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The ordering problem in quantum systems with position-dependent mass (PDM) is treated by inclusion
of the classically fictitious similarity transformation into the kinetic term. This provides a generation of
supersymmetry with the first-order supercharges from the kinetic term alone, while inclusion of the
potential term allows us also to generate nonlinear supersymmetry with higher-order supercharges. A broad
class of finite-gap systems with PDM is obtained by different reduction procedures, and general results on
supersymmetry generation are applied to them. We show that elliptic finite-gap systems of Lamé and
Darboux-Treibich-Verdier types can be obtained by reduction to Seiffert’s spherical spiral and Bernoulli
lemniscate in the presence of Calogero-like or harmonic oscillator potentials, or by angular momentum
reduction of a free motion on some AdS2-related surfaces in the presence of Aharonov-Bohm flux. The
limiting cases include the Higgs and Mathews-Lakshmanan oscillator models as well as a reflectionless
model with PDM exploited recently in the discussion of cosmological inflationary scenarios.
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I. INTRODUCTION

Quantum mechanical systems with position-dependent
mass (PDM) appear in physics in various contexts. When a
particle interacts with an external environment, its mass is
replaced by an effective mass that in general depends on the
position. As a result, quantum systems with PDM emerge
naturally in solid state physics where heterostructures are
characterized by the electrons’ effective masses [1–5]. In
another way, they can be generated via a dimensional
reduction of field-theoretical nonlinear sigma models and
in a related framework of gravitation [6–10]. A certain class
of such systems is used particularly in cosmological
inflationary models [11]. Quantum mechanical systems
with PDM were employed recently in the context of
integrable models [12]. They turn out to be interesting
from the point of view of supersymmetric quantum
mechanics [13–17], coherent states [18–20], and PT-
symmetry [21–23]. Besides the one-dimensional quantum
systems with PDM, their multidimensional generalizations
are considered in the literature [24–29], particularly, in the
context of superintegrable systems [30,31]. See also
Refs. [32–44] where some other aspects of quantum
systems with PDM were studied.
In treating quantum systems with PDM, there appears

the ordering problem in the kinetic term. One can take a
classical analog of such a system, remove the position
dependence in the kinetic term via appropriate point
(canonical) transformation, and then quantize the obtained
system with translation-invariant kinetic term, the trans-
formed potential term and, possibly, changed domain of the
transformed coordinate variable. When working with such

systems, however, usually consideration starts directly at
the quantum level by choosing some fixed ordering
prescription in the kinetic term, or by considering some
family of orderings. This picture with the two possibilities
to start from the classical or quantum levels is somewhat
reminiscent of Dirac’s dilemma in the quantization of
constrained systems: “first reduce and then quantize” or
“first quantize and then reduce” [45–47].
In this paper, we analyze the problem of the quantum

ordering in the kinetic term with PDM in one dimension in
a new way which turns out to have a certain analogy with
the treatment of the quantum problem of a particle in a
curved space [48,49]. For this, we introduce a kind of a
similarity transformation in a kinetic term. Classically, such
a transformation is artificial and fictitious, but its direct
quantum analog is nontrivial and reflects effectively the
quantum ordering ambiguity in the kinetic term with a
position-dependent mass. This will allow us to incorporate,
in a simple way, supersymmetry into the framework of the
one-dimensional quantum mechanical models with PDM.
The general results we obtain are applied then to a broad
class of finite-gap quantum elliptic systems of the Lamé
and Darboux-Treibich-Verdier types and to their limiting
cases with a single real or hidden imaginary period. The
systems with PDM we consider belong to a class of
nonlinear dynamical systems of the Liénard type [50],
for which we observe, in concrete examples, the peculiar-
ities associated with the presence of poles in the mass
function. We also show how the corresponding finite-gap
systems can be obtained by different reduction procedures
from either a free particle motion on some surfaces of
revolution, namely, on AdS2, sphere S2 or on AdS3, or by
appropriate reduction of the particles moving in Euclidean
R2, Minkowski R1;1, or spherical S2 spaces in the presence
of the Calogero or harmonic oscillator-type potentials. In
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this way, finite-gap elliptic systems are obtained via
reduction to Seiffert’s spherical spiral and Bernoulli’s
lemniscate (in a special case of the modular parameter
value) or by angular momentum reduction of a free motion
on certain AdS2-related surfaces in the presence of
Aharonov-Bohm flux. We show that supersymmetric pairs
of finite-gap systems related by the first-order intertwining
operators are generated naturally from the kinetic term with
the PDM only, without a necessity of introducing apart of a
potential term. The inclusion of the potential term allows us
to extend the construction for the case of supersymmetry
based on the higher-order differential intertwining
operators.
The paper is organized as follows. In Sec. II, we start

from the observation how supersymmetric pairs of the
systems can be generated by quantization of a kinetic term
with PDM into which a fictitious classical similarity
transform is introduced. In Sec. III, we show that the
inclusion of the classically fictitious function into the
kinetic term with PDM allows us to transfer the ordering
ambiguities under transition to the quantum case into the
similarity transform function while keeping fixed the
position of the PDM function. In such a way, we cover
universally all the distinct ordering prescriptions in the
kinetic term with PDM considered in literature, and show
that the construction of Sec. III corresponds to a particular
choice of the ordering prescription for position-dependent
mass functionmðxÞ of arbitrary form. Section IV is devoted
to the discussion of some models of finite-gap systems with
PDM. Namely, we consider there some finite-gap families
of hyperbolic reflectionless, trigonometric and elliptic
systems of the Lamé and Darboux-Treibich-Verdier types.
We discuss the relation between the indicated families of
the systems, consider peculiarities of their phase space
trajectories associated with a presence of the poles in mass
function, discuss shortly quantum properties of the sys-
tems, and consider different reduction procedures by which
the systems can be generated. In Sec. V, we apply general
results of Secs. II and III to generate supersymmetric
extentions of the families of finite-gap systems from
Sec. IV. Section VI is devoted to concluding remarks
and discussion of some interesting problems for future
research.

II. SUPERSYMMETRY FROM A FICTITIOUS
SIMILARITY TRANSFORM

Consider a free nonrelativistic particle of massM ¼ 1=2
in one dimension. Its classical kinetic term h1 ¼ p2 can be
written in an equivalent form

hς ¼ ςðxÞp 1

ς2ðxÞpςðxÞ ¼
�
−iςðxÞp 1

ςðxÞ

��
i

1

ςðxÞpςðxÞ
�

ð1Þ

with arbitrary real-valued function ςðxÞ which we restrict
by the condition ςðxÞ > 0. Since hς ¼ h1, classically
dependence of hς on ςðxÞ is fictitious. This observation
can be generalized further by taking, e.g.,

hς1;ς2;ς3;α ¼ ας1ðxÞp
1

ς21ðxÞ
pς1ðxÞ

þ 1

2
ð1 − αÞ

�
ς2ðxÞp

1

ς2ðxÞς3ðxÞ
pς3ðxÞ

þ ς3ðxÞp
1

ς3ðxÞς2ðxÞ
pς2ðxÞ

�
; ð2Þ

where α is a real constant and ςaðxÞ > 0, a ¼ 1, 2, 3, are
arbitrary functions.
Quantum analog of (1) depends on the choice of ςðxÞ as

well as on the ordering prescription for noncommuting
factors. Let us take1

Aς ¼
1

ςðxÞ
d
dx

ςðxÞ ¼ d
dx

þWðxÞ;

WðxÞ ¼ d
dx

ln ςðxÞ ¼ ς0ðxÞ
ςðxÞ ; ð3Þ

as a quantum analog of the classical term i 1
ςðxÞpςðxÞ which

appears on the right in (1). We also have

A1=ς ¼ −A†
ς ¼ ςðxÞ d

dx
1

ςðxÞ ¼
d
dx

−WðxÞ ð4Þ

as a quantum analog (with a minus sign) of another factor
−iςðxÞp 1

ςðxÞ in (1). Then the direct quantum analog of (1)

can be presented in a factorized form,

Hς ¼ −ςðxÞ d
dx

1

ς2ðxÞ
d
dx

ςðxÞ ð5Þ

¼ A†
ςAς ¼ −

d2

dx2
þW2 −W0: ð6Þ

The factorizing first-order differential operators (3), (4)
and Hamiltonian (5) are invariant under scaling trans-
formations ς → eCς, C ∈ R. On the other hand, the
inversion ς → 1=ς induces the interchange of Aς and A†

ς :
A1=ς ¼ −A†

ς , A
†
1=ς ¼ −Aς. This generates a permutation of

noncommuting operators in (6),

H1=ς ¼ A†
1=ςA1=ς ¼ AςA

†
ς ¼ −

d2

dx2
þW2 þW0: ð7Þ

Operators Aς and A†
ς intertwine the Hamiltonians (5) and

(7), AςHς ¼ H1=ςAς, A
†
ςH1=ς ¼ HςA

†
ς , and so generate the

1We use the units with ℏ ¼ 1; the Planck constant will be
restored where necessary.

RAFAEL BRAVO and MIKHAIL S. PLYUSHCHAY PHYSICAL REVIEW D 93, 105023 (2016)

105023-2



Darboux transformation [51] between the systems given by
the quantum Hamiltonians (5) and (7). In the usual way,
one can compose a 2 × 2 matrix Hamiltonian operator
Hς¼ diagðHς;H1=ςÞ and obtain the N ¼ 2 supersymmetric

system with supercharges Qςþ ¼ A†
ςσþ and Qς− ¼ Q†

ςþ ¼
Aςσ−, σ� ¼ 1

2
ðσ1 � iσ2Þ, constructed from the intertwining

operators Aς and A†
ς . The operators Hς and Qς� generate

the N ¼ 2 supersymmetry, ½Hς;Qς�� ¼ 0, Q2
ς� ¼ 0,

½Qςþ;Qς−�þ ¼ Hς, in which the diagonal Pauli matrix
σ3 plays a role of the Z2 grading operator [52,53].
One can also choose a more general ordering by taking

Hς;α ¼ 1
2
ð1þ αÞHς þ 1

2
ð1 − αÞH1=ς. Then

Hς;α ¼ −
d2

dx2
þW2 − αW0; H1=ς;α ¼ Hς;−α: ð8Þ

This corresponds to a direct quantum analog of the classical
expression in (2) with ς1 ¼ ς, ς2 ¼ ς3 ¼ 1=ς and with α
changed for 1

2
ð1þ αÞ. We shall see that a pair (Hς;α, Hς;−α)

also can be associated with supersymmetry.
The peculiarity of the quantum systems (6), (7) and (8))

is that if we restore the Planck constant ℏ in them, we
obtain that their corresponding induced potential terms are
proportional to ℏ2. We shall discuss this point later.
Till the moment, the introduction of ςðxÞ starting from

the classical kinetic term (1) with M ¼ 1=2 seems to be
rather artificial. Below we pass over to the case of the
position-dependent mass, where ςðxÞ transforms into a
natural element of the construction.

