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A scheme is presented to cancel out topologically unfactorized infrared divergences in the inclusive
production of heavy quarkonia, which affect the nonrelativistic QCD (NRQCD) factorization of these
processes. Heavy quarkonia are defined as resonance states of QCD instead of a color-singlet heavy quark
pair. Thus the final heavy quark pair is not necessarily a color singlet. In addition, heavy quarkonia are
reconstructed from their decay products. As a result, the transitions between states containing heavy quarks
caused by exchanges of soft gluons are also taken into account here. Such cancellation is crucial for the

NRQCD factorization of these processes.
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I. INTRODUCTION

The production of heavy quarkonia forms an important
and interesting issue in the study of QCD and the strong
interaction [1,2]. The large mass of heavy quarks suggests
that one may treat heavy quarkonia as a nonrelativistic
bound system. This is supported by quark potential model
calculations, which indicate that v* ~ 0.3 for charmonium
and v% ~ 0.1 for bottomonium [3], where v is the typical
velocity in the center-of-mass frame of heavy quarkonia. It
has been proposed that the effective theory nonrelativistic
QCD (NRQCD) [4,5] could be used to describe the
separation of short- and long-distance effects in the
production of heavy quarkonia. Short-distance effects that
produce a heavy quark pair are perturbative, while long-
distance effects that produce the heavy quark pair into
heavy quarkonium are nonperturbative and independent of
an explicit process. The factorization theorem proposed in
Ref. [5] can be written as

dopyppix = ZdGAJrB—»QQ(n)JrX(OH(n»v (1)

where A and B represent initial particles, H represents the
detected heavy quarkonium, X represents undetected final
particles, and QQ(n) represents the heavy quark pair in a
special color and angular momentum state.

Although the NRQCD factorization formula is widely
used in the study of the production of heavy quarkonia
and has gained great success in the explanation of
experimental data (see, for example, Refs. [6—19]), the
NRQCD factorization formula still faces challenges,
particularly the J/y puzzle and the surprisingly large
cross section of the associated production of J/w in
e' e (see, for example, Ref. [1] and references therein). It
seems that more efforts are needed to examine the
NRQCD factorization formula, especially for inclusive
production of heavy quarkonia.
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Proofs of the NRQCD factorization theorem for exclu-
sive production of two charmonia in e"e™ annihilation
and the production of a charmonium and a light meson in
B-meson decays were established in Refs. [20,21]. For
inclusive production of heavy quarkonia, however, the
issue is quite nontrivial [22,23]. In Ref. [5], it was argued
that infrared divergence caused by exchanges of soft gluons
between heavy quarks and extra jets cancel out once the
summation over undetected particles has been made, even
while one constrains the final heavy quark pair to be a color
singlet. According to explicit calculations at next-to-next-
to-leading order (NNLO), the authors of Refs. [22,23]
found that it is necessary to modify NRQCD octet
production matrix elements to include non-Abelian phases
(which makes them gauge invariant) in order to restore
NRQCD factorization in inclusive production of heavy
quarkonia.

In spite of difficulties in the proof of the NRQCD
factorization theorem for inclusive production of heavy
quarkonia, it was proved [24-28] that collinear factoriza-
tion holds up to order M?/p2. for such processes, where M
is the mass of the heavy quark and p; is the transverse
momenta of the detected heavy quarkonia in the center-of-
mass frame of the initial particles. In the collinear factori-
zation approach, the differential cross section of inclusive
production of heavy quarkonium reads

dopyponix = E dogipoivx ® Diy
;

+ Zd6A+B—>QQ(K)+X ® Dop()-n
K
+O(M*/pz), (2)
where do,, ;. x represents the differential cross section
of inclusive production of a parton i, D,_ 5 represents the

fragmentation function of i into H with i produced in a
short-distance process (order 1/py), doy +B=Q0(K)+X
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represents the differential cross section of inclusive pro-
duction of a heavy quark pair QQ in a special color and
angular momentum state x, and Dgg,)p represents the
fragmentation function of the heavy quark pair QQ into H
with the pair produced in a short-distance process (order
1/py). The first term in Eq. (2) contributes from leading
power in M/py, while the second term contributes from
subleading power in M/ py. If NRQCD factorization holds
up to order M?/p?, then one has [24,26]

Dy = ZdHQQ(n) (0" (n)),

Dogw-i = Y _doow-00m (O (1)), (3)

n

where d;_,pp(n) and dpgp()— o) are short-distance (order
1/M) coefficients.

In this paper, we present a scheme to cancel out the
topologically unfactorized infrared divergences exhibited
in Refs. [22,23]. In Refs. [22,23], it was shown that the
uncanceled infrared divergences that affect NRQCD fac-
torization originate from diagrams of the type shown in
Fig. 1. For an Abelian gauge theory like QED, diagrams of
this type do not appear. Thus factorization is not bothered
by these diagrams for Abelian gauge theory. One may ask,
what happens for non-Abelian gauge theory? For non-
Abelian gauge theory, the color of the heavy quark pair is
affected by soft gluons which couple to the pair. Once the
color state of the final heavy quark pair is fixed, we can no
longer make the inclusive summation over all states made
up of a heavy quark pair and an arbitrary number of infrared
gluons. In fact, the final heavy quark pair is constrained to
be color singlet in diagrams of the type shown in Fig. 1.
Thus the Kinoshita-Lee-Nauenberg (KLN) cancellation
does not simply work in this case. It is necessary to point
it out, however, that the color state of the final heavy quark
pair is not fixed in the actual process. What we detected

‘o)

