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A scheme is presented to cancel out topologically unfactorized infrared divergences in the inclusive
production of heavy quarkonia, which affect the nonrelativistic QCD (NRQCD) factorization of these
processes. Heavy quarkonia are defined as resonance states of QCD instead of a color-singlet heavy quark
pair. Thus the final heavy quark pair is not necessarily a color singlet. In addition, heavy quarkonia are
reconstructed from their decay products. As a result, the transitions between states containing heavy quarks
caused by exchanges of soft gluons are also taken into account here. Such cancellation is crucial for the
NRQCD factorization of these processes.
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I. INTRODUCTION

The production of heavy quarkonia forms an important
and interesting issue in the study of QCD and the strong
interaction [1,2]. The large mass of heavy quarks suggests
that one may treat heavy quarkonia as a nonrelativistic
bound system. This is supported by quark potential model
calculations, which indicate that v2 ∼ 0.3 for charmonium
and v2 ∼ 0.1 for bottomonium [3], where v is the typical
velocity in the center-of-mass frame of heavy quarkonia. It
has been proposed that the effective theory nonrelativistic
QCD (NRQCD) [4,5] could be used to describe the
separation of short- and long-distance effects in the
production of heavy quarkonia. Short-distance effects that
produce a heavy quark pair are perturbative, while long-
distance effects that produce the heavy quark pair into
heavy quarkonium are nonperturbative and independent of
an explicit process. The factorization theorem proposed in
Ref. [5] can be written as

dσAþB→HþX ¼
X
n

dσAþB→QQ̄ðnÞþXhOHðnÞi; ð1Þ

where A and B represent initial particles, H represents the
detected heavy quarkonium, X represents undetected final
particles, and QQ̄ðnÞ represents the heavy quark pair in a
special color and angular momentum state.
Although the NRQCD factorization formula is widely

used in the study of the production of heavy quarkonia
and has gained great success in the explanation of
experimental data (see, for example, Refs. [6–19]), the
NRQCD factorization formula still faces challenges,
particularly the J=ψ puzzle and the surprisingly large
cross section of the associated production of J=ψ in
eþe−(see, for example, Ref. [1] and references therein). It
seems that more efforts are needed to examine the
NRQCD factorization formula, especially for inclusive
production of heavy quarkonia.

Proofs of the NRQCD factorization theorem for exclu-
sive production of two charmonia in eþe− annihilation
and the production of a charmonium and a light meson in
B-meson decays were established in Refs. [20,21]. For
inclusive production of heavy quarkonia, however, the
issue is quite nontrivial [22,23]. In Ref. [5], it was argued
that infrared divergence caused by exchanges of soft gluons
between heavy quarks and extra jets cancel out once the
summation over undetected particles has been made, even
while one constrains the final heavy quark pair to be a color
singlet. According to explicit calculations at next-to-next-
to-leading order (NNLO), the authors of Refs. [22,23]
found that it is necessary to modify NRQCD octet
production matrix elements to include non-Abelian phases
(which makes them gauge invariant) in order to restore
NRQCD factorization in inclusive production of heavy
quarkonia.
In spite of difficulties in the proof of the NRQCD

factorization theorem for inclusive production of heavy
quarkonia, it was proved [24–28] that collinear factoriza-
tion holds up to order M2=p2

T for such processes, where M
is the mass of the heavy quark and pT is the transverse
momenta of the detected heavy quarkonia in the center-of-
mass frame of the initial particles. In the collinear factori-
zation approach, the differential cross section of inclusive
production of heavy quarkonium reads

dσAþB→HþX ¼
X
i

dσAþB→iþX ⊗ Di→H

þ
X
κ

dσAþB→QQ̄ðκÞþX ⊗ DQQ̄ðκÞ→H

þOðM4=p4
TÞ; ð2Þ

where dσAþB→iþX represents the differential cross section
of inclusive production of a parton i, Di→H represents the
fragmentation function of i into H with i produced in a
short-distance process (order 1=pT), dσAþB→QQ̄ðκÞþX
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represents the differential cross section of inclusive pro-
duction of a heavy quark pair QQ̄ in a special color and
angular momentum state κ, and DQQ̄ðκÞ→H represents the
fragmentation function of the heavy quark pair QQ̄ into H
with the pair produced in a short-distance process (order
1=pT). The first term in Eq. (2) contributes from leading
power in M=pT , while the second term contributes from
subleading power in M=pT . If NRQCD factorization holds
up to order M2=p2

T, then one has [24,26]

Di→H ¼
X
n

di→QQ̄ðnÞhOHðnÞi;

DQQ̄ðκÞ→H ¼
X
n

dQQ̄ðκÞ→QQ̄ðnÞhOHðnÞi; ð3Þ

where di→QQ̄ðnÞ and dQQ̄ðκÞ→QQ̄ðnÞ are short-distance (order
1=M) coefficients.
In this paper, we present a scheme to cancel out the

topologically unfactorized infrared divergences exhibited
in Refs. [22,23]. In Refs. [22,23], it was shown that the
uncanceled infrared divergences that affect NRQCD fac-
torization originate from diagrams of the type shown in
Fig. 1. For an Abelian gauge theory like QED, diagrams of
this type do not appear. Thus factorization is not bothered
by these diagrams for Abelian gauge theory. One may ask,
what happens for non-Abelian gauge theory? For non-
Abelian gauge theory, the color of the heavy quark pair is
affected by soft gluons which couple to the pair. Once the
color state of the final heavy quark pair is fixed, we can no
longer make the inclusive summation over all states made
up of a heavy quark pair and an arbitrary number of infrared
gluons. In fact, the final heavy quark pair is constrained to
be color singlet in diagrams of the type shown in Fig. 1.
Thus the Kinoshita-Lee-Nauenberg (KLN) cancellation
does not simply work in this case. It is necessary to point
it out, however, that the color state of the final heavy quark
pair is not fixed in the actual process. What we detected

were heavy quarkonia like J=ψ , not a color-singlet heavy
quark pair in the actual process. Infrared behaviors of
higher Fock states should also be taken into account.
Summation over these Fock states, however, is not enough
to cancel out topologically unfactorized infrared divergen-
ces as we will see according to explicit calculations.
Exchanges of soft gluons between the heavy quarks and
undetected states X may cause a transition between states
containing heavy quarks even though the momenta of soft
gluons tend to 0! Fortunately, heavy quarkonia are recon-
structed from their decay products in actual experiments.
As a result, we consider a more inclusive process:

Aþ B → μþμ−ðn; pHÞ þ X; ð4Þ

where μþμ−ðn; pHÞ is a μþμ− pair with the intrinsic
quantum numbers equal to those of the detected heavy
quarkonium H. The invariant mass of the μþμ− pair is
constrained to be near the mass of the heavy quarkonium
H. We will show that topologically unfactorized infrared
divergences do cancel out in such a process.
The paper is organized as follows. In Sec. II, we describe

the inclusive production process of heavy quarkonia. In
Sec. III, we take the J=ψ particle as an example to explain
how to define heavy quarkonia so that they are invariant
under the evolution of infrared QCD interactions. In
Sec. IV, we show that summation over higher Fock states
is not enough to cancel out topologically unfactorized
infrared divergences according to explicit calculations at
NNLO. In Sec. V, we consider the inclusive production of a
μþμ− pair with invariant mass near the mass of a heavy
quarkonium H and intrinsic quantum numbers equal to
those of H. We show that topologically unfactorized
infrared divergences do cancel out in this process. We
give our conclusion and some discussions in Sec. VI.