III. KINETIC TERM WITH A PDM AND
SUPERSYMMETRY

Consider now a one-dimensional system described
by Lagrangian with a position-dependent mass MðxÞ≡
1
2
mðxÞ > 0,

LðxÞ ¼ 1

4
mðxÞ_x2 − uðxÞ: ð9Þ

In the changed notation for the mass, the case m ¼ 1
corresponds toM ¼ 1=2, and in what follows we shall refer
to mðxÞ as a mass. The Euler-Lagrange equation of motion
for (9) can be presented in the form

ẍ ¼ −2
u0ðxÞ
mðxÞ −

1

2

m0ðxÞ
mðxÞ _x2: ð10Þ

Equation (10) corresponds to a class of nonlinear dynami-
cal systems of Liénard type, namely, of the quadratic
type with the dynamics given by the equation of the form
ẍþ fðxÞ_x2 þ gðxÞ ¼ 0 [50].
Let us denote fðxÞ ¼ 1ffiffiffiffiffiffiffi

mðxÞ
p , and make a point trans-

formation x → χ with dχ ¼ dx
fðxÞ. Then

χ ¼ χðxÞ ¼
Z

x dη
fðηÞ ¼

Z
x ffiffiffiffiffiffiffiffiffiffi

mðηÞ
p

dη: ð11Þ

The inverse to (11) transformation is

x ¼ xðχÞ ¼
Z

χ
φðηÞdη; ð12Þ

where

φðχÞ ¼ fðxðχÞÞ: ð13Þ

Using dχ ¼ dx
fðxÞ, one can rewrite Lagrangian (9) in the form

Lðχ; xÞ ¼ 1

4
_χ2 −UðχÞ − 1

2
κðx − xðχÞÞ2; ð14Þ

where xðχÞ is given by (12), κ ≠ 0 is a constant, and
UðχÞ ¼ uðxðχÞÞ. The Euler-Lagrange equations for (14)
are (i) x ¼ xðχÞ and (ii) χ̈ ¼ −2U0ðχÞ. Equation (i) yields
_χ ¼ _x=fðxÞ, and then from (ii) we obtain

ẍ ¼ −2u0ðxÞf2ðxÞ þ f0ðxÞ
fðxÞ _x2; ð15Þ

which is equivalent to (10). Changing 1
2
κðx − μðχÞÞ for a

Lagrange multiplier λ, one can obtain an equivalent to
the Eq. (14) form of the Lagrangian, Lðχ; x; λÞ ¼
1
4
_χ2 − UðχÞ − λðx − xðχÞÞ.
A canonical transformation ðx; pÞ → ðχ; PÞ with P ¼

fðxÞp corresponds to the point transformation (11). It
transforms the Hamiltonian hmðxÞ ¼ 1

mðxÞp
2 þ uðxÞ of the

system (9) with position-dependent mass into the
Hamiltonian h1 ¼ P2 þUðχÞ with m ¼ 1.
The Hamiltonian kinetic term hmðxÞ ¼ 1

mðxÞp
2 with posi-

tion-dependent mass can be presented in an equivalent
symmetric form similarly to (1),

hf;ς ¼ fðxÞςðxÞp 1

ς2ðxÞpςðxÞfðxÞ

¼
�
−ifðxÞςðxÞp 1

ςðxÞ
��

i
1

ςðxÞpςðxÞfðxÞ
�
: ð16Þ

This can be considered as a classical kinetic term with a
position-dependent mass mðxÞ ¼ 1=ðfðxÞÞ2 and function
ςðxÞ of a fictitious similarity transform. As a quantum
analog of (16) we take

Hf;ς ¼ −fς
d
dx

1

ς2
d
dx

ςf ¼ A†
f;ςAf;ς; ð17Þ

where
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Af;ς ¼
1

ς

d
dx

ςf; A†
f;ς ¼ −fς

d
dx

1

ς
¼ −Af;1=ςf: ð18Þ

The ordering in Eqs. (18) and (17) is chosen in such a
way that, for fðxÞ ¼ 1, they reduce to (3) and (4), (5).
Then, for
(i) ς ¼ 1

but with nontrivial fðxÞ, we have

Hð0Þ ¼ −f
d2

dx2
f; ð19Þ

which reproduces the kinetic term for a system with
position-dependent mass mðxÞ ¼ 1=ðfðxÞÞ2. Such an
ordering prescription was considered, e.g., in
[2,33,44]. A more general choice of

(ii) ς ¼ mνþ1
2

in (17) yields the kinetic term −mν d
dxm

−2ν−1 d
dxm

ν

of a form that was considered in [2,4]. For ν ¼ − 1
2
, we

reproduce (19). The case ν ¼ 0 corresponds to
[32,33,44]

Hð1Þ ¼ −
d
dx

f2
d
dx

: ð20Þ

The choice ν ¼ − 1
4
yields

Hð1=2Þ ¼ −f1=2
d
dx

f
d
dx

f1=2: ð21Þ

The origin of the notation for the lower index in H in
(19), (20) and (21) will be clarified below. Kinetic
terms of the form [32,33,44]

(iii) − 1
2
ðf2 d2

dx2 þ d2

dx2 f
2Þ

and [44]

(iv) − 1
2
ð ddx f d

dx f þ f d
dx f

d
dxÞ

which represent particular cases of a generalized
form for the quantum kinetic term,

Hα;β;γ ¼ −
1

2

�
fα

d
dx

fβ
d
dx

fγ þ fγ
d
dx

fβ
d
dx

fα
�
;

ð22Þ

with αþ β þ γ ¼ −2 [2,32] are also included in (17)
for particular choices of ςðxÞ; see Appendix A.

Thus, the inclusion of the classically fictitious function ς
into the kinetic term allows us to transfer the ordering
ambiguities under transition to the quantum case into a true
similarity transform function ς while keeping fixed the
position of the function fðxÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffi
mðxÞp

in the quantum
kinetic term (17). In such a way, we cover all the distinct
ordering prescriptions in the kinetic term with PDM
considered in the literature. Moreover, this also gives us

a possibility to treat distinct ordering prescriptions in a
unified way.
Consider now a similarity transformation generated by

the function f1=2 ¼ m−1=4ðxÞ. We have

f1=2Af;ςf−1=2 ¼
1

f1=2ς

�
f
d
dx

�
ðf1=2ςÞ;

f1=2A†
f;ςf

−1=2 ¼ −ðf1=2ςÞ
�
f
d
dx

�
1

f1=2ς
: ð23Þ

Denoting ΣðχÞ ¼ ςðxÞjx¼xðχÞ, one gets

f1=2Af;ςf−1=2jx¼xðχÞ ¼ AΦ; f1=2A†
f;ςf

−1=2jx¼xðχÞ ¼ A†
Φ;

ð24Þ

where

AΦ ¼ 1

ΦðχÞ
d
dχ

ΦðχÞ ¼ d
dχ

þWðχÞ;

A†
Φ ¼ −ΦðχÞ d

dχ
1

ΦðχÞ ¼ −A1=Φ; ð25Þ

and

WðχÞ ¼ d
dχ

lnΦðχÞ ¼ Φ0ðχÞ
ΦðχÞ : ð26Þ

The kernel ΦðχÞ of the first-order operator A†
Φ is given by

ΦðχÞ ¼ φ1=2ðχÞΣðχÞ; ð27Þ

while the kernel of AΦ is 1=ΦðχÞ. For the similarity-
transformed Hamiltonian (17), we have the chain of
equalities:

f1=2Hf;ςf−1=2jx¼xðχÞ ¼ A†
ΦAΦ ¼ −ΦðχÞ d

dχ
1

Φ2ðχÞ
d
dχ

ΦðχÞ

¼ −
d2

dχ2
þW2 −W 0 ≡HΦ: ð28Þ

After similarity transformation and the change of variable
the quantum Hamiltonian (17) takes exactly the form of the
quantum kinetic term (5) but with the Darboux generating
function ςðxÞ changed for ΦðχÞ.
Consider a special family of the functions,

ς ¼ f−λ; ð29Þ

given in terms of the position-dependent mass that corre-
sponds to the ordering (ii) considered above with
λ ¼ 2νþ 1. In this case, ΦðχÞ from (27) reduces to

ΦðχÞ → ðφðχÞÞ12−λ ≡ ΦðλÞðχÞ: ð30Þ
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Let us denote the corresponding operators also by the lower
index ðλÞ. Then for a particular value λ ¼ 1=2, we have the
first-order operators

Að1=2Þ ¼ f1=2
d
dx

f1=2 ¼ −A†
ð1=2Þ; ð31Þ

which factorize the quantum kinetic term (21),
Hð1=2Þ ¼ A†

ð1=2ÞAð1=2Þ. Since Φð1=2ÞðχÞ ¼ 1, the similarity-

transformed operators reduce to

f1=2Að1=2Þf−1=2 ¼ f
d
dx

¼ d
dχ

; f1=2Hð1=2Þf−1=2 ¼ −
d2

dχ2
:

ð32Þ

This corresponds to a free particle with χ taking values in
the domain which is defined by the domain of the initial
position variable x as well as by the form of the position-
dependent mass functionmðxÞ. Therefore, for any position-
dependent mass mðxÞ, there is a special choice (21) of
ordering in the kinetic term, which after similarity trans-
formation and change of variable reduces the kinetic term
to the form of the quantum kinetic term (32) with m ¼ 1
and χ taking values in the corresponding domain.
For λ ¼ 1, we obtain the quantum kinetic operator (20),

which factorizes as

Hð1Þ ¼ A†
ð1ÞAð1Þ; Að1Þ ¼ f

d
dx

; A†
ð1Þ ¼ −

d
dx

f: ð33Þ

On the other hand, the choice λ ¼ 0 yields the quantum
operator (19) for which we have

Hð0Þ ¼ A†
ð0ÞAð0Þ; Að0Þ ¼

d
dx

f; A†
ð0Þ ¼ −f

d
dx

: ð34Þ

Since Φð0ÞðχÞ ¼ ðφðχÞÞ1=2 ¼ 1=Φð1ÞðχÞ, then A†
ð1Þ ¼−Að0Þ,

and Hð1Þ and Hð0Þ form a pair of super-partners intertwined

by Að0Þ and A†
ð0Þ ¼ −Að1Þ: Að0ÞHð0Þ ¼ Hð1ÞAð0Þ, Hð0ÞA

†
ð0Þ ¼

A†
ð0ÞHð1Þ.
In a similar way, a pair of the similarity-transformed

Hamiltonians Hðλ1Þ and Hðλ2Þ with λ1þλ2¼ 1 after the
change of variable x → χ takes a standard form of a pair of
super-partner Schrödinger Hamiltonians. The explicit form
of a one-parameter family of supersymmetric pairs of kinetic
Hamiltonian operators with position-dependent mass is

HðλÞ ¼ f1−λ
d
dx

f2λ
d
dx

f1−λ; Hð1−λÞ ¼ fλ
d
dx

f2−2λ
d
dx

fλ:

ð35Þ

In the generic case, if two quantum systems are given by
the pairs of functions (f1ðxÞ, ς1ðxÞ) and (f2ðxÞ, ς2ðxÞ) such
that f1ς21 ¼ Cf2ς22, where C > 0 is an arbitrary constant,

and the domain of χ in both cases is the same, then
Φ1ðχÞ ¼ CΦ2ðχÞ, and the corresponding quantum systems
are equivalent.
If the pairs of the functions (f1ðxÞ, ς1ðxÞ) and (f2ðxÞ,

