where a huge number of different models
have been proposed to make the Universe expand expo-
nentially in its very first few moments [6–8]. Some of these
models rely on the existence of a new scalar degree of
freedom, the inflaton field,1 nonminimally coupled to
gravity through a ϕ2R term [9–12]. The complications
that this coupling introduces when trying to compute
quantum corrections are huge, and then it is common to
transform the field variables, the metric and the inflaton, to
go from this so-called Jordan frame to the Einstein frame,
where the nonminimal coupling is not present and more
standard intuition can be used. Computing quantum

corrections in the Einstein frame is easier, and afterwards
they can be taken back to the original frame by reverting the
field redefinition.
Many concerns have appeared in the last years when

dealing with this situation (cf. [13] and references therein).
In principle, the already-mentioned nonequivalence of the
quantum effective action could be fatal if one wants to
extract physical predictions from this setting. However, it
can be proven, both in general and for particular actions
[13,14], that the S matrix computed in both frames is
indeed equivalent, provided that the fields are transformed
accordingly, thus saving the day and the equivalence.
Nonetheless, there is a caveat in all these arguments. If
an anomalous symmetry is present in one of the frames,
then the equivalence is broken precisely by the anomalous
contributions and one can find at least an observable,
corresponding to the conserved current of the correspond-
ing symmetry, which does not transform appropriately,
giving inequivalent physics in both frames.
In this work, we unveil the origin and consequences of

this anomalous equivalence of frames, first by general
arguments based on the structure of the quantum effective
action and afterwards with an explicit example of a scale-
invariant scalar-tensor theory. Our conclusion, however, is
not particular for this model and can, in principle, be
extended to more general QFTs, the only hypothesis being
the exchange of an exact symmetry by an anomalous one
due to the field transformations.

II. ANOMALOUS EQUIVALENCE OF FRAMES

One of themain assumptions of physics is that predictions
cannot depend on the observer who makes an experiment
neither on the variables she uses to describe it. Unifying both
aspects, it is assumed that physical phenomena cannot
depend on the choice of frame. This is the minimal require-
ment one can ask of a well-behaved physical theory. Indeed,

1In some models, the Standard Model Higgs field takes the role
of the inflaton.
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classical physics satisfies this in a very simple way—
quantities in one frame are just the transformation of
quantities in an equivalent frame, with Lorentz transforma-
tions being a well-known example of this kind of situation.
One can revert this argument and use it to actually define
what equivalence between frames means.
Definition 1: (Equivalence between frames). Two

frames related by a transformation of the field variables
of the form Q0 ¼ Q0ðQÞ are equivalent if any physical
quantity AðQÞ satisfies

A0ðQ0Þ ¼ AðQÞ: ð1Þ

In particular, this applies to the action S0ðQ0Þ ¼ SðQÞ,
ensuring that stationary trajectories in one frame corre-
spond also to stationary trajectories in any other. The full
equivalence of classical observables then follows trivially
from this fact.
The situation is not so easy in quantum field theory

(QFT). Indeed, it was noted quite some time ago [1] that
one of the main objects in QFT, the quantum effective
action Γ½Q�, was not invariant under a change of frames. In
particular, let S½Q� be a classical action depending on a set
of fields Q, then we can define the effective potential W½J�
through a path integral with sources J,

eiW½J� ¼
Z

½DQ�eiS½Q�þi
R

d4xJ·Q; ð2Þ

and the quantum effective action as a Legendre transform
of this,

Γ½Q� ¼ W½J� −
Z

d4xJ ·Q; ð3Þ

where Q is the mean field,

Q ¼ δW
δJ

; ð4Þ

which solves the effective equations of motion given by the
quantum effective action,

∂Γ
∂Q ¼ −J: ð5Þ

At the one-loop level, Γ½Q� can be exactly integrated to
yield

Γ½Q� ¼ S½Q� þ i
2
log

�
Det

�∂2S
∂Q2

��
; ð6Þ

which under a change of frames Q0 ¼ Q0ðQÞ transforms as

Γ0½Q0�¼S0½Q0�þ i
2
log

�
Det

�∂2S0

∂Q02þ
�∂Q0

∂Q
�

2 ∂2Q
∂Q02

∂S0
∂Q0

��
:

