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By using the Faddeev-Popov quantization procedure, we demonstrate that the radiative effects
computed using the first-order and second-order Einstein-Hilbert action for general relativity are the
same, provided one can discard tadpoles. In addition, we show that the first-order form of this action
can be used to obtain a set of Feynman rules that involves just two propagating fields and three three-
point vertices; using these rules is considerably simpler than employing the infinite number of vertices
that occur in the second-order form. We demonstrate this by computing the one-loop, two-point
function.
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I. INTRODUCTION

In the Einstein-Hilbert (EH) action

S ¼
Z

ddx
ffiffiffiffiffiffi
−g

p
gμνRμνðΓÞ; ð1:1Þ

where

Γλ
μν ¼

1

2
gλσðgμσ;ν þ gνσ;μ − gμν;σÞ ð1:2Þ

and

RμνðΓÞ ¼ Γρ
μρ;ν − Γρ

μν;ρ − Γσ
μνΓ

ρ
σρ þ Γρ

μσΓσ
νρ ð1:3Þ

it is usual to take the metric gμν to be the independent
variable and the affine connection Γλ

μν to be dependent; this
is the second-order Einstein-Hilbert action. Classically, it is
possible to treat both gμν and Γλ

μν as independent; the
equation of motion for Γλ

μν in this first-order action yields
Eq. (1.2). It was Einstein who first noted this, though the
first-order Einstein-Hilbert (1EH) action is often attributed
to Palatini [1].
Although the 1EH and second-order Einstein-Hilbert

(2EH) actions are equivalent at the classical level, it has
as yet not been established that the two forms of the EH
action result in the same quantum effects. We first show this
quantum equivalence of the 1EH and 2EH actions when

using the Faddeev-Popov procedure in conjunction with the
quantum mechanical path integral, provided that tadpole
integrals can be set equal to zero. This is of some conse-
quence, as it has been noted [2,3] that the first-order form of
gauge theory actions is considerably simpler than the
second-order form. This is true both in Yang-Mills theory
(where two complicated vertices are replaced by a simple
one that is independent of momentum) and in general
relativity (where a single momentum independent vertex
replaces an infinite series ofmomentumdependent vertices).
The only disadvantage of using the first-order action is that
there are now two propagating fields; in the 1EH case, these
two fields have a rather involved mixed propagator.
Our second result is that it is possible to shift variables of

integration in the 1EH action within the path integral to
eliminate this mixed propagator. We are then left with a
relatively simple set of Feynman rules; there are now just
two propagating fields (that do not mix) and three vertices.
This is an improvement over the situation that occurs in the
2EH action where there is one propagating field and an
infinite number of vertices with an arbitrary number of
external fields.
We then demonstrate the utility of our result by comput-

ing the two-point function to one-loop order using an
arbitrary gauge fixing parameter. In the limiting case in
which this parameter equals one, we reproduce the result
of Ref. [4].
The first-order formalism has also been used for doing

loop calculations in gravity in Ref. [5], though in the
models considered there it is not clear if the first- and
second-order formalisms are equivalent.
We begin by considering the first-order Yang-Mills

(1YM) action.
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II. THE FIRST-ORDER YANG-MILLS ACTION

It is evident that the 1YM Lagrangian

L1YM ¼ −
1

2
Fa
μνð∂μAaν − ∂νAaμ þ gϵabcAbμAcνÞ

þ 1

4
Fa
μνFaμν ð2:1Þ

is classically equivalent to the second-order Yang-Mills
(2YM) Lagrangian

L2YM ¼ −
1

4
ð∂μAa

ν − ∂νAa
μ þ gϵabcAb

μAc
νÞ2 ð2:2Þ

as upon substitution of the equation of motion for Fa
μν that

follows from (2.1) back into L1YM, L2YM follows.
The 1YM and 2YM Lagrangians have the gauge

invariance

δFa
μν ¼ gϵabcFb

μνθ
c; ð2:3aÞ

δAa
μ ¼ ∂μθ

a þ gϵabcAb
μθ

c; ð2:3bÞ

we are led to the path integral for L1YM,

Z ¼
Z

DAa
μDFa

μνΔFPðAÞ exp i
Z

ddxðL1YM þ LgfÞ;
ð2:3cÞ

where ΔFPðAÞ is the Faddeev-Popov determinant associ-
ated with the gauge fixing Lagrangian Lgf. (More than one
gauge fixing may occur [6–8].) The field Aa