FIG. 1. Topology of diagrams which contribute to uncanceled
infrared divergences that affect NRQCD factorization at NNLO.
The summation over all cuts that produce a color-singlet heavy
quark pair, which is produced as a color octet at the hard vertex, is
understood implicitly.
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were heavy quarkonia like J/y, not a color-singlet heavy
quark pair in the actual process. Infrared behaviors of
higher Fock states should also be taken into account.
Summation over these Fock states, however, is not enough
to cancel out topologically unfactorized infrared divergen-
ces as we will see according to explicit calculations.
Exchanges of soft gluons between the heavy quarks and
undetected states X may cause a transition between states
containing heavy quarks even though the momenta of soft
gluons tend to 0! Fortunately, heavy quarkonia are recon-
structed from their decay products in actual experiments.
As a result, we consider a more inclusive process:

A+B = ptu(n,py) + X, (4)

where utu~(n, py) is a utu~ pair with the intrinsic
quantum numbers equal to those of the detected heavy
quarkonium H. The invariant mass of the p™u~ pair is
constrained to be near the mass of the heavy quarkonium
H. We will show that topologically unfactorized infrared
divergences do cancel out in such a process.

The paper is organized as follows. In Sec. II, we describe
the inclusive production process of heavy quarkonia. In
Sec. 111, we take the J/y particle as an example to explain
how to define heavy quarkonia so that they are invariant
under the evolution of infrared QCD interactions. In
Sec. IV, we show that summation over higher Fock states
is not enough to cancel out topologically unfactorized
infrared divergences according to explicit calculations at
NNLO. In Sec. V, we consider the inclusive production of a
utp~ pair with invariant mass near the mass of a heavy
quarkonium H and intrinsic quantum numbers equal to
those of H. We show that topologically unfactorized
infrared divergences do cancel out in this process. We
give our conclusion and some discussions in Sec. VI.

II. INCLUSIVE PRODUCTION
OF HEAVY QUARKONIA

In this section, we describe the inclusive production
process of heavy quarkonia. The process can be written as

A(pa) +B(pg) = H(pu) + X(px). (5)
where A and B represent initial particles, and X represents
undetected final particles. In the center-of-mass frame of

the initial particles, the momenta of A and B are nearly light
like. We have

Plh=n-pant +n-paitt =i pant, (6)
Py =n-ppit* + - ppn* =n- ppit*, (7)

where n* and 7#* are light-like vectors:
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W= (L), = (1), (8)

V2 V2

The transverse momentum of the final heavy quarkonium
H is proposed to be much greater than the mass of H. In this
case, the momentum of H is also nearly light like in the
center-of-mass frame of the initial particles. We have

Py =Ty - pultly + ny - panig”
+ (Pl = Tty - puntly + ny - panig")

=Ty Pully. ©)
where n%, and 7g# are light-like vectors with

1 1

T3 (L) = (). (10)

Ho_
ngy =

We propose that ny - n~ny - ~ 1 in this paper.
The collinear factorization theorem for the process
reads [24-28]

dogiponix = E dopypoivx ® Diny
i

+ ZdGA+B—>cé(K)+X ® DcE(K)—»H

+ O(M*/ p?), (11)

where the fragmentation functions D,y and D z)—n
are defined in terms of expectation values of nonlocal
operators between vacuumed and final hadron states. For
example, the bare fragmentation function of the light quark
reads [29]

d-3

0 Z — i pyhy-y
D;lH(Z) :m/dnﬁ] .ye H'PH H}/Z

x S Tr{0|Wh, v (0. ny - y.0)|HY)
Y

< (HYly' W, (0)[0). (12)

where z is the ratio of the large momentum component of H
to that of the light quark i, and W, is the light-like Wilson
line,

T

W, (x) = (Pexp(ig/ooo ds@~A(x+S@))) . (13)

If NRQCD factorization holds up to order M?/ p2, then
one has [24,26]
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Di—>H = ZdiaQQ(n) <OH(n)>7
n

Dot = O _doow-00m (O™ (n), (1)

where d;_pp(,) and dpp(—pp(n) are short-distance coef-
ficients. d;_, pp(n) and dppx)—00(n) should be infrared safe,

that is to say, all infrared divergences in D,y and
D () should be absorbed into the long-distance matrix

elements of the effective operators O%(n). However,
calculations in Refs. [22,23] showed that the infrared safety
of di_.op(m) and dpp()—o@m) 1S quite nontrivial once the
final detected particle is the color-singlet heavy quark pair.

It is necessary to point out that the final detected particle is
H, not the color-singlet heavy quark pair in the process
considered here. The color-singlet heavy quark pair is not
invariant under the evolution of QCD even though the
annihilation of heavy quarks is neglected. The H particle,
however, is a stable particle once the decay of H is neglected.
Thus, effects of higher Fock states are important in the
evolution of heavy quarkonia under infrared QCD interactions.

III. RELATIONS BETWEEN J/y AND
THE HEAVY QUARK PAIR

In this section, we take the J/y particle as an example to
show how to define heavy quarkonia so that they are
invariant under infrared QCD interactions once the decay of
heavy quarkonia is neglected. J /i is a stable particle if one
neglects the annihilation of the charm quark pair. We thus
define the J/y state as an eigenstate of NRQCD, where
effects of electroweak interactions on the structure of J/y
are neglected here. We have

Pl1/w(j..B)) = DI /w(j.. ). (15)
P1J/w(j..0)) = 2|7 /w(j..0)). (16)
Jz J/l//(]z76)> :jz|‘]/l//<jz’6)>7 (17)

Hyocold/w(j-.0)) = (M, —2M,)|J /y(j..0)).  (18)

where p represents the momentum of the J/y state, j,
represents the z component of the spin of the J /iy state, P and

J represent the momentum operator and the angular momen-
tum operator, respectively, M ;;,, and M . represent the mass of

J/w and the charm quark, respectively, and Hl(\ﬁ%QCD repre-

sents the Hermitian part of the Hamiltonian of NRQCD. We
do not consider the anti-Hermitian part, which describes
effects of annihilation of the heavy quark pair, as the width of
J/y is much smaller than the binding energy of J/y.

