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We analyze the (3þ 1)D equilibrium chiral magnetic effect (CME). We apply derivative expansion to
the Wigner transform of the two-point Green function. This technique allows us to express the response of
electric current to the external electromagnetic field strength through the momentum space topological
invariant. We consider the wide class of the lattice regularizations of quantum field theory (that includes, in
particular, the regularization with Wilson fermions) and also certain lattice models of solid state physics
(including those of Dirac semimetals). It appears that in these models the mentioned topological invariant
vanishes identically at nonzero chiral chemical potential. That means that the bulk equilibrium CME is
absent in those systems.
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I. INTRODUCTION

The chiral magnetic effect (CME) has been widely
discussed recently in different contexts both within the
continuous quantum field theory and in the condensed
matter physics. The CME for the case when the left-handed
and the right-handed fermions are truly separated was first
discussed in [1]. In the context of quantum field theory the
existence of chiral magnetic effect was considered in [2],
followed by a number of papers (see, for example, [3,4] and
references therein). In particular, CME has been discussed
using a different technique in the Fermi liquids [5].
The possible existence of the chiral magnetic contribu-

tion to conductivity was proposed in [6], and was discussed
later in a number of papers. The experimental observation
of this contribution to conductivity in the recently discov-
ered Dirac semimetals was reported in [7]. Notice that from
our point of view such a chiral magnetic contribution to
conductivity should be distinguished from the equilibrium
CME [2]. During the calculation of the chiral magnetic
contribution to ordinary conductivity in [6,7] the chiral
imbalance appears as a pure kinetic phenomenon, and the
final expression for the CME current is proportional to the
squared magnetic field and, in addition, to the electric field.
At the same time in the equilibrium CME the nondissipa-
tive current is linear in the magnetic field and is predicted to
appear without any external electric field. Therefore, the
linear response theory to be considered in the present paper,
strictly speaking, does not describe the chiral magnetic
contribution to conductivity. Thus we will concentrate on
the equilibrium CME.

The family of the nondissipative transport effects being
the cousins of the CME has also been widely discussed
recently both in the context of the high energy physics and
in the context of condensed matter theory [8–15]. The
possible appearance of such effects in the recently dis-
covered Dirac and Weyl semimetals has been considered
[16–22]. In the context of the high energy physics the
possibility to observe CME in relativistic heavy-ion colli-
sions was widely discussed (see, for example, [3,23,24] and
references therein). Certain lattice calculations seem to
confirm indirectly this possibility [25].
In several publications the existence of equilibrium CME

was questioned. In particular, in [12–15] using different
numerical methods the CME current was investigated in
the context of lattice field theory. It was argued that the
equilibrium bulk CME does not exist, but close to the
boundary of the system the nonzero CME current may
appear. It was demonstrated that in the given systems the
integrated total CME current remains zero. The similar
conclusion was drawn in [10] based on the consideration of
the system of finite size with the special boundary con-
ditions in the direction of the external magnetic field.
The consideration of [10], however, does not refer to the
systems, which do not have boundaries or, say, have the
form of a circlewith magnetic field directed along the circle.
In the context of condensed matter theory the absence of
CME was reported within the particular model of Weyl
semimetal [26]. Besides, it was argued that the equilibrium
CME may contradict the no-go Bloch theorem [27].
In the present paper we consider CME on the basis of the

Wigner transformation technique [28,29] applied to Green
functions. First of all, we demonstrate that the derivative
expansion within this technique allows one to reduce the
expression for the linear response of electric current to the
external field strength to the momentum space topological
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invariant. The power of this method is demonstrated on the
example of the (2þ 1)D quantum Hall effect (QHE), where
it allows one to derive in a simple way the conventional
expression for Hall conductivity [30]. Momentum space
topology is a powerful method, which was developed
earlier mainly within condensed matter theory. In addition
to the ordinary quantum Hall effect it allows one to describe
in a simple way a lot of the other effects (for the review see
[30,31]). Recently certain aspects of momentum space
topology were discussed in the framework of the four-
dimensional lattice gauge theory [32,33]. Here we derive
the expression for the linear response of the electric current
to the external magnetic field in the wide class of the
(3þ 1)D fermionic systems, which includes popular lattice
regularizations of continuum quantum field theory and the
models of discovered recently Dirac semimetals.
Strictly speaking, our calculations remain unambiguous

only for the systems with the Green functions that do not
have poles (or zeros). It appears that like in the (2þ 1)D
case the resulting (3þ 1)D response of electric current to
the external magnetic field is proportional to the topologi-
cal invariant in momentum space. Unlike the case of the
naive continuum fermions, for the wide class of the lattice
regularizations of quantum field theory (and for the certain
models of Dirac semimetals) the mentioned topological
invariant vanishes for the nonzero chiral chemical potential.
This means that the equilibrium bulk CME current is absent
in the properly regularized quantum field theory and in the
discussed models of Dirac semimetals.
The paper is organized as follows. In Sec. II we start the

discussion of the linear response of electric current to
external electromagnetic field using continuum formu-
lation. The Wigner transform of the two-point Green
function is defined in Sec. II A. The main equation obeyed
by this object is proved in Appendix A. In Sec. II B we
present the gradient expansion for the Wigner transform of
the Green function. The linear response of the electric
current to external gauge field is considered in Sec. II C. It
appears that the resulting expression is divergent and
requires regularization. In Sec. III we consider lattice
regularization. In Sec. III A we discuss the lattice theory
of general form, which allows one to describe not only the
lattice regularization of the continuum quantum field
theory, but also the tight-binding like models of solid state
physics. We propose the unusual way to introduce the
external gauge field to the lattice model. This method
allows one to deal with the theory written in momentum
space, which is important for our further considerations.
The proposed method is manifestly gauge invariant, and it
is obviously reduced to the conventional minimal con-
nection of theory with the gauge field in continuum limit.
Therefore, it allows one to introduce effectively the gauge
field both into the lattice regularization of quantum field
theory and to the models of the solid state physics. In
Sec. III B the Wigner transform of the lattice two-point

Green function in momentum space is discussed. It appears
that it obeys the same equation as its continuum counter-
part. This is proved in Appendix B. In Sec. III C the linear
response of the electric current to the external gauge field is
derived for the lattice theory. It appears that the resulting
expression represents the direct lattice discretization of the
corresponding continuum expression as expected. This
expression is, in turn, a topological invariant in momentum
space. This is proved in Appendix C. In Sec. III D the
celebrated expression for the Hall current is reproduced
using the proposed technique. In Sec. IV we finally discuss
the chiral magnetic effect. In Sec. IVA we consider the
introduction of the chiral chemical potential into the Green
function. In Sec. IV B the conventional massive lattice
fermions are considered while in Sec. IV C the marginal
models of massive lattice fermions are discussed. In
Sec. IV D the models with massless fermions are consid-
ered. We demonstrated that in all considered models the
bulk CME is absent. In Sec. V we end with the conclusions.

II. CONTINUUM THEORY

A. Wigner transform of the Green function

In the present section we recall some of the basic notions
of the Wigner (Weyl) transform. For more details see, for
example, [34] and Appendix B in [35]. Next, we will apply
those notions to the two point Green function of a non-
interacting fermion system in the presence of the external
gauge field.
Let us consider the dþ 1 ¼ D dimensional continuum

model with the fermionic Green function GðpÞ that
depends on the D vector p ¼ ðp1;…; pDÞ of Euclidean
momentum. (The Wick rotation has been performed.)
When interactions between the fermions are neglected,
the external electromagnetic field AðrÞ may be taken into
account through the Hermitian operator-valued function
Q̂ðr; p̂Þ ¼ G−1ðp̂ −AðrÞÞ, where p̂ ¼ −i∂r. Operators
p̂i − AiðrÞ and p̂j − AjðrÞ do not commute for i ≠ j.
Therefore, we should point out the way of their
ordering inside Q̂. We choose the following way for
definiteness: each product pi1 � � �pin in the expansion of
G−1 is substituted by the symmetrized product
1
n!

