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Radiative corrections and the Palatini action
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By using the Faddeev-Popov quantization procedure, we demonstrate that the radiative effects

computed using the first-order and second-order Einstein-Hilbert action for general relativity are the

same, provided one can discard tadpoles. In addition, we show that the first-order form of this action

can be used to obtain a set of Feynman rules that involves just two propagating fields and three three-

point vertices; using these rules is considerably simpler than employing the infinite number of vertices

that occur in the second-order form. We demonstrate this by computing the one-loop, two-point

function.
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L. INTRODUCTION
In the Einstein-Hilbert (EH) action

S:/d"x —99"“R,, ("), (1.1)

where

1
Fﬁu = §¢6(gu0,u + Yo — g//u,o‘) (12)

and

R;w(r) = Fl/;/ll’ - Fﬁl/sﬂ - FZDP!‘;/’ + FZGFI(/;/) (1 3)
it is usual to take the metric g,, to be the independent
variable and the affine connection Fﬁv to be dependent; this
is the second-order Einstein-Hilbert action. Classically, it is
possible to treat both g, and Ff,,, as independent; the
equation of motion for Fﬁ,, in this first-order action yields
Eq. (1.2). It was Einstein who first noted this, though the
first-order Einstein-Hilbert (1EH) action is often attributed
to Palatini [1].

Although the 1EH and second-order Einstein-Hilbert
(2EH) actions are equivalent at the classical level, it has
as yet not been established that the two forms of the EH
action result in the same quantum effects. We first show this
quantum equivalence of the 1EH and 2EH actions when
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using the Faddeev-Popov procedure in conjunction with the
quantum mechanical path integral, provided that tadpole
integrals can be set equal to zero. This is of some conse-
quence, as it has been noted [2,3] that the first-order form of
gauge theory actions is considerably simpler than the
second-order form. This is true both in Yang-Mills theory
(where two complicated vertices are replaced by a simple
one that is independent of momentum) and in general
relativity (where a single momentum independent vertex
replaces an infinite series of momentum dependent vertices).
The only disadvantage of using the first-order action is that
there are now two propagating fields; in the 1EH case, these
two fields have a rather involved mixed propagator.

Our second result is that it is possible to shift variables of
integration in the 1EH action within the path integral to
eliminate this mixed propagator. We are then left with a
relatively simple set of Feynman rules; there are now just
two propagating fields (that do not mix) and three vertices.
This is an improvement over the situation that occurs in the
2EH action where there is one propagating field and an
infinite number of vertices with an arbitrary number of
external fields.

We then demonstrate the utility of our result by comput-
ing the two-point function to one-loop order using an
arbitrary gauge fixing parameter. In the limiting case in
which this parameter equals one, we reproduce the result
of Ref. [4].

The first-order formalism has also been used for doing
loop calculations in gravity in Ref. [5], though in the
models considered there it is not clear if the first- and
second-order formalisms are equivalent.

We begin by considering the first-order Yang-Mills
(1YM) action.

© 2016 American Physical Society
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II. THE FIRST-ORDER YANG-MILLS ACTION
It is evident that the 1YM Lagrangian

1
‘CIYM — _EFZU(aﬂAaD — QVAM + geabcAbyAcv>

1
g Pl F (2.1)

is classically equivalent to the second-order Yang-Mills
(2YM) Lagrangian

1
Loym = =7 (0,40 = 0,45 + gePc AL AL )? (2.2)
as upon substitution of the equation of motion for F7y, that
follows from (2.1) back into L£;yy, Loy follows.
The 1YM and 2YM Lagrangians have the gauge
invariance

SF4, = gee Fb 6° (2.3a)

SAY = 0,0° + gePe ALY (2.3b)

we are led to the path integral for £y,

7= / DAYDF4,App(A) exp i / dx(Liym + Lyp).
(2.3¢)

where App(A) is the Faddeev-Popov determinant associ-
ated with the gauge fixing Lagrangian L. (More than one
gauge fixing may occur [6-8].) The field Ay (but not Fy,)
interacts with other “matter” fields.

