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We show how to consistently renormalizeN ¼ 1 andN ¼ 2 supersymmetric Yang-Mills theories in flat
space with a local (i.e. spacetime-dependent) renormalization scale in a holomorphic scheme. The action
gets enhanced by a term proportional to derivatives of the holomorphic coupling. In the N ¼ 2 case, this
new action is exact at all orders in perturbation theory.
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I. INTRODUCTION

It is customary when performing the renormalization of
quantum field theories to introduce a constant renormal-
ization scale, required by dimensional analysis. In the
Wilsonian approach, renormalized quantum field theories
can be viewed as effective field theories valid below a
specific cutoff, and the bare couplings are adjusted in a
cutoff-dependent way so that the low-energy theory is
actually invariant under an infinitesimal global deformation
of the cutoff. This approach, however, is not the most
general: in principle, nothing prohibits us from deforming
the cutoff in a spacetime-dependent manner, meaning that
we can choose a different renormalization scale at different
points in time and space. As long as the deformations of the
cutoff are smooth, the renormalized theory should still
make perfect sense. In this way, one introduces a spacetime
dependence in the couplings of the theory, meaning that the
coupling constants are promoted to (background) fields.
Besides modifying the equations of motion for the quantum
fields of the theory, the spacetime-dependent couplings also
act as external sources for composite operators. For these
composite operators to be renormalized too, new counter-
terms have to be introduced in the theory. These counter-
terms have physical significance, as we shall see below.
The ideas summarized so far are found in the literature
under the name “local renormalization group” [1–6].1
One aspect of the local renormalization group (RG), in

particular, has been studied so far: when coupled to a
classical background metric, the local RG allows us to write
a generalization of the Callan-Symanzik equation that
describes the response of the theory under a local Weyl
rescaling of the metric, gμν → ΩðxÞ2gμν. The local RG
equation describes the properties of correlators involving
the energy-momentum tensor. It was used to provide an
independent derivation of the Zamolodchikov c theorem in
two dimensions [9] and to derive an analogous a theorem in
four dimensions, proving the irreversibility of the RG flow
at leading order in perturbation theory [4–6,10,11]. The

local RG equation also played a crucial role in elucidating
the relation between scale invariance and conformal invari-
ance in four dimensions [12–14]. It was used as well to try
and generalize the a-theorem in dimensions other than two
and four [15–18]. A superspace version of the local RG
equation for supersymmetric theories has been written
down [19], and the a function obtained in this way has
been shown to agree with nonperturbative derivations using
R-symmetry anomalies [20] or the dilaton effective action
in a curved background [21]. The same method allowed for
new constraints in the study of supersymmetric conformal
manifolds [22].
Most of the achievements of the local RG so far involve

renormalization in curved spacetime. It is convenient to
couple a locally renormalized theory to a background
metric, as it makes the local rescalings explicitly realized
as Weyl transformations. However, it is by no means
necessary. This work explores the consequences of the
local renormalization group in a pure flat space approach.
As mentioned above, the renormalizability of composite
operators requires us to augment the action with additional
terms. These are terms that do not involve the quantum
fields but only the couplings, or more precisely derivatives
thereof. They can be computed order by order in perturba-
tion theory, and are completely determined by the field
content of the theory and the choice of renormalization
scheme. In this work, we focus on supersymmetric gauge
theories, for which there is a preferred scheme, the
holomorphic scheme, and powerful nonrenormalization
theorems.
Our results for both N ¼ 1 and N ¼ 2 theories can be

summarized in one equation: the action of a renormalized
supersymmetric gauge theory must be enhanced by a new
“vacuum” contribution,

Svac ¼
dG
TG

Z
d4xd4θ

�ð∂μτÞð∂μτ̄Þ
8b

þ ðDτÞ2ðD̄ τ̄Þ2
192b3

�
; ð1Þ

where τ is the holomorphic coupling promoted here
to a chiral superfield, dG is the dimension of the gauge
group, TG the Dynkin index of its adjoint representation

1Recent reviews of these old ideas by the original authors can
be found in Refs. [7,8].
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(e.g. dG ¼ N2
c − 1 and TG ¼ Nc for a SUðNcÞ gauge

theory), and b is the one-loop coefficient of the β function,
i.e. b ¼ 3TG=ð8π2Þ for N ¼ 1 and b ¼ 2TG=ð8π2Þ for
N ¼ 2. We describe in the next sections how this result is
obtained from a one-loop computation, and how it remains
valid at all orders for N ¼ 2.