ð7Þ

Therefore, only quantities which are evaluated on-shell,
a requirement that almost uniquely selects the S matrix,
satisfy equivalence in the sense of definition 1. In particu-
lar, [1] pointed out that other objects, like for instance the
mean field obtained by differentiating Γ½Q�, would be
affected by this difference, compromising equivalence.
They tracked the reason for this disagreement to the fact
that Γ½Q�, as it is defined, is not a scalar quantity on the
manifold spanned by the field configurations of Q, so any
redefinition of these will change its value. The obvious
solution was then to covariantize the quantum effective
action, arriving at what we call the “unique effective
action.” The need to use this redefinition or not has been
discussed before in the literature [15–18], but we do not
aim to enter into this dilemma in the present work. Here,
instead, we want to unveil a different issue that jeopardizes
equivalence.
Although (6) and (7) are completely general formulas at

the one-loop level, there is a caveat in their derivation. If the
variables of one frame, lets say Q0, realize different
symmetries than the ones in the other frame and one of
those happens to be anomalous, then equivalence is
compromised.
Let us again be explicit and assume that the action S0½Q0�

is invariant under some transformation given by

Q0 → Q0 þ δϵQ0 þOðϵ2Þ; ð8Þ

where ϵ is the infinitesimal generator of the transformation.
Then, classically, Noether’s theorem implies

δS0

δQ0 δϵQ
0 ¼ ∇0

μJ0μ: ð9Þ

In the case of a quantum field theory, this translates into
the corresponding Ward-Takahashi identity,�

δΓ0

δQ0 δϵQ
0
�

¼ h∇0
μJ0μi; ð10Þ

which must hold when quantum corrections are considered
unless we find an anomaly. In that case, they will be
modified by new terms in the rhs.
In the Q frame, if equivalence as given by definition 1

holds, the transformed version of the identity must be still
true as an operator equation,�

δΓ
δQ

δϵQ
�

¼ h∇μJμi; ð11Þ

as a consequence of a different symmetry given by
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Q → Qþ δϵQ ¼ Qþ ∂Q
∂Q0 δϵQ

0: ð12Þ

Remarkably, the concrete realization of the symmetries
in the different frames will also be different if the trans-
formations are nonlinear. In particular, it could happen that
the symmetry in the Q frame is exact2 and therefore the
condition (11) will hold at any order in the loop expansion.
But, if the corresponding symmetry is anomalous in the Q0
frame, this means that the transformed version (10) of the
identity will not hold but instead will get new contributions.
We find then a source of inequivalence that can be sharply
stated
Theorem 1: (Anomalous equivalence). If the frame Q0

related to the frame Q as Q0 ¼ Q0ðQÞ is invariant under an
anomalous symmetry Q0 → Q0 þ δϵQ0, which corresponds
to an exact symmetry Q → Qþ δϵQ in the frame Q,
equivalence of frames does not hold.

III. INEQUIVALENCE OF
COSMOLOGICAL FRAMES

Let us now particularize our result to the case of
cosmological frames. For that, we start by introducing a
scalar-tensor model in the Jordan frame written in
Euclidean signature,

SJ½gμν;ϕ� ¼
Z

d4x
ffiffiffiffiffi
jgj

p �
−ξϕ2Rþ 1

2
∇μϕ∇μϕþ λϕ4

�
;

ð13Þ

where ϕ is a scalar field and λ and ξ are dimensionless
couplings. As it stands, this action is invariant under the
scale transformations:

gμν → Ω2gμν; ϕ → Ω−1ϕ: ð14Þ

This will be our frame Q0, and the fact that SJ½gμν;ϕ� is
scale invariant is crucial for our result. It will actually be
scale invariance that takes the role of the anomalous
symmetry in this frame. We consider this action exclusively
when ϕ ≠ 0. In the other case, perturbation theory would be
broken by the presence of a strong coupled gravitational
sector [19].
We now define the other frame Q as the corresponding

