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In the context of a broad class of quenched models, we derive a generalized differential form of the
Kadanoff-Baym (KB) ansatz which relates the out of equilibrium correlated and spectral Green’s functions.
This relation holds at any time both before the quench (when it coincides with the fluctuation-dissipation
theorem) as well as after it. We also examine, in the context of exactly soluble quenched models, the
validity of some of the earlier alternative extensions of the KB ansatz.

DOI: 10.1103/PhysRevD.93.105034

I. INTRODUCTION

The fluctuation-dissipation theorem [1–3] plays an
important role in the study of systems in thermal equilib-
rium. This result expresses a general relation between the
statistical fluctuations in the system and its response to
weak external perturbations. The fluctuations and the
response of the system may be described by the correlated
and spectral Green’s functions defined respectively (in a
scalar field theory) as

iGcðx; yÞ ¼ h½ϕðxÞ;ϕðyÞ�þi;
iGρðx; yÞ ¼ h½ϕðxÞ;ϕðyÞ�i; ð1Þ

where the angular brackets represent thermal averages. The
fluctuation-dissipation theorem can be written in terms of
their Fourier transforms as (kμ corresponds to the momen-
tum conjugate to the coordinate difference xμ − yμ)

~GcðkÞ ¼ ð1þ 2Nðk0ÞÞ ~GρðkÞ; ð2Þ

where Nðk0Þ ¼ 1=ðeβk0 − 1Þ denotes the equilibrium Bose-
Einstein distribution function. Here one has used the fact
that in equilibrium the Green’s functions are time trans-
lation invariant, which does not hold when the system is out
of equilibrium. The fluctuation-dissipation theorem has
been generalized by Kadanoff and Baym to systems near
equilibrium [4]. Their ansatz states that, when Fourier
transformed, the two Green’s functions satisfy near equi-
librium the relation

~Gcðk; TÞ ¼ ð1þ 2fðk0; TÞÞ ~Gρðk; TÞ; ð3Þ

where T ¼ ðx0 þ y0Þ=2 and fðk0; TÞ is an appropriate
distribution function.
The study of out of equilibrium processes is of much

interest in various branches of physics such as cosmology,
high energy and condensed matter physics [5–11].
Therefore, it is quite important to obtain consistent

generalizations of the Kadanoff-Baym ansatz for these
regimes. There have been several proposals in this respect
both in the context of relativistic [12–14] and non-
relativistic quantum field theories [15–17]. Simple soluble
models [18,19] provide a testing ground for the validity of
these proposals as well as for constructing further gener-
alizations. In a previous paper [20] we have studied such an
extension, which may describe the large time behaviour in
glassy systems with an effective temperature, within the
context of an exactly soluble quenched model. However,
this approach is not suitable for studying the behavior of
systems soon after the quench.
In this work we discuss a more general treatment which

is applicable at any time, both before and after the quench.
In Sec. II, we consider a broad class of nonequilibrium
quenched models (mostly not exactly soluble), which also
includes some soluble models. We point out several basic
features of the exact Green’s functions following from the
results obtained in these soluble models. In Sec. III, we
derive a generalized differential form of the Kadanoff-
Baym ansatz for the whole class of quenched models,
relating the exact out of equilibrium spectral and correlated
Green’s functions, which holds at all times. This general-
ized KB relation shows that various features of the exact
Green’s functions necessarily appear in generic quenched
models, as a consequence of causality. In Sec. IV we
examine, within the context of nonrelativistic soluble
quenched models, some of the earlier extensions of the
KB ansatz [15–17]. We find that these proposals involve
certain assumptions, concerning the behaviour of out of
equilibrium Green’s functions, which might be appropriate
only in some time sectors. We conclude the paper in Sec, V,
which presents a brief summary of the main results.

