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We consider 2þ 1-dimensional off-shell N ¼ 1 pure supergravity that is constructed from graviton,
gravitino and auxiliary field. We show that the R2 supersymmetric invariant and R2

μν supersymmetric
invariant are expressed as local supersymmetric exact terms up to mass terms for the gravitino. In both
cases, the mass parameter is proportional to the off-shell supersymmetric cosmological constant.
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I. INTRODUCTION

Calculating the quantum gravity partition function in a
reasonable way is one of the most important and funda-
mental questions in theoretical physics. Even in the conven-
tional quantum field theory with spin 0, 1=2, 1 fields, the
exact computation is extremely difficult in many cases, and
we are often tempted to use perturbative analysis. However,
if there are some supersymmetries, one can utilize these
symmetries to reduce the path integral to the finite-
dimensional matrix models [1,2]. In this procedure, the
existence of the supersymmetric “exact” Lagrangian is
extremely important because adding such a term into the
path integral weight does not change the final result, and
the WKB computation turns out to be exact by taking its
coupling constant to be infinite (or zero).
By applying this technique to the gravity path integral,

we would like to make the gravity path integral well
defined. In [3], the authors considered such a possibility
in terms of the supersymmetric Chern-Simons formulation
of three-dimensional gravity. In this paper, we discuss
another possibility: localization computation with local
supersymmetry based on supergravity [4]. We will focus
on 2þ 1-dimensional N ¼ 1 supergravity [5,6], and we
start with reviewing some known facts on the theory.

II. THREE-DIMENSIONAL N = 1 OFF-SHELL
SUPERGRAVITY

We focus on the component expression with Lorentz
signature ηab ¼ diagð−1;þ1;þ1Þ, where the alphabet runs
for local Lorentz indices a, b ¼ 0, 1, 2. The fundamental
degrees of freedom are as follows: graviton eμa, gravitino
ψμ, and real auxiliary field S. Local supersymmetry is
defined by an arbitrary Majorana spinor parameter ϵ which
depends on the coordinates as follows [5],

δeμa ¼
1

2
ðϵ̄γaψμÞ; δψμ ¼ Dμðω̂Þϵþ

1

2
Sγμϵ; ð1Þ

δS ¼ 1

4
ðϵ̄γμνψμνðω̂Þ −

1

4
ðϵ̄γμψμÞS; ð2Þ

where the covariant derivative is defined by DμðωÞ ¼
∂μ þ 1

4
ωab
μ γab, the hatted spin connection contains the

contribution from torsion, and ψμνðωÞ ¼ 1
2
ðDμðωÞψν−

DνðωÞψμÞ. See [5] for more details.
Under these transformations, the following Lagrangians

are invariant up to a total derivative term:

LEH ¼ eðR − ψ̄μγ
μνρDνðω̂Þψρ − 2S2Þ; ð3Þ

LC ¼ e
�
Sþ 1

8
ψ̄μγ

μνψν

�
: ð4Þ

The first one is the usual Einstein-Hilbert term. The second
one corresponds to the cosmological constant term. Just
by integrating out the auxiliary field, it generates the usual
negative cosmological constant term, and the resultant
Lagrangian turns out to be the so-called N ¼ ð1; 0Þ AdS
supergravity. In addition to that, one can find a super-
symmetric gravitational CS term, but we omit it for
simplicity. Other supersymmetric terms can be found in
[5] as follows,

LR2
μν
¼ −

1

4
eRμνabðΩþÞRμνabðΩþÞ

− 2eψ̄abðΩ−ÞγμDμψ
abðΩ−Þ

þ 1

2
eRμνabðΩþÞψ̄ργ

μνγρψabðΩ−Þ

þ eSψ̄abðΩ−ÞψabðΩ−Þ − 1

2
eψ̄abðΩ−ÞψabðΩ−Þψ̄μψ

μ

þ 1

8
eψ̄abðΩ−ÞψabðΩ−Þψμγ

μνψν; ð5Þ

where Ω�ab
μ ¼ ω̂μ

ab � Sεμab and ðΩ�Þ means that the
corresponding object is defined by the covariant derivative
with respect to Ω�. This is the R2

μν-type supersymmetric
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Lagrangian. A nice property is that LR2
μν
can be represented

as the supersymmetric Yang-Mills action by considering
the pair of indices ab as the gauge index and regarding the
gauge field AI