Einstein frame of this theory. It is obtained by doing the
following transformations,

~gμν ¼
ξϕ2

M2
p
gμν; φ ¼ Mp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ξ
− 12

s
logðϕÞ; ð15Þ

whereMp is the Planck mass.3 Thus, we arrive at the action

SE½~gμν;φ� ¼
Z

d4x
ffiffiffiffiffi
j~gj

p �
−M2

p
~Rþ 1

2
~∇μφ ~∇μφþ λM4

p

ξ2

�
:

ð16Þ

It is worth pointing out here that these actions are
nonrenormalizable upon the inclusion of dynamical grav-
ity. Thus, they must be understood as the lowest-order
terms in an expansion in inverse powers of some ultraviolet
scale. Higher-order contributions will be produced by
quantum loops and they will be related by the field
transformations as well [3,4]. We will come back to this
point later.
In the Einstein frame, we do not have any scale invariance

any more because the Einstein-Hilbert term M2
p
~R breaks it

explicitly through the presence of the Planck mass. It is
substituted by a shift symmetry in the scalar field:

φ → φþ ~Ω: ð17Þ

Then, at the classical level and at tree level in the
quantum theory, the transformed version of the scale-
invariant Ward identity must still be true at the light of
shift invariance. Indeed, such a Ward identity is, in the
Jordan frame, just the statement that the trace of the energy-
momentum tensor is a total derivative on the mass shell,

�
Tμ
μ − ϕ

δSJ
δϕ

�
¼ h∇μJμi: ð18Þ

However, in the presence of gravity, what we would
define as the energy-momentum tensor.4 is no more than the
gravitational equation of motion. Thus, scale invariance
forces its trace to be a total derivative,

�
2gμν

δSJ
δgμν

− ϕ
δSJ
δϕ

�
¼ h∇μJ

μ
Ji; ð20Þ

where the current is simply5

2By exact, we mean that δϵQ gets no anomalous contributions
from quantum corrections.

3In the case of ξ ¼ 1
12
, the symmetry is enhanced to Weyl

invariance, and there is no scalar field in the Einstein frame. This
is the case examined in [14].

4By “energy-momentum tensor,” we mean the Belinfante-
Rosenfeld energy-momentum tensor [20], which corresponds to
the source of the gravitational field and is obtained by functional
differentiating the Lagrangian density

Tμν ¼ 2ffiffiffiffiffijgjp δð ffiffiffiffiffijgjp
LÞ

δgμν
: ð19Þ

5Note that, as expected, in theWeyl-invariant point, ξ ¼ 1
12
, this

vanishes identically.
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JμJ ¼ ð1 − 12ξÞϕ∇μϕ: ð21Þ

If we now go to the Einstein frame, the aforementioned
shift symmetry will ensure that we have the equivalence
relation,�
2gμν

δSJ
δgμν

− ϕ
δSJ
δϕ

�
¼ h∇μJ

μ
Ji ⟶

Q0→Q
�
2~gμν

δSE
δ~gμν

− φ
δSE
δφ

�

¼ h ~∇μJ
μ
Ei; ð22Þ

which completely holds at tree level.
Let us consider now quantum corrections to this sit-

uation. If these are nonvanishing, their effect will be to
modify the effective equations of motion that enter into the
Ward identity by substituting the classical action Si by the
quantum effective action Γi and the classical fields by their
mean values so that the previous relation changes to�
2gμν

δΓJ

δgμν
−ϕ

δΓJ

δϕ

�
¼ h∇μJ

μ
Ji ⟶

Q0→Q
�
2 ~gμν

δΓE

δ ~gμν
−φ

δΓE

δφ

�

¼ h ~∇μJ
μ
Ei: ð23Þ

The fact that gravity is dynamical is reflected here in the
fact that the divergence of the current must be proportional
to the equations of motion.
As it stands, the relation on the Einstein frame is still the

transformation of the one in the Jordan frame. However, in
that frame, this is not the real identity that is preserved. The
reason is that, in general, scale invariance is anomalous due
to the appearance of a nonvanishing variation of the pole
term in the regularized effective action under the scale
transformations (14). Then, the corresponding Ward-
Takahashi identity must be modified by the anomalous
terms A½gμν;ϕ�:�

2gμν
δΓJ

δgμν
− ϕ

δΓJ

δϕ

�
¼ A½gμν;ϕ� þ h∇μJ

μ
Ji: ð24Þ

Therefore the equivalence does not hold any more. If
wewant to preserve it, then we need to consider not only the
constraints imposed by the effective equations of motion,

δΓJ

δgμν
¼ δΓJ

δϕ
¼ 0; ð25Þ

but also the ones required by anomaly cancellation,

A½gμν;ϕ� ¼ 0; ð26Þ
which have no counterpart in the Einstein frame. More-
over, the presence of the anomaly triggers a scattering
amplitude,6

hσjA½gμν;ϕ�j0i ≠ 0; ð27Þ

between some state of the theory and the vacuum, which is
however absent in the Einstein frame. This makes the
frames, and perhaps the physical consequences derived
from them, completely inequivalent.

IV. SCALE ANOMALIES

Up until now, we have argued that in the presence of an
anomalous scale invariance, equivalence between Einstein
and Jordan frames is broken. Now we take care of the
explicit formof the anomalous termA½gμν;ϕ�. For that, let us
keep in mind that we are dealing with nonrenormalizable
theories, so that at every loop order we will find new
counterterms to be introduced in the action. Thus we can
keep the computation under control, at most order by order,
in the loop expansion.Moreover, in the Jordan frame, where
we have a nonlinear coupling between curvature and
the scalar field ϕ, standard power-counting arguments do
not hold [14], and we expect to find counterterms of the
form

ffiffiffiffiffi
jgj

p ð∇μϕ∇μϕÞ2
ϕ4

;
ffiffiffiffiffi
jgj

p ð□ϕÞ2
ϕ2

;
ffiffiffiffiffi
jgj

p R3

ϕ2
; …;

ð28Þ

which are singular in the limit ϕ → 0. For this particular
example, the first two terms appear at one loop,while the last
one corresponds to a two-loop correction.
The easiest way to compute corrections in the Jordan

frame is to exploit the pretending equivalence. That is, even
if we know of a particular current which is not equivalent
between the two theories (that of scale invariance), the only
effect can come from anomalies and, therefore, the counter-
terms will be still related by the frame transformation
Q0 ¼ Q0ðQÞ. Indeed, that the counterterms are equivalent
on-shell has been proven in many different works
[13,14,18]. Thus, we can compute the regularized quantum
effective action in the Einstein frame, transform it back to
Jordan frame, and then obtain the anomalous terms and the
anomalous Ward identity from them by renormalizing in
this frame. Let us remark, however, that we are using this
trick here only as a way to minimize the computational
complexity of this article as much as possible. One could
instead compute the corrections directly in the Jordan
frame, where a complicated gauge fixing sector is required,
arriving at the same results for the dimensionally regular-
ized divergences of the theory.
In the Einstein frame, power-counting arguments work

and the loop expansion can be regarded as an expansion in
scalingdimension. Ifweusedimensional regularization, then
the L-loop-level contribution to the effective action reads

6The prototypical example of this effect is the π0 → γγ decay
in chiral theories, which is driven by the axial anomaly.
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Γ½~gμν;φ�L ¼ 1

n − 4

Z
dnx

ffiffiffiffiffi
jgj

p X
O

OL½ ~Rμνρσ;φ� þ finite;

ð29Þ

where the operators OL½ ~Rμνρσ;φ� are scalar quantities of
scaling dimension 2þ 2L, with their mass dimension sup-
pressed by powers ofM2

p in order to get a four-dimensional
admissible term after renormalizing. Herewe have explicitly
written only the pole term since the finite residues will be
irrelevant for our discussion of anomalies. Although the
complete list of such operators grows very quickly with L,
those depending only on the curvature can be simply given as
all the possible contractions of the Riemann tensor and
derivatives with the right scaling. In the particular case of
L ¼ 1, they are scale invariant in four dimensions and read
[21,22]

