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We compute the logarithmic coefficient of the entanglement entropy on a sphere for a Maxwell field in
d ¼ 3þ 1 dimensions. In spherical coordinates the problem decomposes into one-dimensional ones along
the radial coordinate for each angular momentum. We show that the entanglement entropy of a Maxwell
field is equivalent to one of two identical massless scalars from which the mode of l ¼ 0 has been removed.

This shows the relation cMlog ¼ 2ðcSlog − cSl¼0

log Þ between the logarithmic coefficient in the entropy for a

Maxwell field cMlog, the one for a d ¼ 3þ 1 massless scalar cSlog, and the logarithmic coefficient cSl¼0

log for a

d ¼ 1þ 1 scalar with a Dirichlet boundary condition at the origin. Using the accepted values for these

coefficients cSlog ¼ −1=90 and cSl¼0

log ¼ 1=6, we get cMlog ¼ −16=45, which coincides with Dowker’s

calculation, but does not match the coefficient − 31
45

in the trace anomaly for a Maxwell field. We have

numerically evaluated these three numbers cMlog, c
S
log and c

Sl¼0

log , verifying the relation, as well as checked that

they coincide with the corresponding logarithmic term in mutual information of two concentric spheres.

DOI: 10.1103/PhysRevD.93.105031

I. INTRODUCTION

In four dimensions the entanglement entropy (EE) on a
sphere for a conformal field theory (CFT) admits an
expansion of the form

SðRÞ ¼ c2
R2

ϵ2
þ clog log

R
ϵ
þ S0; ð1Þ

where ϵ is a short distance cutoff, and R is the sphere radius.
The logarithmic coefficient clog is expected to be indepen-
dent of regularization. Arguments based on conformal
invariance of the theory imply that clog is generally given
by the coefficient multiplying the Euler density in the trace
anomaly [1,2]. The early proof of this result for 3þ 1
dimensions done by Solodukhin [1] relied on conformal
invariance and the connection between the EE with the
holographic entropy. Later, a proof of the connection of the
logarithmic coefficient and the trace anomaly was given for
any even dimensions in [2] using conformal mappings to
express the EE on a sphere as thermal entropy in de Sitter
space with a fixed value of the product between the
temperature and the curvature radius.
For free scalar and fermion fields in 3þ 1 dimensions

this was confirmed numerically and analytically [3–5] by
explicit calculations. On the other hand, for a Maxwell
field, the explicit thermodynamic calculation in de Sitter
space by Dowker reveals a different result [4].
This mismatch together with subtleties found to define

correctly the partition of the Hilbert space as a tensor
product for lattice gauge models [6] inspired the introduc-
tion of the algebraic approach in [7,8] (see also [9]), where
the entropy is associated to local gauge invariant operator
algebras rather than regions. There are ambiguities on the

details of the choice of algebra at the boundary of the
region, and these lead to ambiguities in the entropy. Several
works computing the EE for a Maxwell field using directly
methods of the continuum have also pointed out subtleties
on boundary details of the calculations [10–13]. Some
authors suggested these boundary details can change the
logarithmic coefficient [10–12], and with the appropriate
choice the mismatch with the anomaly might be healed.
However, as pointed out in [7], the algebra ambiguities in

the continuum limit are of the same kind as the ones
affecting the EE for other fields. In particular, the mutual
information (MI) does not suffer any ambiguity in the
continuum limit. Therefore, if we use mutual information to
compute the logarithmic coefficient for a sphere there is no
issue of boundary details in the calculation. Moreover, there
is no known way to select a specific choice of algebra from
the model itself, without introducing external elements that
would make the calculation nonuniversal. Most probably,
in QFT the universal meaning for parts in the EE of the
vacuum state is always contained in mutual information.
In this work, we explicitly compute the EE for a Maxwell

field (using an algebra without center, see [7]) and the
mutual information. We find that the logarithmic coefficient
coincides with the number calculated in [4] and differs from
the anomaly.
We first, exploiting the spherical symmetry of the

problem, reduce the problem to a one-dimensional one
which depends only on the radial coordinate, in the same
spirit as the method introduced by Srednicki in [14] for
scalar fields in spheres. We found the case of a Maxwell
field is equivalent to two copies of a massless scalar field,
where the angular momentum mode l ¼ 0 has been
removed. This identification automatically tells us the
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logarithmic coefficient is cMlog ¼ 2ðcSlog − cSl¼0

log Þ, where

cSlog ¼ − 1
90

corresponds to the logarithmic coefficient for

a massless scalar in 3þ 1 dimensions and cSl¼0

log ¼ 1
6
to the

l ¼ 0 mode of a scalar field. This gives cMlog ¼ − 16
45
for the

Maxwell field.
We have successfully tested these results numerically,

computing the EE in the lattice for a scalar, the scalar zero
mode, and the Maxwell field. We find the same is true for
the logarithmic coefficients computed with mutual infor-
mation. As a cross-check, we have computed also the area
coefficients in the entanglement entropy and the mutual
information finding a perfect accord with the ones reported
previously in the literature [5,15].
The paper is organized as follows. In the second section,

we discuss the planar problem of infinite parallel planes.
This is useful as a warm-up exercise because in the planar
geometry there is also an equivalence between the Maxwell
and two massless scalar fields. In fact, the EE in planar
geometry does not distinguish between the two theories,
both have the same universal coefficient. In this sense, the
sphere is different. In the third section, we show both
theories differ in the zero angular momentum mode which
is subtracted in the Maxwell theory. In the fourth section,
we check our results numerically. Finally, we briefly
discuss interpretations of the anomaly mismatch and
speculate on a possible resolution.