We expand the J/y state according to eigenstates of

HI(\(I)I;QCD which is the free part of Hxrqcp; we have
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/v (=, 0))
d3
Z/ s el o= )
my,ny
+ high Fock states, (19)

where |c(g, m)¢(—q,m,)) is a color-singlet charm pair,
m;=%,-3i =1, 2), and ¢(q,j.m;.my) is the wave
function

(c(@.m)e(=g.my)|J /w(j.. 0)). (20)

We bring in the notations

¢<é’jzv my, m2) =

|CE jz>J/y/
d3 R
_ Z/ Gy $G@ o) m (=),
my,my

(21)

L) = [1/w(j..0)) - ez,

jz >J/y/v (22)
and then we have
\J/w(j.,0)) = JJz)s (23)

<h’jz|C6’jz>J/z// =0. (24)

|CE’jZ>J/1// +

The wave function ¢(q, j,,m;,m,) is nonperturbative,
which is treated as an undetermined function in this paper.
We assume that the lowest Fock state is the dominate part
among the constituents of J/y, as was done in Ref. [5]. In
terms of perturbation theory, this is equivalent to defining
J/y as the bound state near the lowest Fock state.

We consider the evolution of the state [cZ, j.);,:

i
—iH o= .
e 1 NRQCD |CC’JZ>J/III

= e MM fyr (., 0)]eT. o) 1 1 /9 (j2. 0)

[Se]
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where |n) represents the spin-one eigenstate of Hf\ﬁ%QCD
that contains a heavy quark pair. J/y is the state with
the smallest invariant mass among these states, and we thus
have

E,>M,;, — 2M . (n > 2). (26)
We then have

(B
_I(Hl(\!l;QCD_MJ/W+2M‘3)I

c.i >J/l//

lim e
t—oo(1—ie)

= (J/y(j..0)[cT. j.) s | /0 (). 0)).  (27)

We thus define the J/y state as

1
17/ (j.. 0)) =
<J/W(JZ’O)|CC .]Z>J/1//
. ™ Vi oo
(28)

According to Egs. (21) and (20), we have

/(. 0)lce, j2) s,

dq
= / 3|2¢ qs Jz my,my)|
my,m,

-y / P9 (@ my )= ma) o O P

my,my

(29)

The undetermined parameter (J /w(j,.0)|cz. j,), Jy 18 inde-
pendent of the Fock states in the perturbation series. It can be

+ Z e~ n, j., 6|05’ J il jzs 6> (25)  dropped in the following calculations.
n=2 According to Egs. (21) and (28), we have
1
‘J/l//(]z’ )> q ]Z,ml,mz) ]im' e IH;II)KQCDtelHI(\Il;QCD
<J/z//(]z,0)|cc J2) 1y ey t—oo(1—ie)
e o M (G my (g my))
1 d*q )
Z / ) GG jzmy,m3) —»oloi(IP—ie)e_’(HI?RQCD_M«’/WZMf)’

<J/W(JZ’O)|CC Jz J/y my.my

 (rfexp(=i [ at o)) ) et me-m), (30)
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where H I(\(I)I)QQCD is the free part of Hyrqcps E 1s the energy

of the charm quark with momentum g,

(1

and HNI)(QCD(I’) is defined as

(31)

1) (h)

( N iHO oy (0) —iH® ¢
Hy\groep (1) = €™ (Hygoep = Hygroep)e ' MR’

(32)

We notice that the ie term in Eq. (30) is in accordance with
the Feynman boundary conditions. We can thus calculate
the perturbation series of Eq. (30) according to Feynman
diagram skills.

IV. CONTRIBUTIONS OF HIGHER
FOCK STATES

In this section, we consider contributions of higher Fock
states of the J /y particle in fragmentation functions D;_, ,,
and D¢ (x)-y, up to NNLO.

i(HO

0
NRQCD_M//W+2M<')Z

The term e~ is independent of Fock
states once the relative momenta of the final heavy quark
pair is definite in the infrared limit. We thus simply drop
this term in the following calculations. To determine
infrared divergences caused by soft gluons exchanged
between J/y and other energetic particles, we take the
eikonal line approximation in couplings of soft gluons to
the on-shell charm quark pair. This is equivalent to
absorbing effects of these soft gluons into Wilson lines:

Y,(0) = Pexp (—ig /0 * dsv -A(sv)), (33)
where

vH = _p"

, 34
3 (34)
where p* are the momenta of final heavy quarks.

The gauge-invariant effective operators defined in
Refs. [22,23] read

=y
=y
=y

(a)

(b)

PHYSICAL REVIEW D 93, 105035 (2016)

0= A Y OKY (0w (0)//y(.. 0)X)

x (7 /w(jz 0)X |y Y] (0)K'Y(0)(0), (35)

where y is the Pauli spinor field that annihilates the charm
quark, y is the Pauli spinor field that creates the anticharm
quark, and X and K’ are possible color, spin, and covariant
derivative terms. We consider the evolution of a color octet
charm pair to the J/y state. The infrared behavior of this
evolution can be written as

OB (0, 3307, v5) = Y _{O|(Y1,1Y,,) ;Y] (0) 1o [T /wX)
X

x (J/wX|Y,(0)

ch

(Y}, Y10,
(36)

where v; and v} are velocities of final charm quarks,
and v, and v} are velocities of final anticharm quarks.
v; # vi(i = 1,2) in general. We do not require that i = j or
k = [ as the final charm quark pair can be a color octet.