ς2ðxÞ) are such that f1ς21 ¼ C=ðf2ς22Þ and, again, the
domain of χ in both cases is the same, then Φ1ðχÞ ¼
C=Φ2ðχÞ, and the corresponding Hamiltonians yield a pair
of super-partner systems.
With x ∈ ðx1; x2Þ, the following equality is valid

hΨ1jΨ2i≡
Z

x2

x1

Ψ�
1ðxÞΨ2ðxÞdx ¼

Z
χ2

χ1

~Ψ�
1ðχÞ ~Ψ2ðχÞdχ

≡ h ~Ψ1j ~Ψ2i ð36Þ
for a scalar product of two wave functions, where

~ΨðχÞ ¼ f1=2ðxÞΨðxÞjx¼xðχÞ: ð37Þ

For any differential operator OðxÞ, define

OðχÞ ¼ f1=2ðxÞOðxÞf−1=2ðxÞjx¼xðχÞ: ð38Þ

Then we get

hΨ1jOjΨ2i ¼ h ~Ψ1jOj ~Ψ2i: ð39Þ
The similarity transformation (38), (37) accompanied by
the change of variable (11) maps the quantum system (17)
given only by the kinetic term with a position-dependent
mass into the system (28) with position-independent mass
and a nontrivial potential term. The correspondence
between the two systems is established by the relation
(39). Again, as in the case f ¼ 1 considered in the
preceding section, the peculiarity of the system (28) is
that if we restore the Planck constant ℏ, we obtain

HΦ ¼ −ℏ2
d2

dχ2
þ ℏ2ðW2 −W 0Þ: ð40Þ

In this case, the generated potential term is proportional to
ℏ2 and has a purely quantum nature.

IV. FINITE-GAP SYSTEMS WITH
POSITION-DEPENDENT MASS

To apply the general results on position-dependent mass
discussed thus far, below we consider some families of
finite-gap and reflectionless systems. The latter case can be
considered as a corresponding limit of finite-gap systems
with valence bands degenerating (after possible merging
and shrinking [54,55]) into the bound states [56]. All such
systems are intimately related to nonlinear integrable
systems and are characterized by the presence in them
of a nontrivial Lax-Novikov integral of motion. All they are
described by potentials to be quadratic in Planck con-
stant ℏ.
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A. General picture

For a quantum system with position-dependent mass, the
ordering (21) is special. In this case, after a similarity
transformation and change of variable (11), any quantum
system HðxÞ ¼ −ð ffiffiffi

f
p d

dx

ffiffiffi
f

p Þ2 þ uðxÞ with PDM mðxÞ ¼
1=f2ðxÞ and potential uðxÞ transforms into the quantum
system with Hamiltonian of the standard form with
position-independent mass m ¼ 1, HðxÞ → HðχÞ ¼
− d2

dχ2 þUðχÞ with UðχÞ ¼ uðxðχÞÞ.
We consider now some examples of the systems with

PDM belonging to an important class of finite-gap systems
closely related with integrable systems, which find diverse
interesting applications in physics. They are presented in
Tables I, II, and III, which include the families of hyper-
bolic, H, trigonometric, T, and elliptic, L and D, systems
of such a nature. Namely, the quantum systems with
position-independent mass m ¼ 1 presented by the cases
H1, T1, L1 and D1 with potentials of the form
uCn

ðχÞ ¼ Cnu1ðχÞ are finite-gap for Cn ¼ nðnþ 1Þℏ2,

n ¼ 1; 2;…. Each such a quantum system HðχÞ ¼
−ℏ2ð d2dχ2 þ nðnþ 1Þu1ðχÞÞ possesses a nontrivial Lax-

Novikov integral which is a differential operator of order
2nþ 1. Let us stress that for finite-gap systems potential
term includes the multiplicative quantum factor ℏ2, cf. (40).
In the casesH1 andL1, Lax-Novikov operators are the true
integrals of motion being analogs of the free particle

momentum operator of the zero-gap case n ¼ 0. The
systems from the family L1 are the quantum n-gap
Lamé systems with periodic (elliptic) potential2

uCn
ðχÞ ¼ −Cndn2χ. In the infinite-period limit correspond-

ing to k → 1, n valence bands shrink and transform into n
bound states of a reflectionless system belonging to the
class of the hyperbolic Pöschl-Teller systems with potential
uCn

ðχÞ ¼ −Cn
1

cosh2 χ. The Lax-Novikov integral in the n-

gap Lamé quantum system detects all the edge states of the
continuous bands by annihilating them, and distinguishes
the left- and right-moving Bloch states inside the valence
and conduction bands by the sign of their eigenvalues [56].
Analogous role is played by the Lax-Novikov integrals in
reflectionless systems, where they detect the bound states
and the edge state of the conduction band, and separate the
left- and right-moving analogs of the plane waves in the
continuous part of the spectrum. The systems represented
by the case D1 with potentials uCn

ðχÞ ¼ Cndc2χ can be
obtained from the family L1 by a complex displacement
χ → χ þKþ iK0, which corresponds to the complex half-
period of the Lamé potential, accompanied by an additive

TABLE II. T family. Corresponding finite-gap systems are given by potentials uCn
ðxÞ ¼ Cnu1ðxÞ with Cn ¼ nðnþ 1Þℏ2,

n ¼ 1; 2;…. Here χ ∈ ð− π
2
; π
2
Þ, gd−1x ¼ arctanhðsin xÞ is the inverse Gudermannian function [58].

Case mðxÞ φðxÞ x ¼ xðχÞ ðx1; x2Þ u1ðxÞ XðxÞ YðxÞ
T1 1 1 χ ð− π

2
; π
2
Þ 1

cos2 x
sin x cos x

Ta
1

1−x2
cos χ sin χ (−1, 1) 1

1−x2
x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
Tb

1
ð1þx2Þ2

1
cos2 χ

tan χ ð−∞;∞Þ x2 þ 1 xffiffiffiffiffiffiffiffi
1þx2

p 1ffiffiffiffiffiffiffiffi
1þx2

p
Tc

1
ex−1

1þsin χ
cos χ

ln 2
1−sin χ ð0;∞Þ 1

4
e2x
ex−1

1 − 2e−x 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−x − e−2x

p

Td
1

cosh2 x
1

cos χ gd−1χ ð−∞;∞Þ cosh2 x tanh x 1
cosh x

Te dn2x 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−k2 sin2 χ

p sn−1 ðsin χÞ ð−K;KÞ nc2x sn x cn x

TABLE I. H family. Corresponding reflectionless systems are given by potentials uCn
ðxÞ ¼ Cnu1ðxÞ with Cn ¼ nðnþ 1Þℏ2,

n ¼ 1; 2;…. Here χ ∈ ð−∞;∞Þ, g dx ¼ arctanðsinh xÞ ¼ 2 arctanðeχÞ − π
2
is the Gudermannian function, sn−1 x ¼ arcsnðx; kÞ is the

inverse to Jacobi’s sn-function [58].

Case mðxÞ φðχÞ x ¼ xðχÞ ðx1; x2Þ u1ðxÞ XðxÞ YðxÞ
H1 1 1 χ (−∞, ∞) − 1

cosh2 x
sinh x cosh x

Ha
1

1þx2
cosh χ sinh χ (−∞, ∞) − 1

1þx2
x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
Hb

1
ð1−x2Þ2

1
cosh2 χ

tanh χ ð−1; 1Þ x2 − 1 xffiffiffiffiffiffiffiffi
1−x2

p 1ffiffiffiffiffiffiffiffi
1−x2

p

Hc
1
x2

eχ eχ ð0;∞Þ − 4x2

ð1þx2Þ2
1
2
ðx − x−1Þ 1

2
ðxþ x−1Þ

Hd
1

cos2 x
1

cosh χ
gdχ ð− π

2
; π
2
Þ − cos2 x tan x 1

cos x

He dc2x 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þk02 sinh2 χ

p sn−1 ðtanh χÞ ð−K;KÞ −cn2x sn x
cn x

1
cn x

2The dependence of Jacobi’s elliptic functions on modular
parameter k, 0 < k < 1, is not shown explicitly here; k0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

p
denotes the complementary modular parameter, K ¼

KðkÞ is the complete elliptic integral of the first kind, and
K0 ¼ Kðk0Þ [57,58]. We indicate the dependence on modular
parameter explicitly where it will be necessary.
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shift, dc2χ ¼ −dn2ðχ þKþ iK0Þ þ 1. In another way, the
D1 family can be obtained from the L1 family by trans-
formations χ → iχ, k ↔ k0 with subsequent multiplication
of the Lagrangian by ð−1Þ, L→−L. Analogously, trans-
formations χ→ iχ, L→−L produce the trigonometric
family T1 from the hyperbolic one H1 and vice versa.
The series D1 belongs to a more broad family of Darboux-
Treibich-Verdier finite-gap systems with singular (at
χ ¼ �K) potentials [59,60]. In the limit k → 0, the D1

family transforms into the family T1 given by uCn
ðχÞ ¼

Cn
1

cos2 χ with −π=2< χ< π=2. The systems from the family

T1 are almost isospectral to a free particle confined inside the
infinite potential well, and can be obtained from the latter by
applying to it the appropriate Darboux-Crum transformation
ofordern, like the systemsof the familyH1 canbeobtainedby
Darboux-Crumtransformations from the freeparticleona real
line. The systems from the family D1 can be considered as a
periodization in the “hidden imaginary direction” of the
systems T1 like Lamé systems can be treated as periodicized
in the real variable x reflectionless Pöschl-Teller systems
having a hidden imaginary period. Unlike the cases of theH1
andL1 systems, theLax-Novikovoperators in the familiesT1
and D1 are the formal integrals of motion. Though they

commute with corresponding Hamiltonian operators, acting
on the bound states they produce nonphysical states which
violate boundary conditions.3

The corresponding systems possess a series of interest-
ing properties, which we discuss shortly below for each of
the three families. The finite-gap systems with position-
dependent mass are presented here by different special
choices for the functionsmðxÞ, which are interrelated in the
hyperbolic, trigonometric and elliptic cases by the above
mentioned transformations x → ix, L → −L, by limit
procedures k → 1; 0, and by periodizations. The corre-
sponding potentials in the systems for the chosen position-
dependent mass functions have a form and nature to be very
different from those they take after the transformation
x → χ. For instance, the potential corresponding to the
reflectionless hyperbolic Pöschl-Teller system (see Table I)
takes the Calogero-like form u1ðxÞ ¼ −1=ðx2 þ 1Þ, or the
harmonic oscillatorlike form u1ðxÞ ¼ x2 − 1, or the form of
the Calogero potential transformed by the Zhukowsky map,
u1ðxÞ ¼ −4=ðxþ 1

xÞ2, or the Mathiew (pendulumlike) form
u1ðxÞ ¼ − cos2 x, or the elliptic generalization of the latter,