P
permutationsðp̂i1 − Ai1Þ � � � ðp̂in − AinÞ. This way of

ordering corresponds to the so-called symmetrical (or,
Wigner) quantization according to [34]. The resulting
function Q̂ enters the functional integral representation for
the Euclidean partition function

Z ¼
Z

DΨ̄DΨ exp

�
−
Z

dDrΨ̄ðrÞQ̂ðr; p̂ÞΨðrÞ
�
: ð1Þ

Here Ψ, Ψ̄ are the Grassmann-valued continuum fer-
mionic fields. In the presence of the gauge field the Green
function appears as a correlator,
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Gðr1; r2Þ ¼
1

Z

Z
DΨ̄DΨΨ̄ðr2ÞΨðr1Þ

× exp

�
−
Z

dDrΨ̄ðrÞQ̂ðr; p̂ÞΨðrÞ
�
: ð2Þ

It obeys the equation

Q̂ðr1;−i∂r1ÞGðr1; r2Þ ¼ δðDÞðr1 − r2Þ: ð3Þ

The Wigner transform [28] of the Green function is
defined as

~GðR;pÞ ¼
Z

dDre−iprGðRþ r=2;R − r=2Þ: ð4Þ

In Appendix A the Groenewold equation [35] for the
function ~G is derived:

1 ¼ QðR;pÞ � ~GðR;pÞ

≡QðR;pÞei
2
ð ∂ R ∂!p− ∂ p ∂!RÞ ~GðR;pÞ: ð5Þ

Here function Q represents the so-called Weyl symbol of
operator Q̂ being the Wigner transform of its matrix
elements [34,35]. It depends on the real numbers rather
than on the operators. The explicit form of the relation
between Q and Q̂ is given in Appendix A. Here we will
need only the following property of the correspondence
between Q̂ and Q. If Q̂ has the form of a function G−1

of the combination ðp̂ −AðrÞÞ with a gauge potential
AðrÞ, i.e.

Q̂ðr; p̂Þ ¼ G−1ðp̂ −AðrÞÞ; ð6Þ

then we have

Qðr;pÞ ¼ G−1ðp −AðrÞÞ þOð½∂iAj�2Þ: ð7Þ

Here Oð½∂iAj�2Þ may contain the terms with the second
power of the derivative of A, with the squared derivative
of A, and the terms higher order in derivatives. In
principle, the restrictions on the term Oð½∂iAj�2Þ may
be more strong,1 but for our purposes it will be enough
that the terms linear in the derivatives of A are absent in
Oð½∂iAj�2Þ (which is proved in Appendix A).
Notice, that the star product entering Eq. (5) is widely

used in deformation quantization [34,36] and also in some
other applications (see, for example, [29] and references
therein). It is also worth mentioning that the Wigner
transformation of the Green function was used in a number

of applications. In particular, it was applied to the deriva-
tion of quantum kinetic equations [37,38]. The methods to
solve kinetic equations that operate with the Wigner
transform of the Green function were discussed in [39].

B. Gradient expansion for the Wigner transform
of the Green function in the presence

of external gauge field

Here we apply the formalism of the Wigner transform to
the dþ 1 ¼ D dimensional fermionic systems. Let us
consider the model with the Green function GðpÞ that
depends on the D-vector p ¼ ðp1; p2;…; p4Þ of Euclidean
momentum. We introduce the slowly varying externalUð1Þ
vector gauge field AðrÞ defining operator function Q̂ of
Eq. (6). TheWigner transform of the Green function Eq. (4)
satisfies Eq. (5).
We apply the gradient expansion and come to

~GðR;pÞ ¼ ~Gð0ÞðR;pÞ þ ~Gð1ÞðR;pÞ þ � � �

~Gð1Þ ¼ −
i
2
~Gð0Þ

∂½ ~Gð0Þ�−1
∂pi

~Gð0Þ
∂½ ~Gð0Þ�−1

∂pj

~Gð0ÞAijðRÞ:

ð8Þ

Here ~Gð0ÞðR;pÞ is defined as the Green function with
the field strength Aij ¼ ∂iAj − ∂jAi neglected. It is
given by

~Gð0ÞðR;pÞ ¼ Gðp −AðRÞÞ: ð9Þ

C. Linear response of electric current
to the strength of external gauge field

The components of vector Uð1Þ current in the system of
noninteracting fermions may be expressed as

jkðRÞ ¼ −Tr
∂G−1ð−i∂r1 −Aðr1ÞÞ

∂Ak
Gðr1; r2Þjr1;r2→R

¼
Z

dDp
ð2πÞD Tr ~GðR;pÞ ∂½ ~G

ð0ÞðR;pÞ�−1
∂pk

: ð10Þ

For the derivation of the second row in this expression we
applied expressions of Appendix A. Also, this expression
follows as a continuum limit of the corresponding formula
to be derived in the next section. Besides, we advise the
reader to consult Appendix B of [35], where many useful
relations are collected, including those which give rise
to Eq. (10).
In the (3þ 1)D systems the contribution to electric

current originated from ~Gð1Þ is given by

jð1ÞkðRÞ ¼ 1

4π2
ϵijklMlAijðRÞ; ð11Þ

1For example, the Weyl symbol of the operator fð−i∂r −HrÞ
for the one-dimensional problem (r ∈ R1) is given by fðp −HrÞ
exactly [34].
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Ml ¼
Z

Trνld4p; ð12Þ

νl ¼ −
i

3!8π2
ϵijkl

�
G
∂G−1

∂pi

∂G
∂pj

∂G−1

∂pk

�
: ð13Þ

In the linear response theory we should substitute A ¼ 0
into the expression for Ml. Therefore, in Eq. (12) we
substitute G instead of ~Gð0Þ.
Notice that our conventions of notations assume that the

field strength absorbs the elementary charge e, i.e. the
Green function G contains the combination p −A instead
of the conventional p − eA. Besides, the electric current j
is defined in the units of e, which eliminates the second
factor e from Eq. (11).
In order to understand how Eq. (12) works let us consider

the single massless Dirac fermion, which is the couple of
the left-handed and the right-handed Weyl fermions. The
corresponding expression for the Green function in the
presence of chiral chemical potential μ5 is given by

GðpÞ ¼
�X

k

γkpk þ iγ4γ5μ5

�
−1

ð14Þ

with the Euclidean gamma-matrices that satisfy fγa; γbg ¼
2δab and the γ5 matrix given by diagð1; 1;−1;−1Þ in chiral
representation. In this situation the Green function contains
poles. Besides, the integral in Eq. (12) is divergent at
infinite values of p. Therefore, in order to apply the above
expressions the regularization is needed.
The obvious expectation about Eq. (13) is that in lattice

regularization we need simply to substitute into it the lattice
Green function defined as a function of lattice momentum,
and integrate in Eq. (12) over the compact momentum
spaceM. Below we will see that this is indeed what should
be done.

III. LATTICE REGULARIZED THEORY

A. A way to introduce the external gauge
field to lattice model

Again, let us consider the dþ 1 ¼ D dimensional model
with the fermionic Green function GðpÞ that depends on the
D vector p ¼ ðp1;…; pDÞ of Euclidean momentum. Now
we assume that momentum space is compact and has the
form of the product M ¼ S1 ⊗ Ω, where Ω is the d-
dimensional Brillouin zone while S1 is the circle of pD.
Momentum space of such a form is typical for the lattice
regularization of quantum field theory. It also appears in the
tight-binding models of condensed matter systems when
evolution in time is discretized (which is always necessary
to make Monte Carlo simulations of such systems). Notice,
that the lattice momentum p does not appear as the

eigenvalue of the operator −i∂r. The same refers also to
the solid state models.
In the absence of the external electromagnetic field the

partition function of the theory under consideration may be
written as

Z¼
Z

DΨ̄DΨexp

�
−
Z
M

dDp
jMj Ψ̄ðpÞG

−1ðpÞΨðpÞ
�
; ð15Þ

where jMj is the volume of momentum space M. [We
neglect here those interactions, which are not taken into
account by the form of the two point Green function GðpÞ.
Otherwise, the interaction terms with higher powers ofΨ or
with the additional dynamical fields would have been
written.]
We assume that the theory to be dealt with has the form

of the lattice regularization of the continuum quantum field
theory, or the form of the solid state tight-binding like
model. In both cases the theory is defined in discrete
coordinate space. We assume that the dynamical variables
Ψ of this theory are attached to the lattice sites rn.
The fields in coordinate space are related to the fields in

momentum space as follows:

ΨðrÞ ¼
Z
M

dDp
jMj e

iprΨðpÞ: ð16Þ

At the discrete values of r corresponding to the points of the
lattice this expression gives the values of the fermionic field
at these points, i.e. the dynamical variables of the original
lattice model. However, Eq. (16) allows one to define
formally the values of fields at any other values of r. The
partition function may be rewritten in the form

Z ¼
Z

DΨ̄DΨ exp

�
−
X
rn

Ψ̄ðrnÞ½G−1ð−i∂rÞΨðrÞ�r¼rn
�
:

ð17Þ

Here the sum in the exponent is over the discrete coor-
dinates rn. However, the operator −i∂r acts on the function
ΨðrÞ defined using Eq. (16). In order to derive Eq. (17) we
use identity

X
r

eipr ¼ jMjδðpÞ: ð18Þ

The gauge transformation of the original lattice field

ΨðrnÞ → eiαðrnÞΨðrnÞ ð19Þ

now may be understood as the gauge transformation of the
field Ψ defined for any values of r: we simply extend the
definition of the function αðrÞ to the function, which is
defined at any values of r and take the original values at the
discrete lattice points. This prompts the following way to
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introduce the external gauge field to our lattice model. We
consider the partition function of the form

Z ¼
Z

DΨ̄DΨ exp

�
−
1

2

X
r¼rn
½Ψ̄ðrÞG−1ð−i∂r

−AðrÞÞΨðrÞ þ ðH:c:Þ�
�
: ð20Þ

Here by (H.c.) we denote the Hermitian conjugation, which
is defined as follows. First of all, it relates the components
of Grassmann variable Ψ with the corresponding compo-
nents of Ψ̄. Besides, it inverses the ordering of operators
and the variables Ψ̄;Ψ, and substitutes each operator by its
Hermitian conjugated. For example, a conjugation of
Ψ̄ B̂ði∂ri1 Þ � � � ði∂rin ÞΨ for a certain operator (in internal
space) B̂ is given by ½ð−i∂ri1 Þ � � � ð−i∂rin ÞΨ̄�B̂þΨ. As well
as in continuum theory operators p̂i − AiðrÞ and p̂j − AjðrÞ
do not commute for i ≠ j. Therefore, we should point out
the way of their ordering inside G−1ð−i∂r −AðrÞÞ. We
choose the following way for definiteness: each product
pi1 � � �pin in the expansion of G−1 is substituted by the
symmetrized product 1

n!

P
permutationsðp̂i1−Ai1Þ���ðp̂in−AinÞ.

This method of introducing the gauge field to the lattice
model differs from the more conventional ways, but it is
manifestly gauge invariant, and it is obviously reduced to
the conventional way the gauge field is to be introduced in
the naive continuum limit. Therefore, it satisfies all require-
ments to be fulfilled by the introduction of the gauge field
in lattice regularization of quantum field theory.
Now let us come back to momentum space:

Z ¼
Z

DΨ̄DΨ exp

�
−
1

2

Z
M

dDp
jMj ½Ψ̄ðpÞQrightði∂p;pÞΨðpÞ

þ Ψ̄ðpÞQleftði∂p;pÞΨðpÞ�
�
: ð21Þ

Here byQright we denote the function that is constructed of
G−1 as follows. We represent G−1ð−i∂r −AðrÞÞ as a series
in powers of −i∂r and AðrÞ such that in each term AðrÞ
stand right to −i∂r. For example, we represent ð−i∂r −
AðrÞÞ2 as ð−i∂rÞ2 − 2ð−i∂rÞAðrÞ þA2ðrÞ − ið∂AÞ. Next,
we substitute the argument of A by i∂p and −i∂r by p.
Correspondingly, Qleft is defined with the inverse ordering.
Let us introduce the following notation:

Q̂ ¼ 1

2
½Qrightði∂p;pÞ þQleftði∂p;pÞ�: ð22Þ

Since the commutators ½−i∂ri ; r
j� ¼ iδji and ½pi; i∂pj

� ¼ iδji
are equal to each other, the actual expression for Q̂ is
given by

Q̂ ¼ G−1ðp −Aði∂pÞÞ: ð23Þ

The Green function of our system in momentum space
satisfies the equation

Q̂ði∂p1
;p1ÞGðp1;p2Þ ¼ jMjδðDÞðp1 − p2Þ: ð24Þ

B. Wigner transform in momentum space

According to the proposed above way to introduce the
gauge field the Green function appears as a correlator,

Gðp1;p2Þ ¼
1

Z

Z
DΨ̄DΨΨ̄ðp2ÞΨðp1Þ

× exp

�
−
Z

dDp
jMj Ψ̄ðpÞQ̂ði∂p;pÞΨðpÞ

�
:

ð25Þ

It obeys Eq. (24). The Wigner transform [28] of the Green
function may be defined as

~GðR;pÞ ¼
Z

dDP
jMj e

iPRGðpþ P=2;p − P=2Þ: ð26Þ

In terms of the Green function in coordinate space this
Green function is expressed as

~GðR;pÞ ¼
X
r¼rn

e−iprGðRþ r=2;R − r=2Þ ð27Þ

which is the direct analogue of Eq. (4). In Appendix B we
prove that this Green function obeys the same equation as
the one of the continuum theory:

1 ¼ QðR;pÞ � ~GðR;pÞ

≡QðR;pÞei
2
ð ∂ R ∂!p− ∂ p ∂!RÞ ~GðR;pÞ: ð28Þ

As well as in the continuum case the Weyl symbol of
operator Q̂ is given by the function Q that depends on the
real numbers rather than on the operators. As it is explained
in Appendix B, if Q̂ has the form of a function G−1 of the
combination ðp −Aðr̂ÞÞ with a gauge potential Aðr̂Þ, i.e.

Q̂ðr; p̂Þ ¼ G−1ðp −Aði∂pÞÞ; ð29Þ

then we have

Qðr;pÞ ¼ G−1ðp −AðrÞÞ þOð½∂iAj�2Þ: ð30Þ

Here Oð½∂iAj�2Þ does not contain terms independent of the
derivatives of A and the terms linear in those derivatives,
i.e. it is higher order in derivatives. In certain particular
cases the restrictions on the term Oðð½∂iAj�2Þ may be more
strong, or it may even vanish at all [34].
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C. Linear response of electric current to the strength
of the external gauge field

In our lattice formalism the derivative expansion for the Wigner transform of the Green function is still given by Eq. (8),
where ~Gð0ÞðR;pÞ ¼ Gðp −AðRÞÞ. Suppose that we modified the external gauge field as A → Aþ δA. The response to
this extra contribution to gauge potential gives electric current. Let us calculate this response based on the description of the
system given by Eq. (21):

δ logZ ¼ −
1

Z

Z
DΨ̄DΨ exp

�
−
Z
M

dDp
jMj Ψ̄ðpÞQ̂ði∂p;pÞΨðpÞ

�Z
M

dDp
jMj Ψ̄ðpÞ½δQ̂ði∂p;pÞ�ΨðpÞ

¼ −
Z
M

dDp
jMjTr½δQ̂ði∂p1

;p1Þ�Gðp1;p2Þjp1¼p2¼p

¼ −
X
R¼Rn

Z
M

dDp
jMjTr½δQ̂ði∂P þ i∂p=2;pþ P=2Þ�e−iPR ~GðR;pÞjP¼0: ð31Þ

In Appendix B we introduce functionQðr;pÞ of real-valued arguments entering Eq. (28). Notice that 2p and P enter the
expression inside Q̂ in a symmetric way. This allows one to use Eq. (B4). The form of Eq. (31) demonstrates that the above
expression for the electric current may also be written through the function Q:

δ logZ ¼ −
X
R¼Rn

Z
M

dDp
jMjTr½δQði

~∂P − i ∂ p=2;pþ P=2Þ�

× e−iPR ~GðR;pÞjP¼0
¼ −

X
R¼Rn

Z
M

dDp
jMjTr½δQðR;pþ P=2Þ�

× e−iPR ~GðR;pÞjP¼0: ð32Þ

According to the notations of Appendix B the arrows above
the derivatives mean that those derivatives act only outside

ofQ, and do not act on the arguments ofQ, i.e. ∂ p acts on
the function equal to 1 standing left to the functionQ while

∂!P acts on the exponent e−iPR.
As a result of the above-mentioned manipulations we

come to the following simple expression for the electric
current per unit volume of coordinate space, which follows
from the relation δ logZ ¼P

R¼Rn
jkðRÞδAkðRÞjVj:

jkðRÞ ¼
Z
M

dDp
jVjjMjTr

~GðR;pÞ ∂
∂pk
½ ~Gð0ÞðR;pÞ�−1: ð33Þ

Here by jVj we denote the volume of the unit cell under-
stood as the ratio of the total volume of the system to the
number of lattice points at which the field Ψ is defined. For
the ordinary hypercubic lattice the product of the two
volumes is obviously equal to ð2πÞD. One might think that
for the lattices of more complicated symmetry the product
of the momentum space volume and the defined above
volume of the lattice cell may differ from this expression.
Nevertheless, this is not so, and in the general case the

given product is always equal to ð2πÞD exactly.2 In the
general case of an arbitrary crystal the direct proof is rather
complicated. However, the result for the product of the two
volumes may be found from the simple field theoretical
correspondence: the limit of the microscopic model
described by the effective low energy theory should
correspond to the product of the two volumes equal to
ð2πÞD. Notice that the construction of the unit cell in the
original lattice should be performed with care. One has to
count only those sites of the original crystal lattice, at which
the dynamical variables of the model described by Eq. (20)

2For the purpose of illustration let us consider the 2D lattice of
graphene [40]. In coordinate space we should take the hexagons
that are formed by the atoms of sublattice A (or B) because the
resulting two component spinor is composed of the variables
incident at the two sublattices. The resulting unit cell of the lattice
is the hexagon surrounding each atom of the sublattice A. The
length of its size is a, where a is the distance between the adjacent
A and B atoms. The area of the hexagon is equal to jVj ¼ 3

ffiffi
3
p
2
a2.

The Brillouin zone has also the form of the hexagon with the side
length 2

3
ffiffi
3
p 2π

a . Its volume is jMj ¼ 2

3
ffiffi
3
p ð2πÞ2

a2 . One can see that the

product is given by ð2πÞ2 as it should.
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are incident. [This was illustrated above by the case of
graphene, where we surrounded by this unit cell only the A
(or B)-atoms.] Thus Eq. (33) coincides with the continuum
expression Eq. (10).
Let us apply the gradient expansion to Eq. (33). It results

in the following expression for the electric current:

jkðRÞ ¼ jð0ÞkðRÞ þ jð1ÞkðRÞ þ � � �

jð0ÞkðRÞ ¼
Z

dDp
ð2πÞD Tr ~Gð0ÞðR;pÞ ∂½ ~G

ð0ÞðR;pÞ�−1
∂pk

: ð34Þ

Notice that the second row of this expression represents the
topological invariant as long as we deal with the system
with regular Green functions, which do not have poles or
zeros, i.e. this expression is unchanged while we are
continuously deforming the Green function. We will not
need this expression below since it does not contain the
linear response to the external field strength.
In the (3þ 1)D systems the contribution to this current

originated from ~Gð1Þ is given by

jð1ÞkðRÞ ¼ 1

4π2
ϵijklMlAijðRÞ; ð35Þ

Ml ¼
Z

Trνld4p; ð36Þ

νl ¼ −
i

3!8π2
ϵijkl

�
G
∂G−1

∂pi

∂G
∂pj

∂G−1

∂pk

�
: ð37Þ

In the linear response theory we should substitute A ¼ 0
into the expression for Ml. Therefore, in Eq. (37) we
substitute G instead of ~Gð0Þ. Further we will be interested in
the component M4, which is the topological invariant, i.e.
it is robust to any variations of the Green function ~G as long
as the singularities are not encountered (for the proof see
Appendix C).
In the similar way for the (2þ 1)D systems we get

jð1ÞkðRÞ ¼ 1

2π
ϵijk ~N 3AijðRÞ; ð38Þ

where the topological invariant (denoted by ~N 3 according
to the classification of [30]) is to be calculated for the
original system with vanishing background gauge field:

~N 3 ¼
1

24π2
Tr

Z
G−1dG∧dG−1∧dG: ð39Þ

Notice that the above expression for Ml is the direct 4D

generalization of the invariant ~N 3. The proof that ~N 3 is the
topological invariant also follows from Appendix C.
It is worth mentioning that in our calculations we use the

Wigner transformation of the Green function without the

parallel transporter factor. The Green functions with such a
factor would be gauge invariant, and they are used, for
example, in one of the methods of the chiral anomaly
calculation [41]. In this method the chiral current is
expressed through the limit of the two point Green function
Gðx; yÞ when x → y, in which the parallel transporter
between x and y is inserted into the definition of G.
Such a Green function is manifestly gauge invariant.
Although in the limit x → y the mentioned parallel trans-
porter tends to unity, its appearance is important when the
derivative of the chiral current (i.e. anomaly) is calculated
because in such a calculation the derivative over ðxþ yÞ=2
is taken first in order to have the finite expressions, and the
limit x → y is taken at the end of the calculation. Thus, in
such calculation of chiral anomaly the parallel transporter
factor in the Green function is the tool necessary for the
ultraviolet regularization that keeps gauge invariance. This
is in contrast to the expressions considered in the present
paper. First of all, we do not calculate the derivative of the
current. Therefore, even in Sec. II, where the continuum
theory is discussed, we do not need such a factor in the
Green function: Eq. (10) is manifestly gauge invariant.
Moreover, the consideration of the present section deals
with the lattice regularization of theory, which is gauge
invariant by construction. Indeed we use here the ordinary
fermionic Green function, which is not gauge invariant, and
depends on the external gauge field. The latter may be
considered in a certain gauge, and with respect to the gauge
transformations the status of our calculations is the same as
the status of the perturbative calculations in quantum field
theory performed in a certain fixed gauge. At the same time
our final results of Eqs. (35) and (38) are gauge invariant by
construction: they are obtained as variational derivatives
with respect to the external gauge field of the manifestly
gauge invariant lattice effective action Eq. (31).

D. Applications to the (2þ 1)D quantum Hall effect

In this section we demonstrate how the technique
developed in the previous sections allows one to reproduce
the well-known expression for the Hall current in the
gapped systems. Let us consider the (2þ 1)D model with
the gapped fermions. In the presence of external electric
field E ¼ ðE1; E2Þ we substitute A4k ¼ −iEk into Eq. (38).
This results in the following expression for the Hall current:

jkHall ¼
1

2π
~N 3ϵ

kiEi: ð40Þ

Thus the well-known expression for the (2þ 1)D QHE is
reproduced [see Eqs. (11.1) and (21.12) of [30]]. For one of
the previous derivations of this result see, for example, [42].
The following remark is in order. In the real systems of
finite sizes the total current is still given by this expression
integrated over the direction of the electric field, but the
local current is concentrated close to the boundary. Our

ABSENCE OF EQUILIBRIUM CHIRAL MAGNETIC EFFECT PHYSICAL REVIEW D 93, 105036 (2016)

105036-7



analysis based on the consideration of the systems of
infinite volume does not allow to distinguish this inhomo-
geneity of current in coordinate space.