II. N = 2 WITH A SPACETIME-DEPENDENT
CUTOFF

The idea of this work is to use the Wilsonian approach to
define the N ¼ 2 (and later N ¼ 1) supersymmetric
Yang-Mills theory in terms of a finite, N ¼ 4 theory softly
broken by a spacetime-dependent mass term for the matter
hypermultiplet. We follow in particular the derivation of
Ref. [23]. The N ¼ 4 theory in isolation is finite, and
therefore its gauge coupling g0 and vacuum angle Θ are not
renormalized. We make use of N ¼ 1 superspace formu-
lation throughout the derivation, in which the N ¼ 4
Lagrangian can be written

LN¼4 ¼
1

8

Z
d2θ

�
1

g20
þ iΘ
8π2

�
trðWαWαÞ þ H:c:

þ
Z

d4θ
2

g20
trðχ̄e−2Vχe2VÞ

þ
X2
i¼1

Z
d4θ

2

g20
trðΦ̄ie−2VΦie2VÞ

þ
Z

d2θ

ffiffiffi
2

p

g20
trðχ½Φ1;Φ2�Þ þ H:c: ð2Þ

There are three chiral superfields, χ, Φ1 and Φ2, a vector
field V, and Wα is the field strength tensor associated with
V. InN ¼ 2 language, ðχ; VÞ forms a gauge supermultiplet
and ðΦ1;Φ2Þ a matter hypermultiplet. We want to softly
deform the theory by adding a mass term for the Φi, so that
a pure N ¼ 2 gauge theory is recovered below that mass
scale. Before proceeding, however, we perform a rescaling
of the hypermultiplet as Φi → g0Φi. The Jacobian of this
transformation is nontrivial, and we get, therefore,

LN¼4 ¼
1

8

Z
d2θ

�
1

g2c
þ iΘ
8π2

�
trðWαWαÞ þ H:c:

þ
Z

d4θ
2

g2c
trðχ̄e−2Vχe2VÞ

þ
X2
i¼1

2

Z
d4θtrðΦ̄ie−2VΦie2VÞ

þ
ffiffiffi
2

p Z
d2θtrðχ½Φ1;Φ2�Þ þ H:c:; ð3Þ

where we have now

1

g2c
¼ 1

g20
þ 2TG

8π2
logðg0Þ: ð4Þ

Equation (3) is a fancy way of describing N ¼ 4 super-
symmetric Yang-Mills, where the supersymmetries are not
obvious. The finiteness of the theory is nevertheless
preserved, and the hypermultiplet fields Φi are now
canonically normalized and ready to be integrated out.
We deform this theory by adding a soft mass term for the

hypermultiplet ðΦ1;Φ2Þ,

δL ¼
X2
i¼1

Z
d2θΛtrðΦiΦiÞ þ H:c:; ð5Þ

where Λ is taken to be an external chiral multiplet, whose
vacuum expectation value defines a mass scale M:

hΛi ¼ hΛ̄i ¼ M: ð6Þ

In theWilsonian spirit, we have to replace the bare coupling
g0 by a functional of Λ in such a way that the low-energy
theory at energies p2 ≪ M2 remains invariant under an
infinitesimal variation of Λ. This can be done by consid-
ering the Lagrangian

LN¼2 ¼
1

8

Z
d2θτ½Λ�trðWαWαÞþH:c:

þ
Z

d4θðτ½Λ�þ τ̄½Λ̄�Þtrðχ̄e−2Vχe2VÞ

þ
X2
i¼1

2

Z
d4θtrðΦ̄ie−2VΦie2VÞ

þ
X2
i¼1

Z
d2θΛtrðΦiΦiÞþH:c:

þ
ffiffiffi
2

p Z
d2θtrðχ½Φ1;Φ2�ÞþH:c:þLvac½Λ; Λ̄�: ð7Þ

τ½Λ� is fixed by requiring that the theory does not depend on
Λ after integrating out the Φi superfields. It can be
determined in practice by writing Λ ¼ M þ δΛ and per-
forming a perturbative expansion, considering δΛtrðΦiΦiÞ
as an interaction term in the theory of two massive chiral
superfields. The only relevant Feynman diagrams are those
with a loop of Φ1 or Φ2 and external legs consisting in V, χ
and δΛ, as illustrated in Fig. 1. The low-energy effective
theory is then obtained by only considering terms of order
Mn with n ≥ 0. By simple power counting and taking into
account gauge invariance, diagrams with V or χ external
legs cannot have δΛ legs that carry momentum. The low-
energy action in the gauge and matter sectors is that of a
theory with constant Λ, and we find, therefore,
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τ½Λ� ¼ 1

g20
þ iΘ
8π2

þ 2TG

8π2
log

�
Λ
μ

�
: ð8Þ

This is the ordinary global renormalization group result,
obtained in the local renormalization framework. Notice
that the logðg0Þ term in eq. (4) could be canceled by a
redefinition Λ → g0Λ.
There is however a crucial difference between local and

global renormalization: in our method, there are infinitely
many more diagrams of orderM0 which do not decouple in
the infrared: these are all diagrams with δΛ external legs
only. Their contribution must be canceled by the term
denoted Lvac in the action (7). Only diagrams with at most
two powers of momentum on the external legs can
contribute in the regime p2 ≪ M2, and diagrams with less
than two powers of momentum actually vanish identically.
Each of the relevant diagrams is separately free of ultra-
violet divergences from N ¼ 4 supersymmetry, but sum-
ming all of them is a rather advanced combinatorics
problem. Instead, we construct the propagator for Φ with
a spacetime-dependent mass in a derivative expansion, and
use the relation between the propagator and the integrand to
evaluate the sum of diagrams, as explained in the appendix.
The result is finite and independent of M:

Lvac ¼
dG

ð4πÞ2
Z

d4θ

�∂μΛ∂μΛ̄

2ΛΛ̄
þDαΛDαΛD̄ _αΛ̄D̄ _αΛ̄

48Λ2Λ̄2

�
; ð9Þ

where Dα and D̄ _α are the SUSY-covariant derivatives.
Notice that this Lagrangian only depend on the logarithm of
Λ and Λ̄, and as such it can be rewritten in terms of the
holomorphic coupling τ using the relation (8),

Lvac¼
dG

ð4πÞ2
Z

d4θ

�
1

2b2
ð∂τÞ2þ 1

48b4
ðDτÞ2ðD̄ τ̄Þ2

�
; ð10Þ

where b is the β-function coefficient defined in the
Introduction. This form makes it explicit that Lvac remains
part of theN ¼ 2 supersymmetric Yang-Mills theory when
we take the limit Λ → ∞. It should also be emphasized that
Lvac is exact at all loop orders in perturbation theory: since
Φ in the theory (7) does not have self-interactions, there are

literally no diagrams contributing to Lvac beyond the one
loop order.

III. EXTENSION TO N = 1

The N ¼ 1 theory can be derived along the same lines,
with substantially similar results. The important difference
is that our result is valid at one-loop only, higher-order
corrections being important in principle, as illustrated
in Fig. 2.
The derivation of the N ¼ 1 action from N ¼ 4

proceeds as in the previous section, except that we now
introduce a soft mass term for all three chiral multiplets,Φ1,
Φ2 and χ (which we rename Φ3 for simplicity). The
Lagrangian is, therefore,

LN¼1 ¼
1

8

Z
d2θτ½Λ�trðWαWαÞ þ H:c:

þ
X3
i¼1

2

Z
d4θtrðΦ̄ie−2VΦie2VÞ

þ
X3
i¼1

Z
d2θΛtrðΦiΦiÞ þ H:c:

þ
ffiffiffi
2

p
g0

X3
i;j;k¼1

ϵijk
3

Z
d2θtrðΦiΦjΦkÞ þ H:c:

þ Lvac½Λ; Λ̄�; ð11Þ

where we must now require

τ½Λ� ¼ 1

g20
þ iΘ
8π2

þ 3TG

8π2
log

�
Λ
μ

�
þOðg20Þ: ð12Þ

Not surprisingly, the cutoff dependence of τ agrees again
with the global renormalization group approach. As before,
we have rescaled Λ → g0Λ to get rid of the logðg0Þ
appearing in the definition of the gauge coupling for
canonically normalized matter fields. While this rescaling
was absolutely insignificant in the N ¼ 2 case, for N ¼ 1
it is absolutely necessary for τ to make sense as a
perturbative expansion in powers of the bare coupling
g0. In other words, for N ¼ 1 theories the vacuum
contribution Lvac depends on the choice of renormalization
scheme, and our results apply to the holomorphic scheme

FIG. 1. A sample of the superspace diagrams contributing to the
effective action ofN ¼ 2 supersymmetric Yang-Mills. The fields
Φi are here running in the loop. The external legs consist in gauge
superfields (a), chiral matter fields (b) or the chiral field Λ (a,b
and c).

FIG. 2. Same as Fig. 1 for N ¼ 1 supersymmetric Yang-Mills.
This time there are no external chiral matter superfield, but multi-
loop diagrams (c) contribute to Lvac.
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only. The computation of Lvac in this case goes exactly as
before, the only difference being that there are now three
different chiral fields running in the loop, so that we recover
Eq. (9) multiplied by a factor of 3

2
, and, thus,

Lvac ¼
dG

ð4πÞ2
Z

d4θ

�
3

4b2
ð∂τÞ2 þ 1

32b4
ðDτÞ2ðD̄ τ̄Þ2

�
;

þ higher-loop corrections: ð13Þ

The investigation of higher-order corrections are beyond
the scope of this work; notice that a supersymmetry-
breaking anomaly has been reported to appear at the
two-loop order [24–27].