μ (but not Fa
μν)

interacts with other “matter” fields.
If in Eq. (2.3c) we perform the shift

Fa
μν → Fa

μν þ ð∂μAa
ν − ∂νAa

μ þ gϵabcAb
μAc

νÞ ð2:4Þ

then we find that

Z ¼
Z

DAa
μDFa

μνΔFPðAÞ exp i

×
Z

ddx

�
1

4
Fa
μνFaμν þ L2YM þ Lgf

�
: ð2:5Þ

The integral over Fa
μν decouples and the usual generating

functional associated with L2YM is recovered with its
three-point and four-point vertices. [In its unshifted form,
Eq. (2.3c) results in the three propagators hAAi, hFFi and
hAFi and the vertex hFAAi [2,3].]
We can also make the shift

Fa
μν → Fa

μν þ ð∂μAa
ν − ∂νAa

μÞ ð2:6Þ

leaving us with

Z ¼
Z

DAa
μDFa

μνΔFPðAÞ exp i

×
Z

ddx

�
1

4
Fa
μνFaμν −

1

4
ð∂μAa

ν − ∂νAa
μÞ2

−
1

2
ðFa

μν þ ∂μAa
ν − ∂νAa

μÞðgϵabcAb
μAc

νÞ þ Lgf

�
: ð2:7Þ

When the generating functional Z is written in this form we
see that there are now two propagators hFFi and hAAi as
well as two three-point functions hFAAi and hAAAi (but no
mixed propagators hAFi or four-point vertex hAAAAi).
This possibility of altering the Feynman rules in YM

theory is exploited when examining the first-order
(Palatini) form of the Einstein-Hilbert action.

III. THE FIRST-ORDER
EINSTEIN-HILBERT ACTION

Rather than using gμν and Γλ
μν as independent fields in the

1EH Lagrangian of Eq. (1.1), it proves convenient to use [9]

hμν ¼ ffiffiffiffiffiffi
−g

p
gμν ð3:1aÞ

and

Gλ
μν ¼ Γλ

μν −
1

2
ðδλμΓσ

νσ þ δλνΓσ
μσÞ ð3:1bÞ

so that now we have

L1EH ¼ hμν
�
Gλ

μν;λ þ
1

d − 1
Gλ

μλG
σ
νσ −Gλ

μσGσ
νλ

�
: ð3:2Þ

The canonical structure of this action has been examined
in Refs. [9,10] and the resulting path integral in
Ref. [11]. Here, we consider using the Faddeev-Popov
path integral [12]

Z1EH ¼
Z

DhμνDGλ
μνΔFPðhÞ exp i

Z
ddx½L1EH þ Lgf�:

ð3:3Þ

Directly using the form of Eq. (3.2) makes it impossible to
define a propagator for hμν and Gλ

μν. (This is easily seen if
one were to attempt to find a propagator for fields ϕ and Vλ

with the LagrangianL ¼ ϕVλ
;λ.) In Ref. [4], h

μν is expanded
about a flat metric ημν ¼ diagðþ;þ;þ;…;−Þ so that

hμνðxÞ ¼ ημν þ ϕμνðxÞ; ð3:4Þ

the propagators hϕϕi, hGGi, hϕGi and the vertex hϕGGi
are given in Ref. [3]. However, it is not immediately evident
how this form of Z1EH yields results consistent with those
that follow from the 2EH Lagrangian L2EH.
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To show this equivalence, we start by writing Eq. (3.2) as