μ ¼ Ωþab
μ and the gaugino χI ¼ ψabðΩ−Þ,

LSYM ¼ −
1

4
eFμνIFμν

I − 2eχ̄IγμðDμχÞI þ
1

2
eFμν

Iψ̄ργ
μνγρχI

þ eSχ̄IχI −
1

2
eχ̄IχIψ̄μψ

μ þ 1

8
eχ̄IχIψ̄μγ

μνψν:

¼ LR2
μν
; ð6Þ

where we use the identifications AI
μ ¼ Ωþab

μ and χI ¼
ψabðΩ−Þ in the final equality.
In addition, one can also find the following R2-type

supersymmetric term,

LR2 ¼ 1

16
eR̂2ðΩþÞ þ 1

4
eψ̄μνðΩ−ÞγμνDψρσðΩ−Þ − e∂μS∂μS

−
1

8
eSψ̄μνðΩ−ÞγμνγρσψρσðΩ−Þ

þ 1

2
eψ̄μγ

νγμ∂νSγρσψρσðΩ−Þ

−
1

32
eψ̄μνðΩ−ÞγμνγρσψρσðΩ−Þψ̄ λψ

λ

þ 1

64
eψ̄μνðΩ−ÞγμνγρσψρσðΩ−Þψ̄ λγ

λτψτ; ð7Þ

where the hatted curvature is defined by

R̂ðΩþÞ¼Rðω̂Þþ6S2þ2ψ̄μγνψ
μνðΩ−Þþ1

2
Sψ̄μγ

μνψν: ð8Þ

Similarly, one can regard this LR2 matter Lagrangian as
follows,

Lmatter ¼ −e∂μϕ∂μϕ −
1

4
eλ̄γμDμλþ

1

16
ef2 þ 1

8
eSλ̄λ

þ 1

2
eψ̄μγ

νγμ∂νϕλþ
1

32
eλ̄λψ̄μψ

μ−
1

64
eλ̄λψ̄μγ

μνψν:

¼ LR2 ; ð9Þ
where we use the identifications for the scalar ϕ ¼ S,
for the spinor λ ¼ γμνψμνðΩ−Þ, and for the auxiliary scalar
f ¼ R̂ðΩ�Þ in the final equality.

III. SUSY EXACT TERMS

For the localization calculation, the most important
feature is the following point: To obtain the partition
function Z ¼ limt→0ZðtÞ, we define ZðtÞ as

ZðtÞ ¼
Z

DeμaDψμDSeiSþitδV; ð10Þ

and furthermore this ZðtÞ does not depend on the parameter
t. Then we can take the t → ∞ limit to conduct the

computation, and in this limit, all the contributions of
the path integral are localized on the field configurations
which satisfy δV ¼ 0 [7]. In quantum field theory, this
technique achieved great success [1,2] and uncovered
structures of the interacting supersymmetric field theories
in various dimensions. The necessary ingredients for this t
independence are (1) off-shell supersymmetry δ, (2) super-
symmetric invariant action S ¼ R

L, and (3) supersymmet-
ric exact action δV where V is a certain functional of
the fields, which satisfy δ2V ¼ 0. Naively, we expect that
its analog to the supergravity provides us an unknown
structure of quantum gravity. In this paper, we try to
uncover it.
In order to apply the above localization argument, the

missing piece is the supersymmetric exact action δV,
and we find that the following actions are candidates for
the appropriate actions δV,

LR2
μνþcosm ¼ −

1

8
LR2

μν
−
1

4
LCψ̄

abðΩ−ÞψabðΩ−Þ
�

¼ −
1

8
LSYM −

1

4
LCχ̄χ

�
; ð11Þ

LR2þcosm ¼ LR2 þ 1

4
LCψ̄abðΩ−ÞγabγcdψcdðΩ−Þ

�
¼ Lmatter −

1

4
LCλ̄λ

�
; ð12Þ

where LC is the supersymmetric cosmological constant
given in (4). In fact, one can verify the following relations:

δðe½χ̄δχ�Þ ¼ ðϵ̄ϵÞLR2
μνþcosm ð13Þ

δðe½λ̄δλ�Þ ¼ ðϵ̄ϵÞLR2þcosm: ð14Þ

These relations show that above LR2
μνþcosm and LR2þcosm are

SUSYexact terms. Of course, the Lagrangians LR2
μν
and LR2

preserve supersymmetry. However, in each case (11) or
(12), one has a mass term for the fermion, and it is a typical
supersymmetry breaking term, where the supersymmetry
breaking is given by the supersymmetric cosmological
constant term LC.
One might wonder why these SUSYexact actions are not

SUSY invariant. The reason is as follows. In the rigid limit,
we have δ2 ¼ 0 in the field theoretical sense, and one can
show SUSY invariance just by adding additional δ to (13)
or (14). However, if we do not take a rigid limit ðψμ ¼ 0Þ,
then we have δ2 ≠ 0. As a result, (13) and (14) are not
SUSY invariant, even though they are SUSY exact.