IV. CONCLUSIONS

We have shown in this work how the local renormaliza-
tion group can be derived in a Wilsonian approach to
N ¼ 2 and N ¼ 1 supersymmetric Yang-Mills theories.
The trick of promoting the couplings of supersymmetric
theories to background sources has been used before, time-
honored examples being the Shifman-Vainshtein derivation
of the all-order β function for supersymmetric theories with
matter [28,29] or the study of soft supersymmetry breaking
effects relevant for phenomenology [30,31]. But to the best
of our knowledge, it is the first time that the presence of the
“vacuum” term (1) in the effective action is emphasized.
Such a term is reminiscent of the dilaton effective action
used in the nonperturbative proof of the a theorem [32,33],
and its variation with respect to the holomorphic coupling
is indeed related to the conformal anomalies through the
work of Jack and Osborn [5–7,19]. The a function must in
particular obey

da
dτ

∝ βðτÞ δ
2S

δτδτ̄

����
τ¼const

∝
dG
TG

: ð14Þ

The exact form of this relation and its consequences will be
determined elsewhere [34], as the details of this equality
have only been worked out for nonsupersymmetric field
theories. For the same reason we cannot directly compare
our result to existing computations [35,36]. Nevertheless, it
can be noted already that the monotonicity of a at all orders
in perturbation theory can be probably be made obvious for
N ¼ 2. Equation (14) also indicates that nonperturbative
effects must become relevant along the renormalization
flow to prevent a from running all the way to negative
values [37,38].
The study of nonperturbative phenomena like instantons

and monopoles in the local RG framework is also of
foremost interest. The novelty there is that Lvac arises as a
Lagrangian term and is well defined all along the renorm-
alization group flow, and can therefore be incorporated in
semiclassical computations, in which one can imagine
allowing the renormalization scale to vary over space

and/or time [34]. A true semiclassical result should be
independent of the choice of renormalization scale, even
locally. Other directions deserve further studies as well, as
for instance the extension of our results to models with
matter fields, or the investigation of the higher-loop
structure of Lvac.
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APPENDIX: COMPUTATION OF THE
EFFECTIVE ACTION

In this appendix, we provide more details on the
derivation of Eq. (9). The first step consists in evaluating
the propagator for the chiral superfield Φ in the presence of
a spacetime dependent mass term Λ in a derivative
expansion. We can write the Lagrangian for Φ as

LΦ ¼
Z

d4θ
1

2
ðΦΦ̄ÞΩ

�
Φ

Φ̄

�
; ðA1Þ

where we defined

Ω ¼
�−Λ D2

4□
1

1 −Λ̄ D̄2

4□

�
; ðA2Þ

making use of the (nonlocal) chiral projectors D2

4□
, D̄2

4□
. The

propagator for the doublet ðΦ; Φ̄Þ is then proportional to the
inverse of the matrix Ω,

Δ ¼ H
�

Λ̄ D2

4□
− D2D̄2

16□

− D̄2D2

16□
Λ D̄2

4□

�
; ðA3Þ

where H is a derivative operator satisfying

H · ð□þ ΛΛ̄Þ ¼ 1: ðA4Þ

H can be computed term by term in a derivative
expansion,

H ¼ 1

□þ ΛΛ̄
þ 2½∂μðΛΛ̄Þ�

1

½□þ ΛΛ̄�3 ∂
μ

þOð∂2ΛΛ̄Þ; ðA5Þ

where we used the notation

1

½□þ ΛΛ̄�n ≡
X∞
k¼0

ð−1Þk ðnþ k − 1Þ!
ðn − 1Þ!k!

1

ðΛΛ̄Þnþk
□

k: ðA6Þ
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In the limit Λ; Λ̄ → M, we recover the usual propagator for
a chiral superfield of mass M,

Δ0 ¼
1

□þM2

�
M D2

4□
− D2D̄2

16□

− D̄2D2

16□
M D̄2

4□

�
: ðA7Þ

By writing down the full propagator Δ in the presence of
background sources, we have actually summed over
arbitrarily many insertions of the chiral superfields Λ
and Λ̄. The result can be expressed as a single interaction
term I , obeying

Δ ¼ Δ0 þ Δ0 · I · Δ0: ðA8Þ

The exact form of the matrix I as a derivative expansion
can be resolved with the help of computer algebra. Its
leading term turns out to be of order OðD2ΛÞ, where D
indicates the SUSY-covariant derivative acting on an

external source Λ (or D̄ acting on Λ̄). The sum of
Feynman diagrams

ðA9Þ

is then readily given in terms of I by

A ¼ trðΔ0 · IÞ þ
1

2
trðΔ0 · I · Δ0 · IÞ þ…; ðA10Þ

where higher-order terms can be neglected as they are at
least of order OðD6ΛÞ and their contribution to the low-
energy effective action is therefore suppressed by powers of
M. Upon loop integration, terms with less than four SUSY-
covariant derivatives vanish and we are left with two terms
of order OðD4ΛÞ that have been reported in Eq. (9).
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