II. EXACT GREEN’S FUNCTIONS IN
A QUENCHED MODEL

We study a simple out of equilibrium quantum field
theory which describes a free real scalar field of mass m at

PHYSICAL REVIEW D 93, 105034 (2016)

2470-0010=2016=93(10)=105034(8) 105034-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.93.105034
http://dx.doi.org/10.1103/PhysRevD.93.105034
http://dx.doi.org/10.1103/PhysRevD.93.105034
http://dx.doi.org/10.1103/PhysRevD.93.105034


negative times, x0 < 0 (the reference time can be arbitrary,
but for simplicity we choose it to be zero). An effective
mass correction is introduced for x0 ≥ 0 so that the
Lagrangian density which describes the system is given by

L ¼ 1

2
∂μϕ∂μϕ −

m2

2
ϕ2 −

1

2
Πðx0Þϕ2; ð4Þ

where the interaction term due to the sudden quench Πðx0Þ
takes the theory out of equilibrium. In particular, if we
choose a special quench of the form

Πðx0Þ ¼ δm2θðx0Þ þ Δmδðx0Þ; ð5Þ

then the model is exactly soluble when either δm2 or Δm
vanishes. In this section, we consider the model withΔm ¼
0 which was studied in earlier papers and we discuss the
model with δm2 ¼ 0 in the appendix. The general case,
which involves a generic quench Πðx0Þ in (4), will be
examined in the next section.
The exact retarded Green’s function for the model

iGRðx; yÞ ¼ θðx0 − y0Þh½ϕðxÞ;ϕðyÞ�i; ð6Þ

and the exact correlated Green’s function (1) have been
calculated [19] and yield the mixed space forms

GRðx0; y0;ωÞ ¼ θðx0 − y0Þ
�
−
1

ω
θð−x0Þθð−y0Þ sinωðx0 − y0Þ − 1

Ω
θðx0Þθðy0Þ sinΩðx0 − y0Þ

þ 1

2ω
θðx0Þθð−y0Þ

��
1 −

ω

Ω

�
sinðΩx0 þ ωy0Þ −

�
1þ ω

Ω

�
sinðΩx0 − ωy0Þ

��
; ð7Þ

Gcðx0; y0;ωÞ ¼
coth βω

2

iω

�
θð−x0Þθð−y0Þ cosωðx0 − y0Þ

þ 1

2
θðx0Þθð−y0Þ

��
1þ ω

Ω

�
cosðΩx0 − ωy0Þ þ

�
1 −

ω

Ω

�
cosðΩx0 þ ωy0Þ

�

þ 1

2
θð−x0Þθðy0Þ

��
1þ ω

Ω

�
cosðωx0 −Ωy0Þ þ

�
1 −

ω

Ω

�
cosðωx0 þ Ωy0Þ

�

þ 1

2
θðx0Þθðy0Þ

��
Ω2 þ ω2

Ω2

�
cosΩðx0 − y0Þ þ

�
Ω2 − ω2

Ω2

�
cosΩðx0 þ y0Þ

��
; ð8Þ

where β is the inverse of the initial equilibrium temperature (in units of the Boltzmann constant) and we have defined

ω2 ¼ k2 þm2; Ω2 ¼ ω2 þ δm2: ð9Þ
Equations (7) and (8) can now be Fourier transformed with respect to the time difference t ¼ x0 − y0

~Gc;ρðk0; T;ωÞ ¼
Z

∞

−∞
dteik0tGc;ρðt; T;ωÞ; ð10Þ

where T ¼ x0þy0

2
and lead to

Im ~GRðk0; T;ωÞ ¼
~Gρðk0; T;ωÞ

2i

¼ θðTÞ
2Ω

�
sin 2ðk0 þΩÞT

k0 þ Ω
−
sin 2ðk0 − ΩÞT

k0 −Ω

�
þ θð−TÞ

2ω

�
sin 2ðk0 − ωÞT

k0 − ω
−
sin 2ðk0 þ ωÞT

k0 þ ω

�

þ
�

νþ
2ωΩ

�
θðTÞ

�
sin 2ðk0 −ΩÞT

k0 − νþ
−
sin 2ðk0 þ ΩÞT

k0 þ νþ

�

þ θð−TÞ
�
sin 2ðk0 þ ωÞT

k0 þ νþ
−
sin 2ðk0 − ωÞT

k0 − νþ

��
þ ðω → −ωÞ

�

þ π

�
νþ
2ωΩ

cosð2ν−TÞ½δðk0 þ νþÞ − δðk0 − νþÞ� þ ðω → −ωÞ
�
; ð11Þ
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where we have defined