Examples of diagrams—of which the lowest Fock states
in Eq. (30) are produced by the evolution of the color-octet
heavy quark pair—are shown in Fig. 2. In Fig. 2, we take
the same value for the relative momenta of the charm pair
on both sides of the final cuts, as in Refs. [22,23]. If we
neglect the term limy_ (1) e = *EeMaw?2Mo) which does
not affect the cancellation of infrared divergences, then the
topologically unfactorized infrared divergent part of the
summation of these diagrams reads [22,23]

) N, o2 1 1+ f(|2])
6(8_)1) ) = ——¢ 2 _ _2 — n
(c?) 4 (Ve 1)46 {1 f(|7J|)l <1—f(|5|)>]
+0(a3), (37)
2x
f(x):1+x2’ (38)

where 7 is the relative velocity of the heavy quark in the
center-of-mass frame of the heavy quark pair.

Except for the lowest Fock state, the Fock state |ccg) in
Eq. (30) also contributes to the cross section up to NNLO in
QCD interactions. Diagrams with higher Fock states take

=y
Ry

(c)

FIG. 2. Examples of diagrams where a color-singlet c¢ pair is produced by the evolution of a color-octet c¢¢ pair.
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FIG. 3.

the forms shown in Fig. 3 or their conjugations, where the
effective vertex ® is defined in Fig. 4. Color factors of the
first and the last diagram in Fig. 3 read

C3 & tl’[l‘atb]fabc =0,
C3¢ o tr[t?]tr[11¢] fabe fede = 0. (39)

In the following, we thus neglect these diagrams and
discuss the remaining diagrams explicitly. Without loss
of generality, we take /# to be

1

V2

in the following calculations. The difference between these
diagrams and those in Fig. 2 is that real gluons in Fig. 2 belong
to the undetected state X, while the real gluon k; in Fig. 3
belongs to the constituents of the detected J/y particle.

I# (1,0,0,1) (40)

A. Diagrams that take the form shown in Fig. 3(b)

In this subsection, we consider the diagrams shown
in Fig. 5.
For the first diagram in Fig. 5, we have

. dP-1k dP-1k . 1
25a(J)_/ D-1 - / D-1 = Nsa(J)l ki +i
(27)°7 12|k [/ (22)°7 12k | Kiie

1 1 1
X
l-(ky+ky) +ievy-ky—iev; -k, —ie

{O=[E, | M=fEaly
(41)

FIG. 4. Definition of the vertex ® in Fig. 3.

Diagrams with the Fock states |ccg) in the final states.

where j = 1, 2, and the numerator term N>%(j) reads

) gu*l-vl-v,N.(N>=1)/4 for j=1,
N(j) = 4, 4 2 ;
—g*u*l-vil-v;N.(NZz—1)/4 for j=2.
(42)
For the second diagram in Fig. 5, we have
dD—lk dD—Ik
z) = [ S [ )
2m)P712/k, |/ (2m)P~ 120k, |
1 1 1
X
lk1+l€l(k1 +k2)+i€l)2'k1—i€
1
- - b 43
;- ky — el {k=Ik | K=k} (43)

where j = 1, 2, and the numerator term N>%(j) reads

—g*u*l- vl - v;N.(N2=1)/4 for j=1,
g*u*l - vyl - v,N (N2 = 1)/4

() = {

for j = 2.
(44)

The summation of these diagrams reads

FIG. 5. Diagrams that take the form shown in Fig. 3(b).
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2 — —
D (Z%() + () = g4ﬂ4eNc(N% - 1)/ d? ]qu / d” lkzﬁ 1
=1 4 (2n)P=2(ky| ] (22)P~ 20k | - Fer e

% 1 l'l)l _ 1'112 l"Ul _ l"Uz
l(k1+k2)+l€ Ul'kl—iG ﬂz'kl—i€ ﬂl'kz—i€ 1}2‘k2—i€

If k; or k, is collinear to /¥, then we have

(0=l =lRal}
(45)

vi-kj = vk}, (46)

where i = 1,2, j = 1, 2. One can verify that contributions of these regions cancel out between the diagrams shown in Fig. 5.
We thus do not consider the collinear divergences of these diagrams here.
We have

o NANZ=1) [dP2kyy [dP 2k, diks
Z(ZS ZSb )) = 94,“4 4 /(2”)D_2/ 2” D— 2/ /

y 1 . 1 ' vy
ki +ieky + k5 +ie \20] (k7)? + v7k3 | —2k7v L -kyy —

) Y
203 (k7)? + v3k3 | — 2kT vy, - ku—l€>(21jl+(k) + 0Tk = 2kivy) ko) — i€

vy
205 (ky)? 4 vy k3 = 2kivay kot — i )

_ o N(Nz-1) 1 : nz(Ul 1)? _ enA2 (Ul'l)z
3277 4 <8> [1 (vy-1)? 2l W In” (vy - 1)?
€ nz(vl'l)z— 2 (02 1) n(v1 J) infrared safe terms
e e G ] e s ), 7

where A is the parameter chosen to regularize ultraviolet divergences.
For conjugations of diagrams in Fig. 5, we have the same result; that is,

2 N (N2-1) (1 2 A2 1)
(Fig. 5 + conjugations) = o Ne(Ne—1) (—) [I 2( 0 2¢1n— In? (v 1)

167° 4 € (v, 1)? W (vy-1)?
s(anW —In? (Zz)l) ) In EZ; li } + (infrared-safe terms). (48)

B. Diagrams that take the form shown in Fig. 3(c)

In this subsection, we consider the diagrams shown in Fig. 6.
For the first diagram in Fig. 6, we have

_ dP-1k dP-1k , 1
z%(j) :/ - / 2, No(ky oy, J) 75—
(27)P~ 12|k, |/ (27)P~12|k,| (ki + ky)* + ie