II. MUTUAL INFORMATION FOR
PARALLEL PLANES

Before considering the problem of the EE for a Maxwell
field on the sphere, we study the case of two parallel planes
separated by a distance L as shown in Fig. 1. Most of the
ingredients in this discussion are useful later for the
spherical case. The parallel planes define in turn two

regions A and B on each side A ¼ fx ¼
ðx1; x2; x3Þ∶ −∞ ≤ x1 ≤ 0g and B ¼ fx ¼ ðx1; x2; x3Þ∶
L ≤ x1 ≤ ∞g. We are computing the mutual information
between these two regions. This is a finite and well-defined
quantity, given by the combination of entropies

IðA; BÞ ¼ SðAÞ þ SðBÞ − SðA∪BÞ: ð2Þ

This case can be treated with dimensional reduction as
discussed in [15,16] for free scalar and fermions.
The Hamiltonian of the Maxwell field is

H ¼ 1

2

Z
d3xðE2 þ B2Þ; ð3Þ

with commutation relations

½EiðxÞ; BjðyÞ� ¼ −iϵijk∂kδðx − yÞ; ð4Þ

and constraints

∇E ¼ ∇B ¼ 0: ð5Þ

We choose the planes perpendicular to x1. In order to
analyze the mutual information for this configuration we
decompose the fields in Fourier sum in the two directions
parallel to the plane. We assume that the directions x2, x3

are compactified to large sizes R2, R3 with periodic
boundary conditions. Writing x≡ x1 and y ¼ ðx2; x3Þ,
we have

Eiðx; yÞ ¼
X
k

eikyQ
ið2πR1R2Þ12

Eiðx; kÞ; ð6Þ

Biðx; yÞ ¼
X
k

eikyQ
ið2πR1R2Þ12

Biðx; kÞ: ð7Þ

Here, the two component vector k ¼ ð2πn2=R2; 2πn3=R3Þ,
where n2, n3 are integers, and the sum is over these
integers. We also have

Eiðx;−kÞ ¼ Eiðx; kÞ†; ð8Þ

Biðx;−kÞ ¼ Biðx; kÞ†: ð9Þ

Let us further decompose the vector components into the
ones parallel and orthogonal to k,

E∥ ¼ k̂:E; E⊥ ¼ ðx̂ × k̂Þ:E; B∥ ¼ k̂:B;

B⊥ ¼ ðx̂ × k̂Þ:B:
ð10Þ

The constraint equations tell us that E∥ and B∥ are
dependent operators

1x

x
2

x
3

L

FIG. 1. Two parallel planes separated by a distance L in
the x1 direction. These define the entangling surfaces for regions
A and B.
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E∥ ¼
i
jkj ∂1E1; B∥ ¼

i
jkj ∂1B1: ð11Þ

The commutation relations decompose independently in
each of the modes of fixed vector k. The nonzero ones are

½E1ðx; kÞ; B†
⊥ðx0; k0Þ� ¼ −jkjδðx − x0Þδkk0 ; ð12Þ

½E⊥ðx; kÞ; B†
1ðx0; k0Þ� ¼ jkjδðx − x0Þδkk0 : ð13Þ

The algebra of operators Eiðx; kÞ, E†
i ðx; kÞ, Biðx; kÞ,

B†
i ðx; kÞ is the same for k and −k. We write ~k for the

set k, −k taken as the equivalence class. Making the
identifications

ϕ1 ¼ −
i
jkjB1; π1 ¼ E⊥; ð14Þ

ϕ2 ¼ −
i
jkjE1; π2 ¼ B⊥; ð15Þ

we have canonical commutation relations for the complex
scalar fields ϕ1 and ϕ2 and their conjugate momentum. The
Hamiltonian writes in these variables

H ¼
X
~k

Z
d2xðπ†1π1 þ π†2π2 þ k2ϕ†

1ϕ1 þ k2ϕ†
2ϕ2

þ ∂1ϕ
†
1∂1ϕ1 þ ∂1ϕ

†
2∂1ϕ2Þ: ð16Þ

This is precisely the dimensional reduction of two real
scalar fields (see [17]). Hence, as the local operator
algebras and states are identical, mutual information for
the Maxwell field in the wall geometry is given by twice the
one for a massless four-dimensional (d ¼ 3þ 1) scalar
field. This last is in turn the sum over the mutual
information for the tower of the massive one-dimensional
scalars. For a scalar field the final result is

I ¼ κ
A
L2

; ð17Þ

where A is the wall area, L is the separating distance
between the planes and κ was computed in [15,16]

κ ¼
�
ðd − 1Þ2d−2πd−1

2 Γ
�
d − 1

2

��
−1 Z ∞

0

dyyd−2cðyÞ

¼ 0.0055351600…; ð18Þ

with cðrÞ the one-dimensional entropic c-function. The
“strip” term for a Maxwell field is then twice the one for
scalars. However, differences between the Maxwell field
and massless scalars will show up for curved entangling
surfaces.