νþ ¼ Ωþ ω

2
; ν− ¼ Ω − ω

2
ð12Þ

so that νþ ↔ ν− when ω → −ω. Moreover, we obtain

~Gcðk0; T;ωÞ ¼
coth βω

2

iω

�
−θð−TÞ

�
sin 2ðk0 þ ωÞT

k0 þ ω
þ sin 2ðk0 − ωÞT

k0 − ω

�

þ θðTÞ
�
Ω2 þ ω2

2Ω2

�
sin 2ðk0 þΩÞT

k0 þΩ
þ sin 2ðk0 −ΩÞT

k0 −Ω

�
þ Ω2 − ω2

Ω2
cosð2ΩTÞ sin 2k0T

k0

�

þ
�
−θðTÞ νþ

Ω

�
sin 2ðk0 þ ΩÞT

k0 þ νþ
þ sin 2ðk0 − ΩÞT

k0 − νþ

�

þ θð−TÞ νþ
Ω

�
sin 2ðk0 þ ωÞT

k0 þ νþ
þ sin 2ðk0 − ωÞT

k0 − νþ

�
þ ðω → −ωÞ

�

þ π

�
νþ
Ω

cosð2ν−TÞ½δðk0 þ νþÞ þ δðk0 − νþÞ� þ ðω → −ωÞ
��

; ð13Þ

where we have used the relations between the spectral,
retarded and the advanced Green’s functions, namely,

Gρðx; yÞ ¼ GRðx; yÞ −GAðx; yÞ
¼ GRðx; yÞ −GRðy; xÞ: ð14Þ

(In the Fourier transformed space, the last form of the
relation in (14) gives ~Gρ ¼ 2iIm ~GR.)
There are several interesting features to be noted here.

Both the functions in (11) and (13) have finite as well as
pole terms in the k0 space. The finite contributions come
from the region in (10) where the t-integration is bounded,
namely, jtj < 2jTj. From the relations x0 ¼ T þ t=2,
y0 ¼ T − t=2, it follows that this range corresponds to
the case when x0 and y0 have the same sign. From the
structures of (11) and (13), it appears that such contribu-
tions to the Green’s functions ~Gc and ~Gρ may be related in a
nontrivial way. On the other hand, the pole terms at k0 ¼
ν� arise from the region in (10) where the t-integration is
unbounded, namely, 2jTj < jtj < ∞ which correspond to
the case where x0 and y0 have opposite signs. Since ~Gcðk0Þ
is an even functions of k0 while ~Gρðk0Þ is odd, the pole
terms also appear at the frequencies (−ν�). One can see
from (11) and (13) that the values of ~Gcðk0; T;ωÞ and
~Gρðk0; T;ωÞ near the poles at k0 ¼ ν� are related in a
simple way (through the Bose-Einstein distribution)

~Gcðk0; T;ωÞ≃�
�
1þ 2N

�
βωk0
ν�

��
~Gρðk0; T;ωÞ: ð15Þ

We note that the factor in the square bracket can also be
written as coth½βωk0

2ν�
�, which is an odd function of k0 as

required by the consistency of (15) under k0 → −k0. We
finally remark that the contributions near the physical pole
at k0 ¼ νþ, which is the proper (mean) frequency of the
system, are related in (15) through a physical distribution
function (positive definite for k0 > 0). Therefore, such a
relation would have the same form as the KB ansatz (3). A
similar behavior can also be seen in the other soluble model
(δm2 ¼ 0) discussed in the Appendix. As will be shown in
the next section, these features appear to be quite general in
quenched models which are not necessarily soluble, as a
consequence of causality.

III. GENERALIZED KADANOFF-BAYM
RELATION

In order to obtain a general relation between the
correlated and spectral Green’s functions, which holds in
the class of quenched models in (4) which are not
necessarily exactly soluble, we consider the Feynman
Green’s functions in the closed path formalism [18], which
have the 2 × 2 matrix form

G ¼
�
Gþþ Gþ−

G−þ G−−

�
≡

�
Gþþ G<

G> G−−

�
; ð16Þ

where the functions G> and G< are defined as the thermal
averages

iG>ðx; yÞ ¼ hϕðxÞϕðyÞi;
iG<ðx; yÞ ¼ hϕðyÞϕðxÞi: ð17Þ

Similarly, the corresponding self-energy functions have the
2 × 2 matrix structure
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Σ ¼
�Σþþ Σþ−

Σ−þ Σ−−

�
≡

�Σþþ Σ<

Σ> Σ−−

�
: ð18Þ

It is more convenient to work with matrices of the form
M̄ ¼ σ3M (where σ3 is the third Pauli matrix) which lead to
the simple matrix multiplication rules along the two
branches of the closed time path contour [17]. With this
redefinition, the Green’s functions and the self-energies are
connected by the Dyson equation