1 1 1
X 7 7 b
1 (ky + ky) +ievy - ky —iev; - ky — ie |{k?=‘kl‘~k3:‘k2‘}

(49)

where j = 1, 2, and the numerator term N%%(j) reads
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4 4e

N6a<k1,k2,j) = { !
4

For the second diagram in Fig. 6, we have

4Pk,

TH-N (N2 = D[y - vy - (=2ky — k) + vy - Loy - (ky + 2ka) + vy - vy - (ky — k)]
W%NC(N% = D)[vy - lvy - (=2ky = k) 4 vy - vy - (kg + 2ky) + vy - 0ol - (ky = ky)]

PHYSICAL REVIEW D 93, 105035 (2016)

6h dD—lkl
0(j) = = —N
(27)P7120ki| /- (27)P7 120y |

1 1

l- (kl + k2) + ie Uy * kl —ie v;- kz — i€ {k?=\§1\.k‘2’=@2\}

where j = 1, 2, and the numerator term N°?(j) reads

4 de

— LN (N2 = 1)[vy - Loy - (=2ky — ky) + vy - Loy - (ky +2ky) + vy - 0y - (ky — ky)]

Nﬁb(kl,kz,j) = { 4 454

LE=N (N2 = 1)[vy - lvy - (=2ky — ky) + vy - Loy - (ky + 2ky) + vy - 0ol - (ky — k)]

We first consider contributions of collinear regions.
Contributions from the region where k;(k,) is collinear
to [ and [ - k(I - ky) is finite are power suppressed. In the
region where k(k,) is collinear to /# and k, (k) is infrared,
we have

vk =Tk, Mk ky. j) = M%(k;.0.j)  (53)
or
Mﬁa(kl,kz’j):Mﬁa(o,/;z,j), (54)

— =t
Uj‘kz—Ujkz,

where
(kf kT ki) = (K.0,0), (55)

(k3 . k3. kyy) = (k5. 0.0). (56)

One can verify that contributions from these regions cancel
out between the diagrams shown in Fig. 6. If both k; and k,
are collinear to /¥, then we have

.‘R .‘\

o &

FIG. 6. Diagrams that take the form shown in Fig. 3(c).

=y
=2y

for j =1,
for j = 2.
(50)
6b ki koo i 1
( 1 2’]>(k1+k2)2+l.€
1
: (51)
for j =1,
for j = 2.
(52)
|
vy -k = vik{, vk, = vik;. (57)

Contributions from such regions cancel out between £%¢(1)
and X%¢(2). If k; is collinear to k, with [ - k; and [ - k, finite,
then we have
1}1"{10(1}1']{2, Uj'kIOC’Uz'kz, lklcxlkz (58)
Contributions from such regions also cancel out between
¥%4(1) and X%(2). Thus collinear divergences do not
disturb us.

The summation of X%(j) and X°(j) vanishes as
integrands are antisymmetric under the exchange
ki <> k,. We see that infrared-divergent terms in the
diagrams shown in Fig. 6 cancel out. We have

Fig. 6 = (Fig. 6)* = 0. (59)

C. Diagrams that take the form shown in Fig. 3(d)

In this subsection, we consider the diagrams shown in
Fig. 7. For the first diagram in Fig. 7, we have

FIG. 7. Diagrams that take the form shown in Fig. 3(d).
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2711( ; ~/> / dD_l kl / dD_lkZ
J.J) = > >
(2m)P= 120k |/ (27)P712]ks |

PHYSICAL REVIEW D 93, 105035 (2016)

1 1 1 1
l . kl + ie Uy kl — i€ Uj . k2 -+ ie Uj' . kz — i€ {k(l):‘;l"k(z)zlzzl}’

NT(j.J')

(60)

where j =1, 2, j/ = 1, 2, and the numerator term N%¢(j, j') is defined as

TN (N2 = Doy -vyl-vy for j=j =1,
LN (N2 = 1), - val for j=1, =2
.. S c c 1"Vl -y or j=1,J = 4,
NG i) =4 ", . (61)

—HEN(N2 = D)oy -0yl -0y for j=2,7 =1,

%“NC(N%_I)%'%I'U] for j=j =2.

For the second diagram in Fig. 7, we have

. dP-1k dP1k . 1 1 1 1
2717(],]/):/ P / PR N ) ot S ey ks —iev, Ty T ie vy = el o
(27)°~ 20k |/ (27)°7 120k ki tievy ky —ievi-ky tievy - ky = Iz, |a0=(k )}
(62)
where j =1, 2, j/ =1, 2, and the numerator term N%(j, j') is defined as
g4§’4€Nc(N3—1)vl-vll‘1)2 for j=j =1,
—LEEN (N2 = D)oy - 0ol -0y for j=1,j =2
.o 3 Ve 102 2 J=L] =4
N7b(.]’-]/) = 4 4e (63)
LEN(NZ =1y -vpl-vy  for j=2,j =1,
—g4§‘4gNC(N% — Dy -vyl-vy, forj=j =2.
|
If k; is collinear to /#, then we have We see that
Ta(; i Th: ) —
Ul'kl ijl_l?_’ /,)2.]{1 :ng; (64) Z(Z (.]’.])+Z (]7])) _O’ (65)
JJ

Contributions from such regions cancel out between
¥7%a(j,j'") and X7(j, j'). We thus do not consider effects
of collinear divergences.

as integrands are antisymmetric under the transformation

ko, — —k,. Thus infrared-divergent terms in the diagrams
shown in Fig. 7 cancel out. We have

Fig.7 = (Fig.7)* = 0. (66)

According to Egs. (48), (59), and (66), we have

167° 4 €

2 N N2 -1 1\ 2 . 2 AZ . 2
e(8—>1)(high Fock states) — % M (_> |:]n2 (Ul ) —2¢ 1I1—21I12 (1)1 )
U

(vy- 1)2 (vy l)2
)

+ 6<ln2 (D7 o (1)
(Uz)z

(1}1)2

> In (01 l)i] + (infrared safe terms) + O(a?).  (67)
(v2-1)

We see that the summation of Egs. (37) and (67) is not infrared safe. In particular, infrared-divergent terms in Eq. (37) are of

order %, while those in Eq. (67) are of order glz or % We conclude that fragmentation functions D;_, s/, and D .z,

7y Suffer

from topologically unfactorized infrared divergences shown in Eq. (37) even when contributions of higher Fock states are

taken into account.
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(a)

FIG. 8.
indirect production of y*u~ pair in fragmentation functions D
between the direct and indirect production of a u* ™ pair.