RμνρσRμνρσ; RμνRμν; R2; □R: ð30Þ

Moreover, all the counterterms preserve identically
the shift symmetry since only derivatives of the scalar
field can be generated by quantum loops. No anomaly
in this symmetry can appear when using dimensional
regularization.
In the Jordan frame, the counterterms will correspond to

the transformation of (29) under the map of frames,

f~gμν;φg → fgμν;ϕg; ð31Þ

giving, for the effective action,

Γ½gμν;ϕ�L ¼ 1

n − 4

Z
dnx

ffiffiffiffiffi
jgj

p X
O0

O0
L½Rμνρσ;ϕ� þ finite;

ð32Þ

where now the suppression of mass dimension will be done
with powers of ϕ, suppressing scaling dimension at the
same time. This happens because the transformations (15)
transmute the Planck mass into powers of the scalar field.
Therefore, we will obtain the singular operators introduced
in (28). In particular, this was computed at one loop in [14]
directly in the Jordan frame, obtaining

Γ½gμν;ϕ�1 ¼
1

n − 4

1

16π2

Z
dnx

ffiffiffiffiffi
jgj

p 	
71

60
CμνρσCμνρσ

þ 1259

1440

ð1 − 12ξÞ2
ξ2

ð∇ϕÞ4
ϕ4

þ 1484

1440

1 − 12ξ

ξ2
λð∇ϕÞ2 − 371

180

λ2

ξ2
ϕ4



ð33Þ

for the on-shell divergences in dimensional regularization.
Here Cμνρσ is the Weyl tensor. Note also that all the non-
Weyl-invariant operators disappear when ξ ¼ 1

12
as it must.

There is a subtle point to be discussed here. In (15), we
defined the transformations Q → Q0 in such a way that we
go from a scale-invariant theory in the Jordan frame in four
dimensions to the Einstein frame with Einstein-Hilbert term
−M2

pR. However, this is only true in four dimensions, and
since we are dealing here with dimensional regularization,
it is reasonable to ask whether we should stick to this
definition or upgrade it to a dimension-dependent one,
meaning that we redefine the fields as

~gμν ¼ M−2
p ξ

2
n−2ϕ

4
n−2gμν; φ ¼ Mp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ξ
− 12

s
logðϕÞ ð34Þ

in such a way that the bare action7

SJ½gμν;ϕ� ¼
Z

dnx
ffiffiffiffiffi
jgj

p �
−ξϕ2Rþ 1

2
∇μϕ∇μϕþ λϕ

2n
n−2

�
ð35Þ

goes now exactly to the Einstein frame action (16) in any
spacetime dimension n. Moreover, starting from (16) and
only using the inverse of (34), we get a scale-invariant
action in any dimension.
This is relevant for the discussion here because, if we

stick to the original definition (15), we find that the
counterterms in the Jordan frame only coincide with those
computed directly there if we perform the transformation in
n ¼ 4, and these are invariant under scale transformations
in, and only in, four dimensions. This means that, since we
are defining our counterterms in dimensional regulariza-
tion, they will transform at the infinitesimal level as

δð
ffiffiffiffiffi
jgj

p
O0

L½Rμνρσ;ϕ�Þ ¼ ðn − 4Þω
ffiffiffiffiffi
jgj

p
O0

L½Rμνρσ;ϕ�; ð36Þ

where Ω ¼ 1þ ωþOðω2Þ.
Therefore, in the limit n → 4 in which we remove the

regularization, we find a finite residue which will break
scale invariance explicitly:

δΓ½gμν;ϕ�L ¼ ω

Z
d4x

ffiffiffiffiffi
jgj

p X
O0

O0
L½Rμνρσ;ϕ�: ð37Þ

These are precisely the anomalous terms that appear in
the Ward identity (24) and that will compromise the
quantum equivalence of frames:�
2gμν

δΓJ

δgμν−ϕ
δΓJ

δϕ

�
¼
X
O0

O0
L½Rμνρσ;ϕ�þh∇μJμi: ð38Þ

We could, however, use instead the dimension-
dependent transformations (34) to come back from the