III. ENTANGLEMENT ENTROPY FOR A
MAXWELL FIELD IN THE SPHERE

We consider now the EE for a Maxwell field in the
sphere. As before, the problem can be again dimensionally
reduced, this time due to the spherical symmetry.

A. Maxwell field: The Hamiltonian, constraints
and commutators

In spherical coordinates, the vectors Ē and B̄ can be
expressed as

Ē ¼ Er
lmðrÞȲr

lmðθ;ϕÞ þ Ee
lmðrÞȲe

lmðθ;ϕÞ
þ Em

lmðrÞȲm
lmðθ;ϕÞ; ð19Þ

where the vector spherical harmonics Ȳs
lm are defined in

terms of the standard Ylm as

Ȳr
lm ¼ Ylmðθ;ϕÞr̂; l ≥ 0; −l ≤ m ≤ l; ð20Þ

Ȳe
lm ¼ r∇̄Ylmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp ; l > 0; −l ≤ m ≤ l; ð21Þ

Ȳm
lm ¼ r̄ × ∇̄Ylmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp ; l > 0; −l ≤ m ≤ l; ð22Þ

and satisfy the following orthogonality conditions

Z
Ȳs0
l0m0 :Ȳs�

lmdΩ ¼ δs;s0δl;l0δm;m0 s; s0 ¼ r; e;m: ð23Þ

From there

Es
lm ¼

Z
Ē:Ȳs

lmdΩ s ¼ r; e;m: ð24Þ

In these coordinates, the Hamiltonian (3) simply results in

H ¼
X
lm

Hlm; l ≥ 0; ð25Þ

with

Hlm ¼ 1

2

Z
r2dr

X
s¼r;e;m

½ðEs
lmðrÞÞ2 þ ðBs

lmðrÞÞ2�; l > 0;

ð26Þ

and

H0 ¼
1

2

Z
r2dr½ðEr

0ðrÞÞ2 þ ðBr
0ðrÞÞ2�: ð27Þ

The constraints tell us that the radial and electric compo-
nent are not independent. From ∇:E ¼ 0 and ∇:B ¼ 0 we
have
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∂Er
lm

∂r þ 2

r
Er
lm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp
r

Ee
lm; ð28Þ

∂Br
lm

∂r þ 2

r
Br
lm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp
r

Be
lm; ð29Þ

where we have used that

∇̄:Ȳr
lm ¼ 2

r
Ylm; ð30Þ

∇̄:Ȳe
lm ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp
r

Ylm; ð31Þ

∇̄:Ȳm
lm ¼ 0: ð32Þ

From here, it follows that Ee
lm and Be

lm are dependent
variables that can be written in terms of Er

lm and Br
lm

respectively. Equation (28) fixes Er
l¼0 ¼ const=r2. Since

there are no charges, the only consistent solution finite at
the origin is Er

0 ¼ 0.
Finally, we consider the commutation relations for the

radial and magnetic components

½Er
lmðrÞ; Bm

l0m0 ðr0Þ� ¼ −½Em
lmðrÞ; Br

l0m0 ðr0Þ�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp
r3

δðr − r0Þδl;l0δm;m0 : ð33Þ

The other nonzero commutators are the ones involving the
dependent variables Ee and Be which follow from the
constraint equations. They will not be needed in what
follows. Replacing in the Hamiltonian (26) the constraint
Eqs. (28) and (29) we obtain

Hlm ¼ 1

2

Z
drr2

�
ðEr

lmÞ2 þ ðBm
lmÞ2

þ
�

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ∂Er

lm

∂r þ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp Er

lm

�
2
�

þ ðElm ↔ BlmÞ: ð34Þ

We can identify two identical sets of modes ðEr; BmÞ and
ðBr; EmÞ. Then, in order to reduce the commutation
relations (33) to the canonical ones and to fix the coefficient
of the square of the canonical conjugated momenta [ðEm

lmÞ2
and ðBm

lmÞ2] to 1 in the Hamiltonian we introduce the
following rescaled variables

~Em
lm ¼ rEm; ~Bm

lm ¼ rBm
lm; ð35Þ

~Er
lm ¼ r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp Er
lm; ~Br

lm ¼ r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp Br

lm: ð36Þ

The Hamiltonian and commutators in terms of the new
variables read

Hlm ¼ 1

2

Z
dr

�
ð ~Bm

lmÞ2 þ
�
d ~Er

lm

dr

�2

þ lðlþ 1Þ
r2

ð ~Er
lmÞ2

�

þ ð ~Elm ↔ ~BlmÞ; ð37Þ

½ ~Er
lmðrÞ; ~Bm

l0m0 ðr0Þ� ¼ δðr − r0Þδl;l0δm;m0 : ð38Þ

Note that H0 ¼ 0.
The boundary conditions in the origin for each mode ~Elm

can be studied considering the classical equations. The
Lagrangian, omitting the subscript ðlmÞ,

L ¼ 1

2

�
_E2 − ~E02 − ~E2 lðlþ 1Þ

r2

�
; ð39Þ

gives the following equation of motion:

̈~Eðr; tÞ þ ~Eðr; tÞ lðlþ 1Þ
r2

− ~E00ðr; tÞ ¼ 0: ð40Þ

For ~Eλðr; tÞ ∼ e−iλt ~EλðrÞ, we obtain

~E00
λðrÞ − ~EλðrÞ

lðlþ 1Þ
r2

þ λ2 ~EλðrÞ ¼ 0; ð41Þ

which gives ~EλðrÞ ¼
ffiffiffi
r

p ðC1Jðlþ1
2
ÞðλrÞ þ C2Yðlþ1

2
ÞðλrÞÞ.