V. INCLUSIVE PRODUCTION OF STABLE
PARTICLES NEAR THE THRESHOLD
OF HEAVY QUARKONIA

In a practical process, detected heavy quarkonia are
reconstructed from their decay products. Without loss of
generality, we consider the process

A+B = ptp (n,py) +X (68)

in this section, where A and B represent initial particles, X

represents undetected final particles, n represents the

quantum number of the heavy quarkonium under consid-

eration, and the momentum py of the detected p*u~ pair
fulfills the condition

Py =M, (69)

where M is the mass of the heavy quarkonium under

consideration. According to the collinear factorization
theorem presented in Refs. [24-28], we have

E d0A+B—>/ﬁ;¢'(11,pH)+X
X

= g dogipivx ® Doty (n.pw)
iX

+ ZdUA+B_>QQ(K)+X ® D oo ()= i (n.py)
KX

+OM*/p7) +---, (70)

where D; y and Dopc represent frag-

—u p (n.pu )=utu (npy)
mentation functions for i and QQ(kx) to the state
utu=(n, py) under the evolution of QCD and QED
interactions, and the ellipsis represents contributions of
the process with the putu~ pair produced in the short-
distance (order 1/py) subprocess.

It is convenient to consider fragmentation functions
Diytynpyy a4 Dopie)—pty-(npy,) 10 the rest frame of

the pu™p~ pair. The upu~ pair can be produced in a direct

V)

(b)

(a) Example of direct production of y*u~ pair in fragmentation functions D;

i=ptu (n.py

L

) and Dpp )

—~

¢)

i () (b) Example of
). (©) Example of interference terms

—utu (npp
) and Dog )

—utp (n.py

short-distance process (order 1/M) involving the states i or
QO(x). They can also be produced in an indirect short-
distance process (order 1/M) involving intermediate states
with momenta squared of order M2. We show examples of
these two cases in Fig. 8.

Infrared divergences fragmentation  functions
Di ity (n.py) A D oo ()t = (n.pyy) Ar€ caused by (i) infra-
red gluons exchanged between final undetected particles,
(i1) infrared gluons exchanged between final undetected
particles and intermediate states that evolve to the pu*u~
pair, (i) infrared gluons exchanged between intermediate
states that evolve to the u*u~ pair, and (iv) infrared QED
interactions and possible interference terms.

We do not consider infrared QED interactions here, as
such interactions are suppressed by the QED coupling
constant. As in Refs. [22,23], we classify the QCD
interactions into two types: the topologically factorized
and topologically unfactorized interactions. Examples of
these two types are shown in Fig. 9.

For the first diagram in Fig. 9, the infrared gluons do not
produce pinch singular points unless the two intermediate
quarks that annihilate to the p™u~ pair are at rest [30,31]. In
this case, the effects of couplings between infrared gluons
and intermediate quarks can be absorbed into two Wilson
lines that lie along the same (time-like) direction. We notice
that

in

Y:'rj(x)yjk(x) = b,

(Y)jj(x)yki(x) =06y (71)
for classical fields A#(x), where Y,(x) is the time-like
Wilson line:

Y(x) = Pexp (—ig/o00 dsA%(x0 + s,?c)). (72)

To clarify the effects of self-energy graphs of the Wilson
lines, we consider the diagram shown in Fig. 10. It can then
be written as

105035-10
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N N

W (pmr) whe (pm)

Y (Y

(a) (b)

FIG. 9. (a) Example of topologically unfactorized QCD interactions. (b) Example of topologically factorized QCD interactions.

Tio(x.y, O(A)) = (T{@Y P KYy (x) O(A)r Y 7" Yy (y)})

= / Dy (2)Dip(2) DA ()Y K Yy (x)ip Y Yy O(A) ! | S0, (73)

where /C =1 for quarks produced as a color singlet and /C = ¢“ for those produced as a color octet, yy*y is the
electromagnetic current, O(A) represents operators at the other end of soft gluons of the type S, and the Lagrangian density
L(y,A)(z) reads

Ly, A)(z) = @ (id — m)y(z) + zigztr([a" — igA", 0¥ — igA¥])*(2). (74)

We do not consider the effects of the gauge-fixing term and ghost fields for simplicity. We have
(T{wY Yy (g YTy Yu(y)})
J 1w (@)D ) [DA )yt (1) e | <A

) / [Py (2)) (D (2)] [DAH () [y Ko ()i wO(A) ' | 400 (75)

Tip(x.y. 0(4)) =

for quarks produced as a color singlet and
(T{pY Tyt Yy (g Y Ty Yy (y)p1“w(0)})
[y ()P () [DA* (¥ 1Yy () Y 7 Yo (3 )ipy (0) ' | &40

) / [Dy ()] (D (2)] [DA () [ ¥ 1 Yy ()i y 0% (A) ! | S0 — (76)