II. INCLUSIVE PRODUCTION
OF HEAVY QUARKONIA

In this section, we describe the inclusive production
process of heavy quarkonia. The process can be written as

AðpAÞ þ BðpBÞ → HðpHÞ þ XðpXÞ; ð5Þ

where A and B represent initial particles, and X represents
undetected final particles. In the center-of-mass frame of
the initial particles, the momenta of A and B are nearly light
like. We have

pμ
A ¼ n̄ · pAnμ þ n · pAn̄μ ≃ n̄ · pAnμ; ð6Þ

pμ
B ¼ n · pBn̄μ þ n̄ · pBnμ ≃ n · pBn̄μ; ð7Þ

where nμ and n̄μ are light-like vectors:

FIG. 1. Topology of diagrams which contribute to uncanceled
infrared divergences that affect NRQCD factorization at NNLO.
The summation over all cuts that produce a color-singlet heavy
quark pair, which is produced as a color octet at the hard vertex, is
understood implicitly.
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nμ ¼ 1ffiffiffi
2

p ð1; ~nÞ; n̄μ ¼ 1ffiffiffi
2

p ð1;−~nÞ: ð8Þ

The transverse momentum of the final heavy quarkonium
H is proposed to be much greater than the mass ofH. In this
case, the momentum of H is also nearly light like in the
center-of-mass frame of the initial particles. We have

pμ
H ≡ nH · pHn

μ
H þ nH · pAnHμ

þ ðpμ
H − nH · pHn

μ
H þ nH · pAnHμÞ

≃ nH · pHn
μ
H; ð9Þ

where nμH and nHμ are light-like vectors with

nμH ¼ 1ffiffiffi
2

p ð1; ~nHÞ; nHμ ¼ 1ffiffiffi
2

p ð1;− ~nHÞ: ð10Þ

We propose that nH · n ∼ nH · n̄ ∼ 1 in this paper.
The collinear factorization theorem for the process

reads [24–28]

dσAþB→HþX ¼
X
i

dσAþB→iþX ⊗ Di→H

þ
X
κ

dσAþB→cc̄ðκÞþX ⊗ Dcc̄ðκÞ→H

þOðM4=p4
TÞ; ð11Þ

where the fragmentation functions Di→H and Dcc̄ðκÞ→H

are defined in terms of expectation values of nonlocal
operators between vacuumed and final hadron states. For
example, the bare fragmentation function of the light quark
reads [29]

Dð0Þ
q→HðzÞ ¼

zd−3

24π

Z
dnH · ye−inH ·pHnH ·y=z

×
X
Y

Trh0jW†
nHψð0; nH · y; ~0ÞjHYi

× hHYjψ†WnHð0Þj0i; ð12Þ

where z is the ratio of the large momentum component ofH
to that of the light quark i, andWnH is the light-like Wilson
line,

WnHðxÞ ¼
�
P expðig

Z
∞

0

dsnH · Aðxþ snHÞ Þ
�†

: ð13Þ

If NRQCD factorization holds up to order M2=p2
T, then

one has [24,26]

Di→H ¼
X
n

di→QQ̄ðnÞhOHðnÞi;

DQQ̄ðκÞ→H ¼
X
n

dQQ̄ðκÞ→QQ̄ðnÞhOHðnÞi; ð14Þ

where di→QQ̄ðnÞ and dQQ̄ðκÞ→QQ̄ðnÞ are short-distance coef-
ficients. di→QQ̄ðnÞ and dQQ̄ðκÞ→QQ̄ðnÞ should be infrared safe,
that is to say, all infrared divergences in Di→H and
DQQ̄ðκÞ→H should be absorbed into the long-distance matrix
elements of the effective operators OHðnÞ. However,
calculations in Refs. [22,23] showed that the infrared safety
of di→QQ̄ðnÞ and dQQ̄ðκÞ→QQ̄ðnÞ is quite nontrivial once the
final detected particle is the color-singlet heavy quark pair.
It is necessary to point out that the final detected particle is

H, not the color-singlet heavy quark pair in the process
considered here. The color-singlet heavy quark pair is not
invariant under the evolution of QCD even though the
annihilation of heavy quarks is neglected. The H particle,
however, is a stable particle once the decay ofH is neglected.
Thus, effects of higher Fock states are important in the
evolutionofheavyquarkoniaunder infraredQCDinteractions.

III. RELATIONS BETWEEN J=ψ AND
THE HEAVY QUARK PAIR

In this section, we take the J=ψ particle as an example to
show how to define heavy quarkonia so that they are
invariant under infrared QCD interactions once the decay of
heavy quarkonia is neglected. J=ψ is a stable particle if one
neglects the annihilation of the charm quark pair. We thus
define the J=ψ state as an eigenstate of NRQCD, where
effects of electroweak interactions on the structure of J=ψ
are neglected here. We have

~PjJ=ψðjz; ~pÞi ¼ ~pjJ=ψðjz; ~pÞi; ð15Þ

J2jJ=ψðjz; ~0Þi ¼ 2jJ=ψðjz; ~0Þi; ð16Þ

JzjJ=ψðjz; ~0Þi ¼ jzjJ=ψðjz; ~0Þi; ð17Þ

HðhÞ
NRQCDjJ=ψðjz; ~0Þi ¼ ðMJ=ψ − 2McÞjJ=ψðjz; ~0Þi; ð18Þ

where ~p represents the momentum of the J=ψ state, jz
represents the z component of the spin of the J=ψ state, ~P and
~J represent the momentum operator and the angular momen-
tumoperator, respectively,MJ=ψ andMc represent themassof

J=ψ and the charm quark, respectively, and HðhÞ
NRQCD repre-

sents the Hermitian part of the Hamiltonian of NRQCD. We
do not consider the anti-Hermitian part, which describes
effects of annihilation of the heavy quark pair, as the width of
J=ψ is much smaller than the binding energy of J=ψ .
We expand the J=ψ state according to eigenstates of

Hð0Þ
NRQCD which is the free part of HNRQCD; we have
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jJ=ψðjz; ~0Þi

¼
X
m1;m2

Z
d3q
ð2πÞ3 ϕð~q; jz;m1; m2Þjcð~q;m1Þc̄ð−~q;m2Þi

þ high Fock states; ð19Þ

where jcð~q;m1Þc̄ð−~q;m2Þi is a color-singlet charm pair,
mi ¼ 1

2
;− 1

2
(i ¼ 1, 2), and ϕð~q; jz; m1; m2Þ is the wave

function

ϕð~q; jz; m1; m2Þ ¼ hcð~q;m1Þc̄ð−~q;m2ÞjJ=ψðjz; ~0Þi: ð20Þ

We bring in the notations

jcc̄; jziJ=ψ
≡ X

m1;m2

Z
d3q
ð2πÞ3 ϕð~q; jz; m1; m2Þjcð~q;m1Þc̄ð−~q;m2Þi;