IV. NAIVE ATTEMPT TOWARD GRAVITY
LOCALIZATION

Let us discuss the localization argument on supergravity
based on the results in the previous section. As explained
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above, the only embarrassing term is the mass term for
the graviton ψμ, or equivalently χ or λ in (11) or (12),
which breaks the SUSY invariance of SUSYexact term (13)
and (14). To overcome the problem, here we try to eliminate
it just by inserting the delta function δðLcÞ to the path
integral in (10)

ZðtÞ¼
Z

DeμaDψμDSδðLCÞei
R
d3xLEHþi

R
d3xLCþitδV; ð15Þ

where we take S ¼ R ðLEH þ LCÞ, and δV is the one in (11)
or (12). It might look strange, but since the delta function
can be written by introducing the auxiliary field φ as an
integral formula,

δðLCÞ ¼
Z

Dφei
R

d3xLC·φ; ð16Þ

we can rewrite (15) as

ZðtÞ ¼
Z

DeμaDψμDSDφei
R

d3xLEHþi
R

d3xLCð1þφÞþitδV:

ð17Þ

If the supersymmetric invariance for the deformed cosmo-
logical constant term and for the path integral measure are
achieved, then this ZðtÞ becomes t independent, and we can
utilize the localization technique by taking the t → ∞ limit.
For that purpose, we require

δðφLcÞ ¼ 0: ð18Þ

If the SUSY variation of the cosmological constant term is
total divergence, say, δLC ¼ ∇μJμ, then (18) implies that
δφ should be defined linear with respect to φ, such as

δφ ¼ −
∇μJμ

LC
φ: ð19Þ

However, this induces a quantum anomaly, i.e., the
Jacobian for the supersymmetry variation of φ is not
one. In order to apply the conventional supersymmetric
localization technique, the Jacobian for the supersymmetry
variation should vanish; therefore, this naive method does
not work, unfortunately.

V. CONCLUSION, DISCUSSION,
AND FUTURE WORK

In this paper, we discussed a possibility for the appli-
cation of localization technique to the quantum gravity path
integral. We tried to conduct direct gravity path integral
by constructing SUSY exact terms in 3D supergravity.
Although SUSY exact terms are constructed, naive pro-
cedure for localization calculation fails. Our main discov-
ery is that the R2

μν supersymmetric invariant, LR2
μν
, and R2

supersymmetric invariant, LR2 , can be represented as SUSY
exact terms up to gravitino mass terms, which break
supersymmetric invariance and its breaking is given by
the supersymmetric cosmological constant term LC. This
prevents us from applying a naive localization technique
to supergravity within these setups [8]. We would like to
make some comments about our (rather negative) results.
First, let us comment on the difficulty of the gravity sector

localization computation. In our case, as one can find the
algebraic structure of local SUSY δ on three-dimensional
supergravity in [9], squared SUSY δ2 is not zero and contains
SUSY δ, too. This structure is coming from the existence of
the gravitino, and it is absent in the rigid SUSY limit δrigid
[10] which guarantees the localization computation because
of the nilpotent nature δ2rigid ¼ 0 inmany cases. However, the
possibility for localization in supergravity is not excluded
even for three-dimensional N ¼ 1 because what we find is
just the relationship (11)–(14). Therefore, if one can find
certain better SUSY exact terms and succeed in canceling
the obstructing mass term, then it should work.
Second, the mass terms in our SUSYexact Lagrangians,