Tip(x.y. 0(4)) =

We see that infrared divergences are topologically factorized in the color-singlet case and vanish in the color-octet case.
For the second diagram in Fig. 9, infrared divergences cancel out in the summation over all possible undetected states X.
There are, of course, more complicated diagrams that contribute to the fragmentation functions D;_,+,-(,,,,) and

D p(c) = (n.py) - FOI these diagrams, gluons that couple to nearly on-shell intermediate particles which connect two short-

distance (order 1/M) subdiagrams do not produce pinch singular points in the infrared region unless the relative velocities

between these intermediate particles vanish [30,31]. In the case that these relative velocities do vanish, we can repeat the
analysis for Fig. 10. We consider the matrix element

(XIT{M(Y . Y, AY D) (3)ir (x) O(A) }0) o /( o _ [Dw (@)D () [PA ()] [DA*(2)]
X MY, Y, AV (0)irp(x)O(A)e' | 4L AN E (77)

with the proportional coefficient independent of the operator (O(A), where X represents any possible final states, A
represents the field corresponding to gluons with finite momenta, Y, is the Wilson line

105035-11
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FIG. 10. Typical diagram that contributes to the infrared
divergences of topologically unfactorized diagrams.

Y,(x) = 77€:xp<—igA°o dsn-A(x* + n")) (78)

with n# the direction vector along the motion of direction
of the intermediate particles on the pinch surfaces,

M(Y,p,Y,AY}) represents effective operators that
describe the interactions between infrared gluons and
intermediate particles that connect two short-distance

|

S(0) = (OT{M(...,

X

PHYSICAL REVIEW D 93, 105035 (2016)

(order 1/M) subdiagrams, O(A) represents operators that
describe interactions between infrared gluons and the
undetected particles X, and the Lagrangian density
L(y,A)(z) reads

Ly, A.A)(z) = p(idf — m)y(2)

1 . .
+ o tr([0* — igA", & — igA*])*(2)

2¢°

1
+ 2—92&([6# —igA*, ¥ — igAY])*(z).
(79)

We do not consider the effects of the gauge-fixing term
and ghost fields for simplicity. It is convenient for us to
make the relative velocities between the intermediate
particles slightly deviate from O so that Coulomb diver-
gences caused by the exchange of Coulomb gluons
between these intermediate states (which do not affect
the topological factorization) do not disturb us. We notice
that

Yiy,=1, Y, 1Y, = Yebib, (80)
Thus, topologically unfactorized infrared divergences are
produced by the matrix element

7(0), ..., Y% (0), ...)O' (..., Y,(0), ... }|X)

X (X|T{M(.... YIK0), ..., Y5¢(0), ...)O(.... Y,(0), ...) }|0)
= (O|T{MT(....YJ(0),....Y%(0),..)O(....,Y,(0), ...)}

x T{M(.... Y 0), ..., YE¢(0),...)O(...,

For the classical configurations A#(x), one can make use of
unitarity to show that we can make the substitution

Y, -1, Y, —>1 (82)
in Eq. (81) without changing the matrix element.

For quantum operators A*(x), we consider the Wilson
lines

W, (0, 5) EPexp<—ig A ”cun.Aunﬂ)), (83)

W0, 5) EP(?Xp(—ig/s dﬂl-A(Al”)). (84)

0

Y,(0),...)}|0). (81)

I
One can easily see that

Y,(0) = W,(0.00),  ¥,(0) = W;(0,00). (85)

We consider the matrix element

S(0,5) = (O|]T{M (..., W(0,5), ..., We(0,s), ...)
X O (., Wi(0, ), . )YT{M(..., W0, 5), ...,
x WEe(0,s), ..)O(....W,(0,5),..)}0).  (86)

We have
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d
ds

PHYSICAL REVIEW D 93, 105035 (2016)

—8(0,5) = ig(O|T{MT(.... WY (0,5),....We(0,s),..)O (..., W,(0,5),..)}n “Ay(snt)

X T{M(....Wi0.5), ... W< (0,5),...)O(...,W,;(0, s), ...) }|0)
—ig(O|T{M (..., W(0,5s), ... W(0,5),..)OF (..., W,(0,5),...)}

xn-Ajy(sn)T{M(..., Wik(0,s), ..

=0.

We see that
S(0,s) = 5(0,0). (88)
In particular, we have
S(0) = S(0,0) = S5(0,0) = S(0)| 4e—o- (89)

We conclude that topologically unfactorized infrared
divergences cancel out.

We see that the fragmentation functions D;_ - (n,p,)
and D g0 oyt u(n.p,) are free from topologically unfac-
torized infrared divergences in the rest frame of the pu~
|

S Whe(0,5),...)0(..., W;(0,5),...) }|O) + - -

(87)

pair. The detailed proof of this conclusion will be presented
in other works. We then have

=D _ Ddiv

D i=p = (n.pn) =t (npy)’

(90)

i=ptu (n,py)

_ pdiv
QO0(k)—u*u~(n.py)’

o1

D 0o()=pt i (n.p11) = P 00(x) =4 4 (n,p11)

div div
whete - D3z ciupy) 39 Dopie) oyt (n.pn)

topologically unfactorized infrared divergences produced
by various explicit diagrams in D;_+,~(np, and
D 0o ()=t u=(n.py)- We can then make the decomposition

represent

Dy (npy) = Dion ® dH—*M*ﬂ‘(n-PH) —(Dimn ® dH—’ﬂ+ﬂ_(”»PH))div + Divyy(npy) = Dieorr ® dH—w*M‘(n,pH)