ð21Þ

jh; jzi≡ jJ=ψðjz; ~0Þi − jcc̄; jz >J=ψ ; ð22Þ

and then we have

jJ=ψðjz; ~0Þi ¼ jcc̄; jziJ=ψ þ jh; jzi; ð23Þ

hh; jzjcc̄; jziJ=ψ ¼ 0: ð24Þ

The wave function ϕð~q; jz; m1; m2Þ is nonperturbative,
which is treated as an undetermined function in this paper.
We assume that the lowest Fock state is the dominate part
among the constituents of J=ψ , as was done in Ref. [5]. In
terms of perturbation theory, this is equivalent to defining
J=ψ as the bound state near the lowest Fock state.
We consider the evolution of the state jcc̄; jziJ=ψ :

e−iH
ðhÞ
NRQCDtjcc̄; jziJ=ψ
¼ e−iðMJ=ψ−2McÞthJ=ψðjz; ~0Þjcc̄; jziJ=ψ jJ=ψðjz; ~0Þi

þ
X∞
n¼2

e−iEnthn; jz; ~0jcc̄; jziJ=ψ jn; jz; ~0i; ð25Þ

where jni represents the spin-one eigenstate of HðhÞ
NRQCD

that contains a heavy quark pair. J=ψ is the state with
the smallest invariant mass among these states, and we thus
have

En > MJ=ψ − 2Mcðn ≥ 2Þ: ð26Þ

We then have

lim
t→∞ð1−iϵÞ

e−iðH
ðhÞ
NRQCD−MJ=ψþ2McÞtjcc̄; jziJ=ψ

¼ hJ=ψðjz; ~0Þjcc̄; jziJ=ψ jJ=ψðjz; ~0Þi: ð27Þ

We thus define the J=ψ state as

jJ=ψðjz; ~0Þi ¼
1

hJ=ψðjz; ~0Þjcc̄; jziJ=ψ
× lim

t→∞ð1−iϵÞ
e−iðH

ðhÞ
NRQCD−MJ=ψþ2McÞtjcc̄; jziJ=ψ :

ð28Þ

According to Eqs. (21) and (20), we have

hJ=ψðjz; ~0Þjcc̄; jziJ=ψ
¼

X
m1;m2

Z
d3q
ð2πÞ3 j

2ϕð~q; jz; m1; m2Þj

¼
X
m1;m2

Z
d3q
ð2πÞ3 jhcð~q;m1Þc̄ð−~q;m2ÞjJ=ψðjz; ~0Þij2:

ð29Þ

The undetermined parameter hJ=ψðjz; ~0Þjcc̄; jziJ=ψ is inde-
pendent of the Fock states in the perturbation series. It can be
dropped in the following calculations.
According to Eqs. (21) and (28), we have

jJ=ψðjz; ~0Þi ¼
1

hJ=ψðjz; ~0Þjcc̄; jziJ=ψ
X
m1;m2

Z
d3q
ð2πÞ3 ϕð~q; jz; m1; m2Þ lim

t→∞ð1−iϵÞ
e−iH

ð0Þ
NRQCDteiH

ð0Þ
NRQCDt

× e−iðH
ðhÞ
NRQCD−MJ=ψþ2McÞtjcð~q;m1Þc̄ð−~q;m2Þi

¼ 1

hJ=ψðjz; ~0Þjcc̄; jziJ=ψ
X
m1;m2

Z
d3q
ð2πÞ3 ϕð~q; jz; m1; m2Þ lim

t→∞ð1−iϵÞ
e−iðH

ð0Þ
NRQCD−MJ=ψþ2McÞt

×

�
T

�
exp

�
−i

Z
t

0

dt0HðIÞ
NRQCDðt0Þ

���
jcð~q;m1Þc̄ð−~q;m2Þi; ð30Þ
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where Hð0Þ
NRQCD is the free part of HNRQCD, Eq is the energy

of the charm quark with momentum ~q,

Eq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

c þ j~qj2
q

; ð31Þ

and HðIÞ
NRQCDðt0Þ is defined as

HðIÞ
NRQCDðt0Þ ¼ eiH

ð0Þ
NRQCDt

0 ðHðhÞ
NRQCD −Hð0Þ

NRQCDÞe−iH
ð0Þ
NRQCDt

0
:

ð32Þ

We notice that the iϵ term in Eq. (30) is in accordance with
the Feynman boundary conditions. We can thus calculate
the perturbation series of Eq. (30) according to Feynman
diagram skills.

IV. CONTRIBUTIONS OF HIGHER
FOCK STATES

In this section, we consider contributions of higher Fock
states of the J=ψ particle in fragmentation functionsDi→J=ψ

and Dcc̄ðκÞ→J=ψ up to NNLO.

The term e−iðH
ð0Þ
NRQCD−MJ=ψþ2McÞt is independent of Fock

states once the relative momenta of the final heavy quark
pair is definite in the infrared limit. We thus simply drop
this term in the following calculations. To determine
infrared divergences caused by soft gluons exchanged
between J=ψ and other energetic particles, we take the
eikonal line approximation in couplings of soft gluons to
the on-shell charm quark pair. This is equivalent to
absorbing effects of these soft gluons into Wilson lines:

Yvð0Þ ¼ P exp

�
−ig

Z
∞

0

dsv · AðsvÞ
�
; ð33Þ

where

vμ ¼ pμ

2p0
; ð34Þ

where pμ are the momenta of final heavy quarks.
The gauge-invariant effective operators defined in

Refs. [22,23] read

O ¼
X
X;jz

χ†Y†
l ð0ÞKYlð0Þψð0ÞjJ=ψðjz; ~0ÞXi

× hJ=ψðjz; ~0ÞXjψ†Y†
l ð0ÞK0Ylð0Þχð0Þ; ð35Þ

where ψ is the Pauli spinor field that annihilates the charm
quark, χ is the Pauli spinor field that creates the anticharm
quark, and K and K0 are possible color, spin, and covariant
derivative terms. We consider the evolution of a color octet
charm pair to the J=ψ state. The infrared behavior of this
evolution can be written as

Oð8Þðv1; v2; v01; v02Þ ¼
X
X

h0jðY†
v2t

aYv1ÞijY†
l ð0ÞacjJ=ψXi

× hJ=ψXjYlð0ÞcbðY†
v0
2
tbYv0

1
Þ†klj0i;

ð36Þ

where v1 and v01 are velocities of final charm quarks,
and v2 and v02 are velocities of final anticharm quarks.
vi ≠ v0i(i ¼ 1, 2) in general. We do not require that i ¼ j or
k ¼ l as the final charm quark pair can be a color octet.
Examples of diagrams—of which the lowest Fock states

in Eq. (30) are produced by the evolution of the color-octet
heavy quark pair—are shown in Fig. 2. In Fig. 2, we take
the same value for the relative momenta of the charm pair
on both sides of the final cuts, as in Refs. [22,23]. If we
neglect the term limt→∞ð1−iϵÞe−ið2Eq−MJ=ψþ2McÞt, which does
not affect the cancellation of infrared divergences, then the
topologically unfactorized infrared divergent part of the
summation of these diagrams reads [22,23]

ϵð8→1Þðcc̄Þ ¼ −
Nc

4
ðN2

c − 1Þα
2
s

4ϵ

�
1−

1

fðj~vjÞ ln
�
1þ fðj~vjÞ
1− fðj~vjÞ

��
þOðα3sÞ; ð37Þ

fðxÞ ¼ 2x
1þ x2

; ð38Þ

where ~v is the relative velocity of the heavy quark in the
center-of-mass frame of the heavy quark pair.
Except for the lowest Fock state, the Fock state jcc̄gi in