(11) and (12), seem to be “universal” mass terms because
they are always proportional to the supersymmetric cos-
mological constant LC in (4). We have no a priori reason to
get such a supersymmetric coefficient as the mass param-
eter, but there might exist certain deep reasons that could be
related to the algebraic structure on supergravity.
Third, it may be good to consider the same problem

with extended local supersymmetries,N ≥ 2. For example,
we can find off-shell formulation of N ¼ 2 supergravity
in [11,12]. In three dimensions, the conventional field
theoretical localization computation is available only for
N ≥ 2; therefore, the situation there could be better.
It will also be interesting to consider the analog of our

argument with Euclidean supergravity. (For relevant works
on three-dimensional Euclidean pure gravity with negative
cosmological constant, see for example, [3,13,14].) The
crucial difference is that, in the Euclidean signature,
modular invariance is strong enough to determine (some
of) the nonperturbative effects. It would be great if we could
derive the summation over the modular group discussed in
[14–17] in a direct supergravity localization calculation
without relying on the power of modular invariance. This
should be done along the lines of [3], where the sum over
the modular group appears naturally as the sum over all of
the localization locus, F μν ¼ 0, which are solutions of all
the complex Einstein equations.
Before we end, let us discuss the physical meaning of the

conducting gravity path integral, Z ¼ R ½Dgμν�eiS½gμν�. Even
if we succeed in conducting the metric path integral ½Dgμν�
exactly, whether or not it gives an exact partition function
for quantum gravity depends on whether the metric gμν is a
fundamental degree of freedom in quantum gravity. We
have learned from holography that bulk gravity is an
effective theory, which is valid and emerging typically in
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the large-N limit of QCD-like SUðNÞ gauge theory as a
dual effective description. Furthermore, a metric, which is
dual to the gauge-singlet stress tensor, is a dominating
degree of freedom only in the low-temperature phase
[18,19]. In fact, in the high-temperature phase, rather than
the metric, the black hole microstates are the dominating
degrees of freedom [20]. Given these, how meaningful is
the bulk metric path integral calculation?
To answer this, the analogy to QCD helps. Gravity in the

low-temperature phase is like the chiral Lagrangian in
QCD, where the dynamical degrees of freedom are pion
field π’s, instead of quarks and gluons. Therefore, con-
ducting the gravity path integral

R ½Dgμν�eiS½gμν� corresponds
to conducting the pion field path integral

R ½Dπ�eiSchiral in the
chiral Lagrangian. Of course, we know the fundamental
theory behind the chiral Lagrangian is QCD, and the exact
answer for the partition function for QCD can be obtained
only by conducting the path integral for the quark-gluon
fields, rather than the pion fields. The pion field path
integral of the chiral Lagrangian never gives the right
answer for QCD, due to its lack of quark and gluon degrees
of freedom which are dominating in the high-temperature
phase [21]. As one cannot describe the quark-gluon plasma
by multipion fields, we expect that black hole microstates
are not describable by multigravitons (see [22] for a nice
overview) [23]. In this way, we expect that the naive bulk
metric path integral, Z ¼ R ½Dgμν�eiS½gμν�, is not a non-
perturbatively defined quantity, at least in the bulk where
we have spacetime dimensions larger than three. (Note,
however, that in three dimensions, modular invariance of
the partition function is powerful enough to determine the
contributions of the BTZ black hole microstates; see
[3,13,14,24].) To obtain an exact partition function for full
quantum gravity, we have to rely on the dual nonperturba-
tively defined boundary theory path integral [25].
However what we try to calculate in this paper is not this

quantity (partition function), but rather supersymmetric
index due to the fermion boundary condition. Then the
situation is totally different: Index calculations in field
theory quite often works to count the supersymmetric black
hole microstates. This is because of supersymmetry, sig-
nificant reduction of degrees of freedom occurs. Therefore,
the SUSY index calculation from the bulk metric by
conducting

R ½Dgμν� is still meaningful even in bulk.
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APPENDIX A: SPINOR NOTATIONS AND
FORMULAS

The clifford algebra is generated by the following
two-by-two matrices:

γ0 ¼
�
0 −1
1 0

�
; γ1 ¼

�
0 1

1 0

�
; γ2 ¼

�
1 0

0 −1

�
:

ðA1Þ

The charge conjugation matrix is

C ¼ iγ0: ðA2Þ

We always use Majorana fermions throughout this paper.
Thus,

ψ̄ ¼ ψ†iγ0 ¼ ψTC ðA3Þ

is equivalent to ψ� ¼ ψ , and it means a real fermion. For
Majorana fermions ψ , χ, ϵ, we have the following formulas:

ψ̄χ ¼ χ̄ψ ; ðA4Þ

ðγμψÞχ ¼ −ψ̄γμχ; ðA5Þ

χ̄γμψ ¼ −ψ̄γμχ; ðA6Þ

χ̄γμγνψ ¼ ψ̄γνγμχ; ðA7Þ

χ̄γμγνγρψ ¼ −ψ̄γργνγμχ; ðA8Þ

ϵðχ̄ψÞ þ 2ðχ̄ϵÞψ þ γμϵðχ̄γμψÞ ¼ 0 ðA9Þ

ðψ̄ϵÞðϵ̄χÞ ¼ −
1

2
ðϵ̄ϵÞðψ̄χÞ: ðA10Þ

The formula in (A10) is useful in the calculation of (13)
and (14).