Ḡ−1ðx; yÞ ¼ Ḡð0Þ−1ðx; yÞ − Σ̄ðx; yÞ; ð19Þ
where Gð0Þ denotes the tree level Green’s function. Using
this relation together with the fact that the determinant of Ḡ
equals toGRGA, one arrives at the Dyson-Keldysh equation

G≷ ¼ GRðGð0Þ−1
R Gð0Þ

≷ Gð0Þ−1
A þ Σ≷ÞGA: ð20Þ

In the general quenched model given in (4), the exact
Green’s functions GR and GA have the (Lippmann-
Schwinger) form

GR ¼ ð1 − Gð0Þ
R ΣRÞ−1Gð0Þ

R ;

GA ¼ Gð0Þ
A ð1 − ΣAG

ð0Þ
A Þ−1; ð21Þ

where the self-energy functions are given by

ΣRðx0; y0Þ ¼ ΣAðx0; y0Þ ¼ Πðx0Þδðx0 − y0Þ;
Σ≷ ¼ 0: ð22Þ

We note, from (1) and (17), that the Green’s functions G≷,
Gc and Gρ can be related as

Gcðx; yÞ ¼ G>ðx; yÞ þG<ðx; yÞ;
Gρðx; yÞ ¼ G>ðx; yÞ −G<ðx; yÞ: ð23Þ

Using the Eqs. (20), (21) and (22), we obtain from (23)
the following basic relation

Gc;ρ ¼ ð1 −Gð0Þ
R ΣRÞ−1Gð0Þ

c;ρð1 − ΣAG
ð0Þ
A Þ−1; ð24Þ

where the free correlated and spectral Green’s function
have the forms

Gð0Þ
c ðx0; y0;ωÞ ¼ −

i
ω
coth

�
βω

2

�
cosωðx0 − y0Þ; ð25Þ

Gð0Þ
ρ ðx0; y0;ωÞ ¼ −

1

ω
sinωðx0 − y0Þ: ð26Þ

It follows from (25) and (26) that

iω coth

�
βω

2

�
Gð0Þ

ρ ðx0; y0;ωÞ ¼ −
∂
∂x0G

ð0Þ
c ðx0; y0;ωÞ;

ð27Þ

which is the fluctuation-dissipation theorem in coordinate
space. Using this in (24) we obtain

iω coth

�
βω

2

�
Gρðx0; y0Þ ¼ −ð1 −Gð0Þ

R ΣRÞ−1ðx0; z0Þ

×
∂Gð0Þ

c ðz0; z00Þ
∂z0 ð1 − ΣAG

ð0Þ
A Þ−1ðz00; y0Þ; ð28Þ

where integration over intermediate coordinates is under-
stood and we have indicated only the time coordinates in
the Green’s functions for simplicity. Finally, integrating by
parts to the left in (28) and using (22), it is straightforward
to obtain the following relation between the spectral and the
correlated functions

iω coth

�
βω

2

�
Gρðx0; y0Þ ¼ −

∂
∂x0Gcðx0; y0Þ þGRðx0; z0Þ

×
dΠðz0Þ
dz0

Gcðz0; y0Þ: ð29Þ

Alternatively, replacing ∂Gð0Þ
c =∂z0 on the right-hand side of

(28) by −∂Gð0Þ
c =∂z00 and integrating by parts to the right,

one obtains

iω coth

�
βω

2

�
Gρðx0; y0Þ ¼

∂
∂y0Gcðx0; y0Þ −Gcðx0; z0Þ

×
dΠðz0Þ
dz0

GAðz0; y0Þ: ð30Þ

The two relations (29) and (30) are equivalent, which
follows from the equality GRðx0; y0Þ ¼ GAðy0; x0Þ as well
as from the fact that Gcðx0; y0Þ and Gρðx0; y0Þ are respec-
tively even and odd functions under the interchange
x0 ↔ y0.
Equations (29) and (30), which hold at all times, are one

of our main results and some aspects of these relations are
worth noting here. We remark that for a system which is
always in thermal equilibrium, Π ¼ 0, so that the last term
in (29) or (30) vanishes at any time. In this case, we would
obtain the differential form of the fluctuation-dissipation
theorem (27), which in the Fourier transformed space has
the form [see (2)]