Eq. (30) also contributes to the cross section up to NNLO in
QCD interactions. Diagrams with higher Fock states take

FIG. 2. Examples of diagrams where a color-singlet cc̄ pair is produced by the evolution of a color-octet cc̄ pair.
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the forms shown in Fig. 3 or their conjugations, where the
effective vertex ⊗ is defined in Fig. 4. Color factors of the
first and the last diagram in Fig. 3 read

C3a ∝ tr½tatb�fabc ¼ 0;

C3e ∝ tr½tatb�tr½tdte�fabcfcde ¼ 0: ð39Þ

In the following, we thus neglect these diagrams and
discuss the remaining diagrams explicitly. Without loss
of generality, we take lμ to be

lμ ¼ 1ffiffiffi
2

p ð1; 0; 0; 1Þ ð40Þ

in the following calculations. The difference between these
diagrams and those in Fig. 2 is that real gluons in Fig. 2 belong
to the undetected state X, while the real gluon k1 in Fig. 3
belongs to the constituents of the detected J=ψ particle.

A. Diagrams that take the form shown in Fig. 3(b)

In this subsection, we consider the diagrams shown
in Fig. 5.
For the first diagram in Fig. 5, we have

Σ5aðjÞ¼
Z

dD−1k1

ð2πÞD−12j~k1j

Z
dD−1k2

ð2πÞD−12j~k2j
N5aðjÞ 1

l ·k1þiϵ

×
1

l ·ðk1þk2Þþiϵ
1

v1 ·k1−iϵ
1

vj ·k2−iϵ

				
fk0

1
¼j~k1j;k02¼j~k2jg

;

ð41Þ

where j ¼ 1, 2, and the numerator term N5aðjÞ reads

N5aðjÞ ¼
�
g4μ4εl · v1l · v1NcðN2

c − 1Þ=4 for j ¼ 1;

−g4μ4εl · v1l · v2NcðN2
c − 1Þ=4 for j ¼ 2:

ð42Þ

For the second diagram in Fig. 5, we have

Σ5bðjÞ ¼
Z

dD−1k1
ð2πÞD−12j~k1j

Z
dD−1k2

ð2πÞD−12j~k2j
N5bðjÞ

×
1

l · k1 þ iϵ
1

l · ðk1 þ k2Þ þ iϵ
1

v2 · k1 − iϵ

×
1

vj · k2 − iϵ

			
fk0

1
¼j~k1j;k02¼j~k2jg

; ð43Þ

where j ¼ 1, 2, and the numerator term N5aðjÞ reads

N5bðjÞ ¼
�
−g4μ4εl · v2l · v1NcðN2

c − 1Þ=4 for j ¼ 1;

g4μ4εl · v2l · v2NcðN2
c − 1Þ=4 for j ¼ 2:

ð44Þ

The summation of these diagrams reads

FIG. 3. Diagrams with the Fock states jcc̄gi in the final states.

FIG. 4. Definition of the vertex ⊗ in Fig. 3. FIG. 5. Diagrams that take the form shown in Fig. 3(b).
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X2
j¼1

ðΣ5aðjÞ þ Σ5bðjÞÞ ¼ g4μ4ε
NcðN2

c − 1Þ
4

Z
dD−1k1

ð2πÞD−12j~k1j

Z
dD−1k2

ð2πÞD−12j~k2j
1

l · k1 þ iϵ

×
1

l · ðk1 þ k2Þ þ iϵ

�
l · v1

v1 · k1 − iϵ
−

l · v2
v2 · k1 − iϵ

��
l · v1

v1 · k2 − iϵ
−

l · v2
v2 · k2 − iϵ

�				
fk0

1
¼j~k1j;k02¼j~k2jg

:

ð45Þ

If k1 or k2 is collinear to lμ, then we have

vi · kj ¼ v−i k
þ
j ; ð46Þ

where i ¼ 1, 2, j ¼ 1, 2. One can verify that contributions of these regions cancel out between the diagrams shown in Fig. 5.
We thus do not consider the collinear divergences of these diagrams here.
We have

X2
j¼1

ðΣ5aðjÞ þ Σ5bðjÞÞ ¼ g4μ4ε
NcðN2

c − 1Þ
4

Z
dD−2k1⊥
ð2πÞD−2

Z
dD−2k2⊥
ð2πÞD−2

Z
∞

0

dk−1
2π

Z
∞

0

dk−2
2π

×
1

k−1 þ iϵ
1

k−1 þ k−2 þ iϵ

�
v−1

2vþ1 ðk−1 Þ2 þ v−1 k
2
1⊥ − 2k−1 v1⊥ · k1⊥ − iϵ

−
v−2

2vþ2 ðk−1 Þ2 þ v−2 k
2
1⊥ − 2k−1 v2⊥ · k1⊥ − iϵ

��
v−1

2vþ1 ðk−2 Þ2 þ v−1 k
2
2⊥ − 2k−1 v1⊥ · k2⊥ − iϵ

−
v−2

2vþ2 ðk−2 Þ2 þ v−2 k
2
2⊥ − 2k−1 v2⊥ · k2⊥ − iϵ

�

¼ α2s
32π2

NcðN2
c − 1Þ
4

�
1

ε

�
2
�
ln2

ðv1 · lÞ2
ðv2 · lÞ2

− 2ε ln
Λ2

μ2
ln2

ðv1 · lÞ2
ðv2 · lÞ2

þ ε

�
ln2

ðv1 · lÞ2
ðv1Þ2

− ln2
ðv2 · lÞ2
ðv2Þ2

�
ln
ðv1 · lÞ2
ðv2 · lÞ2

�
þ ðinfrared safe termsÞ; ð47Þ

where Λ is the parameter chosen to regularize ultraviolet divergences.
For conjugations of diagrams in Fig. 5, we have the same result; that is,

ðFig: 5þ conjugationsÞ ¼ α2s
16π2

NcðN2
c − 1Þ
4

�
1

ε

�
2
�
ln2

ðv1 · lÞ2
ðv2 · lÞ2

− 2ε ln
Λ2

μ2
ln2

ðv1 · lÞ2
ðv2 · lÞ2

þ ε

�
ln2

ðv1 · lÞ2
ðv1Þ2

− ln2
ðv2 · lÞ2
ðv2Þ2

�
ln
ðv1 · lÞ2
ðv2 · lÞ2

�
þ ðinfrared-safe termsÞ: ð48Þ

B. Diagrams that take the form shown in Fig. 3(c)

In this subsection, we consider the diagrams shown in Fig. 6.
For the first diagram in Fig. 6, we have

Σ6aðjÞ ¼
Z

dD−1k1

ð2πÞD−12j~k1j

Z
dD−1k2

ð2πÞD−12j~k2j
N6aðk1; k2; jÞ

1

ðk1 þ k2Þ2 þ iϵ

×
1

l · ðk1 þ k2Þ þ iϵ
1

v1 · k1 − iϵ
1

vj · k2 − iϵ
jfk0

1
¼j~k1j;k02¼j~k2jg; ð49Þ

where j ¼ 1, 2, and the numerator term N6aðjÞ reads
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N6aðk1; k2; jÞ ¼
(

g4μ4ε

4
NcðN2

c − 1Þ½v1 · lv1 · ð−2k1 − k2Þ þ v1 · lv1 · ðk1 þ 2k2Þ þ v1 · v1l · ðk1 − k2Þ� for j ¼ 1;