APPENDIX B: PROOF OF EQ. (13)

As noted in the main part of this paper, if we
define AI

μ ¼ Ωþab
μ , χI ¼ ψabðΩ−Þ, these redefined multi-

plet satisfy

δAμ ¼ −ðϵ̄γμχÞ; δχ ¼ 1

8
γμνðFμν þ 2ψ̄ ½μγν�χÞϵ; ðB1Þ

where we omit the index I from now on. Just using these
SUSY transform, we calculate

δ½eðχ̄δχÞ� ¼ δe · ðχ̄δχÞ þ eðδχδχÞ þ eðχ̄δ2χÞ ðB2Þ

as follows. We use (A10) many times:

δe · ðχ̄δχÞ ¼ ðϵ̄ϵÞe
�
−

1

32
ðχ̄γμνγρψρÞFμν −

1

16
ðχ̄χÞðψ̄μγ

μνψνÞ

−
1

16
ðχ̄χÞðψ̄μψ

μÞ
�

ðB3Þ
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eðδχδχÞ ¼ ðϵ̄ϵÞe
�
1

32
FμνFμν þ 1

8
ðψ̄μγνχÞFμν

þ 1

16
ðχ̄χÞðψ̄μψ

μÞ þ 1

32
ðχ̄χÞðψ̄μγ

μνψνÞ
�

ðB4Þ

eðχ̄δ2χÞ

¼ðϵ̄ϵÞe
��

1

16
ðχ̄γρνγμψρÞþ

1

32
ðψ̄ργ

μνγρχÞþ 1

16
ðψ̄μγνχÞ

�
Fμν

þ 1

16
ðχ̄χÞðψ̄μψ

μ−
1

64
ðχ̄χÞðψ̄μγ

μνψνÞ

þ1

4
ðχ̄γμDμχÞ−

6

16
Sðχ̄χÞ

�
: ðB5Þ

Summing up (B3), (B4), and (B5), we get the result in (13).

APPENDIX C: PROOF OF EQ. (14)

If we define ϕ ¼ S, λ ¼ γμνψμνðΩ−Þ, f ¼ R̂ðΩ�Þ, then
these fields satisfy

δϕ ¼ 1

4
ϵ̄λ; δλ ¼ γνϵ

�
∂νϕ −

1

4
ψ̄νλ

�
−
1

4
ϵf

δf ¼ −ϵ̄γμ
�
Dμðω̂Þλ − γνψμ

�
∂νϕ −

1

4
ψ̄νλ

�
þ 1

4
fψμ

�

þ 1

2
Sðϵ̄λÞ: ðC1Þ

By using these SUSY transformations, we calculate

δ½eðλ̄δλÞ� ¼ δe · ðλ̄δλÞ þ eðδλδλÞ þ eðλ̄δ2λÞ; ðC2Þ

and each term is given as follows:

δe · ðλ̄δλÞ ¼ ðϵ̄ϵÞe
�
−
1

4
ðψ̄μγ

μγνλÞ∂νϕ −
1

32
ðλ̄λÞðψ̄μψ

μÞ

−
1

32
ðλ̄λÞðψ̄μγ

μνψνÞ þ
1

16
fðλ̄γμψμÞ

�
; ðC3Þ

eðδλδλÞ ¼ ðϵ̄ϵÞe
�
−∂μϕ∂μϕþ 1

2
ðψ̄μλÞ∂μϕ

þ 1

32
ðλ̄λÞðψ̄μψ

μÞ þ 1

16
f2
�
; ðC4Þ

eðλ̄δ2λÞ ¼ ðϵ̄ϵÞe
�
1

4
ðψ̄μγ

νγμλÞ∂νϕþ 1

32
ðλ̄λÞðψ̄μψ

μÞ

−
1

32
ðλ̄λÞðψ̄μγ

μνψνÞ −
1

8
Sðλ̄λÞ − 1

4
ðλ̄γμDμλÞ

þ 1

64
ðλ̄λÞðψ̄μγ

μνψνÞ −
1

16
fðλ̄γμψμÞ

�
: ðC5Þ

Combining (C3), (C4), and (C5), we arrive at (14).
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