If in Eq. (2.3c) we perform the shift

FZD - F/tju + (a,qu - avAZ + geabcA/l;AIS) (24)

then we find that
Z= /DAI‘jDFI‘jDAFP(A) expi
1
X /ddx |:Z FZDFWW + ‘CZYM + ‘Cgf . (25)

The integral over Fj, decouples and the usual generating
functional associated with L,yy is recovered with its
three-point and four-point vertices. [In its unshifted form,
Eq. (2.3¢) results in the three propagators (AA), (FF) and
(AF) and the vertex (FAA) [2,3].]

We can also make the shift

Fi, — Fj, + (0,A] — 0,A;) (2.6)

leaving us with
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Z= /DA,‘}DFI’LAFP(A) expi
dix | po o L9 a0 5,40y
X X Z uv _Z( Ay — Uy /4)

1 o
-3 (F4, + 0,A% — 0,A%)(ge®* ALAS) + Lyp|. (2.7

When the generating functional Z is written in this form we
see that there are now two propagators (FF) and (AA) as
well as two three-point functions (FAA) and (AAA) (but no
mixed propagators (AF) or four-point vertex (AAAA)).

This possibility of altering the Feynman rules in YM
theory is exploited when examining the first-order
(Palatini) form of the Einstein-Hilbert action.

III. THE FIRST-ORDER
EINSTEIN-HILBERT ACTION

Rather than using g, and I" ﬁy as independent fields in the
1EH Lagrangian of Eq. (1.1), it proves convenient to use [9]

= /=gy (3.1a)

and

1
G, =T}, — 3 (8415, + 81°5,) (3.1b)

so that now we have

1
Ligy = " <wa,,1 + ﬁGﬁnga - GﬁoG&)- (3-2)
The canonical structure of this action has been examined
in Refs. [9,10] and the resulting path integral in
Ref. [11]. Here, we consider using the Faddeev-Popov
path integral [12]

ZlEH = /DhﬂyDGﬁDAFP(I/O exXp i / ddX[EIEH + ng]
(3.3)

Directly using the form of Eq. (3.2) makes it impossible to
define a propagator for /#** and wa. (This is easily seen if
one were to attempt to find a propagator for fields ¢ and V*
with the Lagrangian £ = ¢V*.) In Ref. [4], h** is expanded
about a flat metric #** = diag(+, +, +, ..., —) so that

e (x) = " + ¢ (x); (3:4)

the propagators (¢p¢), (GG), (¢pG) and the vertex (pGG)
are given in Ref. [3]. However, it is not immediately evident

how this form of Z gy yields results consistent with those
that follow from the 2EH Lagrangian Logy.
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To show this equivalence, we start by writing Eq. (3.2) as

v 1 UTRT lea
['IEH = G//il/<_h”/1 ) + EMZ o (h)Gfll/GﬂT9 (35)
where
I 1
M () =5 | =7 (801" + 8,00 " + 8,55 ' + 8,551

— (8564 hH™ + 8585 h™ + 5755 WM™ + 57 8,h*7) | .
(3.6)
From Eq. (3.5) we obtain the equation of motion
Wy =My 5 ()G (3.7)

from which we see that [upon using Eq. (3.6) and with
h ™ = 84

Hm’,/l = _hﬂu hwhlf,{/ + h‘m h/lu h”f? + h/ly hm/ h}i'y

1
= 2 (m hﬂTGi.O' - hﬁGG;T> . (38)
Upon contracting Eq. (3.8) with 2™ we see that
d—1
Gy =———h, W7 39
no Z(d _ 2) 't ( )

and so by Eq. (3.8),

1 1
G =11 <_ s B Hm) C(3.10)

From Eq. (3.8) it is apparent that

2 -1

1
(M_l )é’ffﬂv(h> = mhmhm—hﬂu +_hp/1(hﬂ/4hw + hm/hfll)