TABLE III. Elliptic L– and D–families. Here xEðχÞ ¼ 1
k0 ln ð1þ k0 dn χþk0sn χ

1−sn χ Þ, uLE
ðxÞ ¼ −k02ð eξ−k2e−ξ

eξþk2e−ξ−2k2Þ2, uDE
ðxÞ ¼ 1

4

ðeξ−k2e−ξÞ2
eξþk2e−ξ−1−k2,

ξ ¼ k0x; am χ ¼ amðχ; kÞ ¼ Arcsinsn ðχ; kÞ is Jacobi’s amplitude function [57,58]. The limiting casesHα� are defined in the same way
asHα, α ¼ 1, a, b, c, d, but with u1ðxÞ changed for u�ðxÞ ¼ �1. Analogously, Tα− is defined as Tα but with potential u1ðxÞ changed for
u−ðxÞ ¼ −1.

x ¼ xðχÞ
Case mðxÞ φðχÞ ðχ1; χ2Þ ðx1; x2Þ u1ðxÞ U1ðχÞ k → 1 k → 0

L1

1 1

χ −dn2 x −dn2 χ H1 H1−ð−∞;∞Þ ð−∞;∞Þ
D1

(−K, K) (−K, K)
dc2 x dc2 χ H1þ T1

LA

1
ð1−x2Þð1−k2x2Þ cn χ dn χ

sn χ k2x2 − 1 −dn2 χ Hb Ta−

DA

(−K, K) ð−1; 1Þ
1−k2x2
1−x2

dc2 χ Hbþ Ta

LB
1

ð1þx2Þð1þk02x2Þ dn χ nc2 χ
sc χ − 1þk02x2

1þx2
−dn2 χ Ha Tb−

DB
(−K, K) ð−∞;∞Þ

k02x2 þ 1 dc2 χ Haþ Tb

LC

1
1−k2 sin2 x dn χ

am χ
k2 sin2 x − 1 −dn2 χ Hd H1−ð−∞;∞Þ ð−∞;∞Þ

DC

(−K, K) (− π
2
, π
2
)

1−k2 sin2 x
cos2 x

dc2 χ Hdþ T1

LD
1

1þk02 sinh2 x dc χ
arcsinh (sc χ) −k02 − k2

cosh2x
−dn2 χ H1 Td−

DD
(−K, K) ð−∞;∞Þ k02 sinh2 xþ 1 dc2 χ H1þ Td

LE
k02

ð1−e−ξÞðeξ−k2Þ nc χ þ sc χ
xEðχÞ uLE

ðxÞ −dn2 χ Hc Tc−

DE

(−K, K) ð0;∞Þ
uDE

ðxÞ dc2 χ Hcþ Tc

3Cf. this with the finite-gap Calogero model [61].
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u1ðxÞ ¼ −cn2 x. We also obtain reflectionless systems with
potential function u1ðxÞ ¼ 4ðe−2x − e−xÞ of the Morse
potential form. The classical phase portraits for such
systems have peculiarities related with the presence of
the real poles in the position-dependent mass. The finite-
gap systems we consider can be obtained from a particle
with position-independent mass in Euclidean, Minkowski,
or spherical space in the presence of Calogero-like or
harmonic oscillator potential, by reducing its motion to
different curves (which, depending on the case, can be a
circle, hyperbola, Seiffert’s spherical spiral, or Bernoulli
lemniscate). The kinetic terms of the systems from the
families T and H can be produced by a reduction to
geodesics on Riemann sphere and hyperbolic
Lobachevsky plane as well. The finite-gap systems can
also be obtained by angular momentum reduction of a
free particle motion on some surfaces of revolution (in
the presence of Aharonov-Bohm flux).

B. Reflectionless systems

Lagrangians for the systems presented in Table I,
L ¼ 1

4
mðxÞ_x2 − Cnu1ðxÞ, can be obtained by starting from

a particle with position-independent mass in two-
dimensional Minkowski space which is subjected to the
action of attractive Calogero potential, L ¼ 1

4
ð _X2 − _Y2Þþ

Cn
1
Y2, and then restricting the motion to the hyperbolic

curve X2 − Y2 ¼ −1. Six different parametrizations of the
hyperbola’s branch Y ¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ 1

p
given by the functions

XðxÞ and YðxÞ shown in the Table I result in six models for
reflectionless systems presented there. The mass function
in such an interpretation can be presented initially in two
alternative forms mðxÞ ¼ X02=ð1þ X2Þ ¼ Y 02=ðY2 − 1Þ,
where X0 ¼ dX=dx.
Kinetic terms for these H models can also be obtained

from the kinetic term for a particle on Lobachevsky
(hyperbolic) plane by reduction to appropriate geodesics.
For this, we can take the Poincaré upper half-plane model
for Lobachevsky plane given by the metric ds2 ¼ 1

4
dX2þdY2

Y2 ,
Y > 0. Restriction of v2 ≡ ðds=dtÞ2 to the geodesic X ¼
const with subsequent change of notation Y → x yields the
position-dependent mass for the case Hc. Restriction of v2

to the geodesic in the form of semicircle X2 þ Y2 ¼ 1,
Y > 0, parametrized as in the case T1, i.e., X ¼ sin x,
Y ¼ cos x, − π

2
< x < π

2
(see Table II), yields the kinetic

term corresponding to the case Hd. Restriction to the same
geodesic parametrized as in the cases Ta, Tb, Td and Te
gives, respectively, the kinetic terms for the cases Hb, Ha,
H1 and He.
Kinetic terms for hyperbolic models can be obtained

by restriction of v2 to geodesics in Poincaré disc model
for Lobachevsky plane as well. Taking the metric

ds2 ¼ 1
4

dX2þdY2

ð1−X2−Y2Þ2, X2 þ Y2 < 1, and reducing it, for

instance, to a geodesic Y ¼ 0, −1 < X < 1, we generate
the kinetic term for the Hb case, etc.
The case He in the limit k → 1 transforms into the H1

case, while in the limit k → 0, it reduces to the case Hd.
This means that the He can be considered as the family
interpolating continuously between the position-indepen-
dent mass, H1, and PDM, Hd, cases.
The case Ha corresponds to the Mathews-Lakshmanan

“oscillator model” [62]; see also [63]. The equivalent form
of the potential u1ðxÞ here is u1ðxÞ ¼ x2

1þx2 − 1, and up to an
inessential additive constant, the Lagrangian can be pre-
sented in the form

L ¼ 1

1þ x2

�
1

4
_x2 − x2

�
: ð41Þ

This can be considered as a zero-dimensional analog of
Lagrangian density L ¼ 1

2
1

1þϕ2 ð∂μϕ∂μϕ − ϕ2Þ which

appears in some nonlinear quantum field theories [64,65].
In the same context, the Lagrangian for the case Hb can

be treated as a zero-dimensional analog of the field
Lagrangian density

L ¼ 1

2

1

ð1 − ϕ2Þ2 ∂μϕ∂μϕ −
1

2
γϕ2; ð42Þ

which was exploited by Linde et al. in the discussion of
cosmological inflationary scenarios [11]. Below, we shall
return to this case in more detail in the context of
supersymmetry.
Function xðχÞ ¼ tanh χ from the case Hb describes a

stationary kink solution in the φ4 (1þ 1)-dimensional field
model [66] and also appears as a solution in the Gross-
Neveu model [67]. The function xðχÞ ¼ gd χ from the Hd
case corresponds to the kink solution in the sine-Gordon
field theory in (1þ 1) dimensions [66].
If in the caseHc we exchange mðxÞ¼ 1

x2 for mðxÞ¼ α2 1
x2

with α> 0, we obtain fðxÞ¼ 1
αx, and χðxÞ¼

R
x dη
fðηÞ ¼ α lnx,

x ¼ eχ=α, −∞ < χ < ∞, φðχÞ ¼ 1
α e

χ=α ¼ 1
α ðcosh χ

α þ
sinh χ

αÞ. Since cosh χ ¼ 1
2
ðxα þ x−αÞ, the potential

u1ðxÞ ¼ −
4

ðxα þ x−αÞ2 ¼ −
4x2α

ð1þ x2αÞ2 ð43Þ

corresponds to U1ðχÞ ¼ −1=cosh2 χ. In particular, for the
choice α ¼ 1=2, this gives the potential of a simpler form
u1ðxÞ ¼ − 4x

ð1þxÞ2 in comparison with the case α ¼ 1. This

difference, however, does not produce something new.
As we noted, the hyperbolic family H1 (and all other

families with position-dependent mass which reduce to H1
after similarity transformation and the change of variable)
can be obtained by appropriate Darboux-Crum transforma-
tions from the free particle on the real line. In the case
of the system with potential UCn

ðχÞ, the spectrum contains
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n bound states of discrete energies El ¼−ℏ2ðn− lÞ2,
l¼ 0;…;n−1, with the ground state ΦðχÞ ¼ ðcosh χÞ−n,
and continuous (scattering) part with E ≥ 0. The Lax-
Novikov integral in the case H1 is [68]

P ¼ D−nD−nþ1…D0…Dn−1Dn; ð44Þ

where Dl ¼ d
dχ þ l tanh χ. The change of variable function

φðχÞ is related to the ground state ΦðχÞ in a simple
(exponential) way in the cases Ha, Hb and Hd. By this
reason, for these cases it is natural to use the ordering based
on relations (29), (30), for which the Hamiltonian operator
can be presented in the form H ¼ −f1−λ d

dx f
2λ d

dx f
1−λ,

where fðxÞ ¼ ðmðxÞÞ−1
2. As a result, the parameter λ is

fixed from relation (30) and takes the values λ ¼ 1
2
− n,

λ ¼ 1
2
þ 1

2
n and λ ¼ 1

2
þ n in the cases Ha, Hb and Hd,

respectively. The Lax-Novikov integral (44), which is the
differential operator of order 2nþ 1, for these cases can be
presented then in the following form:

Ha∶ P ¼ fnþ1
2
d2nþ1

dx2nþ1
fnþ1

2; fðxÞ ¼ ð1þ x2Þ12; ð45Þ

Hb∶ P ¼ f
1
2
ð1−nÞ d

dx
f3=2

d
dx

f3=2…f3=2
d
dx

f3=2

…f3=2
d
dx

f3=2
d
dx

f
1
2
ð1−nÞ; fðxÞ ¼ 1 − x2; ð46Þ

Hd∶ P ¼ f
1
2
−n d

dx
f2

d
dx

f2…f2
d
dx

f2…f2
d
dx

f2
d
dx

f
1
2
−n;

fðxÞ ¼ cos x: ð47Þ

The phase space portraits in coordinates ðx; _xÞ for the H
family of the systems described by Lagrangians of the form
L ¼ 1

4
mðxÞ_x2 − u1ðxÞ are presented in Figs. 1, 2, 3. In the

case Ha, as in the case H1 with m ¼ 1, coordinate x can
vary on all the real lines, and trajectories in these two cases
have a similar nature: they are bounded for energies
−1 ≤ E < 0, and unbounded for E ≥ 0. It is interesting
to note that the peculiarity of the case Ha is that all the
phase space trajectories in it are conical sections. Namely,
for −1 < E < 0 these are ellipses, _x2

a2 þ x2

b2 ¼ 1 with

a2 ¼ 4ð1þ EÞ, b2 ¼ ð1þ EÞ=ð−EÞ, which degenerate
into a point x ¼ _x ¼ 0 at E ¼ −1. The case E ¼ 0

corresponds to separatrices which here are straight lines
_x ¼ �2, while for E > 0 the trajectories are hyperbolas
_x2

a2 −
x2

b2 ¼ 1 with a2 ¼ 4ð1þ EÞ, b2 ¼ ð1þ EÞ=E.
In the cases Hb, Hd, and He, the variable x varies in

finite intervals, and phase space portraits in these cases
have a similar nature. For −1 ≤ E < 0, the trajectories are
smooth curves lying between the extrema x1 and x2 of the
corresponding intervals shown in Table I, with returning
points xþ ¼ −x−, x1 < x− < xþ < x2. For E ¼ 0, the
separatrices have cusps at x1 and x2, which reflect the
fact that though the time necessary to arrive at these points
is infinite, the derivative d_x=dx at these points turns into

FIG. 1. Phase portraits of H1 and Ha systems.