− g4μ4ε

4
NcðN2

c − 1Þ½v1 · lv2 · ð−2k1 − k2Þ þ v2 · lv1 · ðk1 þ 2k2Þ þ v1 · v2l · ðk1 − k2Þ� for j ¼ 2:

ð50Þ

For the second diagram in Fig. 6, we have

Σ6bðjÞ ¼
Z

dD−1k1

ð2πÞD−12j~k1j

Z
dD−1k2

ð2πÞD−12j~k2j
N6bðk1; k2; jÞ

1

ðk1 þ k2Þ2 þ iϵ

×
1

l · ðk1 þ k2Þ þ iϵ
1

v2 · k1 − iϵ
1

vj · k2 − iϵ

				
fk0

1
¼j~k1j;k02¼j~k2jg

; ð51Þ

where j ¼ 1, 2, and the numerator term N6bðjÞ reads

N6bðk1; k2; jÞ ¼
(
− g4μ4ε

4
NcðN2

c − 1Þ½v2 · lv1 · ð−2k1 − k2Þ þ v1 · lv2 · ðk1 þ 2k2Þ þ v2 · v1l · ðk1 − k2Þ� for j ¼ 1;

g4μ4ε

4
NcðN2

c − 1Þ½v2 · lv2 · ð−2k1 − k2Þ þ v2 · lv2 · ðk1 þ 2k2Þ þ v2 · v2l · ðk1 − k2Þ� for j ¼ 2:

ð52Þ

We first consider contributions of collinear regions.
Contributions from the region where k1(k2) is collinear
to lμ and l · k2(l · k1) is finite are power suppressed. In the
region where k1(k2) is collinear to lμ and k2(k1) is infrared,
we have

v1 · k1 ¼ v−1 k
þ
1 ; M6aðk1; k2; jÞ ¼ M6að~k1; 0; jÞ ð53Þ

or

vj · k2 ¼ v−j k
þ
2 ; M6aðk1; k2; jÞ ¼ M6að0; ~k2; jÞ; ð54Þ

where

ð~kþ1 ; ~k−1 ; ~~k1⊥Þ ¼ ðkþ1 ; 0; ~0Þ; ð55Þ

ð~kþ2 ; ~k−2 ; ~~k2⊥Þ ¼ ðkþ2 ; 0; ~0Þ: ð56Þ

One can verify that contributions from these regions cancel
out between the diagrams shown in Fig. 6. If both k1 and k2
are collinear to lμ, then we have

v1 · k1 ¼ v−1 k
þ
1 ; vj · k2 ¼ v−j k

þ
2 : ð57Þ

Contributions from such regions cancel out between Σ6að1Þ
and Σ6að2Þ. If k1 is collinear to k2 with l · k1 and l · k2 finite,
then we have

v1 · k1 ∝ v1 · k2; vj · k1 ∝ v2 · k2; l · k1 ∝ l · k2: ð58Þ

Contributions from such regions also cancel out between
Σ6að1Þ and Σ6að2Þ. Thus collinear divergences do not
disturb us.
The summation of Σ6aðjÞ and Σ6bðjÞ vanishes as

integrands are antisymmetric under the exchange
~k1 ↔ ~k2. We see that infrared-divergent terms in the
diagrams shown in Fig. 6 cancel out. We have

Fig: 6 ¼ ðFig: 6Þ� ¼ 0: ð59Þ

C. Diagrams that take the form shown in Fig. 3(d)

In this subsection, we consider the diagrams shown in
Fig. 7. For the first diagram in Fig. 7, we have

FIG. 7. Diagrams that take the form shown in Fig. 3(d).FIG. 6. Diagrams that take the form shown in Fig. 3(c).
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Σ7aðj; j0Þ ¼
Z

dD−1k1
ð2πÞD−12j~k1j

Z
dD−1k2

ð2πÞD−12j~k2j
N7aðj; j0Þ 1

l · k1 þ iϵ
1

v1 · k1 − iϵ
1

vj · k2 þ iϵ
1

vj0 · k2 − iϵ

				
fk0

1
¼j~k1j;k02¼j~k2jg

;

ð60Þ

where j ¼ 1, 2, j0 ¼ 1, 2, and the numerator term N6aðj; j0Þ is defined as

N7aðj; j0Þ ¼

8>>>>>><
>>>>>>:

− g4μ4ε

8
NcðN2

c − 1Þv1 · v1l · v1 for j ¼ j0 ¼ 1;

g4μ4ε

8
NcðN2

c − 1Þv1 · v2l · v1 for j ¼ 1;j0 ¼ 2;

− g4μ4ε

8
NcðN2

c − 1Þv1 · v2l · v1 for j ¼ 2; j0 ¼ 1;

g4μ4ε

8
NcðN2

c − 1Þv2 · v2l · v1 for j ¼ j0 ¼ 2.

ð61Þ

For the second diagram in Fig. 7, we have

Σ7bðj; j0Þ ¼
Z

dD−1k1

ð2πÞD−12j~k1j

Z
dD−1k2

ð2πÞD−12j~k2j
N7bðj; j0Þ 1

l · k1 þ iϵ
1

v2 · k1 − iϵ
1

vj · k2 þ iϵ
1

vj0 · k2 − iϵ

				
fk0

1
¼j~k1j;k02¼j~k2jg

;

ð62Þ

where j ¼ 1, 2, j0 ¼ 1, 2, and the numerator term N6aðj; j0Þ is defined as

N7bðj; j0Þ ¼

8>>>>>><
>>>>>>:

g4μ4ε

8
NcðN2

c − 1Þv1 · v1l · v2 for j ¼ j0 ¼ 1;

− g4μ4ε

8
NcðN2

c − 1Þv1 · v2l · v2 for j ¼ 1;j0 ¼ 2;

g4μ4ε

8
NcðN2

c − 1Þv1 · v2l · v2 for j ¼ 2; j0 ¼ 1;

− g4μ4ε

8
NcðN2

c − 1Þv2 · v2l · v2 for j ¼ j0 ¼ 2.

ð63Þ

If k1 is collinear to lμ, then we have

v1 · k1 ≃ v−1 l
þ
1 ; v2 · k1 ≃ v−2 k

þ
2 : ð64Þ

Contributions from such regions cancel out between
Σ7aðj; j0Þ and Σ7bðj; j0Þ. We thus do not consider effects
of collinear divergences.