~Geq
c ðk0;ωÞ ¼ −2πi coth

�
βω

2

�
δðk20 − ω2Þ

¼ coth

�
βk0
2

�
~Geq
ρ ðk0;ωÞ: ð31Þ

This relation exhibits a sharply peaked pole term at the
natural frequency k0 ¼ ω of the system in thermal
equilibrium.
We also note that even out of equilibrium, the last term in

(29) does not contribute for x0 < 0. This arises because the
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quenchΠðz0Þ is nonzero only when z0 ≥ 0 and the retarded
Green’s function GRðx0; z0Þ vanishes for z0 > x0 by cau-
sality. Then, (29) reduces to the form

iω coth

�
βω

2

�
Gρðx0; y0Þ ¼ −

∂
∂x0 Gcðx0; y0Þ: ð32Þ

Similarly, when y0 < 0, the last term in (30) vanishes in
which case one gets

iω coth

�
βω

2

�
Gρðx0; y0Þ ¼

∂
∂y0 Gcðx0; y0Þ: ð33Þ

In the respective time domains, these have the forms similar
to the fluctuation-dissipation theorem in equilibrium
(although quantitatively they are very different) and we
have explicitly verified these results in the soluble models
given in (5).
We now examine the Fourier transforms of Eqs. (29) and

(30) with respect to the time difference t ¼ x0 − y0. As we
have pointed out following Eq. (14), the t-integration is
bounded in the range jtj < 2jTj when x0 and y0 have the
same sign and leads to finite contributions in the k0 space.
On the other hand, the range of the t-integration is
unbounded, 2jTj < jtj < ∞ when x0 and y0 have opposite
signs and yields singular contributions. Such pole terms
occur in the Fourier transforms of (32) and (33) when
(x0 < 0, y0 > 0) and (y0 < 0, x0 > 0), respectively. These
differential forms would then lead, in the k0 space, to the
KB relation of the form in (3) between the pole terms of
~Gcðk0; TÞ and ~Gρðk0; TÞ [see, for example, Eqs. (11), (13)
and (15)].

IV. NONRELATIVISTIC GENERALIZED
KB ANSATZ

Let us consider the nonrelativistic limit of the theory in
(4), and denote by ψðxÞ the positive frequency part of the
field (which would annihilate a particle in the free theory)
and by ψ†ðxÞ its Hermitian conjugate (which would create a
particle in the free theory). In this case, it is useful to
introduce the following thermal averages [15]

ig>ðx; yÞ ¼ hψðxÞψ†ðyÞi;
ig<ðx; yÞ ¼ hψ†ðyÞψðxÞi: ð34Þ

Using (34), one can then define the corresponding retarded/
advanced Green’s functions as

GRðx; yÞ ¼ θðx0 − y0Þ½g>ðx; yÞ − g<ðx; yÞ�;
GAðx; yÞ ¼ G�

Rðy; xÞ: ð35Þ

In our model, the exact nonrelativistic retarded function
in mixed space satisfies the equation

�
i
∂
∂x0 − E −

Πðx0Þ
m

�
GRðx0; y0; EÞ ¼ δðx0 − y0Þ; ð36Þ

where E ¼ k2=2m and Πðx0Þ is the general quench
described in (4) which is applied at non-negative times.
The solution of the above equation is easily determined to be

GRðx0;y0;EÞ¼−iθðx0−y0Þexp
�
−i

Z
x0

y0
dτ½EþΠðτÞ=m�

�
:

ð37Þ

An important feature which follows from (37) is that the
retarded Green’s function satisfies the semigroup property

GRðx0; z0; EÞ ¼ iGRðx0; y0; EÞGRðy0; z0; EÞ; ð38Þ
for x0 > y0 > z0. (It is important to note that such a
property does not hold in the relativistic theory because
of pair creation and annihilation processes). Using a
procedure similar to that employed in the derivation of
(20), one can obtain the Dyson-Keldysh equation for the
nonrelativistic theory which has the form

g≷ ¼ GR½Gð0Þ−1
R gð0Þ≷ Gð0Þ−1

A þ Σ≷�GA; ð39Þ

where we have suppressed the arguments as well as the
integration over intermediate coordinates for simplicity.
Apart from the factorization (semigroup) property (38),

another important ingredient in the derivation of a gener-
alized KB ansatz in the nonrelativistic theory is the
proposal that the term inside the square bracket of (39)
might be nearly diagonal in its time coordinates [17].
This may be expected since the first term