FIG. 2. Phase portraits of Hb and Hc systems.
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zero. For E > 1, the slopes d_x=dx are finite at x1;2 (and time
to arrive at these points is infinite). The limiting points x1;2
and the infinity of time necessary to arrive at them for
trajectories with E ≥ 0 are associated with poles of the
position-dependent mass.
In the caseHc, trajectories are bounded for −1 ≤ E < 0,

with returning points x�, 0 < x− < xþ < ∞. For E ¼ 0,
the separatrix has a cusp at x ¼ 0, and asymptotes
_x ¼ �4 for x → þ∞. For E > 0, the trajectories are
unbounded, with asymptotes given by d_x

dx ¼ �2
ffiffiffiffi
E

p
for x → þ∞.
In the case Hb, one can consider the infinite domains

x > 1 or x < −1 instead of the finite interval x ∈ ð−1; 1Þ,
where the mass function also takes positive values. Let
x > 1, and denote this case as H0

b. Then x ¼ xðχÞ ¼
− coth χ, χ ∈ ð−∞; 0Þ, x ∈ ð1;∞Þ. In terms of χ (after the
change of variable), we have a singular potential
U1ðχÞ ¼ 1

sinh2 χ, and phase space trajectories with E > 0

are unbounded; see Fig. 3. The returning point χ0 is given
by sinh χ0 ¼ −1=

ffiffiffiffi
E

p
, and asymptotes are _χ� ¼ �2

ffiffiffiffi
E

p
. In

coordinates (x, _x), however, trajectories are confined in the
region 1 < x ≤ x0, x20 ¼ Eþ 1, where the returning point
x0 corresponds to the returning point χ0, while x ¼ 1
corresponds to the asymptotes with χ → −∞, where we
have d_x

dx jx¼1 ¼ �2
ffiffiffiffi
E

p
.

For the position-dependent mass function, we have
mðxÞ → 0 for x → x1;2 and unique maximum mð0Þ ¼ 1

in the case Ha. On the other hand, mðxÞ → ∞ for x → x1;2
in the cases Hb, Hd and He, with the unique minimum

mð0Þ ¼ 1. In the case Hc, the mass function changes
monotonically: mðxÞ → ∞ for x → x1 ¼ 0 and mðxÞ → 0
for x → x2 ¼ ∞.

C. Trigonometric family

Consider now the trigonometric T family of the
systems. Similarly to the H family, Lagrangians for the
systems presented in Table II, L ¼ 1

4
mðxÞ_x2 − Cnu1ðxÞ,

can be obtained by starting from a particle with position-
independent mass in two-dimensional Euclidean space and
subjected to the action of repulsive Calogero potential,
L ¼ 1

4
ð _X2 þ _Y2Þ − Cn

1
Y2, and then restricting the motion to

the semicircle X2 þ Y2 ¼ 1, Y > 0. Six different para-
metrizations of the semicircle Y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − X2

p
given by the

functions XðxÞ and YðxÞ presented in Table II result in six
models for finite-gap systems shown there. The mass
function can be presented here as mðxÞ ¼ X02=ð1 − X2Þ,
or mðxÞ ¼ Y 02=ð1 − Y2Þ.
As in the case of the H family, the kinetic term for T

models can also be obtained by restricting the kinetic term
of a particle on the Riemann sphere to some of its
geodesics. Take the metric on the Riemann sphere in the
form ds2 ¼ dX2þdY2

ð1þX2þY2Þ2, −∞ < X, Y < ∞. Restricting the

kinetic term v2 ≡ ðds=dtÞ2 to the geodesic X2 þ Y2 ¼ 1
parametrized by X ¼ sin x, Y ¼ cos x, we reproduce the
kinetic term for T1 case with m ¼ 1. Restriction of 1

4
v2 to

the geodesic Y ¼ 0 with subsequent change of the notation
X → x yields the kinetic term for Tb model. By appropriate
change of the variable x, which can be found from the
column XðxÞ of the Table II, one can reproduce all other
kinetic terms for T models.
The case Te in the limits k → 0 and k → 1 transforms

into the T1 and Td cases, respectively. The family Te
can be considered therefore as that interpolating
continuously between the position-independent mass,
T1, and PDM, Td, cases of trigonometric finite-gap
systems.
After the application of similarity transformation and the

change of variable, we reduce all the cases to the corre-
sponding quantum systems from the case T1. Such a
system characterized by the integer parameter n can be

FIG. 3. Phase portraits of H0
1 and H0

b systems.

FIG. 4. Phase portraits of Ta and T0
a systems.
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obtained by subsequent application of n Darboux trans-
formations to the free particle (n ¼ 0) confined into the
infinite potential well with impenetrable walls at χ1 ¼ − π

2

and χ2 ¼ π
2
[53]. Energy levels of the bound states are

ðnþ lþ 1Þ2 − 1, l ¼ 0; 1;…. Though the Lax-Novikov
integral can formally be obtained from hyperbolic case by
the transformation χ → iχ, this is a nonphysical operator:
its action on the physical states produces the states
divergent at the edges χ1;2 ¼ � π

2
of the interval. The model

T1 is often called in the literature the Higgs oscillator
[69–73].
The phase portraits for T1, Ta and Te cases are similar.

All the trajectories with E ≥ 1 in these cases, where E ¼ 1
corresponds to the minimum value of the potentials u1, are
bounded and closed, with returning points x− ¼ −xþ,
x1 < x− < xþ < x2. There is, however, a difference
between these cases: in the T1 case, the extrema points
x1;2 of the domain of x correspond to singular points of the
potential, while for Ta and Te cases they correspond to
zeros of the 1=mðxÞ function. The peculiarity of the Ta case
is also that all the trajectories in it are ellipses: _x2

a2 þ x2

b2 ¼ 1

with a2 ¼ 4ðE − 1Þ, b2 ¼ ðE − 1Þ=E. This phase portrait is
similar to that of the harmonic oscillator, with the difference
that here b2 is restricted from above, b2 < 1; see Fig. 4.
In the case of Tc, all the trajectories are closed, with

returning points x− and xþ satisfying the relation
0 < x− < x0 < xþ < ∞, where x0 ¼ ln 2 corresponds to
the point where the potential takes the minimum value 1;
i.e., unlike the three above-mentioned cases, here the values
of the returning point xþ are not bounded; see Fig. 5. The
phase portraits in ðx; _xÞ coordinates for the cases Tb (note
that in this case potential is quadratic) and Td are similar to
the phase portrait for a usual one-dimensional harmonic
oscillator: the trajectories are closed smooth curves whose
sizes increase with increasing of energy E ¼ 1

4
mðxÞ_x2 þ

u1ðxÞ. There is, however, a difference in comparison with
the harmonic oscillator. As is seen from Fig. 5, the
trajectories in the Tb case are convex only for
1 ≤ E ≤ E� ¼ 3

2
, but they loose this property for E > E�.

In the case Td, E� ¼ 2. Similar properties related to (non)
convexitivity of phase space trajectories is also character-
istic of the Tc case.

The model Ta can be modified for the case T0
a with

x2 > 1 by multiplying Lagrangian by −1 to have a positive-
valued mass function, L ¼ 1

4
~mðxÞ_x2 − ~u1ðxÞ, where

~mðxÞ ¼ 1
x2−1, ~u1ðxÞ ¼ 1

x2−1. In this case xðχÞ ¼ cosh χ with
χ ∈ ð0;∞Þ and x ∈ ð1;∞Þ, and after the change of vari-
able, we obtain a singular Lagrangian ~U1ðχÞ ¼ 1

sinh2 χ

exactly as in the case T0
b. So, in coordinates χ, _χ the

unbounded trajectories for E > 0 are exactly of the same
form described above for the singular finite-gap modelH0

1
but with χ < −1 there changed for χ > 1 in the case T0

1
(we do not show these trajectories in coordinates ðχ; _χÞ
here). Unlike the H0

b model, here, in the T0
a model, the

trajectories are the hyperbolas _x2

a2 −
x2

b2 ¼ −1 with a2 ¼
4ð1þ EÞ, b2 ¼ ð1þ EÞ=E, E > 0; see Fig. 4.
In the case Ta, function mðxÞ tends to infinity when

x → x1;2, taking minimum value mð0Þ ¼ 1. In the cases Tb

and Td, mðxÞ → 0 when x → x1;2, and takes maximum
value mð0Þ ¼ 1. In the case Te, mðxÞ → k02 > 0 for
x → x1;2, and takes maximum value mð0Þ ¼ 1. In the case
Tc, mðxÞ changes monotinically, with mðxÞ → ∞ when
x → 0 and mðxÞ → 0 as x → ∞.

D. Finite-gap elliptic L and D families

Consider now finite-gap elliptic generalizations of the
hyperbolic and trigonometric families which are presented

FIG. 5. Phase portraits of the Tb and Tc systems.

FIG. 6. Phase portrait of L1 system with k ¼ 0.99.
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in Table III. The phase portrait of the case L1, which is a
periodic generalization of the H1 case, is shown in Fig. 6.
The LE and DE cases can be considered as a generali-

zation of the cases Hc and Tc. To see this, we note that the
function φEðχÞ ¼ ð1þ sn χÞ=cn χ transforms in the limits
k → 1 and k → 0 into the functions φðχÞ of the indicated
hyperbolic and trigonometric cases. By means of (12) we
find xEðχÞ ¼ 1

k0 ln ð1þ k0 dn χþk0sn χ
1−sn χ Þ, and then sn χ ¼ 1−

2k02ðeξ − 2k2 þ k2e−ξÞ−1, ξ ¼ k0x. This allows us to iden-
tify the potentials uLE

ðxÞ and uDE
ðxÞ using the identities

dn2χ ¼ 1 − k2sn2 χ and cn2 χ ¼ 1 − sn2 χ. For fðxÞ ¼
φðχÞjχ¼χðxÞ, we obtain fðxÞ ¼ 1

k0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − e−ξÞðeξ − k2Þ

p
,

and finally find the corresponding position-dependent mass
shown in the Table III. The potentials uLE

ðxÞ and uDE
ðxÞ

can be presented equivalently as

uLE
ðxÞ ¼ −k02

sinh2ξk
ðcosh ξk − kÞ2 ;

uDE
ðxÞ ¼ k2

sinh2ðξkÞ
2kðcosh ξk − kÞ − k02

; ð48Þ

where ξk ≡ ξ − ln k.
Jacobi’s amplitude function am ðx; kÞ satisfies relations

am ðx; 0Þ ¼ x, am ðx; 1Þ ¼ gd x, and can be considered as a
generalization of the Gudermannian function. In corre-
spondence with this, we note that x ¼ xðχÞ ¼ am χ, which
is the change of variable function in the caseLC, appears as
a generalization of the kink solution in the sine-Gordon
model [74,75].
In the case A, the even mass function mðxÞ takes

minimum value mð0Þ ¼ 1 and mðxÞ → ∞ for x → �1.
In the cases B and D, even mass function takes maximum
value mð0Þ ¼ 1 and mðxÞ → 0 for x → �∞. In the case C,
mð−xÞ ¼ mðxÞ, mð0Þ ¼ 1 and m → 1=k02 for x → � π

2
.