We see thatX
j;j0

ðΣ7aðj; j0Þ þ Σ7bðj; j0ÞÞ ¼ 0; ð65Þ

as integrands are antisymmetric under the transformation
~k2 → − ~k2. Thus infrared-divergent terms in the diagrams
shown in Fig. 7 cancel out. We have

Fig:7 ¼ ðFig:7Þ� ¼ 0: ð66Þ
According to Eqs. (48), (59), and (66), we have

ϵð8→1Þðhigh Fock statesÞ ¼ α2s
16π2

NcðN2
c − 1Þ
4

�
1

ε

�
2
�
ln2

ðv1 · lÞ2
ðv2 · lÞ2

− 2ε ln
Λ2

μ2
ln2

ðv1 · lÞ2
ðv2 · lÞ2

þ ε

�
ln2

ðv1 · lÞ2
ðv1Þ2

− ln2
ðv2 · lÞ2
ðv2Þ2

�
ln
ðv1 · lÞ2
ðv2 · lÞ2

�
þ ðinfrared safe termsÞ þOðα3sÞ: ð67Þ

We see that the summation of Eqs. (37) and (67) is not infrared safe. In particular, infrared-divergent terms in Eq. (37) are of
order 1

ε, while those in Eq. (67) are of order 1
ε2
or 1

ε. We conclude that fragmentation functions Di→J=ψ and Dcc̄ðκÞ→J=ψ suffer
from topologically unfactorized infrared divergences shown in Eq. (37) even when contributions of higher Fock states are
taken into account.
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V. INCLUSIVE PRODUCTION OF STABLE
PARTICLES NEAR THE THRESHOLD

OF HEAVY QUARKONIA

In a practical process, detected heavy quarkonia are
reconstructed from their decay products. Without loss of
generality, we consider the process

Aþ B → μþμ−ðn; pHÞ þ X ð68Þ

in this section, where A and B represent initial particles, X
represents undetected final particles, n represents the
quantum number of the heavy quarkonium under consid-
eration, and the momentum pH of the detected μþμ− pair
fulfills the condition

p2
H ≃M2; ð69Þ

where M is the mass of the heavy quarkonium under
consideration. According to the collinear factorization
theorem presented in Refs. [24–28], we haveX
X

dσAþB→μþμ−ðn;pHÞþX

¼
X
i;X

dσAþB→iþX ⊗ Di→μþμ−ðn;pHÞ

þ
X
κ;X

dσAþB→QQ̄ðκÞþX ⊗ DQQ̄ðκÞ→μþμ−ðn;pHÞ

þOðM4=p4
TÞ þ � � � ; ð70Þ

where Di→μþμ−ðn;pHÞ and DQQ̄ðκÞ→μþμ−ðn;pHÞ represent frag-
mentation functions for i and QQ̄ðκÞ to the state
μþμ−ðn; pHÞ under the evolution of QCD and QED
interactions, and the ellipsis represents contributions of
the process with the μþμ− pair produced in the short-
distance (order 1=pT) subprocess.
It is convenient to consider fragmentation functions

Di→μþμ−ðn;pHÞ and DQQ̄ðκÞ→μþμ−ðn;pHÞ in the rest frame of
the μþμ− pair. The μþμ− pair can be produced in a direct

short-distance process (order 1=M) involving the states i or
QQ̄ðκÞ. They can also be produced in an indirect short-
distance process (order 1=M) involving intermediate states
with momenta squared of order M2. We show examples of
these two cases in Fig. 8.
Infrared divergences in fragmentation functions

Di→μþμ−ðn;pHÞ and DQQ̄ðκÞ→μþμ−ðn;pHÞ are caused by (i) infra-
red gluons exchanged between final undetected particles,
(ii) infrared gluons exchanged between final undetected
particles and intermediate states that evolve to the μþμ−
pair, (iii) infrared gluons exchanged between intermediate
states that evolve to the μþμ− pair, and (iv) infrared QED
interactions and possible interference terms.
We do not consider infrared QED interactions here, as

such interactions are suppressed by the QED coupling
constant. As in Refs. [22,23], we classify the QCD
interactions into two types: the topologically factorized
and topologically unfactorized interactions. Examples of
these two types are shown in Fig. 9.
For the first diagram in Fig. 9, the infrared gluons do not

produce pinch singular points unless the two intermediate
quarks that annihilate to the μþμ− pair are at rest [30,31]. In
this case, the effects of couplings between infrared gluons
and intermediate quarks can be absorbed into two Wilson
lines that lie along the same (time-like) direction. We notice
that

Y†
ijðxÞYjkðxÞ ¼ δik; ðYÞ†ijðxÞYkiðxÞ ¼ δjk ð71Þ

for classical fields AμðxÞ, where YnðxÞ is the time-like
Wilson line:

YðxÞ ¼ P exp

�
−ig

Z
∞

0

dsA0ðx0 þ s; ~xÞ
�
: ð72Þ

To clarify the effects of self-energy graphs of the Wilson
lines, we consider the diagram shown in Fig. 10. It can then
be written as

FIG. 8. (a) Example of direct production of μþμ− pair in fragmentation functions Di→μþμ−ðn;pHÞ and DQQ̄ðκÞ→μþμ−ðn;pHÞ. (b) Example of
indirect production of μþμ− pair in fragmentation functions Di→μþμ−ðn;pHÞ and DQQ̄ðκÞ→μþμ−ðn;pHÞ. (c) Example of interference terms
between the direct and indirect production of a μþμ− pair.
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Σμν
10ðx; y;OðAÞÞ≡ hTfψ̄Y†γμKYψðxÞOðAÞψ̄Y†γνYψðyÞgi

∝
Z

DψðzÞDψ̄ðzÞDAμðzÞψ̄Y†γμKYψðxÞψ̄Y†γνYψOðAÞei
R

d4zLðψ ;AÞðzÞ; ð73Þ

where K ¼ 1 for quarks produced as a color singlet and K ¼ ta for those produced as a color octet, ψ̄γνψ is the
electromagnetic current,OðAÞ represents operators at the other end of soft gluons of the type S1, and the Lagrangian density
Lðψ ; AÞðzÞ reads

Lðψ ; AÞðzÞ ¼ ψ̄ði∂ −mÞψðzÞ þ 1

2g2
trð½∂μ − igAμ; ∂ν − igAν�Þ2ðzÞ: ð74Þ

We do not consider the effects of the gauge-fixing term and ghost fields for simplicity. We have

Σμν
10ðx; y;OðAÞÞ ¼ hTfψ̄Y†γμYψðxÞψ̄Y†γνYψðyÞgiR ½DψðzÞ�½Dψ̄ðzÞ�½DAμðzÞ�ψ̄γμψðxÞψ̄γνψei

R
d4zLðψ ;AÞðzÞ

×
Z

½DψðzÞ�½Dψ̄ðzÞ�½DAμðzÞ�ψ̄γμKψðxÞψ̄γνψOðAÞei
R

d4zLðψ ;AÞðzÞ ð75Þ

for quarks produced as a color singlet and

Σμν
10ðx; y;OðAÞÞ ¼ hTfψ̄Y†γμtaYψðxÞψ̄Y†γνYψðyÞψ̄taψð0ÞgiR ½DψðzÞ�½Dψ̄ðzÞ�½DAμðzÞ�ψ̄Y†γμtaYψðxÞψ̄Y†γνYψðyÞψ̄taψð0Þei

R
d4zLðψ ;AÞðzÞ

×
Z

½DψðzÞ�½Dψ̄ðzÞ�½DAμðzÞ�ψ̄γμY†taYψðxÞψ̄γνψOaðAÞei
R

d4zLðψ ;AÞðzÞ ¼ 0: ð76Þ

We see that infrared divergences are topologically factorized in the color-singlet case and vanish in the color-octet case.
For the second diagram in Fig. 9, infrared divergences cancel out in the summation over all possible undetected states X.
There are, of course, more complicated diagrams that contribute to the fragmentation functions Di→μþμ−ðn;pHÞ and