IV. BULK CHIRAL MAGNETIC CURRENT

A. Chiral chemical potential and the Green function

Now let us concentrate on the (3þ 1)D systems. We
consider the situation when vector gauge field AkðRÞ has
the nonzero components with k ¼ 1, 2, 3 that do not
depend on (imaginary) time. The conventional expression
for the CME reads

jkCME ¼
μ5
4π2

ξCMEϵ
ijk4Aij; ð41Þ

where ξCME is integer number while μ5 is the chiral chemical
potential.3 Such an expression should follow from Eq. (35):
we need to substitute A ¼ 0 into Eq. (35) in the linear
response approximation. Then one might expect that
M4 ¼ μ5ξCME. However, below we will demonstrate that
ξCME calculated in this way vanishes identically (for the
reasonable choice of the way the chiral chemical potential is
introduced) in the certain cases of interest.
There may exist many different definitions of μ5.

Possibly, the most straightforward way is to consider the
following expression for the fermion Green function:

GðpÞ ¼
�X

k

γkgkðpÞ þ iγ4γ5μ5 − imðpÞ
�

−1
: ð42Þ

In the limit of vanishing chiral chemical potential it is
reduced to

GðpÞjμ5¼0 ¼
�X

k

γkgkðpÞ − imðpÞ
�

−1
; ð43Þ

where γk are Euclidean Dirac matrices while gkðpÞ and
mðpÞ are the real-valued functions, k ¼ 1, 2, 3, 4. Here we
define γ5 in chiral representation as diagð1; 1;−1;−1Þ. It
can be easily seen that the consideration of the previous
sections may be applied to the Green function, which has
this form for nonzero value of μ5. Therefore, we may
substitute G of Eq. (42) into Eq. (35) instead of ~GðR;pÞ
while dealing with the linear response to the external
magnetic field.
We are considering the theory with compact momentum

space that can be represented as S1 ⊗ Ω, where Ω is the

compact 3D Brillouin zone. First, we assume that with
vanishing μ5 the Green functions do not have zeros or poles
(at the real values of momenta), which means that the
fermions are massive. However, at the end of the calcu-
lations the limit of vanishing mass may always be
considered.
Depending on the details of the given system the finite

chiral chemical potential may induce the appearance of the
poles of the Green function. For the Green function of the
form of Eq. (42) the poles of the Green function appear as
the zeros of detG−1ðpÞ½G−1ðpÞ�þ. The latter zeros are found
as the solutions of the following equation:

g24ðpÞ þ ðμ5 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21ðpÞ þ g22ðpÞ þ g23ðpÞ

q
Þ2 þm2ðpÞ ¼ 0:

ð44Þ

Below we will analyze separately the electric current of
Eq. (35) for the systems with and without poles of the
Green function at the nonzero values of μ5.

B. Massive fermions. The conventional case:
Nonzero μ5 does not induce the poles of G

For the massive fermions we consider as the conven-
tional case the situation when the nonzero μ5 does not
induce the appearance of poles of the Green function. Let
us explain this situation first by the particular example of
the free lattice Wilson fermions with

gkðpÞ ¼ sinpk; mðpÞ ¼ mð0Þ þ
X

a¼1;2;3;4
ð1 − cospaÞ:

ð45Þ

Let us choose the conventional region of the values of
parameter mð0Þ > 0. It corresponds to the vanishing value

of the topological invariant ~N 5 (see [32]). In this case
function mðpÞ never equals to zero. Therefore, the nonzero
chiral chemical potential cannot cause the appearance of
poles of the Green function.
Since the lattice model with Wilson fermions withmð0Þ is

the typical (and in fact, the most popular) lattice regulari-
zation, we feel this appropriate to refer to the situation,
when the chiral chemical potential does not cause poles of
the Green function, as to the conventional case. It is
realized, for example, for any Green function of the form
of Eq. (42), such that there is no such value of p ∈ M, for
which both mðpÞ and g4ðpÞ vanish.
This is in contrast to the case of the ordinary chemical

potential added to the same system, in which the poles of
the Green function may appear if the chemical potential
exceeds the gap.
As it was mentioned above,M4 is topological invariant,

i.e. it is robust to any variations of the Green function as
long as the singularities are not encountered (for the proof

3As it was mentioned above, our conventions of notations
assume that the field strength absorbs the elementary charge e,
i.e. the Green function G contains the combination p −A (where
p is momentum) instead of the conventional p − eA. Besides, the
electric current j is defined in the units of e, which eliminates the
second factor e from Eq. (41). Therefore, the conventional
expression for the CME differs from Eq. (41) by the factor e2.
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see Appendix C). The introduction of chiral chemical
potential is the particular case of such a variation.
Therefore, M4 does not depend on μ5. Actually, for the
Green function of the form of Eq. (43)M4 ¼ 0, which may
be checked by direct calculation:

M4 ¼ −
i
2

Z
dp4 ~N 3ðp4Þ; ð46Þ

~N 3ðp4Þ ¼ 1

24π2
ϵijk4Tr

Z
Ω
d3pðG∂iG−1Þ

× ðG∂jG−1ÞðG∂kG−1Þ: ð47Þ

Let us define the new auxiliary gamma-matrices Γk ¼ iγ5γk

for k ¼ 1, 2, 3, 4, and Γ5 ¼ γ5. One can easily check that in
terms of these gamma-matrices we have

~N 3ðp4Þ ¼ 1

24π2
ϵijk4TrΓaΓbΓcΓd

×
Z
Ω
d3p

ga
g2

∂igb∂j

�
gc
g2

�
∂kgd

¼ 1

6π2
ϵijk4ðδabδcd − δacδbd þ δadδbcÞ

×
Z
Ω
d3p

ga∂igbð∂jgc − gc∂j log g2Þ∂kgd
g4

¼ 1

6π2
ϵijk4ðδabδcd þ δadδbcÞ

×
Z
Ω
d3p

ga∂igb∂jgc∂kgd
g4

¼ 0; ð48Þ

where g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

k¼1;2;3;4;5g2k
q

. Next, using continuous defor-

mation of the Green function we may bring it to the form of
Eq. (42) with nonzero μ5. During this deformation the poles
of the Green function do not appear, and the value of M4

remains equal to zero.
However, we do not need here the particular form of the

Green function. We only need that momentum space is
compact and can be represented as S1 ⊗ Ω, where Ω is the
compact 3D Brillouin zone. The absence of the dependence
of electric current on chiral chemical potential means that
there is no CME as long as we deal with compact
momentum space and regular Green function. The finite
value of chiral chemical potential does not change the
situation in the conventional case because as we mentioned
above such a finite value cannot provide the Green function
of the form of Eq. (43) with the pole.

C. Massive fermions. The finite values of μ5 that cause
the appearance of the Fermi lines

In this subsection we consider the marginal situation,
when function mðpÞ may have zeros while at μ5 ¼ 0 there
are still no poles of G. This situation may be illustrated by

the model with Wilson fermions Eq. (45) for the values of

the parametermð0Þ such that the topological invariant ~N 5 is
nonzero (for the details see [33]). For example, if
mð0Þ ∈ ð−2; 0Þ, then the zeros of the function mðpÞ form
the 3D hypersurfaces in momentum space. When mð0Þ →
−2 these hypersurfaces form the pairs, which approach
(from the different sides) the hypersurfaces that connect
four of the 16 fermion doublers pk ¼ nkπ, (with nk ¼ 0, 1
and n1 þ n2 þ n3 þ n4 ¼ 1) and that satisfy

cosp1 þ cosp2 þ cosp3 þ cosp4 ¼ 2: ð49Þ

This lattice system describes four (rather than one) physical
massive fermions in the continuum limit. The solutions of
equation

jμ5j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21ðpÞ þ g22ðpÞ þ g23ðpÞ

q
ð50Þ

form the closed tubes extended in the p4 direction that
enclose the positions of the fermion doublers pk ¼ nkπ
with nk ¼ 0, 1 (k ¼ 1, 2, 3). We are interested in the
sections of these tubes (being the 2D closed surfaces) at the
values p4 ¼ 0; π, for which g4ðpÞ ¼ 0, where the poles of
the Green function may occur. For the sufficiently small
values of μ5 those sections do not intersect the positions of
the zeros of mðpÞ. In that case the poles of the Green
function do not appear. However, for the sufficiently large
values of μ5 the mentioned two types of surfaces intersect
each other. The poles of the Green function appear along
the closed Fermi lines in momentum space. Recall that in
case of the ordinary chemical potential we would deal with
the Fermi surfaces, which have dimension 2.
The value of M4 is given by Eq. (47). For p4 ≠ 0; π the

quantity ~N 3ðp4Þ is the topological invariant (see
Appendix C), and it has the same value when G is deformed
smoothly. For example, we may perform the deformation,

which brings μ5 to zero. For μ5 ¼ 0 we have ~N 3ðp4Þ ¼ 0
because of the properties of the gamma-matrices. Thus, we
come to the conclusion that at p4 ≠ 0; π the value of
~N 3ðp4Þ vanishes at nonzero values of μ5. The integral over
p4 in Eq. (46) may be regularized as