In correspondence with the behavior of U1ðχÞ ¼ dc2χ,
potential u1ðxÞ in all the cases of the D family tends toþ∞
when x tends to the corresponding edge values x1;2, taking
minimum value þ1 at x ¼ 0 in all the cases except the case
DE, where this happens at x ¼ 1

k0 ðln kþ arccosh 1
kÞ, that is

the root of the equation cosh ξk ¼ 1
k. Analogously, in

correspondence with U1ðχÞ ¼ −dn2χ, potential u1ðxÞ in
the cases of the L family tends to the maximum value −k02
when x → x1;2, taking minimum value −1 at x ¼ 0 in all
the cases except the case LE, where this minimum value is
taken at x ¼ 1

k0 lnð1þ k0Þ.
From the two last columns of the Table III, we also see

that elliptic (after similarity transformation and the
change of variable) Lamé models L provide us with
some interpolation between reflectionless models H and
corresponding free particle models with position-
dependent, or position-independent (unit) mass function.
Particularly, the case LB provides a finite-gap periodic
generalization of the Mathews-Lakshmanan oscillator

model described by the case Ha, while the LA case
can be considered as a finite-gap periodic generalization
of the “inflationary model” Hb. Analogous job is made
by the Darboux-Treibich-Verdier models D, which can be
considered as the systems interpolating between the
trigonometric models T and corresponding free particle
systems.
We do not discuss the spectrum and corresponding

Lax-Novikov operators of finite-gap systems of the
L– and D–families here, and just refer to [54,76].
In conclusion of this subsection, it is worth making an

additional comment here that is valid for each of the three
families of finite-gap systems presented above. If after
corresponding similarity transformations and changes of
variables two systems with different position-dependent
masses mðxÞ and ~mðξÞ and potentials uðxÞ and ~uðξÞ
produce the same system H ¼ − d2

dχ2 þ UðχÞ, the following
equality for the quantum kinetic terms has to be valid:ffiffiffi
f

p ð ffiffiffi
f

p d
dx

ffiffiffi
f

p Þ2 1ffiffi
f

p jx¼xðχÞ ¼
ffiffiffi
~f

q � ffiffiffi
~f

q
d
dξ

ffiffiffi
~f

q �
2

1ffiffi
~f

p jξ¼ξðχÞ.

From this equality we find that to establish the relation
between the quantum kinetic terms of any two systems
presented in the tables which produce the same quantum
system H ¼ − d2

dχ2 þ UðχÞ, the following additional sim-

ilarity transformation is required:

� ffiffiffiffiffiffiffiffiffi
fðxÞ

p d
dx

ffiffiffiffiffiffiffiffiffi
fðxÞ

p �
2

¼
ffiffiffiffiffiffiffiffiffi
~fðξÞ
fðxÞ

s � ffiffiffiffiffiffiffiffiffi
~fðξÞ

q
d
dξ

ffiffiffiffiffiffiffiffiffi
~fðξÞ

q �
2

ffiffiffiffiffiffiffiffiffi
fðxÞ
~fðξÞ

s ����
ξ¼ξðxÞ

: ð49Þ

Here, on the right hand side of Eq. (49), ξ ¼ ξðxÞ is given
by ξðxÞ¼ ξðχÞjχ¼χðxÞ, and so, ~uðξðxÞÞ ¼ uðxÞ. For example,
the system from the elliptic caseA can be obtained from the
corresponding systems of the elliptic caseC by the changes
of variables x → ξ, ξ ¼ sin x. In this way, the potentials
uðxÞ from the case C transform into corresponding poten-
tials of the case A. For the kinetic term, we have then
ð ffiffiffiffiffiffi

fC
p d

dx

ffiffiffiffiffiffi
fC

p Þ2 → ð1 − x2Þ1=4ð ffiffiffiffiffiffi
fA

p d
dx

ffiffiffiffiffiffi
fA

p Þ2ð1 − x2Þ−1=4.
Thus, after additional similarity transformation, the quan-
tum Hamiltonian HCðxÞ transforms into HAðxÞ.

E. Elliptic finite-gap systems and Seiffert’s spiral

The systems presented in Table III can be obtained from
a particle on the unit sphere subjected to the action of
certain potentials of the forms like those indicated at the
beginning of the section, to which it is necessary to apply a
certain reduction procedure. To show this we take the R3

metric in cylindrical coordinates ds2 ¼ ρ2dϕ2þdρ2þdz2.
On the surface of the unit sphere this can be reduced to one
of the two forms
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ds2ðz;ϕÞ ¼ ð1 − z2Þdϕ2 þ dz2

1 − z2
;

ds2ðρ;ϕÞ ¼ ρ2dϕ2 þ dz2

1 − ρ2
; ð50Þ

where we have used the sphere equation ρ2 þ z2 ¼ 1 to
eliminate the dependence on ρ or z. Let us restrict addi-
tionally the motion by requiring that dϕ ¼ kds, where k ∈
R is a constant. As a result, L0 ¼ 1

4
ðds=dtÞ2 takes the form

of the kinetic term for a particle moving along the Seiffert’s
spiral [57,77]. Particularly, if we take z ¼ � 1ffiffiffiffiffiffiffiffi

1−x2
p ,

x ∈ ½−1; 1�, that corresponds to the function YðxÞ from
Tb case but with a sign, and use the first form ds2ðz;ϕÞ
from (50), we reproduce the mass term for LA and DA
cases. Potential can be chosen initially in the Calogero-like
form u1ðzÞ ¼ −k02 − k2

z2 for L families, or in the harmonic

oscillator form u1ðzÞ ¼ k02z2 þ k2 forD families. The same
LA and DA systems can be reproduced by using ds2ðρ;ϕÞ,
and setting ρ ¼ xwhich corresponds to XðxÞ from the same
Tb case.4 The initial form of potentials is interchanged in
comparison with the case when we proceed from the
ds2ðz;ϕÞ form of the spherical metric: we should take
u1ðρÞ ¼ −k02 − k2

ρ2
for the D case and u1ðρÞ ¼ k02ρ2 þ k2

for the L case. In the same vein, one can use other
parametrizations for z and ρ coordinates shown in
Table II to reproduce the systems presented in Table III.
The correspondence between parametrizations and elliptic
families is the following: Te → 1, Tb → B, T1 → C,
Td → D. At the same time, if we take ρ ¼ �ð1 − 2e−xÞ
corresponding to a parametrization from the case Tc, we do
not reproduce the last case E, but obtain, instead, L0 ¼
1
4
mðxÞ_x2 with position-dependent mass mðxÞ and xðχÞ

functions given by

mðxÞ ¼ 1

ðex − 1Þk02 þ 4k2ð1 − e−xÞ2 ;

xðχÞ ¼ − ln

�
1

2
ð1þ sn χÞ

�
; ð51Þ

and potentials

u1ðxÞ ¼ 4k2ðe−2x − e−xÞ − k02;

u1ðxÞ ¼
k02 þ 4k2ðe−x − e−2xÞ

4ðe−2x − e−xÞ ð52Þ

for the cases LE and DE, respectively. In the limit k → 0,
the mass function from (51) transforms into that for the case
Tc, but for k → 1 we obtain mðxÞ ¼ 1

4ð1−e−xÞ2, which does

not appear in Table III, and, particularly, does not coincide
with mðxÞ for the Hc case. There is no contradiction here
since in general different elliptic functions may have the
same limit for k → 0 (or for k → 1), but different limits as
k → 1 (k → 0). For the discussion of this point in appli-
cation to finite-gap systems, see [54–56].
The first function from (52) has a form of Morse

potential. So, the system (51) with first potential from
(52) gives us finite-gap elliptic generalization of reflection-
less system with position-dependent mass mðxÞ ¼ 1

4ð1−e−xÞ2
and Morse-like potential u1ðxÞ ¼ 4ðe−2x − e−xÞ.

F. Special case of elliptic finite-gap systems and
Bernoulli lemniscate

In the limits k → 1 and k → 0, the elliptic finite-gap
systems we considered transform into hyperbolic and
trigonometric systems. A rather natural question that
appears here whether anything interesting happens in the
middle case, at k2 ¼ k02 ¼ 1

2
. In this case, we have

k ¼ k0 ¼ 1ffiffi
2

p , and so, KðkÞ ¼ Kðk0Þ≡K0ðkÞ; i.e., in this

case, the magnitudes of the real, 2Kð1= ffiffiffi
2

p Þ, and the hidden
imaginary, 2iK0ð1= ffiffiffi

2
p Þ, periods of finite-gap L and D

potentials −Cn dn2χ and Cn dc2χ coincide. This corre-
sponds to the lemniscatic case of elliptic functions
[57,58] with a purely imaginary value k ¼ i of the modular
parameter for which snðz;iÞ¼ 1ffiffi

2
p sdð ffiffiffi

2
p

z;1=
ffiffiffi
2

p Þ, cnðz;iÞ¼
cdð ffiffiffi

2
p

z;1=
ffiffiffi
2

p Þ and dn ðz; iÞ ¼ nd ð ffiffiffi
2

p
z; 1=

ffiffiffi
2

p Þ; see
Appendix B. In the case k ¼ i for the complementary
modular parameter, we have k02 ¼ 1 − k2 ¼ 2.
In the lemniscatic case k ¼ i, the Hamiltonian operator

of the finite-gap Lamé system takes the form HL
n ¼

2ð− d2

dζ2 − Cndn2ðζ; 1=
ffiffiffi
2

p Þ, where ζ ≡ ffiffiffi
2

p
χ þKð1= ffiffiffi

2
p Þ.

This is just the rescaled Hamiltonian of the displaced in
a half-period n-gap Lamé system with k ¼ 1=

ffiffiffi
2

p
.

For the basic D potential with k ¼ i, we have
dc2 ðχ; iÞ ¼ nc2ð ffiffiffi

2
p

χ; 1=
ffiffiffi
2

p Þ ¼ −2dn2 ðζ; 1= ffiffiffi
2

p Þ þ 1, ζ≡ffiffiffi
2

p
χ þKð1= ffiffiffi

2
p Þ þ iK0ð1= ffiffiffi

2
p ÞÞ, and the Hamiltonian is

rewritten equivalently HD
n ¼2ð− d2

dζ2−Cndn2ðζ;1=
ffiffiffi
2

p ÞÞþ1.