4

1
_Z (h‘r/t&ﬁ(sﬁ'z + hﬂuégéé + hﬂzﬁlplts;lz + hmﬁ%ﬁ) .
(3.11)

(We have
1
—1\p 4 vyod S op J
(Mo M 10 = NG = (31 + 83,)%.) (3.12)

In the Lagrangian of Eq. (3.5) we insert Eq. (3.10) and
obtain

1

M ()

%14

Lign = (3.13)

which is just the second-order EH Lagrangian £,gy. This
demonstrates that classically, £z and Logy are equivalent.
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We now make the shift

Gy = Gl + (M) 2 (h) R

%43

(3.14)

in the path integral of Eq. (3.3). We then find that

ZlEH = /DhIM/DwaAFP(h) expi
1
X / d?x {5 G M7 (h) G,

1 - o nT
+§h’,‘f(M l)fwm(h)hﬁ + Lyl (3.15)
The expansion of Eq. (3.4) can now be made in Eq. (3.15).
Since M is linear in A**, it follows that
M350+ ¢) = M5 (n) + M (). (3.16)
Consequently, any Feynman diagrams contributing to Green’s
functions with only the field ¢* on external legs and which
involve the field G,’E,, oninternal lines necessarily have the field
wa appearing in a closed loop. But the propagator for the field
Gﬁy is independent of momentum [see Eq. (3.11)] and hence

the loop momentum integral associated with any loop coming
from the field G}, is of the form

/ dkP(kH), (3.17)

where P(k*) is a polynomial in the loop momentum k. If we
use dimensional regularization [13,14] then such loop
momentum integrals vanish.

Consequently, for Green’s functions involving only the
field ¢*¥ on external legs, the only contribution to Feynman
diagrams comes from the last two terms in the argument of the
exponential in Eq. (3.15); from Eq. (3.13) we see that this is
just the generating functional associated with —L,gy and so
these Green’s functions can be derived by using either the
first-order or the second-order form of the EH action.

Using the second-order form with the Lagrangian of
Eq. (3.13) results in an infinite series of vertices involving
the field #*¥ (see Ref. [4]). To obtain them, we note that
when Eq. (3.16) is substituted into Eq. (3.12), we sche-
matically obtain

(M~ (n+¢)=M"(n) =M ()M ()M~ (1)
+ M ()M ()M ()M ()M~ (1) —---.
(3.18)

The first term in Eq. (3.18) is associated with the propa-
gator for the ¢** field in the second-order formalism while
each subsequent term is associated with a vertex. This
means that direct use of the 2EH Lagrangian becomes
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exceedingly complicated if more than the one-loop two-
point Green’s function is to be computed [15,16].

We now show that the 1EH generating functional can be
used to compute Green’s functions with only the two
propagators (¢p¢), (GG) and the three point functions
(GG), (Gpgp) and (p¢pep). First the expansion of Eq. (3.4)
is made and then the shift occurs,

Ghy = Ghy + (M7 2. (. (3.19)
[This is the shift of Eq. (3.14) with & being replaced by #.]
This leads to Eq. (3.3) becoming

Z]EH—/DI’ZIWDG/};DAFP(I’I) expi
d 1 A (s 1 —12
X d’x 2G/4bM ( )Ggr_igbﬂ/lM ;w?n'( )¢7¥
1

+5(G} a0 (ML ()

X (G;T + (M_l)m'y&( )¢Y5) + ‘C(/f

AU
(3.20)

The contributions coming from the various terms in the
argument of the exponential appearing in Eq. (3.20) that
lead to the Feynman rules can be immediately seen to be

G-G: 2G,’},,M””’"( n)G2,:, (3.21a)
MY S () o= (PP, (321b)

2 A /wm' Reg 2(1 U ° .
G-G-¢: M””’”(qb)G’l Ge.:, (3.21c)

RV~ PO

(1= ) (P"p70"? + p"p"n"” + p'p”n" + ptpn"?
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G—d—¢:GlLMP ()M e (3.214d)

b—d— o ¢‘;!’M-“;ﬁm<n>Mf”’;f<¢>M-1;:$5< )HE
(3.21e)