7Mind the power of ϕ in the potential term.
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Einstein frame to the Jordan frame. In that case, the
counterterms in the latter will contain extra powers of
the scalar field inside the integral,

~Γ½gμν;ϕ�L¼
1

n−4

Z
dnx

ffiffiffiffiffi
jgj

p
ϕ

4−n
λϕ

X
O0

O0
L½Rμνρσ;ϕ�þ finite;

ð39Þ

where λϕ ¼ ð2 − nÞ=2 is the scaling dimension of ϕ for
arbitrary n. This represents a regularization scheme that has
been used before in the literature [23–25] to relax the
tension with equivalence issues like the one presented here,
representing a modification of dimensional regularization
that seems more suitable for scale-invariant theories.
Although, in the limit n → 4, both choices look to be the

same, there are some subtle differences. Now the integrand
is invariant under scale transformations in any spacetime
dimension, and no anomalous term arises. Since such a
regularization that preserves scale invariance exists, no
anomaly can arise. However, we must have present at all
times that dimensional regularization is just a tool and the
theory only makes sense once the divergences are sub-
tracted and the regularization is removed. If we now
renormalize the theory and subtract the pole in n → 4,
we find a new finite contribution of the form

~ΓðfiniteÞ½gμν;ϕ�L ¼ −
1

λϕ

Z
d4x

ffiffiffiffiffi
jgj

p
logðϕÞ

X
O0

O0
L½Rμνρσ;ϕ�

þ other terms ð40Þ

that will require the introduction of new counterterms
which are logarithmic in the field ϕ if we want to imple-
ment a renormalization scheme that preserves scale
invariance.
However, even if these counterterms now preserve scale

invariance in the divergent part of the effective action, it is
explicitly broken in the finite part. The reason is that the
evanescent piece that is left after taking n → 4 is not scale
invariant by itself; it requires the presence of the pole part
so that there can be a subtle cancellation. Thus, we find that
if we use a minimal subtraction scheme, the finite part will
violate the Ward identity precisely as

δ ~ΓðfiniteÞ½gμν;ϕ�L ¼ ω

Z
d4x

ffiffiffiffiffi
jgj

p X
O0

O0
L½Rμνρσ;ϕ�; ð41Þ

which is again the anomalous terms. Therefore, even with
this regularization, the anomaly resurges as a finite effect
that can modify the theory down to the IR [26], and it is not
clear if there exists some subtraction scheme that can solve
this problem.
Let us finally stress that here we have found that one can

choose between the anomaly or the nonpolynomial

counterterm by choosing if the transformation back to
the Jordan frame is analytically continued to arbitrary n or
not. However, this is just one way to see how this issue
arises. In principle, we could compute the counterterms
directly in the Jordan frame and there the two options could
represent two possible choices of regularization scheme.
One could stick to standard dimensional regularization,
thus finding an anomaly that violates frame equivalence
explicitly or, on the other hand, one could use instead the
improved regularization scheme, corresponding to adding
powers of ϕ, finding that no anomaly arises but nonstand-
ard counterterms are required and the Ward identity is
violated anyway.
Since we are dealing with nonrenormalizable theories,

these two choices will presumably represent, in the Jordan
frame, two different UV completions. However, they both
share the fact that the effective action develops, either
through the anomaly or through the finite contribution (41),
a nonvanishing S-matrix element which has no counterpart
in the Einstein frame, still conveying with our theorem 1. In
this way, equivalence is actually even more compromised,
since depending on the choice of transformation, which is
isomorphic to the choice of regularization in the Jordan
frame,8 we arrive at one theory or another, with both
presenting physical phenomena which are not contained in
the starting theory. At any time—since the theories only
exist, in the physical way, once the regularization is
removed—we can conclude that different frames lead to
different theories.