This is a rescaled finite-gap D-Hamiltonian operator.
Let us show now that all the L and D finite-gap systems

with position-dependent mass presented in Table III, in the
lemniscatic case k ¼ i can be obtained from a nonrelativ-
istic particle of mass m ¼ 1 in Eucledian space R2 with
coordinates ðξ; ηÞ, which is subjected to the action of one of
the two basic potentials

uL1 ðξ; ηÞ ¼ −
2

ξ2 þ η2 þ 1
; uD1 ðξ; ηÞ ¼

1

ξ2 þ η2
ð53Þ

and restricted to move along the Bernoulli lemniscate.
The Bernoulli lemniscate can be obtained in the follow-

ing way directly relevant to our consideration. Take an
4In this case, ρ with a sign corresponds to the horizontal

coordinate in the meridian plane ðρ; zÞ; for explanations see [77].
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equilateral (rectangular) hyperbola in Euclidean R2 space
given by the equation X2 − Y2 ¼ 1, and construct its
inversion in the circle of unit radius centered at the origin
of the system of coordinates; see Fig. 7. We obtain
ðX; YÞ ⟼ ðξ; ηÞ, where

ðξ; ηÞ ¼
�

X
X2 þ Y2

;
Y

X2 þ Y2

�
: ð54Þ

We have ξ2 þ η2 ¼ 1=ðX2 þ Y2Þ, ξ2 − η2 ¼ 1=ðX2 þ Y2Þ2,
and so, the points of the inverted hyperbola satisfy the
equation

ðξ2 þ η2Þ2 ¼ ξ2 − η2:

This is nothing else as the equation of a particular case
of the Bernoulli lemniscate ðξ2 þ η2Þ2 ¼ 2c2ðξ2 − η2Þ
with foci at ð−c; 0Þ ðþc; 0Þ with c ¼ 1=

ffiffiffi
2

p
, and unit

‘radius’
ffiffiffi
2

p
c ¼ 1.

For a particle restricted to move on the lemniscate, we
have

_ξ2 þ _η2 ¼
_Y2

ð1þ Y2Þð1þ 2Y2Þ ; ð55Þ

where we have taken into account that X2 − Y2 ¼ 1. Taking
now all the different parametrizations for the equilateral
hyperbola presented in Table I (with the change X ↔ Y),
we reproduce all the finite-gap elliptic systems with k ¼ i
presented in Table III. The correspondence between the
parametrization cases and elliptic (lemniscatic) families is
the following:

H1 → D; Ha → B; Hb → A;

Hc → E; Hd → C; He → 1: ð56Þ

For instance, using the parametrization from the case
H1, we put Y ¼ sinh x, and (55) gives us the kinetic term

L0 ¼ 1
4
mðxÞ_x2 with mðxÞ ¼ 1=ð1þ 2 sinh2 xÞ, that coin-

cides with the position-dependent mass from Table III for
the D family in the lemniscatic case k ¼ i. Potentials (53)
take here the form of the potentials of the lemniscatic D
family: uLD

1 ¼ −2þ cosh2x and uDD
1 ¼ 1þ 2sinh2x. Using

the parametrization for the caseHe, we put Y ¼ sn ðx;kÞ
cn ðx;kÞ, and

(55) gives us mðxÞ ¼ dn2ðx; kÞ=ð1þ sn2 ðx; kÞÞ. For the
lemniscatic case k ¼ i, this reduces to the constant mass
m ¼ 1 for the family 1 from Table III, while (53) gives us
the corresponding potentials. In a similar way, one can
check other correspondences shown in Eq. (56).
Particularly, parametrization Y ¼ xffiffiffiffiffiffiffiffi

1−x2
p from the Hb case

gives the mass functionmðxÞ ¼ 1
1−x4 of the lemniscatic case

for the family A. Since for the Ha case we have Y ¼ x,
Eq. (55) gives us immediately the mass function for the
lemniscatic B family: mðxÞ ¼ 1

ð1þx2Þð1þ2x2Þ. The only cor-

respondence that requires an additional step to establish is
Hc → E. The parametrization from the case Hc with
X ¼ 1

2
ðκ þ 1

κÞ, Y ¼ 1
2
ðκ − 1

κÞ gives us the rational para-
metrization (54) of the lemniscate,

ðξ; ηÞ ¼
�
κ3 þ κ

κ4 þ 1
;
κ3 − κ

κ4 þ 1

�
;

and the kinetic term L0ðκÞ ¼ 1
4
mðκÞ_κ2 with the position-

dependent mass mðκÞ ¼ 2=ð1þ κ4Þ. Changing addition-
ally the parameter by κ ¼ ffiffiffiffiffiffiffiffiffiffiffi

sinh τ
p

, τ≡ ffiffiffi
2

p
x, where we

assume x > 0, the obtained kinetic term transforms into
L0ðxÞ ¼ 1

4
mðxÞ_x2 with mðxÞ ¼ 1

sinh τ, that corresponds to
the lemniscatic case k ¼ i of the position-dependent
mass for the finite-gap family E from the Table III. It is
not difficult to check also that Eq. (53) reproduces
correctly the lemniscatic form of the potentials for the
same family E.

G. Finite-gap systems by reduction of a free particle
on surfaces of revolution

We have showed how hyperbolic, trigonometric and
elliptic finite-gap systems with PDM can be obtained by
appropriate reduction procedures in different spaces of
constant curvature in the presence of Calogero-like or
harmonic oscillator potentials, or potentials related to these
ones via appropriate coordinate transformations. Here we
discuss how the same systems can be generated by the
angular momentum reduction of a free particle system on
some surfaces of revolution.
Hyperbolic finite-gap systems can be obtained by

taking a free nonrelativistic particle on a one-sheet hyper-
boloid embedded into (2þ 1)-dimensional Minkowski
space R1;2, the AdS2 space, and by making a phase
space reduction of the system to a surface of a constant
angular momentum. Indeed, consider a one-sheet

FIG. 7. Bernoulli lemniscate, equilateral hyperbola and circum-
ference of inversion.
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hyperboloid with coordinates x0 ¼ XðxÞ, ~x ¼ YðxÞ~nðφÞ,
where YðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2ðxÞ

p
, −∞ < XðxÞ < ∞, ~nðφÞ ¼

ðcosφ; sinφÞ, 0 ≤ φ < 2π. We assume the hyperboloid
is imbedded into the (2þ 1)-dimensional Minkowski space
with metric ημν ¼ diagðþ1;−1;−1Þ. From a free particle

Lagrangian L ¼ 1
4
ημν _xμ _xν ¼ 1

4
ðð_x0Þ2 − ð_~xÞ2Þ in R1;2 we

obtain the Lagrangian L ¼ 1
4
ðmðxÞ_x2 − Y2ðxÞ _φ2Þ, where

mðxÞ ¼ X02=ð1þ X2Þ ¼ Y 02=ðY2 − 1Þ. By the construc-
tion, the system is SOð2; 1Þ-invariant. The angular coor-
dinate φ is cyclic, and corresponding Routhian is
R ¼ 1

4
ðmðxÞ_x2 − p2

φ
1

Y2ðxÞÞ. Conserved canonical momen-

tum pφ ¼ − 1
2
Y2ðxÞ _φ is the angular momentum of the

system generating rotations in the plane ~x ∈ R2, and
reduction of the system to the surface pφ ¼ C corresponds
to the Lagrangian L ¼ 1

4
ðmðxÞ_x2 − C2 1

Y2Þ considered by us
when we started our discussion of the hyperbolic family of
the systems. On the other hand, the reduction can be
realized at the quantum level in such a way that the
quantum constant Cn ¼ nðnþ 1Þℏ2 will be reproduced
exactly in the emerging potential term. For this, it is
necessary to introduce into initial Lagrangian a topologi-
cally nontrivial term −α _φ, which does not change classical
equations of motion and corresponds to coupling of the
particle to the Aharonov-Bohm flux [68].
In an analogous way, one can obtain trigonometric

finite-gap systems by considering a free particle on a
sphere embedded in three-dimensional Euclidean space,
x3 ¼ XðxÞ, ~x ¼ YðxÞ ¼ ~nðφÞ, where X2 þ Y2 ¼ 1,
Y > 0, and ~nðφÞ is the unit vector as in the hyperbolic

case. Then L ¼ 1
4
ð_x3Þ2 þ ð_~xÞ2 ¼ 1

4
ðmðxÞ_x2 þ Y2ðxÞ _φ2Þ,

mðxÞ ¼ Y 02
1−Y2. Analogously to the previous hyperbolic

case, by reduction to the surface of the constant angular
momentum pφ one can reproduce finite-gap trigonomet-
ric systems.
One can also consider a free motion of the particle on

upper (or lower) sheet of the two-sheeted hyperboloid
ðx0Þ2 − ð~xÞ2 ¼ 1 embedded into the three-dimensional
Minkowski space5 R2;1. Taking the upper sheet given by
x0 ¼ XðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Y2ðxÞ

p
, ~x ¼ YðxÞ~nðφÞ and a free par-

ticle Lagrangian in the form L ¼ 1
4
ðð_~xÞ2 − ð_x0Þ2Þ, we

obtain L ¼ 1
4
mðxÞ_x2 þ Y2ðxÞ _φ2 and R ¼ 1

4
mðxÞ_x2 þ

p2
φ

1
Y2ðxÞ, mðxÞ ¼ Y 02

1þY2. After reduction to the surface pφ ¼
C of a constant value of the integral of motion pφ, one can
reproduce singular finite-gap hyperbolic systems.
Particularly, the choice YðxÞ ¼ 1ffiffiffiffiffiffiffiffi

x2−1
p , x > 1, reproduces

the system H0
b with mðxÞ ¼ 1

ðx2−1Þ2 and u1ðxÞ ¼ x2 − 1,

which after the change of variable x → χ, x ¼ − coth χ,
χ < 0, transforms this into the system H0

1 with m ¼ 1

and U1ðχÞ ¼ 1
sinh2 χ. The choice YðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
, x > 1,

reproduces the system T0
a with mðxÞ ¼ 1

x2−1 ¼ u1ðxÞ,
which after the change of variable gives mðχÞ ¼ 1

and U1ðχÞ ¼ 1
sinh2 χ.