- D?i—\:ﬂ*u‘(n.py) +(Dien ® dH-’M*M’(n-py))div’ (92)
Dot tnpm) = Poow—t ® Ay u-npy) = (Pooii—t ® dimyunpu)™ + D oow)=u u(n.pw)
= Doow)—tt ® dusyy (n.py) = g‘é(x‘)—)ﬂ+ﬂ_(n,pﬂ) + (DQQ(K)—>H ® dH*ﬂ*ﬂ’(n-PH))dw’ (93)

where dy_,+,-(n,p,) Tepresents the short-distance (order
1/m) evolution of the heavy quarkonium H to the p*u~
pair, D,y and Dgp(g-py Tepresent the long-distance

evolution of the parton i or the heavy quark pair QQ to

the hadron H under consideration, and (D;y ®
dH_’lfrlf(”’PH))div and (DQQ(K)—>H®dH—>ﬂ*M’(n,pH))div re-
present the infrared divergences of the functions D;_y
and Dyp - We have

div

(Di—>H ® dH_’ﬂ+ﬂ_("sPH)>
= (Dimn - D?I—YH) ® Aoyt (npy)»

Disn ® dyytym(npy) =
(94)

div

Do)t B dt—u = (n.p) = (P oo~ @ At 4= (n.piy))

— _ di
- (DQQ(K)—’H - DQI\é(K)—»H) ® dH—Wvﬂ_(”qPH) : (95)
Other terms in the fragmentation functions D;_,+u-(n p,)

and Dy ) are suppressed by the QED coupling

—utp~(n,py)

|
constant a and the small decay width F’;; " of the heavy
quarkonium H to the ytu~ pair. We thus have

Dty (npy) = (Din = D(iﬁ—YH) ® dr—pty (n.py)

x (14 0(a) + O(T% ")), (96)
_ _ _ div
Do)t (n.pw) = (Poow~# = Popi—n)
® dH—w*/f(n,pH)
x (14 0(a) + 05" ). (97)

It is interesting to mention that intermediate sates which
connect two short-distance (order 1/M) subdiagrams do
not produce infrared divergence terms unless the relative
velocities of these states vanish. Thus such infrared
divergences occur only when the momentum of the final
utu~ pair py takes some special values. Such infrared
divergences vanish in the integral of py once infrared

105035-13



GAO-LIANG ZHOU

divergences are no worse than logarithms. For the cancel-
lation of topologically unfactorized divergences, however,
the integral over py is not necessary.

VI. CONCLUSION

We presented a scheme to cancel out topologically
unfactorized infrared divergences in inclusive productions
of heavy quarkonia. In Ref. [5], it was proposed that such
divergences do cancel out according to the KLN cancella-
tion [32,33] once the summation over the undetected
particles is made. However, the explicit calculations at
NNLO in Refs. [22,23] showed that the summation is not
inclusive enough to cancel out topologically unfactorized
infrared divergences.

In Refs. [22,23], the final states were chosen as color-
singlet heavy quark pair plus any other states with the final
heavy quark and heavy antiquark both on shell. We notice
that the color-singlet heavy quark pair is not invariant under
the evolution of infrared QCD interactions. In particular,
color states of the heavy quark pair may change to others
under this evolution. Thus the KLN cancellation—for
which the summation over all states that arise from such
evolution is necessary—do not work simply. In fact,
practical heavy quarkonia is not the color-singlet heavy
quark pair. It seems plausible to define heavy quarkonia as
resonance states which are invariant under the evolution of
infrared QCD interactions, as we do for the J/y particle.
Thus summation over higher Fock states is necessary.
Such a summation, however, does not make topologically
unfactorized infrared divergences disappear, as shown in
our calculations.

It is interesting to point out that the states HX do not
form the invariant subspace of the evolution of infrared
QCD interactions even if the detected particle H is itself
invariant under this evolution. Exchanges of soft gluons
between H and X may change the state H; for example,
they may cause the transition between heavy quarkonia.
Such a transition may exist even if all soft gluons are
infrared! We notice that heavy quarkonia are reconstructed
from their decay products in practical experiments. Final
decay products like pp~ (the invariant mass of which is
required to be near the mass of the detected heavy
quarkonium H) can be produced by the decay of H and
other possible states. Thus the practical process is indeed

PHYSICAL REVIEW D 93, 105035 (2016)

inclusive regarding the states arising from the evolution of
infrared QCD interactions. In this paper, we have shown
that topologically unfactorized infrared divergences do
cancel out in the fragmentation functions D
and D oo c)—ptu(n.py)

It seems more reasonable to consider the NRQCD
factorization  for  the  fragmentation  functions
Di ity (n.py) A0 Dogo)pt u=(n.py)» @S they are free from
topologically unfactorized infrared divergences. If the
NRQCD factorization theorem holds for these fragmenta-
tion functions, then we have

— _ div
- Z(diaQQ(n) - di—)QQ(n))

n

x ((O%(n)) = (O (n))™)

i=pu (n.py)

Dty (n.pw)

X (dH—w*ﬂ'("-FH) - ?'li‘i’lﬁlf("’PH))
x (14 0(a) + (%)), (98)

_ _ _ _ div
DQQ(K)—W*#’(H,IJH) - Z(dQQ(K)ﬁQQ(n) - dQQ(K)—»QQ(n))

x ((O%(n)) = (O (n))™)

2 (dH—w*/f(n-ﬁH) - ddHiLﬂW‘("qPH))

X (140(a)+0(T%")).  (99)

We do not require that the matrix elements (Of(n))
absorb all infrared divergences in the fragmentation func-
tions D;.y and Dyp(g-py- Generally speaking, parts
of infrared divergences in the functions D,.p and
Dypx)—~n are canceled by infrared divergences of other
terms in the fragmentation functions D;_,+,-(s ,,) and
D oo )=t u-(npy)- We thus have obtained a NRQCD
factorization theorem for the inclusive production of
the heavy quarkonium H once the NRQCD factorization

for the fragmentation functions D;_,+,-(np,) and
D og(e)~utu(n.py) hoONdS.
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