Thus, ~E ∼ rlþ1 when r → 0. We have set C2 ¼ 0 since
this solution is divergent in the origin. If we think now in
the original variables

Er ∼ ~Er=r2 ∼ rl−1; Bm ∼ ~Er=r ∼ rl; ð42Þ

and

Ee ∼ rEr0 þ 2Er ∼ rl−1: ð43Þ

This tells us all the fields ~E, ~B go to zero at the origin while
the original ones can take a constant value for l ¼ 1.

B. Scalar field

The same analysis can be done for a scalar field. Using
spherical coordinates, the radial Hamiltonian in three
dimensions can be written as [5,14]

H ¼
X∞
l¼0

Xl

m¼−l
Hlm ¼

X∞
l¼0

Xl

m¼−l

1

2

×
Z

∞

0

dr

�
~π2lm þ r2

� ∂
∂r

�
~ϕlm

r

��2
þ lðlþ 1Þ

r2
~ϕ2
lm

�
;

ð44Þ

where ~ϕlm and ~πlm are defined in terms of the original field
and momentum as
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~ϕlm ¼ r
Z

dΩϕðrÞYlmðθ;φÞ; ð45Þ

~πlm ¼ r
Z

dΩπðrÞYlmðθ;φÞ; ð46Þ

such that

½ ~πlmðrÞ; ~ϕl0m0 ðr0Þ� ¼ iδðr − r0Þδll0δmm0 : ð47Þ

Expanding the second term, we arrive at

Hlm ¼ 1

2

Z
∞

0

dr

�
~πlm

2 þ
�∂ ~ϕlm

∂r
�2

þ lðlþ 1Þ
r2

~ϕlm
2 −

∂
∂r

�
~ϕlm

2

r

��
;

≡ 1

2

Z
∞

0

dr

�
~πlm

2 þ
�∂ ~ϕlm

∂r
�2

þ lðlþ 1Þ
r2

~ϕlm
2

�
: ð48Þ

The boundary term − ∂
∂r ð

~ϕ2

r Þ can be neglected since its
corresponding boundary contribution vanishes as ∼r2lþ1.
This Hamiltonian is identical to the Hamiltonian of each

of the two electromagnetic spherical modes, Eq. (37),
except for the additional ϕl¼0 radial mode. This l ¼ 0
mode is equivalent to a massless free scalar in d ¼ 1þ 1
with boundary condition ϕl¼0ð0Þ ¼ 0 at the origin. Thus,
we conclude the problem for the Maxwell field in the
sphere is equivalent to the one of two massless scalar fields
where the l ¼ 0 mode has been removed. In 2þ 1
dimensions the identification between the algebra of the
Maxwell field and the algebra of two truncated scalars
follows directly from the duality 1

2
ϵρμνFμν ¼ ∂ρϕ, and

extends to any region [8].

C. Entanglement Entropy

From the identification in the previous section, we
conclude the Maxwell theory in the radial coordinate
corresponds to two truncated scalar fields with the l ¼ 0
mode removed. Due to the symmetry, the theory decouples
in angular momenta such that the total entropy is written as
an infinite sum of independent contributions S ¼ P

l;mSl;m.
For a truncated scalar, the l ¼ 0 term is missing in the sum.
We conclude that, in particular, the logarithmic coefficient
in the EE for a sphere must be

cMlog ¼ 2ðcSlog − cSl¼0

log Þ; ð49Þ

where cSlog is the log coefficient for a 3þ 1 dimensional

scalar field in a sphere, and cSl¼0

log is the one of a one-
dimensional massless scalar in an interval ð0; RÞ with
condition ϕð0Þ ¼ 0 at the origin. Both cSlog ¼ −1=90
[1,3] and cSl¼0

log ¼ 1=6 [18] are known to correspond to
the conformal anomalies of the associated theories. We
have

cMlog ¼ 2

�
−

1

90
−
1

6

�
¼ −

16

45
: ð50Þ

This is the value found by Dowker in [4] by thermody-
namical arguments in de Sitter space.

IV. LATTICE REALIZATION FOR
SPHERICAL SETS

We check numerically the results found above, evaluat-
ing the EE for Maxwell and scalar fields in the sphere and
the scalar zero angular momentum mode field in the line.
We start reviewing very briefly the techniques we are going
to use (see [15] for a review). Finally, we also consider the
mutual information. All the numerical results confirm the
ones discussed in the previous sections.