DQQ̄ðκÞ→μþμ−ðn;pHÞ. For these diagrams, gluons that couple to nearly on-shell intermediate particles which connect two short-
distance (order 1=M) subdiagrams do not produce pinch singular points in the infrared region unless the relative velocities
between these intermediate particles vanish [30,31]. In the case that these relative velocities do vanish, we can repeat the
analysis for Fig. 10. We consider the matrix element

hXjTfMðYnψ ; Yn
~AY†

nÞðyÞψ̄γμψðxÞOðAÞgj0i ∝
Z
ðψðzÞ;ψ̄ðzÞ; ~AμðzÞ;AμðzÞÞjz0→∞¼X

½DψðzÞ�½Dψ̄ðzÞ�½D ~AμðzÞ�½DAμðzÞ�

×MðYnψ ; Yn
~AY†

nÞðyÞψ̄γμψðxÞOðAÞei
R

d4zLðψ ; ~A;AÞðzÞ ð77Þ

with the proportional coefficient independent of the operator OðAÞ, where X represents any possible final states, ~A
represents the field corresponding to gluons with finite momenta, Yn is the Wilson line

FIG. 9. (a) Example of topologically unfactorized QCD interactions. (b) Example of topologically factorized QCD interactions.
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YnðxÞ ¼ P exp

�
−ig

Z
∞

0

dsn · Aðxμ þ nμÞ
�

ð78Þ

with nμ the direction vector along the motion of direction
of the intermediate particles on the pinch surfaces,
MðYnψ ; Yn

~AY†
nÞ represents effective operators that

describe the interactions between infrared gluons and
intermediate particles that connect two short-distance

(order 1=M) subdiagrams, OðAÞ represents operators that
describe interactions between infrared gluons and the
undetected particles X, and the Lagrangian density
Lðψ ; AÞðzÞ reads

Lðψ ; ~A; AÞðzÞ ¼ ψ̄ði∂ −mÞψðzÞ

þ 1

2g2
trð½∂μ − ig ~Aμ; ∂ν − ig ~Aν�Þ2ðzÞ

þ 1

2g2
trð½∂μ − igAμ; ∂ν − igAν�Þ2ðzÞ:

ð79Þ
We do not consider the effects of the gauge-fixing term
and ghost fields for simplicity. It is convenient for us to
make the relative velocities between the intermediate
particles slightly deviate from 0 so that Coulomb diver-
gences caused by the exchange of Coulomb gluons
between these intermediate states (which do not affect
the topological factorization) do not disturb us. We notice
that

Y†
nYn ¼ 1; YntaYn ¼ Yab

n tb: ð80Þ

Thus, topologically unfactorized infrared divergences are
produced by the matrix element

Sð0Þ≡X
X

h0jT̄fM†ð…; Yij
n ð0Þ;…; Yab

n ð0Þ;…ÞO†ð…; Ylð0Þ;…ÞgjXi

× hXjTfMð…; Yjk
n ð0Þ;…; Ybc

n ð0Þ;…ÞOð…; Ylð0Þ;…Þgj0i
¼ h0jT̄fM†ð…; Yij

n ð0Þ;…; Yab
n ð0Þ;…ÞO†ð…; Ylð0Þ;…Þg

× TfMð…; Yjk
n ð0Þ;…; Ybc

n ð0Þ;…ÞOð…; Ylð0Þ;…Þgj0i: ð81Þ

For the classical configurations AμðxÞ, one can make use of
unitarity to show that we can make the substitution

Yn → 1; Yl → 1 ð82Þ

in Eq. (81) without changing the matrix element.
For quantum operators AμðxÞ, we consider the Wilson

lines

Wnð0; sÞ≡ P exp
�
−ig

Z
s

0

dλn · AðλnμÞ
�
; ð83Þ

Wlð0; sÞ≡ P exp

�
−ig

Z
s

0

dλl · AðλlμÞ
�
: ð84Þ

One can easily see that

Ynð0Þ ¼ Wnð0;∞Þ; Ylð0Þ ¼ Wlð0;∞Þ: ð85Þ

We consider the matrix element

Sð0; sÞ≡ h0jT̄fM†ð…;Wij
n ð0; sÞ;…;Wab

n ð0; sÞ;…Þ
×O†ð…;Wlð0; sÞ;…ÞgTfMð…;Wjk

n ð0; sÞ;…;

×Wbc
n ð0; sÞ;…ÞOð…;Wlð0; sÞ;…Þgj0i: ð86Þ

We have

FIG. 10. Typical diagram that contributes to the infrared
divergences of topologically unfactorized diagrams.

GAO-LIANG ZHOU PHYSICAL REVIEW D 93, 105035 (2016)

105035-12



d
ds

Sð0; sÞ ¼ igh0jT̄fM†ð…;Wij0
n ð0; sÞ;…;Wab

n ð0; sÞ;…ÞO†ð…;Wlð0; sÞ;…Þgn · Aj0jðsnμÞ
× TfMð…;Wjk

n ð0; sÞ;…;Wbc
n ð0; sÞ;…ÞOð…;Wlð0; sÞ;…Þgj0i

− igh0jT̄fM†ð…;Wij
n ð0; sÞ;…;Wab

n ð0; sÞ;…ÞO†ð…;Wlð0; sÞ;…Þg
× n · Ajj0 ðsnμÞTfMð…;Wj0k

n ð0; sÞ;…;Wbc
n ð0; sÞ;…ÞOð…;Wlð0; sÞ;…Þgj0i þ � � �

¼ 0: ð87Þ

We see that

Sð0; sÞ ¼ Sð0; 0Þ: ð88Þ

In particular, we have

Sð0Þ ¼ Sð0;∞Þ ¼ Sð0; 0Þ ¼ Sð0ÞjAμ¼0: ð89Þ

We conclude that topologically unfactorized infrared
divergences cancel out.
We see that the fragmentation functions Di→μþμ−ðn;pHÞ

and DQQ̄ðκÞ→μþμ−ðn;pHÞ are free from topologically unfac-
torized infrared divergences in the rest frame of the μþμ−

pair. The detailed proof of this conclusion will be presented
in other works. We then have

Di→μþμ−ðn;pHÞ ¼ Di→μþμ−ðn;pHÞ −Ddiv
i→μþμ−ðn;pHÞ; ð90Þ

DQQ̄ðκÞ→μþμ−ðn;pHÞ ¼DQQ̄ðκÞ→μþμ−ðn;pHÞ−Ddiv
QQ̄ðκÞ→μþμ−ðn;pHÞ;

ð91Þ

where Ddiv
i→μþμ−ðn;pHÞ and Ddiv

QQ̄ðκÞ→μþμ−ðn;pHÞ represent

topologically unfactorized infrared divergences produced
by various explicit diagrams in Di→μþμ−ðn;pHÞ and
DQQ̄ðκÞ→μþμ−ðn;pHÞ. We can then make the decomposition

Di→μþμ−ðn;pHÞ ¼ Di→H ⊗ dH→μþμ−ðn;pHÞ − ðDi→H ⊗ dH→μþμ−ðn;pHÞÞdiv þDi→μþμ−ðn;pHÞ −Di→H ⊗ dH→μþμ−ðn;pHÞ