L1EH ¼ Gλ
μνð−hμν;λ Þ þ

1

2
Mμν πτ

λ σ ðhÞGλ
μνGσ

πτ; ð3:5Þ

where

Mμνπτ
λ σ ðhÞ¼1

2

�
1

d−1
ðδνλδτσhμπþδμλδ

τ
σhνπþδνλδ

π
σhμτþδμλδ

π
σhντÞ

−ðδτλδνσhμπþδτλδ
μ
σhνπþδπλδ

ν
σhμτþδπλδ

μ
σhντÞ

�
:

ð3:6Þ
From Eq. (3.5) we obtain the equation of motion

hμν;λ ¼ Mμν πτ
λ σ ðhÞGσ

πτ ð3:7Þ

from which we see that [upon using Eq. (3.6) and with
hμλhλν ¼ δνμ]

Hπτ;λ ≡ −hπμhτνh
μν
;λ þ hτμhλνh

μν
;π þ hλμhπνh

μν
;τ

¼ 2

�
1

d − 1
hπτGσ

λσ − hλσGσ
πτ

�
: ð3:8Þ

Upon contracting Eq. (3.8) with hτλ we see that

Gσ
πσ ¼ −

d − 1

2ðd − 2Þ hμνh
μν
;π ð3:9Þ

and so by Eq. (3.8),

Gρ
πτ ¼ 1

2
hρλ

�
−

1

d − 2
hπτhμνh

μν
;λ −Hπτ;λ

�
: ð3:10Þ

From Eq. (3.8) it is apparent that

ðM−1Þρ λ
πτμνðhÞ¼ −1

2ðd−2Þh
ρλhπτhμνþ

1

4
hρλðhπμhτνþhπνhτμÞ

−
1

4
ðhτμδρνδλπþhπμδ

ρ
νδλτþhτνδ

ρ
μδλπþhπνδ

ρ
μδλτÞ:

ð3:11Þ

(We have

ðM−1Þρ λ
αβ μνM

μν γδ
λ σ ¼ Δγδ

αβδ
ρ
σ ≡ 1

2
ðδγαδδβ þ δδαδ

γ
βÞδρσ:Þ ð3:12Þ

In the Lagrangian of Eq. (3.5) we insert Eq. (3.10) and
obtain

L1EH ¼ −
1

2
hμν;λ ðM−1Þλ σ

μν πτðhÞhπτ;σ ð3:13Þ

which is just the second-order EH Lagrangian L2EH. This
demonstrates that classically,L1EH andL2EH are equivalent.

We now make the shift

Gλ
μν → Gλ

μν þ ðM−1Þλ σ
μν πτðhÞhπτ;σ ð3:14Þ

in the path integral of Eq. (3.3). We then find that

Z1EH ¼
Z

DhμνDGλ
μνΔFPðhÞ exp i

×
Z

ddx

�
1

2
Gλ

μνM
μν πτ
λ σ ðhÞGσ

πτ

þ 1

2
hμν;λ ðM−1Þλ σ

μν πτðhÞhπτ;σ þ Lgf

�
: ð3:15Þ

The expansion of Eq. (3.4) can now be made in Eq. (3.15).
Since M is linear in hμν, it follows that

Mμν πτ
λ σ ðηþ ϕÞ ¼ Mμν πτ

λ σ ðηÞ þMμν πτ
λ σ ðϕÞ: ð3:16Þ

Consequently, anyFeynmandiagramscontributing toGreen’s
functions with only the field ϕμν on external legs and which
involve the fieldGλ

μν on internal linesnecessarilyhave the field
Gλ

μν appearing in a closed loop.But the propagator for the field
Gλ

μν is independent of momentum [see Eq. (3.11)] and hence
the loopmomentum integral associatedwith any loop coming
from the field Gλ

μν is of the form

Z
ddkPðkμÞ; ð3:17Þ

wherePðkμÞ is a polynomial in the loop momentum kμ. If we
use dimensional regularization [13,14] then such loop
momentum integrals vanish.
Consequently, for Green’s functions involving only the

field ϕμν on external legs, the only contribution to Feynman
diagrams comes from the last two terms in the argument of the
exponential in Eq. (3.15); from Eq. (3.13) we see that this is
just the generating functional associated with −L2EH and so
these Green’s functions can be derived by using either the
first-order or the second-order form of the EH action.
Using the second-order form with the Lagrangian of