A. Entropy for scalar and gauge fields

In general, for a set of fields ϕi and πi with canonical
commutation relations, the entanglement entropy associ-
ated to a region V can be calculated from the field and
momentum correlators X ¼ hϕiϕji and P ¼ hπiπji
restricted to V [15]. These, in turn, are functions of the
matrix K

Xij ¼
1

2
K

−1
2

ij ; Pij ¼
1

2
K

1
2

ij; ð51Þ

defined from the discrete Hamiltonian

H ¼ 1

2

�X
i

π2i þ
X
ij

ϕiKijϕj

�
: ð52Þ

The entropy is written in terms of C ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XjV:PjV

p
as

S ¼ ðCþ 1=2Þ logðCþ 1=2Þ − ðC − 1=2Þ logðC − 1=2Þ:
ð53Þ

For spherical sets, the problem can be reduced to a one-
dimensional one in the radial coordinate as shown in the
previous section. In our case, for each l the Hamiltonian is
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Hl ¼
1

2

X
i

�
π2i þ ϕ2

i
lðlþ 1Þ

i2
þ ðϕiþ1 − ϕiÞ2

�
; ð54Þ

which is simply the discrete version of the radial
Hamiltonian (37) in the previous section. More precisely,
there are two identical and independent set of modes with
this sameHamiltonian. From (54),we identify thematrixKl,

Kl
1;1 ¼ lðlþ 1Þ þ 1; ð55Þ

Kl
i;i ¼

lðlþ 1Þ
i2

þ 2; ð56Þ

Kl
i;iþ1 ¼ Kiþi;i ¼ −1: ð57Þ

We note, that this matrix is different from the one used by
Srednicki [14]. This is simply due to the fact that we are
implementing a different discretization. This will not spoil
the final continuum limit. In fact, both K terms give rise
to the same correlator in the continuum. As a cross-check,
in the large lattice size limit, we have tested the correlators
(51) to the ones in the continuum where Kl can be directly

read from (48) and corresponds to the operator −∂2
r þ lðlþ1Þ

r2 .
More explicitly, the eigenfunctions of Kl satisfy

�
−∂2

r þ
lðlþ 1Þ

r2

�
ψkðrÞ ¼ k2ψðrÞ; ð58Þ

with two solutions

ψ1ðrÞ ¼
ffiffiffi
r

p
Jlþ1=2ðkrÞ; ψ2ðrÞ ¼

ffiffiffi
r

p
Ylþ1=2ðkrÞ:

ð59Þ

We only keep the first one since the second one diverges in
r ¼ 0. Then

ψkðrÞ ¼
ffiffiffiffiffi
kr

p
Jlþ1=2ðkrÞ; ð60Þ

with a normalization prefactor such that
R∞
0 drψkðrÞ×

ψk0 ðrÞ ¼ δðk − k0Þ. For r > r0; this gives

hϕlðrÞϕlðr0Þi ¼
1

2

Z
∞

0

dkψkðrÞ
1

k
ψ�
kðr0Þ ¼

�
r0

r

�
lþ1Γðlþ 1Þffiffiffi

π
p

× 2F1ð1=2;1þ l;3=2þ l; r02=r2Þ: ð61Þ

The lattice correlators approach this result for large r, r0.
The total entropy is given by the sum of the contributions

Sl for each mode

S ¼ 2
X∞
l¼1

ð2lþ 1ÞSl; ð62Þ

where Sl depends on C as in (53), and the factor of two
counts for the two sets of modes ðBm; ErÞ and ðEm; BrÞ.
The details of our numerical calculation are as follows.

The sum of entropy contributions in (62) has been
calculated for a range of radius n ¼ 5;…; 60 (measured
in lattice sites) exactly up to lmax ¼ 1000. The large l> lmax
contribution is calculated for each R by fitting eight
different values of Sl from l ¼ 1000 to l ¼ 4500 [5].
The total size of the radial lattice is given by a finite
infrared cutoff N. We impose ϕlðNÞ ¼ 0. To eliminate the
dependence on the infrared cutoff N, after summing over l,
we repeat the calculations for different lattice sizes
N ¼ 200, 300, 400, 500 and obtain the infinite lattice
limit fitting the results with a0 þ a−2

z2 for each radius. We
take a0 as the infinite lattice limit.
Finally, we fit the entropy with c0 þ c2R2 þ clog logðRÞ,

where we define the sphere radius as R ¼ nþ 1
2
in terms of

the number of lattice sites. We obtain

cMlog ¼ 2 × −0.17763 ∼ −
�
16

45

�
¼ 2 × −0.1777: ð63Þ

The results are shown in Fig. 2.
As a cross-check, we also measure the (nonuniversal)

area term. As expected, we obtain

c2 ¼ 0.295431; ð64Þ
which agrees with the same coefficient found for a scalar
field in [5] using a the discretization of Srednicki, up to six
digits.
We have also done the computation of the logarithmic

coefficient for a massless scalar just removing the pre-
factor of two and adding the l ¼ 0 mode in (62). We find
cSlog ¼ −0.01116 ∼ − 1

90
¼ −0.1111 � � � consistent with the

calculations in [5].