In Eq. (3.21b) we have used the gauge fixing Lagrangian

|
L=—5- (%) (3.22)

With this gauge fixing, the contribution coming from the
Faddeev-Popov determinant Agp in Eq. (3.20) involves the
Feynman rules that follow from [3,4]

'Cghost = E/d [8277”” + (W)aa’l”” - ((lﬁ)a”

+¢ﬂ68p8077”y - (apay‘rbpﬂ)]dw (323)

where @ and @ are Fermionic vector ghost fields. These
are found to be

d—d:d,0%d,:, (3.24a)

(#5)0" + ¢ 0,01
(3.24b)

H_d_ﬁb:c_l,u[(gbp) 0'7/]/“/
—(0,0"¢™)]d, .

Let us now consider an explicit calculation of a one-loop
radiative correction. From Egs. (3.21) and (3.24) we readily
find the following momentum space Feynman rules (all
vertex momenta are inwards and p 4+ g + r = 0):

— 2pPp7 0" = 2pMp"n7)

4

p
e o el C R U i (259
_ >
A 1 2
224 ﬁT Z"]Ap <77;rrnu7'r + 77;“7771/7' - d_277;u/777r7'>
(3.25b)
(5*6%7” + 0208 ur + Op08mur + 0305my-) = D)2
af
A
1 [ [ (5550502
. - 4 _ SBs§dsa sy
pv : 8{[( 71 0,0,050 v tas Bl +y<<d (3.25¢)

+ (N a,B) «—

(0,7,6)
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q pv
1 L 57601050, — 6, DY 5
o P : 1 {[(d wfop aﬁw—k,tu—n/ +ae [l +ye (3.250)
T apB
+ (¢, 8) <= (1,1, v)
q ap
"o prr plo D DT tuev)taefl+yed
uv P ) aB,ua 'y(Sl/ﬂ' d QB/LU yovm H v «Q Y (3256)
T s
+ six permutations of (p,u,v) (¢,«,5) (r,7,9)
du_____ e 3.25¢
. ' (3250)
/ q @
// 1
,“,p"\-f\/\/‘(\ 5 [77046 (quTu + quru) —dqp (punow + punaﬂ)] (3-25g)
\ ’rﬂ
|
The one-loop contributions to the two-point function {¢¢)
are given by the Feynman diagrams of Fig. 1. After loop Z u ﬂ k)T eb (k) C (k)
integration, the result can only depend (by covariance) on
the five tensors shown in Table I, so that each diagram in H;Iwa/)’( YT b (k) =J(k); j=1,....5. (3.27)

Fig. 1 can be written as

Z /waﬂ CI ); I =a,b,c and d.

(3.26)

1
H;w aﬁ(k

The coefficients C! can be obtained solving the following
system of five algebraic equations:

MQM VR
(©) (d

FIG. 1. One-loop contributions to {¢¢).

Using the Feynman rules for I/ (k) the integrals on the

/w ap
right-hand side have the following form,

. a
JU(k) = / #s’

where ¢ = p+ k; p is the loop momentum, k is the
external momentum and s'/(p, g, k) are scalar functions.
Using the relations

I(p.q.k). (3.28)

p-k=(q*>-p*-Kk)/2, (3.29a)

TABLE L. The five independent tensors built from 7, and k,,
satisfying the symmetry conditions 7, (k) =T}, (k) =

T/lw/}zx( )= Té/f/w(k)-

T}, st k) = ke K kg

T;zwa/z(”» k) = Muwlap

T3 (1K) = Tl + Mg

Ty op (1, k) = My kaky + nagk, ke,

Ty op (1, k) = Nuak kg gk o + Mok ks + 5Kk
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q-k=(q+k-p*)/2, (3.29b)

pa= (P +4q-k)/2, (3.29¢)
the scalars s'/(p, g, k) can be reduced to combinations of
powers of p? and ¢>. As aresult, the integrals J'/ (k) can be
expressed in terms of combinations of the following well-
known integrals,

b dip 1
) o) (PP
(k)T (a+b—d/2)T(d/2 - a)[(d/2 - b)
(47)4/? ['(a)[(b) I'(d—a-b)
(3.30)