Gð0Þ−1
R gð0Þ≷ Gð0Þ−1

A ðz0; z00Þ contains delta functions which
are strongly peaked at z0 ¼ z00. Assuming that the non-
diagonal contributions from this term as well as those in
Σ≷ðz0; z00Þ may be neglected, one can derive the general-
ized KB ansatz [16,17]

g≷ðx0; y0Þ ¼ iGRðx0; y0Þg≷ðy0; y0Þ− ig≷ðx0; x0ÞGAðx0;y0Þ:
ð40Þ

We will next examine the validity of this causal ansatz,
in the context of our exactly soluble model whereΠðx0Þ has
the form given in (5). Namely, we will compare (40) with
the exact result (39) when Σ≷ ¼ 0 and

gð0Þ< ðx0; y0Þ ¼ −iNðEÞe−iEðx0−y0Þ;
gð0Þ> ðx0; y0Þ ¼ −ið1þ NðEÞÞe−iEðx0−y0Þ; ð41Þ

where NðEÞ denotes the equilibrium Bose-Einstein distri-
bution function. Using (21) and (22), it is convenient to
write (39) in the form

GENERALIZED KADANOFF-BAYM RELATION IN … PHYSICAL REVIEW D 93, 105034 (2016)

105034-5



g≷ðx0; y0Þ ¼ ð1 −Gð0Þ
R ΣRÞ−1ðx0; z0Þgð0Þ≷ ðz0; z00Þð1 − ΣAG

ð0Þ
A Þ−1ðz00; y0Þ

¼ ð1þ GRΣRÞðx0; z0Þgð0Þ≷ ðz0; z00Þð1þ ΣAGAÞðz00; y0Þ; ð42Þ

where, in the last line, we have used (21) to identify

1þGRΣR ¼ 1þ ð1 −Gð0Þ
R ΣRÞ−1Gð0Þ

R ΣR

¼ ð1 −Gð0Þ
R ΣRÞ−1; ð43Þ

and so on. We can now substitute the exact expression for
GR given in (37) and GA following from (35) into the
relation (42).
Let us first set δm2 ¼ 0 in (5), in which case we get, for

example, the exact expression for g<ðx0; y0Þ to be

g<ðx0; y0Þ ¼ −iNðEÞe−iEðx0−y0Þ
�
1 − i

Δm
m

θðx0Þe−iΔm2m
�

×

�
1þ i

Δm
m

θðy0ÞeiΔm2m
�
: ð44Þ

Using (44), the approximate result in (40) may be written
(for x0 > y0) as

g<ðx0; y0Þ ¼ −iNðEÞe−iEðx0−y0Þe−iΔmm θðx0Þθð−y0Þ

×

�
1þ

�
Δm
m

�
2

θðy0Þ
�
: ð45Þ

We see that the expressions (44) and (45) are rather
different. This implies that the assumption of neglecting
nondiagonal terms made in (40) may not be justified in the
presence of sharply peaked quenches.
On the other hand, for a regular quench of the form given

in (5) withΔm ¼ 0, we find a complete agreement between
the expressions given in Eqs. (39) and (40). It turns out that
in this model, ig<ðx0; x0Þ ¼ NðEÞ and ig>ðx0; x0Þ ¼
1þ NðEÞ, so that these equations lead to the same result,
namely

g<ðx0; y0Þ ¼ NðEÞ½GRðx0; y0Þ −GAðx0; y0Þ�;
g>ðx0; y0Þ ¼ eβEg<ðx0; y0Þ: ð46Þ

The exact form of the retarded Green’s function is given by
(recall that GAðx0; y0Þ ¼ G�

Rðy0; x0Þ)

GRðx0; y0Þ ¼ −iθðx0 − y0Þ exp
�
−i
��

Eþ δm2

m
θðx0Þ

�
x0

−
�
Eþ δm2

m
θðy0Þ

�
y0
��

: ð47Þ

Using (23) and (46), one can also show that

Gcðx0; y0Þ ¼ coth

�
βE
2

�
Gρðx0; y0Þ: ð48Þ

Although a simple KB relation holds in this case, the
model is useful to test the validity of certain approximations
made in realistic theories which are not exactly soluble. A
relevant issue of the generalized KB ansatz (40) concerns
the role of the involved unknown retarded and advanced
propagators. An approximation which is much used in
practice is based on the assumption that the pole term,
which involves a delta function in Fourier space, would
give the main contribution. Let us check this assumption in
our soluble model, where the Fourier transform of the exact
retarded propagator (47) has a sharp peak at the quasipar-
ticle energy. We get