B. Mutual information

Mutual information gives us a geometrical prescription
for defining a universal regularized entanglement entropy

10 20 30 40 50 60

0.7

0.6

0.5

0.4

0.3

R

S l
og

R

FIG. 2. The sphere entanglement entropy for a Maxwell field
where we have subtracted the area and constant terms. The fitting
curve is 0.17763 logðRÞ.
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[19]. Consider the geometry shown in Fig. 3, the mutual
information IðA; BÞ we are interested in is the one between
a sphere of radius R1 and the complementary region of the
sphere of radius R2. The mutual information depends on
the averaged radius R ¼ 1

2
ðR1 þ R2Þ and the separation

ϵ ¼ R2 − R1. In the limit ϵ → 0, the regularized entropy is
defined as

SðRÞ ¼ 1

2
IðR; ϵÞ: ð65Þ

We use SðVÞ ¼ Sð−VÞ for pure states to calculate SðBÞ and
SðA∪BÞ as the entropies associated to the sphere of radius
R2 and the annulus with inner and outer radius ðR1; R2Þ,
respectively.
The mutual information calculation is more subtle

numerically than the one for the entropy, since the log
coefficient in the subtraction of disks and annular strip
entropies is very sensitive to numerical errors. On the other
hand, MI has the advantage to be less sensitive to ultraviolet
contributions, which allows us to cut the sum over angular
momenta to smaller values. By inspection, we have found
the contribution from angular momenta vanishes as l
increases, being negligible for l ≥ 100 already for the
range of radius R1 and R2 that we are using. For a lattice
size N ¼ 2000 and lmax ¼ 150, we calculate the mutual
information for different configurations with

η ¼ R
ϵ
¼ ðR1 þ R2Þ

2ðR2 − R1Þ
: ð66Þ

We take η in the range 8 � � � 22. The mutual information at
each fixed value η is evaluated for different R and fitted
with a0 þ a2=R2 þ a4=R4, where R ¼ 1

2
ðR1 þ R2Þ. The

continuum limit for each η is a0. In the continuum we
expect, for large η,

1

2
IðηÞ ¼ s2η2 þ slog logðηÞ þ subleading terms: ð67Þ

In order to gain precision in the computation of the
logarithmic coefficient, we will profit from the knowledge
of the theoretical value of the coefficient s2 of the area term
in the MI proportional to η2. This coincides with the area
term of the MI between two parallel planar entangling
surfaces. This is calculated independently using an ana-
lytical dimensional reduction approach (see Sec. II) and
found to be s2 ¼ 4π × κ with κ ¼ 0.0055351600 [15]. In
fact, we can check numerically that fitting the data with a
curve s2η2 þ slog logðηÞ þ s0 we obtain the numerical value
s2 ¼ 0.0695355 consistent with the theoretical one.
The fit to the numerical data is excellent for the area

coefficient, but it is unstable and contains significant
deviations from the expected result for the logarithmic
ones. For the relatively small values of η we are consid-
ering, it seems there are important subleading contributions
that make the logarithmic coefficient unstable within 30%
error. In order to have a more stable fit, our strategy here is
to profit from the fact that the main contribution to the
logarithmic term for the Maxwell field as compared to the
full scalar comes from the removed l ¼ 0 scalar mode (1=6
compared to 1=90). As it appears, this is also the main
source of the subleading corrections. Thus, we first subtract
the area term 4πκη2 to the data and fit the result with

1

2
IðηÞ − s2η2 ¼ x

�
fðηÞ þ 2

90
logðηÞ

�
þ const:; ð68Þ

where fðηÞ is an interpolating function corresponding to
the MI for the zero angular momentum scalar mode
(Fig. 4), and the 1=90 corresponds to the contribution of
the full scalar. This gives in fact a more stable fit for the
Maxwell field. We get x ¼ −0.9899.
The MI for the l ¼ 0mode has a logarithmic dependence

in η for large values of η, which is in accordance with the
interpretation of MI as a regularized entropy in this limit.
However, it also contains a subleading −1=2 logðlogðηÞÞ

B

R−ε/2

R+ ε/2

A

FIG. 3. Two sets, A and B: A is a sphere of radius R1 ¼
R − ϵ=2, and B is the complimentary region of a sphere of radius
R2 ¼ Rþ ϵ=2. The averaged radius is R ¼ ðR1 þ R2Þ=2, and the
annulus section is ϵ ¼ R2 − R1.
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FIG. 4. Mutual information between A and B (Fig. 3) for the
scalar l ¼ 0 mode. The solid interpolating curve is fðηÞ.
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correction. This comes from a term 1=2 logðlogðηÞÞ in the
entropy of the small interval of size ϵ as we put R to infinity.
This correction is related to the infrared divergences for a
massless scalar in d ¼ 1þ 1 that here are regulated by the
distance R to the boundary. A corresponding divergence
appears for a massive scalar in the limit of small mass [15].
That is, we get

fðηÞ ¼ 1

3
logðηÞ − 1

2
logðlogðηÞÞ þ const; η ≫ 1:

ð69Þ

However, we note that the approach to this regime is quite
slow, and this is the reason why a direct fit with (67) is not
adequate. Then, we can read off from the result of the fit for
x that for large η we have

slog ¼ 2ð−0.9899Þ
�
1

6
þ 1

90

�
¼ −0.3519 ∼ −16=45

¼ −0.35555 � � � : ð70Þ

Therefore, as expected, we found that the logarithmic
coefficient given by MI coincides with the one obtained
directly from the entropy. The results are shown in Fig. 5.
Notice that these results imply the mutual information for
the Maxwell field contains also a subleading term
logðlogðηÞÞ for large η. The complete expression reads