V. CONCLUSIONS

We have studied the problem of the quantum equivalence
between two different frames of a physical theory, related
by a nonlinear transformation of the field variables of the
form Q0 ¼ Q0ðQÞ. When the symmetries of the two frames
are realized in a different way, then equivalence could be
violated by the effect of anomalous contributions to the
Ward-Takahashi identities of some of the symmetries. In
such a case, the current associated with the anomalous
symmetry represents an operator which is not equivalent in
the two frames. In other words, the current does not
transform from one frame to the other according to Q0 ¼
Q0ðQÞ and can produce a nonvanishing S-matrix element
which is present only in one of the frames.
This is realized in cosmological settings when the

inflaton field is driven by a potential which is scale
invariant. In the presence of dynamical gravity, there are
anomalous corrections to the conservation of the dilatation
current that occur only in the Jordan frame, denoting a
violation of the equivalence premise with the Einstein

8Indeed, the fact that more new regularization schemes are
available in the Jordan frame when compared to the Einstein
frame is another hint towards the problems introduced by the new
symmetry.
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frame. Although a regularization scheme that solves the
tension is available, it requires the inclusion of logarithmic
counterterms which compromise the structure of the theory
down to the IR level, where it breaks scale invariance
anyway. Although unpleasant, it seems reasonable to
conclude that scalar tensor theories defined in different
frames are different physical theories after all, and one
should be able to perform an experiment to distin-
guish them.
However, the theories considered here are nonrenorma-

lizable, and we could question if this effect is just an
unpleasant consequence of the former. It would be inter-
esting to find a toy model where this problem appears
without the presence of dynamical gravity or nonrenorma-
lizable interactions.
Although we have worked out this issue in a particular

model of interest in cosmology, it is not restricted to that
setting. The anomalous equivalence could also arise in the
relation of FðRÞ theories with scalar-tensor ones as well as
in any other setting in which a nonlinear redefinition of the
field variables is done. It would be interesting to study if
this situation can be realized in simpler models which do
not involve gravity.

Finally, it is worth commenting that even when this
issue does not appear, there are still open questions about
the equivalence premise, especially in cosmology. When
the Universe is de Sitter–like, definition of the S matrix is a
subtle issue due to the nonexistence of well-defined
asymptotic states. There, the only trusted observables are
equal-time correlation functions, for which the question of
equivalence is still open. More work is required in order to
assert to what extent one can trust in-frame equivalence
in order to extract physical universal results from the
theory.

ACKNOWLEDGMENTS

I acknowledge discussions with Sergio González-Martín
and Carmelo P. Martín during previous collaborations. I
also want to thank Enrique Álvarez and Sergey Sibiryakov
for useful comments on a first version of this article.
My work has been supported by the European Union FP7
ITN INVISIBLES (Marie Curie Actions, PITN-GA-2011-
289442) and by the Spanish MINECO Centro de
Excelencia Severo Ochoa program under Grant
No. SEV-2012-0249.

[1] G. A. Vilkovisky, Nucl. Phys. B234, 125 (1984).
[2] M. T. Grisaru, P. van Nieuwenhuizen, and C. C. Wu, Phys.

Rev. D 12, 3203 (1975).
[3] R. E. Kallosh, Nucl. Phys. B78, 293 (1974).
[4] B. S. DeWitt, Conf. Proc. C630701, 585 (1964); Les

Houches Lect. Notes 13, 585 (1964).
[5] P. A. R. Ade et al. (PlanckCollaboration), arXiv:1502.02114.
[6] A. H. Guth, Phys. Rev. D 23, 347 (1981).
[7] A. D. Linde, Phys. Lett. 108B, 389 (1982).
[8] A. D. Linde, Phys. Lett. 129B, 177 (1983).
[9] F. L. Bezrukov and M. Shaposhnikov, Phys. Lett. B 659,

703 (2008).
[10] R. Kallosh and A. Linde, J. Cosmol. Astropart. Phys. 06

(2013) 027.
[11] R. Kallosh and A. Linde, J. Cosmol. Astropart. Phys. 07

(2013) 002.
[12] D. Roest, J. Cosmol. Astropart. Phys. 01 (2014) 007.
[13] A. Yu. Kamenshchik and C. F. Steinwachs, Phys. Rev. D 91,

084033 (2015).
[14] E. Alvarez, M. Herrero-Valea, and C. P. Martin, J. High

Energy Phys. 10 (2014) 115.