(this has also been considered in [17]). The only non-
vanishing (i.e. nontadpole) integrals are the ones with both
a>0 and b > 0. As we have pointed out earlier the
integrals J2(k) and J®(k), associated respectively with the
|
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diagrams (a) and (b) of Fig. 1, are tadpolelike and do not
contribute (either a or b is not positive). For a general gauge
parameter, a # 1, the diagram (c) in Fig. 1 involves the
following three kinds of integrals:

()2 T2 = 9T - 17

I = Si-ap r(d=2) , (3.31a)
— 71

712 — 21— % (3.31b)
3-d)(6—d)I1"

e >(k4 ) (3.31c)

The ghost loop diagram only involves /'!.

A straightforward computer algebra code can now be set
up in order to implement the steps described above and to
obtain the structures C¢ and CY. The results are the
following:

cs = ﬁ %(CP _ 2 +96d — 64) — 4(a — 1) (4 — 21d + 24) + 4(a— 12(d = Td® +22d—26)| 111, (3.32a)
CS = m %d(—7d2 +4d + 52) +4(a—1)(2d* — 164> + 41d — 30)

—2(a— 12(d* = 12 + 687 — 179d + 162) [K*11, (3.32b)

cs :m B(4dZ+5d— 16) = 16(a = 1)(d = 4)(d = 1) + 4(a— 1)(d* —8d2+30d—43)]k41”, (3.32¢)

G = fea= :)(d_ 5 E (& = 2% + 40d + 16) — 8(at— 1) (3% — 18d + 20) + 8(a — 12(d* — Td? +22d—26)} 21

Cci
S 32(d-1) |2

4 (d=2)(d*+8d+38)

Cd=— 16(d 1) ", (3.33a)
{=cd= d__jpm 3.33b
==t (3.33b)

(d*>+2d +2)
Cg = —mkzlll, (333(3)
1
= _mm“. (3.33d)

(3.32d)

- F(—4d2 —5d+20)+ 16(a—1)(d—4)(d—1) = 4(a—1)*(d® — 84> + 31d — 44)} I, (3.32)

In the special case when a = 1 the result is in complete
agreement with Ref. [4]. The final expression for the one-
loop contribution to (¢¢) can now be expressed as

5

Hﬂl/(lﬂ = Z (C‘z: + C?)T/iyaﬂ'
i=1

(3.34)

IV. DISCUSSION

Establishing the equivalence between the first- and
second-order forms of the Yang-Mills Lagrangians at both
the classical and quantum levels is straightforward; this was
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demonstrated in Sec. II above. It is not so easy to show at
both the classical and quantum levels that the first- and
second-order forms of the Einstein-Hilbert action are
equivalent. In Sec. III above we have shown that this
equivalence holds provided it is possible to discard tadpole
diagrams (which are regulated to zero when using dimen-
sional regularization). [One feature of this demonstration
whose significance is not immediately apparent is the
difference in sign between Lgy in (3.13) and the
hM~'(h)h term in Eq. (3.15).]

We have also shown that by rewriting the 1EH action
judiciously, it is possible to have just two propagating fields
and three three-point functions. This may prove to be an
advantage when considering higher order diagrams in the
loop expansion in (super-)gravity.

PHYSICAL REVIEW D 93, 105037 (2016)

It is quite straightforward to adopt the methods of
Refs. [15,16,18,19], involving the use of geodesic coor-
dinates in conjunction with a background field for ¢**, to
determine counterterms while working with the 1EH
Lagrangian.

It would also be interesting to compute the one-loop
correction to the two-point function (¢¢) using the
transverse-traceless gauge of Ref. [6].
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