1

2
IðηÞ ¼ s2η2 −

16

45
logðηÞ þ 1

2
logðlogðηÞÞ þ s0: ð71Þ

C. Algebras with center

In gauge theories the most natural choices of local
gauge invariant operator algebras contain a center, that is,

a set of operators commuting with all other operators in
the algebra [7]. This is generally the case when the number
of electric and magnetic operators is not balanced. For
example, the electric center [7] corresponds to the case
where there are a number of extra electric operators
localized at the boundary. The entropy in the case of
local algebras with center has an additional classical
contribution. The calculation of cMlog done in the previous
sections corresponds to the case of operator algebras
without center, as follows from the matching between
electric and magnetic degrees of freedom. For the
Maxwell field in d ¼ 3þ 1 the electric and magnetic
centers choices are dual to each other, and the calculations
for these two choices are equivalent in the spherical
lattice. For example, the electric center can be imple-
mented by adding the operators Er

lm½nþ 1� on the boun-
dary to the full algebra of operators up to radius n.
The classical entropy for this center can be computed
using the formula for Gaussian states in [7]. We have

Sclas ¼
X∞
l¼1

ð2lþ 1Þðlog ðhEr
lm½nþ 1�2iÞ þ const:Þ: ð72Þ

The constant is arbitrary because the definition of the
classical entropy for continuous variables has an additive
ambiguity.
We find numerically that

log ðhEr
lm½nþ 1�2iÞ ∼ − logðlÞ ð73Þ

for l ≫ n. Then, even disregarding the problem of the
ambiguity in the definition of the classical entropy, we see
that the sum in (72) does not converge. This means that the
radial discretization is not enough to regularize the entropy
in this case.1

As shown in [7], mutual information in the continuum
limit is independent on the details of algebra choice. With
or without center, it must converge to a unique universal
value. In fact, the contribution of the classical center on
the boundary to mutual information seems to vanish in the
continuum limit.2 In this sense, the calculation of the
previous section has a universal character. Nevertheless,
we have checked numerically that the classical contribution
to the mutual information for two radius R1 and R2

vanishes exponentially fast as a function of l for large

8 10 12 14 16 18 20 22

–0.60

–0.55

–0.50

–0.45

–0.40

R

I lo
g

A
,B

FIG. 5. Mutual information between A and B (Fig. 3) for a
Maxwell field for a single set of modes ðBm; ErÞ. In the plot, the
area term has been subtracted from the data. The fit shown is
−0.9899ðfðηÞ þ 2

90
logðηÞÞ with f the interpolating function of

the MI of the l ¼ 0 massless scalar (Fig. 4).

1Radial discretization is also known to be not enough to
regularize the scalar entropy for spacetime dimension d > 4 [20].
We expect however that MI can be computed in a spherical lattice
also for d > 4.

2By monotonicity of MI, this must be the case if the mutual
information of regions with width ϵ tending to zero vanishes in
the ϵ → 0 limit. This is related to the question if there exist well
defined operators in the theory which are smeared in a d − 2
dimensional region (in contrast to the usual smearing with test
functions having support in d-dimensional regions).
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l > R1, R2. This produces a finite contribution when
summed over angular modes. That is, even if the entropy
in the electric center case cannot be computed using radial
discretization, there is no obstacle to compute mutual
information. We also checked that the classical contribution
to MI decreases towards the continuum limit when R1, R2

are taken large with respect to the lattice spacing.

V. DISCUSSION

Our main result is that for a free Maxwell field the
logarithmic coefficient cM in the entanglement entropy
of a sphere in 3þ 1 dimensions is not given by the
coefficient −31=45 multiplying the Euler density in the
trace anomaly. It rather coincides with Dowker’s result [4]
and is given by

cMlog ¼ 2ðcSlog − cSl¼0

log Þ ¼ −
16

45
; ð74Þ

with cSlog ¼ −1=90 and cSl¼0

log ¼ 1=6 the logarithmic coef-
ficients for a d ¼ 3þ 1 massless scalar and d ¼ 1þ 1
massless scalar with Dirichlet boundary condition at the
origin. Our results in terms of the mutual information show
this is a solid equivalence that cannot be modified by local
boundary changes in the algebra prescriptions.
On the other hand, the logarithmic coefficient for the

entropy proper, without invoking MI, can probably be
tuned using particular algebras with center and hence
should not be universal. The standard understanding in
this regard is that the full contribution for the Maxwell field
has two parts, a bulk and a boundary contribution. This last
one has been associated for example to an electric center
[11] or equivalently to boundary degrees of freedom
localized on the entangling surface generated by the gauge
redundancy [10]. With this choice, the contribution to the
logarithmic coefficient would be the one of a ghost
massless scalar in S2,

cMlog ¼ cbulk þ cboundary ¼ −
16

45
− csðS2Þ ¼ −

16

45
−
1

3
¼ −

31

45
:

ð75Þ

In the same spirit, in [12,21], the −16=45 is corrected to
match the expected value correcting the effective action by
relevant boundary terms or total derivatives.
In any case, for any such choices, mutual information

would return the same logarithmic coefficient (74) because
MI by its very definition is insensitive to regularization
dependent boundary terms. Therefore, we think the result
(74) is definitive. Most probably, there is no universal
meaning for the entropy of QFT in Minkowski vacuum
other than the one given by mutual information.
This leaves two open problems to which we hope to

return in the future. The first one is why mapping the EE to
the problem of the logarithmic coefficient of the free energy

on a d-dimensional Euclidean sphere in [2] does not
produce the right coefficient in this particular case. In this
sense, we note this calculation actually computes a “naked”
entropy, and a careful examination is necessary to deter-
mine how to modify it to obtain the result for the mutual
information. This might be specially important for free
bosonic models in which exist operators with dimensions
d − 2 that can be added as surface terms to the modular
Hamiltonian K. Boundary terms in the modular
Hamiltonian will produce insertions on the Euclidean
sphere equator. These boundary terms can be fixed by
the first law for the variation of the entropy under
infinitesimal variations of the state, δhKi ¼ δS, where δS
is understood as half the variation on mutual information
for vanishing cutoff. A boundary term is known to appear
in K for the scalar field [22]. Any understanding in this line
should account for the fact that the free energy on the
sphere does give the right result for scalars.
The second question is whether there is a sense in which

the anomaly coefficient can be recovered as the correct
result. We want to speculate that this might indeed be
possible for charged theories, perhaps giving a universal
meaning to the calculations in [10,11]. As we have seen this
is not possible for free Maxwell field. However, the
situation might be different for a Maxwell field coupled
to charges. If the charged fields are heavy with a large mass
scale M, and we evaluate mutual information of concentric
spheres with RM ≫ 1, two different situations might
appear depending on the value of Mϵ. If Mϵ ≫ 1, then
we expect massive modes cannot alter the result (74). In
this case the only connection between the two regions is
through the massless Maxwell field with the usual free
correlators. However, if Mϵ ≪ 1 and the scale of ϵ has
crossed the scale of the masses, charged particle fluctua-
tions will be visible to mutual information. In general,
massive particle fluctuations will contribute locally on the
entangling surface to the area term but, in principle, could
not change the infrared logðRÞ term. However, here the
charges will allow the constraint ∇E ¼ ρ to talk between
the two regions.
Can this produce a logarithmic coefficient given by the

anomaly? Note that in this case the extra contribution has to
be highly universal, independent of the particle charges for
example. This might seem odd, but a very similar situation
is expected to hold for topological theories in 2þ 1

dimensions [19]. In this case, the mutual information must
be zero for ϵM ≫ 1, where M is the gap scale. This is
because there are no correlations at distances larger than ϵ.
But as we put ϵM ≪ 1 correlations of the underlying
physics should build a mutual information different from
zero, and in particular, the constant term should give the
topological entanglement entropy −γ characterizing the
topological order.
Other similar striking differences between free and

interacting behavior of the entropy are the renormalization
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of the area term due to mass scales in the theory [17,23,24]
and notably relative entropy for two states in the limit
where the region is a null surface [25]. In all these cases, as
in our conjecture here, the apparent paradox of the
discontinuity between free and interacting (why would
the interacting result not converge to the free one when the
charges go to zero?) would in fact be smoothly controlled
by a geometric parameter, that here is the separating
distance ϵ. However, if one defines the universal term in
the entropy as the one resulting from the ϵ → 0 limit, then
the result would be different for free and interacting
models, but for all interesting cases where the gauge field
is not completely decoupled the anomaly would be the
adequate number to consider.
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APPENDIX: MASSLESS SCALAR
IN d = 1þ 1 WITH DIRICHLET

BOUNDARY CONDITION

In this appendix we compute analytically the correlation
functions on a lattice for a massless scalar in a half line with
the boundary condition at the origin ϕð0Þ ¼ 0. These
correlation functions allow us to compute the entropy
and mutual information of this mode in the continuum
limit with great precision as we can increase the size of the
regions without the need to deal with a lattice of finite size.
In particular, it is used in the main text to produce the Fig. 4
with the mutual information in this model and to evaluate
the interpolating function fðηÞ.

The discrete Hamiltonian is

H ¼ 1

2

�X∞
i¼1

π2i þ ðϕi − ϕi−1Þ2
�
; ðA1Þ

with ϕ0 ¼ 0. Then, the matrix K is

Kij ¼ 2δij − δj;iþ1 − δj;i−1: ðA2Þ

To evaluate the entropy, we need the two point functions

X ¼ 1

2
ffiffiffi
K

p and P ¼
ffiffiffi
K

p
2
.

The normalized eigenstates of K are ψ l
k ¼

ffiffiffiffiffiffiffiffi
2=π

p
sinðklÞ

since we have

X
l

Kil sinðklÞ ¼ ð2 − 2 cosðkÞÞ sinðkiÞ; ðA3Þ

with k ∈ ½0; π�. From this we obtain

Xij ¼
1ffiffiffi
2

p
π

Z
π

0

dk
sinðkiÞ sinðkjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − cosðkÞp ðA4Þ

¼ 1

4π
ðψ ½1=2 − i − j� þ ψ ½1=2þ iþ j�

− ψ ½1=2þ i − j� − ψ ½1=2 − iþ j�Þ; ðA5Þ

and

Pij ¼
ffiffiffi
2

p

π

Z
π

0

dk sinðkiÞ sinðkjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cosðkÞ

p

¼ −
4ij

πð2ði4 þ j4Þ − ði2 þ j2Þ − 4i2j2 þ 1
8
Þ ; ðA6Þ

where ψ ½x� is the digamma function.
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