R
−ϵ
−πþϵþ

R
π−ϵ
ϵ . The

limit ϵ → 0 should be taken at the end. With this regulari-
zation the value of M4 is equal to zero in the consid-
ered case.
In the similar way we may demonstrate that the value of

M4 is equal to zero in the other systems that correspond to
Eq. (42), when nonzero μ5 causes the appearance of the
Fermi lines provided that gðpÞ depends on p4 only. This is
the typical case for the noninteracting condensed matter
systems and for the lattice regularization of the noninter-
acting gauge theory.
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D. Massless fermions

In principle, we may take the limit of vanishing mass of
the final expression for the electric current in the above
considered cases of massive lattice fermions, and in this
limit the CME will be absent. However, we may also
discuss from the very beginning the lattice massless
fermions, which will be done in this section.
In this case the pole of the Green function appears

and the expression for M4 becomes ambiguous already
for μ5 ¼ 0. Let us consider separately the systems with
vanishing fermion mass being the extensions of the systems
discussed in Secs. IV B and IV C.
(1) Let us set the fermion mass equal to zero in the

conventional case of Sec. IV B. Again, let us start
from the consideration of the Wilson fermions
Eq. (45) with the zero bare mass parameter
mð0Þ ¼ 0: in this example Eq. (44) does not have
a solution for μ5 ≠ 0. For μ5 ≠ 0 the poles disappear,
the expression for M4 becomes well defined and
independent of μ5. Therefore, even for the gapless
fermions our analysis gives the expression for the
linear response of the electric current to the magnetic
field that does not depend on chiral chemical
potential as long as the latter is nonzero. This means
that the equilibrium CME is absent even for the
fermions with zero mass.
For massless Wilson fermions with nonzero μ5

we may prove that M4 ¼ 0 as follows. At non-
zero μ5 there are no poles of the Green function,
and M4 is robust to the continuous transforma-
tions of the Green function, which do not give
rise to such poles. In particular, we may make
mð0Þ nonzero in this way, which follows from
Eq. (44). Finally, μ5 may be continuously brought
to zero, in which case the calculation of M4 is
trivial, and gives 0.
Following the same logic we may also prove

that M4 ¼ 0 for the Green function with the form
of Eq. (42) with nonzero chiral chemical potential
μ5 under the following conditions: (1) the Green
function does not have poles at the given value of
μ5; (2) function mðpÞ is either nonzero every-
where or may be brought to the form, when it
does not have zeros, by the continuous deforma-
tion. During this deformation the common zeros
of mðpÞ and g4ðpÞ should not cross the hyper-
surface given by the solution of equation

jμ5j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21ðpÞ þ g22ðpÞ þ g23ðpÞ

q
:

(2) Let us now discuss the modification with vanishing
mass of the case considered in Sec. IV C. This
pattern may again be considered using the example
of Wilson fermions with mð0Þ ¼ −2. Function mðpÞ

vanishes on the hypersurface, which is given by
Eq. (49). It connects the positions of those doublers
pk ¼ nkπ (nk ¼ 0, 1), for which n1 þ n2 þ n3þ
n4 ¼ 1. In this situation the nonzero value of μ5
does not eliminate the poles of the Green function:
the surface given by Eq. (50) intersects the 2D
surface of the common zeros ofmðpÞ and g4ðpÞ. The
manyfold of zeros of the Green function has di-
mension 1 and represents the closed Fermi lines.
This is the marginal case because as it was explained
above, typically in the (3þ 1)D systems the ordi-
nary chemical potential causes the appearance of the
Fermi surfaces of dimension 2.
The value ofM4 is still given by Eq. (46), and the

discussion given after this equation may be applied.
Thus we obtainM4 ¼ 0. This consideration may be
extended to the more general forms of functions gk
and m (such that the Fermi lines are produced by the
nonzero value of μ5) if g4ðpÞ depends on p4 only.

Thus we have considered the wide class of lattice
models. In our opinion the consideration of this class is
enough to draw the conclusion that the equilibrium CME is
absent in the properly regularized quantum field theory. We
also suppose that our results indicate the absence of the
CME in real Dirac semimetals. Nevertheless, at the present
moment we do not exclude that the CME may be possessed
by certain marginal lattice models with unusual dependence
of the Green function on momentum. Both existence of
such hypothetical models and their relevance to physics
remain unclear.

V. CONCLUSIONS AND DISCUSSION

In the present paper we use the methodology, which
allows one to reduce the consideration of the linear
response of electric current (to external gauge field) to
the discussion of momentum space topology. We propose
the original method to introduce the slow varying external
gauge field to the lattice models. Although the proposed
method looks unusual, it is manifestly gauge invariant, and
it is obviously reduced in the continuum limit to the
conventional minimal connection of the fermionic theory
with the gauge field. Therefore, it allows one to introduce
effectively the gauge field both into the lattice regulariza-
tion of quantum field theory and to the models of the solid
state physics. Since the proposed formalism in momentum
space utilizes the pseudodifferential operators, i.e. the
argument of the gauge field Aði∂pÞ is substituted by
the differential operator, this formalism is not useful for
the numerical simulations. However, it appears as a power-
ful tool for the analytical derivations. The power of this
methodology was demonstrated by the consideration of the
(2þ 1)D quantum Hall effect, where the conventional
expression of the Hall conductivity through the topological
invariant in momentum space is reproduced.
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Further, we apply the same technique to the analysis of
the equilibrium chiral magnetic effect. We show that the
corresponding current is also proportional to the momen-
tum space topological invariant. We demonstrate that this
invariant is equal to zero for the wide class of systems with
compact momentum space (that can be represented as
S1 ⊗ Ω, where Ω is the compact 3D Brillouin zone) and
without poles or zeros of the Green function. This class
includes the systems with nonzero chiral chemical potential
described by certain lattice regularizations of quantum field
theory, and certain solid state systems. The presence of the
poles of the Green function at the real values of momenta
and nonzero values of chiral chemical potential does not
change this conclusion in several important cases, which
include the lattice regularizations with Wilson fermions and
the similar models of Dirac semimetals. Therefore, we
conclude that the properly regularized quantum field theory
does not possess the equilibrium bulk chiral magnetic
effect. Although we did not consider the general case of
arbitrary Dirac semimetals, our results indicate that there is
no equilibrium CME in those materials as well.
We calculated the response to the external magnetic field

in the system of the noninteracting fermions. However,
according to the general properties of the topological
invariants, they cannot be changed by the continuous
deformation of the system. Therefore, the mentioned above
conclusion on the topological contribution to the CME
remains the same if we turn on the self-interactions. The
expression for the topological contribution to the consid-
ered current remains unchanged until the phase transition is
encountered. Our considerations do not exclude that the
self-interactions cause the nontopological contribution to
electric current proportional to chiral chemical potential
and external magnetic field. However, since such a con-
tribution is not related to topology, it must be dissipative,
which excludes its appearance because the magnetic field
cannot cause heat.
Our conclusion on the absence of bulk equilibrium CME

current is in accordancewith the recent lattice calculations of
theCMEbyBuividovich and co-authors [13–15], it is also in
accordancewith the consideration of the particular model of
Weyl semimetals [26] and with the no-go Bloch theorem
[27]. (The formulations used in [27], however, seem to the
author rather distant from the setup of the present paper.)
Besides, our conclusion is in line with the discussion of the
CME using the continuous model with special boundary
conditions in the direction of magnetic field [10]. However,
the methodology presented in the present paper is rather
general, and it allows one to draw the conclusion on the
absence of the equilibrium CME for the wide class of
systems, which is not limited to the particular models
considered in the mentioned above papers.
Our conclusions also do not contradict with the certain

calculations made within the continuum relativistic field
theory in the Pauli-Villars regularization. Namely, in [15]