Eq. (3.13) results in an infinite series of vertices involving
the field hμν (see Ref. [4]). To obtain them, we note that
when Eq. (3.16) is substituted into Eq. (3.12), we sche-
matically obtain

ðM−1ÞðηþϕÞ ¼M−1ðηÞ−M−1ðηÞMðϕÞM−1ðηÞ
þM−1ðηÞMðϕÞM−1ðηÞMðϕÞM−1ðηÞ− � � � :

ð3:18Þ

The first term in Eq. (3.18) is associated with the propa-
gator for the ϕμν field in the second-order formalism while
each subsequent term is associated with a vertex. This
means that direct use of the 2EH Lagrangian becomes
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exceedingly complicated if more than the one-loop two-
point Green’s function is to be computed [15,16].
We now show that the 1EH generating functional can be

used to compute Green’s functions with only the two
propagators hϕϕi, hGGi and the three point functions
hGGϕi, hGϕϕi and hϕϕϕi. First the expansion of Eq. (3.4)
is made and then the shift occurs,

Gλ
μν → Gλ

μν þ ðM−1Þλ σ
μν πτðηÞhπτ;σ : ð3:19Þ

[This is the shift of Eq. (3.14) with h being replaced by η.]
This leads to Eq. (3.3) becoming

Z1EH ¼
Z

DhμνDGλ
μνΔFPðhÞ exp i

×
Z

ddx

�
1

2
Gλ

μνM
μνπτ
λ σ ðηÞGσ

πτ −
1

2
ϕμν
;λ M

−1λ σ
μν πτðηÞϕπτ

;σ

þ1

2
ðGλ

μν þ ϕαβ
;ρ ðM−1Þρ λ

αβ μνðηÞÞðMμνπτ
λ σ ðϕÞÞ

× ðGσ
πτ þ ðM−1Þσ ξ

πτ γδðηÞϕγδ
;ξ Þ þLgf

�
: ð3:20Þ

The contributions coming from the various terms in the
argument of the exponential appearing in Eq. (3.20) that
lead to the Feynman rules can be immediately seen to be

G − G∶
1

2
Gλ

μνM
μν πτ
λ σ ðηÞGσ

πτ∶; ð3:21aÞ

ϕ − ϕ∶ −
1

2
ϕμν
;λ M

−1λ σ
μν πτðηÞϕπτ

;σ −
1

2α
ðϕμν

;ν Þ2∶; ð3:21bÞ

G −G − ϕ∶
1

2
Mμν πτ

λ σ ðϕÞGλ
μνGσ

πτ∶; ð3:21cÞ

G − ϕ − ϕ∶Gλ
μνM

μν πτ
λ σ ðϕÞM−1σ ξ

πτ γδðηÞϕγδ
;ξ ∶; ð3:21dÞ

ϕ − ϕ − ϕ∶
1

2
ϕαβ
;ρ M−1ρ λ

αβ μνðηÞMμν πτ
λ σ ðϕÞM−1σ ξ

πτ γδðηÞϕγδ
;ξ ∶:

ð3:21eÞ

In Eq. (3.21b) we have used the gauge fixing Lagrangian

L ¼ −
1

2α
ðϕμν

;ν Þ2: ð3:22Þ

With this gauge fixing, the contribution coming from the
Faddeev-Popov determinant ΔFP in Eq. (3.20) involves the
Feynman rules that follow from [3,4]

Lghost ¼ dμ½∂2ημν þ ðϕρσ
;ρ Þ∂ση

μν − ðϕρμ
;ρ Þ∂ν

þϕρσ∂ρ∂ση
μν − ð∂ρ∂νϕρμÞ�dν; ð3:23Þ

where dμ and dμ are Fermionic vector ghost fields. These
are found to be

d − d∶dμ∂2dν∶; ð3:24aÞ

d − d − ϕ∶dμ½ðϕρσ
;ρ Þ∂ση

μν − ðϕρμ
;ρ Þ∂ν þ ϕρσ∂ρ∂ση

μν

− ð∂ρ∂νϕρμÞ�dν∶: ð3:24bÞ

Let us now consider an explicit calculation of a one-loop
radiative correction. From Eqs. (3.21) and (3.24) we readily
find the following momentum space Feynman rules (all
vertex momenta are inwards and pþ qþ r ¼ 0):