~GRðk0; TÞ

¼ θðTÞ
"
1 − e2iðk0−E−δm2

m ÞT

k0 − E − δm2

m

þ e2iðk0−E−δm2

m ÞT

k0 þ iϵ − E − δm2

2m

#

þ θð−TÞ
"
1 − e−2iðk0−EÞT

k0 − E
þ e−2iðk0−EÞT

k0 þ iϵ − E − δm2

2m

#
: ð49Þ

This result exhibits a pole at k0 ¼ Eþ δm2=2m − iϵ,
which leads to a delta function contribution in the spectral
function ~Gρ ¼ 2iIm ~GR. Going back to the mixed space,
this term yields the following form for the approximate
retarded Green’s function

Gq
Rðx0; y0Þ ¼ −iθðx0 − y0Þe−iEðx0−y0Þe−iδm2x0

m : ð50Þ

This form agrees with (47) when x0 > 0 and y0 < 0. This
occurs because the pole terms in ~GR come precisely from
this region, as we have pointed out earlier. On the other
hand, (50) is rather different from the exact result (47) when
x0 < 0 or y0 > 0, which shows that the quasiparticle
approximation is not satisfactory in general.

V. SUMMARY

We have derived, in the context of the class of non-
equilibrium quenched models (4), a generalization of the
Kadanoff-Baym ansatz. This extension involves a gener-
alized differential form relating the exact spectral and
correlated Green’s functions, which holds at all times
[see Eqs. (29) and (30)]
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iωcoth

�
βω

2

�
Gρðx0; y0;ωÞ ¼−

∂
∂x0Gcðx0; y0;ωÞ

þ ðGR
_ΠGcÞðx0; y0;ωÞ; ð51Þ

where ω is the energy given by (9) and the dot denotes the
derivative of the quench Πðz0Þ with respect to time. This
equation can be explicitly verified in the exactly soluble
models (5). We note that in equilibrium _Π vanishes, so that
the above equation reduces to the differential form of the
fluctuation-dissipation theorem which relates Gc and Gρ

through a thermal factor. On the other hand, when the
system is out of equilibrium _Π is significant and owing to
the presence of the retarded Green’s function GR in (51),
Gc and Gρ become in general independent functions.
Nevertheless, even out of equilibrium, the last term
vanishes by causality when x0 < 0, in which case (51)
simplifies to a particular differential equation [20]. In the
Fourier space, this equation leads to pole terms of
~Gcðk0; T;ωÞ and ~Gρðk0; T;ωÞ at the natural frequency of
the system, which are related through the usual KB ansatz
(3). We may interpret such a behavior from a physical point
of view by noting that in general the sudden quench takes
the system out of equilibrium. However, when k0 is close to
the natural frequency of the system, this may remain in a
state of near-equilibrium.
We have also examined the nonrelativistic limit of simple

(quenched) models which are exactly soluble. These
models provide a framework for testing certain assump-
tions made in realistic (but not exactly soluble) many-body
theories, concerning alternative generalizations of the
Kadanoff-Baym ansatz. We have shown that the neglect
of non-diagonal contributions in the Dyson-Keldysh equa-
tion (39), which is an important condition for the derivation
of such generalizations, may not be justified in the presence
of sharply peaked quenches. On the other hand, this
procedure is valid for regular quenches and leads to the
causal relation (40). However, we have verified that in this
case, the quasiparticle approximation (50) for the retarded
propagator is consistent with the exact result (47) only in a
particular time sector. Thus, we conclude that the quasi-
particle ansatz may not be appropriate in general.
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APPENDIX:

In this Appendix we discuss the exactly soluble model
obtained from (4) and (5) by setting δm2 ¼ 0. In mixed
space, the exact retarded and correlated Green’s functions,
for this model, have the forms (we indicate only their time
dependence for simplicity)

GRðx0; y0Þ ¼ Gð0Þ
R ðx0; y0Þ þ ðΔmÞGð0Þ

R ðx0; 0ÞGð0Þ
R ð0; y0Þ;