[see also Eq. (1.2) in [12] and the earlier paper [43]] the
CME current was calculated in this regularization for the
inhomogeneous magnetic field. It was demonstrated that
the frequency dependence of the CME conductivity gives
zero in the limit lim~q→0limq0→0 [here q ¼ ðq0; ~qÞ is the
four-momentum corresponding to the inhomogeneous
magnetic field]. It is also worth mentioning that the
conclusion on the absence of the CME in the properly
defined quantum field theory was reached within the
holographic pattern (see [44,45] and references therein).
It was noticed in [45] that the notion of chiral chemical
potential may be redefined in the way different from that
discussed in the present paper and in the mentioned above
publications. Namely, it may be defined as the chemical
potential corresponding to the conserved chiral charge. The
latter is given by the sum of the naive, nonconserved chiral
charge and the Chern-Simons form. The Chern-Simons
term being multiplied by μ5 induces the current, which
formally coincides with the naive CME expression.
Therefore, in [45] the conclusion was drawn that with this
modification of the notion of chiral chemical potential the
CME is back.4 At this point we would like to emphasize the
essential difference between this modified understanding of
the chiral magnetic effect and its original understanding,
which assumes that the chiral chemical potential is intro-
duced according to Eq. (42). In the present paper we
demonstrate that the CME understood in its original form is
absent while that of [45] is indeed back.
Notice that our conclusion refers to the equilibrium states

only. The contribution to the conductivity in the presence of
both electric and magnetic fields [6,7] due to the chiral
chemical potential induced by chiral anomaly may avoid
the restrictions imposed on the CME by momentum space
topology. This may be related to the essentially nonequili-
brium nature of this phenomenon. The notion of the chiral
chemical potential generated by the interplay of chiral
anomaly and the quasiparticle interactions with the change
of chirality may differ from the notion of the chiral
chemical potential of equilibrium theory. Actually, the
given contribution to conductivity is to be described by
the higher orders of the derivative expansion for the Wigner
transform of the Green function just because it is expected
to be proportional to the magnetic field squared. This could
restore the CME (possibly, in a modified form). Besides,
the experience of the quantum Hall effect prompts that
inclusion into consideration of boundaries may be impor-
tant. These issues are, however, out of the scope of the
present paper.
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APPENDIX A: WIGNER TRANSFORM
OF THE GREEN FUNCTION

Let us consider the dþ 1 ¼ D dimensional model with
the Green function Gðr1; r2Þ that obeys the equation

Q̂ðr1;−i∂r1ÞGðr1; r2Þ ¼ δðDÞðr1 − r2Þ ðA1Þ

for some Hermitian operator-valued function Q. Let us
apply Wigner decomposition

~GðR;pÞ ¼
Z

dDre−iprGðRþ r=2;R − r=2Þ: ðA2Þ

Below we will prove the following identity:

QðR;pÞei
2
ð ∂ R ∂!p− ∂ p ∂!RÞ ~GðR;pÞ ¼ 1: ðA3Þ

Here the function Q depends on the real numbers rather
than on the operators. Q is called the Weyl symbol of the
operator Q̂ [35]. We determine the relation between the
function Qðr;pÞ (of real-valued vectors r and p) and
the function Q̂ðr; p̂Þ (of the operators p and p̂ ¼ −i∂r)
through the identity

Z
dDrfðr;RÞQ

�
Rþ r

2
; i ∂ r −

i
2
∂!R

�
hðr;RÞ

¼
Z

dDrfðr;RÞQ̂
�
Rþ r

2
;−i

∂
∂ðRþ r

2
Þ
�
hðr;RÞ ðA4Þ

which works for arbitrary functions fðr;RÞ and hðr;RÞ
that decrease sufficiently fast at infinity. The important

point concerning this expression is that the derivatives ∂!R

and ∂ r inside the arguments of Q act only outside of this

function, i.e. ∂ r acts on fðr;RÞ while ∂!R acts on hðr;RÞ.
At the same time the derivatives without arrows act as usual
operators, i.e. not only right to the function Q̂, but inside it
as well. Notice that ∂

∂ðRþr
2
Þ ¼ ∂r þ 1

2
∂R.

The given correspondence looks rather complicated.
However, it takes the simple form in certain particular
cases. For example, if Q̂ ¼ ðp̂ −AðrÞÞ2 ¼ p̂2 þA2ðrÞþ
ið∂kAkðrÞÞ − 2AðrÞp̂, then Q ¼ p2 þA2ðrÞ − 2AðrÞp.
Besides, one can easily check that if Q̂ has the form

Q̂ðr; p̂Þ ¼ F ðp̂ −AðrÞÞ ðA5Þ

then we have

Qðr; p̂Þ ¼ F ðp −AðrÞÞ þOð½∂iAj�2Þ: ðA6Þ

Here Oð½∂iAj�2Þ may contain the terms with the second
power of the derivatives of A and the terms higher order in
derivatives. In order to prove Eq. (A6) it is necessary to
consider the function F ðp̂ −AðrÞÞ ¼P

nF i1���inð−i∂i1 −
Ai1ðrÞÞ � � � ð−i∂in − AinðrÞÞ as a series in powers of its
arguments (F i1���in are the Hermitian operator-valued
coefficients), and apply the correspondence of
Eq. (A4) to each term. The details of the consideration
are similar to that of Appendix B, where the Wigner
transform in momentum space is discussed. Therefore,
we do not represent them here and advise the reader to
follow Appendix B.
In order to prove Eq. (A3) let us substitute Eq. (A2) into

it. The argument of the exponent in Eq. (A3) acts on Q as
follows:

1 ¼
Z

dDrQ
�
Rþ i

2
~∂p;p −

i
2
~∂R

�

× e−iprGðRþ r=2;R − r=2Þ: ðA7Þ

The important point concerning this expression is that the

derivatives ~∂R and ~∂p inside the arguments of Q act only
outside of this function, i.e. on e−iprGðRþ r=2;R − r=2Þ
and do not act inside the function Q, i.e. on p and R in its
arguments. This gives

1 ¼
Z

dDre−iprQ
�
Rþ r

2
; i ∂ r −

i
2
∂!R

�

×GðRþ r=2;R − r=2Þ: ðA8Þ

Up to the boundary terms (which are assumed to be absent)
we arrive at

Z
dDre−iprQ̂

�
Rþ r

2
;−i∂r −

i
2
∂R

�

× GðRþ r=2;R − r=2Þ ¼ 1:

Now it is clear why we should order operators p̂ and r in Q̂
according to Eq. (A4) in order to obtain function Q.
Applying the inverse Wigner transform we finally arrive
at Eq. (A1).
Notice that the Weyl symbol Q of the operator Q̂ may

also be defined as [34,35] the Wigner transform of the
matrix elements of Q̂:

QðR;pÞ ¼
Z

dDxdDre−iprδðR − r=2 − xÞ

× Q̂ðx;−i∂xÞδðRþ r=2 − xÞ: ðA9Þ
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APPENDIX B: WIGNER TRANSFORM OF THE
GREEN FUNCTION (LATTICE VERSION)

We consider the dþ 1 ¼ D dimensional model with the
Green function Gðp1;p2Þ that obeys the equation

Q̂ði∂p1
;p1ÞGðp1;p2Þ ¼ jMjδðDÞðp1 − p2Þ ðB1Þ

for some Hermitian operator-valued function Q̂. Let us
apply Wigner decomposition in momentum space