[15] G. Calcagni, C. Kiefer, and C. F. Steinwachs, J. Phys. Conf.
Ser. 626, 012003 (2015).

[16] K. Falls, Phys. Rev. D 92, 124057 (2015).
[17] G. Calcagni, C. Kiefer, and C. F. Steinwachs, J. Cosmol.

Astropart. Phys. 10 (2014) 026.
[18] C. F. Steinwachs and A. Yu. Kamenshchik, AIP Conf. Proc.

1514, 161 (2012).
[19] G. ’t Hooft, Found. Phys. 41, 1829 (2011).
[20] F. Belinfante, Physica (Amsterdam) 7, 449 (1940).
[21] G. ’t Hooft and M. J. G. Veltman, Ann. Poincare Phys.

Theor. A 20, 69 (1974).
[22] D. V. Vassilevich, Phys. Rep. 388, 279 (2003).
[23] F. Englert, C. Truffin, and R. Gastmans, Nucl. Phys. B117,

407 (1976).
[24] F. Bezrukov, A. Magnin, M. Shaposhnikov, and S.

Sibiryakov, J. High Energy Phys. 01 (2011) 016.
[25] R. Armillis, A. Monin, and M. Shaposhnikov, J. High

Energy Phys. 10 (2013) 030.
[26] E. Álvarez, S. González-Martín, and C. P. Martín, Phys.

Rev. D 93, 064018 (2016).

ANOMALIES, EQUIVALENCE AND RENORMALIZATION OF … PHYSICAL REVIEW D 93, 105038 (2016)

105038-7

http://dx.doi.org/10.1016/0550-3213(84)90228-1
http://dx.doi.org/10.1103/PhysRevD.12.3203
http://dx.doi.org/10.1103/PhysRevD.12.3203
http://dx.doi.org/10.1016/0550-3213(74)90284-3
http://arXiv.org/abs/1502.02114
http://dx.doi.org/10.1103/PhysRevD.23.347
http://dx.doi.org/10.1016/0370-2693(82)91219-9
http://dx.doi.org/10.1016/0370-2693(83)90837-7
http://dx.doi.org/10.1016/j.physletb.2007.11.072
http://dx.doi.org/10.1016/j.physletb.2007.11.072
http://dx.doi.org/10.1088/1475-7516/2013/06/027
http://dx.doi.org/10.1088/1475-7516/2013/06/027
http://dx.doi.org/10.1088/1475-7516/2013/07/002
http://dx.doi.org/10.1088/1475-7516/2013/07/002
http://dx.doi.org/10.1088/1475-7516/2014/01/007
http://dx.doi.org/10.1103/PhysRevD.91.084033
http://dx.doi.org/10.1103/PhysRevD.91.084033
http://dx.doi.org/10.1007/JHEP10(2014)115
http://dx.doi.org/10.1007/JHEP10(2014)115
http://dx.doi.org/10.1088/1742-6596/626/1/012003
http://dx.doi.org/10.1088/1742-6596/626/1/012003
http://dx.doi.org/10.1103/PhysRevD.92.124057
http://dx.doi.org/10.1088/1475-7516/2014/10/026
http://dx.doi.org/10.1088/1475-7516/2014/10/026
http://dx.doi.org/10.1007/s10701-011-9586-8
http://dx.doi.org/10.1016/S0031-8914(40)90091-X
http://dx.doi.org/10.1016/j.physrep.2003.09.002
http://dx.doi.org/10.1016/0550-3213(76)90406-5
http://dx.doi.org/10.1016/0550-3213(76)90406-5
http://dx.doi.org/10.1007/JHEP01(2011)016
http://dx.doi.org/10.1007/JHEP10(2013)030
http://dx.doi.org/10.1007/JHEP10(2013)030
http://dx.doi.org/10.1103/PhysRevD.93.064018
http://dx.doi.org/10.1103/PhysRevD.93.064018