ð3:25aÞ

ð3:25bÞ

ð3:25cÞ
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ð3:25dÞ

ð3:25eÞ

ð3:25fÞ

ð3:25gÞ

The one-loop contributions to the two-point function hϕϕi
are given by the Feynman diagrams of Fig. 1. After loop
integration, the result can only depend (by covariance) on
the five tensors shown in Table I, so that each diagram in
Fig. 1 can be written as

ΠI
μν αβðkÞ ¼

X5
i¼1

T i
μν αβðkÞCI

iðkÞ; I ¼ a; b; c and d:

ð3:26Þ

The coefficients CI
i can be obtained solving the following

system of five algebraic equations:

X5
i¼1

T i
μν αβðkÞT jμν αβðkÞCI

iðkÞ

¼ ΠI
μν αβðkÞT jμν αβðkÞ≡ JIjðkÞ; j ¼ 1;…; 5: ð3:27Þ

Using the Feynman rules for ΠI
μν αβðkÞ the integrals on the

right-hand side have the following form,

JIjðkÞ ¼
Z

ddp
ð2πÞd s

Ijðp; q; kÞ; ð3:28Þ

where q ¼ pþ k; p is the loop momentum, k is the
external momentum and sIjðp; q; kÞ are scalar functions.
Using the relations

p · k ¼ ðq2 − p2 − k2Þ=2; ð3:29aÞ

(a) (b)

(c) (d)

FIG. 1. One-loop contributions to hϕϕi.

TABLE I. The five independent tensors built from ημν and kμ,
satisfying the symmetry conditions T i

μν αβðkÞ ¼ T i
νμ αβðkÞ ¼

T i
μν βαðkÞ ¼ T i

αβ μνðkÞ.

T 1
μν αβðu; kÞ ¼ kμkνkαkβ

T 2
μν αβðu; kÞ ¼ ημνηαβ

T 3
μν αβðu; kÞ ¼ ημαηνβ þ ημβηνα

T 4
μν αβðu; kÞ ¼ ημνkαkβ þ ηαβkμkν

T 5
μν αβðu; kÞ ¼ ημαkνkβ þ ημβkνkα þ ηναkμkβ þ ηνβkμkα
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q · k ¼ ðq2 þ k2 − p2Þ=2; ð3:29bÞ

p · q ¼ ðp2 þ q2 − k2Þ=2; ð3:29cÞ

the scalars sIjðp; q; kÞ can be reduced to combinations of
powers of p2 and q2. As a result, the integrals JIjðkÞ can be
expressed in terms of combinations of the following well-
known integrals,

Iab ≡
Z

ddp
ð2πÞd

1

ðp2Þaðq2Þb

¼ ðk2Þd=2−a−b
ð4πÞd=2

Γðaþ b − d=2Þ
ΓðaÞΓðbÞ

Γðd=2 − aÞΓðd=2 − bÞ
Γðd − a − bÞ

ð3:30Þ
(this has also been considered in [17]). The only non-
vanishing (i.e. nontadpole) integrals are the ones with both
a > 0 and b > 0. As we have pointed out earlier the
integrals Jai ðkÞ and Jbi ðkÞ, associated respectively with the

diagrams (a) and (b) of Fig. 1, are tadpolelike and do not
contribute (either a or b is not positive). For a general gauge
parameter, α ≠ 1, the diagram (c) in Fig. 1 involves the
following three kinds of integrals:

I11 ¼ ðk2Þd=2−2
2dπd=2

Γð2 − d
2
ÞΓðd

2
− 1Þ2

Γðd − 2Þ ; ð3:31aÞ

I12 ¼ I21 ¼ ð3 − dÞI11
k2

; ð3:31bÞ

I22 ¼ ð3 − dÞð6 − dÞI11
k4

: ð3:31cÞ

The ghost loop diagram only involves I11.
A straightforward computer algebra code can now be set

up in order to implement the steps described above and to
obtain the structures Cc

i and Cd
i . The results are the

following:

Cc
1 ¼

1

8ðd − 1Þ
�
1

8
ðd3 − 2d2 þ 96d − 64Þ − 4ðα − 1Þð4d2 − 21dþ 24Þ þ 4ðα − 1Þ2ðd3 − 7d2 þ 22d − 26Þ

�
I11; ð3:32aÞ

Cc
2 ¼

1

8ðd − 1Þðd − 2Þ2
�
1

8
dð−7d2 þ 4dþ 52Þ þ 4ðα − 1Þð2d3 − 16d2 þ 41d − 30Þ

− 2ðα − 1Þ2ðd4 − 12d3 þ 68d2 − 179dþ 162Þ
�
k4I11; ð3:32bÞ

Cc
3 ¼

1

32ðd − 1Þ
�
1

2
ð4d2 þ 5d − 16Þ − 16ðα − 1Þðd − 4Þðd − 1Þ þ 4ðα − 1Þ2ðd3 − 8d2 þ 30d − 43Þ

�
k4I11; ð3:32cÞ

Cc
4 ¼

1

16ðd − 1Þðd − 2Þ
�
1

4
ðd3 − 2d2 þ 40dþ 16Þ − 8ðα − 1Þð3d2 − 18dþ 20Þ þ 8ðα − 1Þ2ðd3 − 7d2 þ 22d − 26Þ

�
k2I11;

ð3:32dÞ

Cc
5 ¼

1

32ðd − 1Þ
�
1

2
ð−4d2 − 5dþ 20Þ þ 16ðα − 1Þðd − 4Þðd − 1Þ − 4ðα − 1Þ2ðd3 − 8d2 þ 31d − 44Þ

�
k2I11; ð3:32eÞ

Cd
1 ¼ −

ðd − 2Þðd2 þ 8dþ 8Þ
16ðd2 − 1Þ I11; ð3:33aÞ

Cd
2 ¼ Cd

3 ¼ −
d

16ðd2 − 1Þ k
4I11; ð3:33bÞ

Cd
4 ¼ −

ðd2 þ 2dþ 2Þ
16ðd2 − 1Þ k2I11; ð3:33cÞ

Cd
5 ¼ −

1

16ðd2 − 1Þ k
2I11: ð3:33dÞ

In the special case when α ¼ 1 the result is in complete
agreement with Ref. [4]. The final expression for the one-
loop contribution to hϕϕi can now be expressed as

Πμν αβ ¼
X5
i¼1

ðCc
i þ Cd

i ÞT i
μν αβ: ð3:34Þ

IV. DISCUSSION

Establishing the equivalence between the first- and
second-order forms of the Yang-Mills Lagrangians at both
the classical and quantum levels is straightforward; this was
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demonstrated in Sec. II above. It is not so easy to show at
both the classical and quantum levels that the first- and
second-order forms of the Einstein-Hilbert action are
equivalent. In Sec. III above we have shown that this
equivalence holds provided it is possible to discard tadpole
diagrams (which are regulated to zero when using dimen-
sional regularization). [One feature of this demonstration
whose significance is not immediately apparent is the
difference in sign between L1EH in (3.13) and the
hM−1ðhÞh term in Eq. (3.15).]
We have also shown that by rewriting the 1EH action

judiciously, it is possible to have just two propagating fields
and three three-point functions. This may prove to be an
advantage when considering higher order diagrams in the
loop expansion in (super-)gravity.

It is quite straightforward to adopt the methods of
Refs. [15,16,18,19], involving the use of geodesic coor-
dinates in conjunction with a background field for ϕμν, to
determine counterterms while working with the 1EH
Lagrangian.
It would also be interesting to compute the one-loop

correction to the two-point function hϕϕi using the
transverse-traceless gauge of Ref. [6].
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