−Ddiv
i→μþμ−ðn;pHÞ þ ðDi→H ⊗ dH→μþμ−ðn;pHÞÞdiv; ð92Þ

DQQ̄ðκÞ→μþμ−ðn;pHÞ ¼ DQQ̄ðκÞ→H ⊗ dH→μþμ−ðn;pHÞ − ðDQQ̄ðκÞ→H ⊗ dH→μþμ−ðn;pHÞÞdiv þDQQ̄ðκÞ→μþμ−ðn;pHÞ
−DQQ̄ðκÞ→H ⊗ dH→μþμ−ðn;pHÞ −Ddiv

QQ̄ðκÞ→μþμ−ðn;pHÞ þ ðDQQ̄ðκÞ→H ⊗ dH→μþμ−ðn;pHÞÞdiv; ð93Þ

where dH→μþμ−ðn;pHÞ represents the short-distance (order
1=m) evolution of the heavy quarkonium H to the μþμ−
pair, Di→H and DQQ̄ðκÞ→H represent the long-distance
evolution of the parton i or the heavy quark pair QQ̄ to
the hadron H under consideration, and ðDi→H ⊗
dH→μþμ−ðn;pHÞÞdiv and ðDQQ̄ðκÞ→H ⊗ dH→μþμ−ðn;pHÞÞdiv re-
present the infrared divergences of the functions Di→H
and DQQ̄ðκÞ→H. We have

Di→H ⊗ dH→μþμ−ðn;pHÞ − ðDi→H ⊗ dH→μþμ−ðn;pHÞÞdiv
¼ ðDi→H −Ddiv

i→HÞ ⊗ dH→μþμ−ðn;pHÞ; ð94Þ

DQQ̄ðκÞ→H⊗dH→μþμ−ðn;pHÞ−ðDQQ̄ðκÞ→H⊗dH→μþμ−ðn;pHÞÞdiv
¼ðDQQ̄ðκÞ→H−Ddiv

QQðκÞ→HÞ⊗dH→μþμ−ðn;pHÞ: ð95Þ
Other terms in the fragmentation functions Di→μþμ−ðn;pHÞ
and DQQ̄ðκÞ→μþμ−ðn;pHÞ are suppressed by the QED coupling

constant α and the small decay width Γμþμ−
H of the heavy

quarkonium H to the μþμ− pair. We thus have

Di→μþμ−ðn;pHÞ ¼ ðDi→H −Ddiv
i→HÞ ⊗ dH→μþμ−ðn;pHÞ

× ð1þOðαÞ þOðΓμþμ−
H ÞÞ; ð96Þ

DQQ̄ðκÞ→μþμ−ðn;pHÞ ¼ ðDQQ̄ðκÞ→H −Ddiv
QQðκÞ→HÞ

⊗ dH→μþμ−ðn;pHÞ

× ð1þOðαÞ þOðΓμþμ−
H ÞÞ: ð97Þ

It is interesting to mention that intermediate sates which
connect two short-distance (order 1=M) subdiagrams do
not produce infrared divergence terms unless the relative
velocities of these states vanish. Thus such infrared
divergences occur only when the momentum of the final
μþμ− pair pH takes some special values. Such infrared
divergences vanish in the integral of pH once infrared
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divergences are no worse than logarithms. For the cancel-
lation of topologically unfactorized divergences, however,
the integral over pH is not necessary.

VI. CONCLUSION

We presented a scheme to cancel out topologically
unfactorized infrared divergences in inclusive productions
of heavy quarkonia. In Ref. [5], it was proposed that such
divergences do cancel out according to the KLN cancella-
tion [32,33] once the summation over the undetected
particles is made. However, the explicit calculations at
NNLO in Refs. [22,23] showed that the summation is not
inclusive enough to cancel out topologically unfactorized
infrared divergences.
In Refs. [22,23], the final states were chosen as color-

singlet heavy quark pair plus any other states with the final
heavy quark and heavy antiquark both on shell. We notice
that the color-singlet heavy quark pair is not invariant under
the evolution of infrared QCD interactions. In particular,
color states of the heavy quark pair may change to others
under this evolution. Thus the KLN cancellation—for
which the summation over all states that arise from such
evolution is necessary—do not work simply. In fact,
practical heavy quarkonia is not the color-singlet heavy
quark pair. It seems plausible to define heavy quarkonia as
resonance states which are invariant under the evolution of
infrared QCD interactions, as we do for the J=ψ particle.
Thus summation over higher Fock states is necessary.
Such a summation, however, does not make topologically
unfactorized infrared divergences disappear, as shown in
our calculations.
It is interesting to point out that the states HX do not

form the invariant subspace of the evolution of infrared
QCD interactions even if the detected particle H is itself
invariant under this evolution. Exchanges of soft gluons
between H and X may change the state H; for example,
they may cause the transition between heavy quarkonia.
Such a transition may exist even if all soft gluons are
infrared! We notice that heavy quarkonia are reconstructed
from their decay products in practical experiments. Final
decay products like μþμ− (the invariant mass of which is
required to be near the mass of the detected heavy
quarkonium H) can be produced by the decay of H and
other possible states. Thus the practical process is indeed

inclusive regarding the states arising from the evolution of
infrared QCD interactions. In this paper, we have shown
that topologically unfactorized infrared divergences do
cancel out in the fragmentation functions Di→μþμ−ðn;pHÞ
and DQQ̄ðκÞ→μþμ−ðn;pHÞ!
It seems more reasonable to consider the NRQCD

factorization for the fragmentation functions
Di→μþμ−ðn;pHÞ and DQQ̄ðκÞ→μþμ−ðn;pHÞ, as they are free from
topologically unfactorized infrared divergences. If the
NRQCD factorization theorem holds for these fragmenta-
tion functions, then we have

Di→μþμ−ðn;pHÞ ¼
X
n

ðdi→QQ̄ðnÞ − ddivi→QQ̄ðnÞÞ

× ðhOHðnÞi − hOHðnÞidivÞ
⊗ ðdH→μþμ−ðn;pHÞ − ddivH→μþμ−ðn;pHÞÞ
× ð1þOðαÞ þOðΓμþμ−

H ÞÞ; ð98Þ

DQQ̄ðκÞ→μþμ−ðn;pHÞ ¼
X
n

ðdQQ̄ðκÞ→QQ̄ðnÞ − ddivQQ̄ðκÞ→QQ̄ðnÞÞ

× ðhOHðnÞi − hOHðnÞidivÞ
⊗ ðdH→μþμ−ðn;pHÞ − ddivH→μþμ−ðn;pHÞÞ
× ð1þOðαÞ þOðΓμþμ−

H ÞÞ: ð99Þ

We do not require that the matrix elements hOHðnÞi
absorb all infrared divergences in the fragmentation func-
tions Di→H and DQQ̄ðκÞ→H. Generally speaking, parts
of infrared divergences in the functions Di→H and
DQQ̄ðκÞ→H are canceled by infrared divergences of other
terms in the fragmentation functions Di→μþμ−ðn;pHÞ and
DQQ̄ðκÞ→μþμ−ðn;pHÞ. We thus have obtained a NRQCD
factorization theorem for the inclusive production of
the heavy quarkonium H once the NRQCD factorization
for the fragmentation functions Di→μþμ−ðn;pHÞ and
DQQ̄ðκÞ→μþμ−ðn;pHÞ holds.
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