ðA1Þ

Gcðx0; y0Þ ¼ Gð0Þ
c ðx0; y0Þ þ ðΔmÞ½Gð0Þ

R ðx0; 0ÞGð0Þ
c ð0; y0Þ

þ Gð0Þ
R ðy0; 0ÞGð0Þ

c ð0; x0Þ�
þ ðΔmÞ2Gð0Þ

R ðx0; 0ÞGð0Þ
R ðy0; 0ÞGð0Þ

c ð0; 0Þ;
ðA2Þ

where Gð0Þ
c is given in (25) and Gð0Þ

R has the form

Gð0Þ
R ðx0; y0Þ ¼

Z
dk0
2π

e−ik0ðx0−y0Þ
1

ðk0 þ iϵÞ2 − ω2

¼ −
θðx0 − y0Þ

ω
e−ϵðx0−y0Þ sinωðx0 − y0Þ:

ðA3Þ

The infinitesimal Feynman parameter ϵ in (A3) is to be
taken to zero only at the end of the calculation. When the
time difference x0 − y0 is finite, the regularizing exponen-
tial factor may be set equal to unity, in which case one gets
back the usual expression for the free retarded Green’s
function. However, we will keep this factor for generality.
Let us now look, for example, at the last term in (A2) which
may be written as

ðΔmÞ2Gð0Þ
R ðx0; 0ÞGð0Þ

R ðy0; 0ÞGð0Þ
c ð0; 0Þ

¼ θðx0Þθðy0Þ
iω

�
Δm
ω

�
2

coth

�
βω

2

�

× e−ϵðx0þy0Þ sinðωx0Þ sinðωy0Þ: ðA4Þ

For large times (after the quench) the exponential factor
suppresses the contributions from the rapidly oscillatory
trigonometric functions. This is a general feature in
quenched models, where the Feynman parameter ϵ plays
the role of the inverse relaxation time [19]. It is easy to
verify that, for x0 < 0 and for y0 < 0, the exact Green’s
functions in (A1) and (A2) satisfy respectively the relations

iω coth

�
βω

2

�
Gρðx0; y0Þ ¼ −

∂
∂x0Gcðx0; y0Þ; ðA5aÞ

iω coth

�
βω

2

�
Gρðx0; y0Þ ¼

∂
∂y0Gcðx0; y0Þ: ðA5bÞ

Taking the Fourier transforms of (A1) and (A2) with
respect to the time difference t ¼ x0 − y0 and using the
forms of the free Green’s functions, we obtain
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Im ~GRðk0; TÞ ¼ ~Gρðk0; TÞ=2i

¼ −πsignðk0Þδðk20 − ω2Þ þ Δm
2ω2

�
cosð2ωTÞ cos 2k0T

k0
−
1

2

�
cos 2ðk0 þ ωÞT

k0 þ ω
þ cos 2ðk0 − ωÞT

k0 − ω

��
; ðA6Þ

~Gcðk0; TÞ ¼ −2i coth
�
βω

2

��
πδðk20 − ω2Þ

−
Δm
2ω2

�
π sinð2ωTÞδðk0Þ þ sinð2ωTÞ sin 2k0T

k0
þ 1

2

�
cos 2ðk0 þ ωÞT

k0 þ ω
−
cos 2ðk0 − ωÞT

k0 − ω

��

þ θðTÞ
�
Δm
ω

�
2 1

2ω

�
sin 2ðk0 þ ωÞT

k0 þ ω
þ sin 2ðk0 − ωÞT

k0 − ω
− 2 cosð2ωTÞ sinð2k0TÞ

k0

��
: ðA7Þ

These results show that near the physical pole k0 ¼ ω,
the exact correlated and spectral Green’s functions, ~Gc and
~Gρ, are simply related as

~Gcðk0; TÞ≃ cothðβk0=2Þ ~Gρðk0; TÞ: ðA8Þ

Aswe have mentioned, in the mixed space these poles come
from the regionswhere x0 and y0 have opposite signs, so that
the range of the difference t ¼ x0 − y0 is unbounded. These
regions [(x0 < 0, y0 > 0) and (y0 < 0, x0 > 0)] correspond
respectively to thedomainofvalidityof thedifferential forms
(A5a) and (A5b), which lead to the KB relation (A8).
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