~GðR;pÞ ¼
Z

dDP
jMj e

iPRGðpþ P=2;p − P=2Þ: ðB2Þ

We will prove identity

QðR;pÞei
2
ð ∂ R ∂!p− ∂ p ∂!RÞ ~GðR;pÞ ¼ 1: ðB3Þ

TheWeyl symbolQ of the operator Q̂ is the function of real
numbers rather than the operators. Similar to the continuum
case we determine the relation between the function
Qðr;pÞ (of real-valued vectors r and p) and the function
Q̂ðr̂;pÞ (of the operators p and r̂ ¼ i∂p) through the
identity

Z
dDXdDYfðX;YÞQð−i ∂ Yþ i ∂!X;X=2þY=2ÞhðX;YÞ

¼
Z

dDXdDYfðX;YÞQ̂ði∂Xþ i∂Y;X=2þY=2ÞhðX;YÞ

ðB4Þ

which works for arbitrary functions fðX;YÞ and hðX;YÞ
defined on compact momentum space X;Y ∈ M. The
important point concerning this expression is that the

derivatives ∂!X and ∂ Y inside the arguments of Q

act only outside of this function, i.e. ∂ Y acts on

fðX;YÞ while ∂!X acts on hðX;YÞ. At the same time
the derivatives without arrows act as usual operators, i.e.
not only right to the function Q̂, but inside it as well. Notice
that ∂

∂ðX=2þY=2Þ ¼ ∂Y þ ∂X and ∂
∂ðX=2−Y=2Þ ¼ ∂X − ∂Y .

Therefore, we may rewrite Eq. (B4) as

Z
dDXdDYfðX;YÞQð−i ∂ Yþ i ∂!X;X=2þY=2ÞhðX;YÞ

¼−2
Z

dDQdDKfðQþK;Q−KÞ

×Q̂ði∂Q;QÞhðQþK;Q−KÞ: ðB5Þ

The given correspondence takes the simple form in
certain particular cases. For example, if Q̂ ¼ ðp −
Aðr̂ÞÞ2 ¼ p2 þA2ðr̂Þ þ ið∂kAkðr̂ÞÞ − 2Aðr̂Þp (recall, that
r̂ is operator equal to i∂p), then Q¼p2þA2ðrÞ−2AðrÞp.
Besides, one can easily check that if Q̂ has the form

Q̂ðr̂;pÞ ¼ F ðp −Aðr̂ÞÞ ðB6Þ

then we have

Qðr;pÞ ¼ F ðp −AðrÞÞ þOð½∂iAj�2Þ: ðB7Þ

Here Oð½∂iAj�2Þ may contain the terms with the second
power of the derivatives of A and the terms higher order in
derivatives. Let us prove Eq. (B7). First of all, this is
necessary to consider the function F ðp −Aðr̂ÞÞ ¼P

nF i1���inðpi1 − Ai1ði∂pÞÞ � � � ðpin − Ainði∂pÞÞ as a series
in powers of its arguments (F i1���in are Hermitian operators
that do not depend on p). Operator Q̂ is Hermitian,
therefore, the kernel of the first row in Eq. (B5) should
also be Hermitian. It may be represented as follows.
Suppose that function Q is expanded in powers of Q ¼
ðXþ YÞ=2 and −i ∂ Y þ i~∂X as follows:

Qð−i ∂ Y þ i ∂!X;X=2þ Y=2Þ
¼

X
qi1…in;j1…jm;k1…klð−i ∂

 
Yi1
Þ…ð−i ∂ Yin

Þ
×Qj1…Qjmði~∂Xk1

Þði~∂Xkl
Þ ðB8Þ

In this expression inside the first row of Eq. (B4) we may
substitute −i ∂ Yi

by i∂Yi
and i~∂Xk

by i∂Xk
. Because the

second row in Eq. (B4) is symmetric under the interchange
of X and Y, we have qi1���in;j1���jm;k1���kl ¼ qk1���kl;j1���jm;i1���in .
For the same reason Eq. (B8) is invariant under the
interchange X↔Y. Then the change of q��� by its
Hermitian conjugate qþ��� is equivalent to the Hermitian
conjugation of the whole expression. This demonstrates
that coefficients q��� are Hermitian. Now let us suppose that
Q is linear in the derivative of A. Algebraically the linear
term appears as a product of a certain combination of F ���
and the commutator ½pk;Aði∂pÞ� ¼ −ið∂kAÞ. Therefore, it
would lead to the appearance of imaginary unity in the
expression for q��� as a combination of F ���, which means
that q��� is not Hermitian. The contradiction proves the
nonappearance of the terms linear in the derivatives of A in
the expression for Qðr;pÞ.
In order to prove Eq. (B3) let us substitute Eq. (B2) into

it. The argument of the exponent in Eq. (B3) acts on Q as
follows:

1 ¼
Z

dDP
jMjQ

�
Rþ i

2
~∂p;p −

i
2
~∂R

�

× eiPRGðpþ P=2;p − P=2Þ: ðB9Þ

In this expression the derivatives ~∂p and ~∂R inside the
arguments of Q act only outside of this function, i.e. on
eiPRGðpþ P=2;p − P=2Þ and do not act inside the func-
tion Q, i.e. on p and R in its arguments. This gives
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1 ¼
Z

dDP
jMj e

iPRQ
�
−i ∂ P þ

i
2
~∂p;pþ

P
2

�

× Gðpþ P=2;p − P=2Þ: ðB10Þ

Because of the absence of boundary of M we arrive at

Z
dDP
jMj e

iPRQ̂
�
i∂P þ

i
2
∂p;pþ

P
2

�

×Gðpþ P=2;p − P=2Þ ¼ 1;

where we applied Eq. (B4). Now it is clear why we should
order operators p and r in Q̂ according to Eq. (B4) in order
to obtain function Q. Taking into account Eq. (B5) and
applying the inverse Wigner transform we finally arrive
at Eq. (B1).
Finally, let us notice that the Weyl symbol Q of the

operator Q̂ may also be defined following that of
Appendix A (see also [34,35]) as

QðR;pÞ ¼
Z

dDKdDPeiPRδðp − P=2 −KÞ

× Q̂ði∂K;KÞδðpþ P=2 −KÞ: ðB11Þ

APPENDIX C: TOPOLOGICAL INVARIANT
RESPONSIBLE FOR THE LINEAR RESPONSE

OF ELECTRIC CURRENT TO MAGNETIC FIELD

In the main text we encountered Eq. (36) for the
coefficient entering the linear response of electric current
to the external magnetic field. If momentum space M has
the form of the product S1 ⊗ Ω, where Ω is the 3D
Brillouin zone, while S1 is the circle of the values of p4,
then for l ¼ 4 we may rewrite this quantity as follows:

M4 ¼ −
i
2

Z
dp4 ~N 3ðp4Þ;

~N 3ðp4Þ ¼ 1

24π2
ϵijk4Tr

Z
Ω
d3pðG∂iG−1Þ

× ðG∂jG−1ÞðG∂kG−1Þ: ðC1Þ

Here for the fixed value of p4 we encounter the expression
for the topological invariant in the 3D Brillouin zone. The
Green function G should be considered here as the function
of the three arguments p1; p2; p3 while p4 is to be
considered as a parameter.
Notice that for the Green function of the form of Eq. (43)

the value of ~N 3ðp4Þ is equal to zero. At the same time for
the Green function of general form this invariant may be
nonzero. This explains the quantization of Hall conduc-
tivity as has been explained in Sec. III D. One might naively
think that the deviation of the Green function from the form
of Eq. (43)—say, of the form of Eq. (42)—may change the

expressions for ~N 3 and M4. Below we will demonstrate,
that this does not occur as long as we deal with the compact
Brillouin zone and regular Green functions.
Let us consider arbitrary variation of the Green function:

G → Gþ δG. Then the expression for ~N 3 is changed as
follows:

δ ~N 3 ¼ −
3

24π2

Z
Trðð½δG�dG−1 þ Gd½δG−1�Þ∧GdG−1

∧GdG−1Þ

¼ 3

24π2

Z
dTrðð½δG−1�GÞdG−1∧dGÞ ¼ 0: ðC2Þ

Thus we proved that ~N 3 is the topological invariant.
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