The both hyperbolic reflectionless H and finite-gap
singular H0 families can be obtained from ordinary
Lorentzian anti-De Sitter spacetime AdS3 of curvature
radius l by treating it as being embedded in R2;2. The
embedding is given by the equation −ð~x−Þ2 þ ð~xþÞ2 ¼
−l2, where ~x� are two-dimensional vectors with
components which we denote by x1;2� . Parametrization
~x− ¼ l cosh ρ~n−ðτ=lÞ, ~xþ ¼ l sinh ρ~nþðφÞ, ~n� ¼
ðcos λ�; sin λ�Þ, φ ∈ ½0; 2πÞ, τ ∈ ½0; 2πlÞ, ρ ∈ ½0;∞Þ gives
the AdS3 metric

ds2 ¼ − cosh2 ρdτ2 þ l2 sinh2 ρdφ2 þ l2dρ2: ð57Þ

Taking a free particle in AdS3 described by Lagrangian
L0 ¼ 1

4
ðds=dtÞ2 ¼ 1

4
ð− cosh2 ρ_τ2 þ l2 sinh2 ρ _φ2 þ l2 _ρ2Þ,

the Hamiltonian reduction by constraints pφ ¼ C1, pτ ¼
0 provides us with singular finite-gap systems H0

1.
Instead of the second condition (constraint), one can
take τ ¼ 0, which corresponds to restriction on the
subspace x2− ¼ 0, x1− ≥ l. To obtain the reflectionless
H1 family, we reduce the system by using the con-
straints pτ ¼ C, x2þ ¼ 0. In the subspace with x2þ ¼ 0,
we have x1þ ≥ 0 that corresponds to φ ¼ 0, and x1þ ≤ 0

for φ ¼ π. These two subspaces can be unified by taking
φ ¼ 0 and extending ρ from ½0;∞Þ to the infinite
interval ð−∞;∞Þ. Such extension (doubling) of the
interval for the variable ρ is similar to the picture
taking place for the motion along the Seiffert spiral
we utilized to generate finite-gap elliptic systems.
Again, by appropriate change of the variable ρ, we
reproduce all the hyperbolic finite-gap systems with
position-dependent mass we discussed.
One can also obtain elliptic systems L by taking a free

particle on a certain surface of revolution embedded into
Minkowski (2þ 1)-dimensional space. For the family L1,
the corresponding surface in a two-parametric form is given
by x0 ¼ 1

k0 Eðξ; kÞ, ~x ¼ 1
dnχ ~nðφÞ, where ξ ¼ k0sc ðχ; kÞ ¼

−cn ðχ þK; kÞ, and Eðξ; kÞ is the incomplete elliptic

integral of the second kind, Eðx; kÞ ¼ R
x
0

ffiffiffiffiffiffiffiffiffiffi
1−k2τ2
1−τ2

q
dτ. This

surface represents a surface of a form of a one-sheet
hyperboloid but with −E ≤ x0 ≤ E, where E ¼ Eð1; kÞ
is the complete elliptic integral of the second kind [57]. In
the limit k → 1, this surface transforms into the one-sheeted
hyperboloid (AdS2) surface we discussed above, while in
the another limit k → 0, it transforms into a cylinder with

5Stereographic projection of one sheet of a two-sheeted
hyperboloid embedded into R3 gives the Poincaré disc model
of Lobachevsky plane, where the appropriate reduction of the
kinetic term on geodesics, as we have seen, supplies us with the
kinetic terms for the systems of H family.
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−π ≤ x0 ≤ π. We have here L0 ¼ 1
4
ðð_x0Þ2 − ð_~xÞ2Þ ¼

1
4
ð_χ2 − nd2χ _φ2Þ. After reduction to the surface pφ ¼ C,

this yields the L1 family of the systems with m ¼ 1. Other
L–families of the systems with position-dependent mass
we discussed can be obtained by the change of variable
using the information presented in Table III. By a complex
displacement χ → χ þKþ iK0, one can also generate the
D–families of finite-gap systems.

V. SUPERSYMMETRIC PAIRS OF
FINITE-GAP SYSTEM

Consider now some examples of supersymmetric finite-
gap systems with position-dependent mass which can be
obtained based on the constructions of the preceding
sections.
Let us take a function ΦðχÞ to be nodeless in a certain

interval ðχ1; χ2Þ. In accordance with (26), in a usual way
we obtain a superporpotential WðχÞ ¼ Φ0ðχÞ=ΦðχÞ to be
nonsingular function in the same interval. In terms of
WðχÞ, we construct two quantum systems, HΦ, defined by
Eq. (28), and H1=Φ. They form a supersymmetric pair

ðHþ ≡H1=Φ; H− ≡HΦÞ,H� ¼ −ℏ2 d2

dχ2 þ V�, with poten-
tials V� ¼ W2 � ℏW 0.
The choice

Φ ¼ ðcosh χÞn; W ¼ ℏn tanh χ; χ ∈ ð−∞;∞Þ;
ð58Þ

with n ¼ 1; 2;…, gives us a supersymmetric pair of
quantum systems with

V� ¼ ℏ2n2 − C∓n
1

cosh2χ
; C�n ¼ ℏ2nðn� 1Þ; ð59Þ

where C−n ¼ Cn−1. We show explicitly the dependence on
Planck constant to stress the purely quantum nature of the
potentials. These are the pairs of reflectionless hyperbolic
systems with n bound states in the system H− and n − 1
bound states in Hþ, where Hþ at n ¼ 1 corresponds to a
free particle on a real line.
Analogously, we obtain the supersymmetric pairs of

finite-gap trigonometric systems,

Φ ¼ ðcos χÞn; W ¼ −ℏn tan χ; χ ∈ ð−π=2; π=2Þ;
ð60Þ

V� ¼ −ℏ2n2 þ C∓n
1

cos2χ
; ð61Þ

with the basic function Φ to be nodeless in the indicated
finite interval.

The choice

Φ ¼ ðdn χÞn; W ¼ −ℏnk2
sn χcn χ
dnχ

; χ ∈ ð−∞;∞Þ

ð62Þ

with the periodic basic function Φ to be nodeless on all the
real line produces the supersymmetric pair of the systems
with potentials

V� ¼ ℏ2n2ð1þ k02Þ − C∓ndn2χ − C�ndn2ðχ þKÞ; ð63Þ

where dnðχ þKÞ ¼ k0=dnχ. At n ¼ 1, (63) corresponds to
a pair of one-gap Lamé systems with potentials mutually
shifted in the half of their real period. For n > 1, these are
the supersymmetric pairs of n-gap associated Lamé sys-
tems of a special form [54,55], see below. In the infinite
period limit corresponding to k → 1, they transform into
the supersymmetric hyperbolic pairs (59), while for k → 0
both potentials turn into zero. The supersymmetric partner
potentials (63) satisfy the property

V�ðχ þKÞ ¼ V∓ðχÞ; ð64Þ

which means that the corresponding supersymmetric part-
ner Hamiltonians Hþ and H− are completely isospectral.
By the construction, the functions ΦðχÞ ¼ ðdnχÞn and
1=ΦðχÞ are the eigenstates of the Hþ and H− systems,
respectively. They correspond to nondegenerate ground
states of zero energy of these systems [54,55].
By the complex shift χ → χ þ iK0 in (62) and (63) we

obtain the analog which describes singular supersymmetric
systems belonging to the family of Darboux-Treibich-
Verdier finite-gap systems:

Φ ¼ ðcs χÞn; W ¼ −ℏn
dn χ

sn χcn χ
; χ ∈ ð0;KÞ;

ð65Þ

V� ¼ ℏ2n2ð1þ k02Þ þ C∓ncs2χ þ C�nk02sc2χ: ð66Þ

The last term in (66) can be presented equivalently in the
form C�ncs2ðχ þKÞ, that can be compared with the
structure in (63). As a consequence, the superpartner
potentials in (66) satisfy the property (64). In the limit
k → 1, (66) transforms into supersymmetric pair of
singular hyperbolic systems described by potentials
V� ¼ ℏ2n2 þ C∓n

1
sinh2 χ, while in another limit k → 0 we

obtain supersymmetric pairs with partner potentials V� ¼
2ℏ2n2 þ C∓ncotan2χ þ C�n tan2 χ [53].
To construct finite-gap elliptic supersymmetric system

which in trigonometric limit k → 0 reproduces supersym-
metric finite-gap family (60), (61), we make in (62), (63) a
change χ → iχ, multiply the resulting Hamiltonian
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operators by −1, and make a change k ↔ k0. This yields

Φ ¼ ðdc χÞn; W ¼ −ℏnk02
sn χ

cn χdn χ
; χ ∈ ð−K;KÞ;

ð67Þ

V� ¼ −ℏ2n2ð1þ k2Þ þ C∓ndc2χ þ C�nk2cd2χ: ð68Þ

Potentials (68) satisfy, again, the property (64). The limit
k → 1 applied to (68) gives V� ¼ 0, while in another limit
k → 0 we reproduce supersymmetric trigonometric pair
(61). Note that the last term in (68) can be written
equivalently as C�ndc2ðχ þ iK0Þ, that can be compared
with the properties of separate terms of superpartner
potentials in (63) and (66) under the real displacement
K. In correspondence with this, the potentials in (66) can be
presented equivalently VþðχÞ ¼ −ℏ2n2k2 þ Cndc2χ þ
C−ndc2ðχ þKÞ ¼ V−ðχ þKÞ. This particularly explains
the following seeming paradox. As we saw in the previous
section, in the nonsupersymmetric case the finite-gap Lamé
and singular elliptic systems, which in the limits k → 1 and
k → 0 produce finite-gap hyperbolic and trigonometric
systems, can be related either via the complex shift χ →
χ þKþK0 or via the transformation χ → iχ. However,
these two types of transformations applied to supersym-
metric associated Lamé system (63) produce two different
supersymmetric systems belonging to the Darboux-
Treibich-Verdier families of finite-gap systems.
In all the supersymmetric families of finite-gap systems

presented above, mass is position-independent, m ¼ 1. To
reconstruct the supersymmetric systems with position-
dependent mass, consider as a first example the mass
function mAðxÞ ¼ 1=ð1 − x2Þð1 − k2x2Þ corresponding to
the elliptic family A from the previous section. From
Table III we find that in this case the function (13) giving
the change of variable is φðχÞ ¼ cn χdn χ, and xðχÞ ¼ sn χ.
Equation (27) allows us to find the functions ςðxÞ for
supersymmetric pair of finite-gap systems given by poten-
tials (63). We denote these functions by ς�ðxÞ, and
obtain ς�ðxÞ ¼ ð1 − k2x2Þ∓n

2
−1
4ð1 − x2Þ−1

4, x ∈ ð−1; 1Þ.
The supersymmetric pair of n-gap quantum systems
HþðxÞ and H−ðxÞ with position-dependent mass mAðxÞ
is reconstructed then with the help of Eq. (17), where
fðxÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mAðxÞ

p
. In the limit k → 1, we have fðxÞ ¼

1 − x2, ς� ¼ ð1 − x2Þ−1
2
ð1�nÞ, and obtain supersymmetric

pair of reflectionless systems of the type considered by
Linde et al. [11].
Consider now another example of the position-

dependent mass function mC ¼ 1=ð1 − k2 sin2 xÞ,
x ∈ ð−∞;∞Þ, corresponding to the family C in
Table III. In this case, the change of variable function
φðχÞ ¼ dn χ is related to the supersymmetry-generating
function Φ from (62) in a simple exponential way. This
allows us to use the ordering prescription corresponding to

the similarity transform function (29) given in terms of the
mass function. The parameter λ for corresponding super-
partner potentials (63) is fixed in the form λ� ¼ 1

2
� n, and

here, as follows from Table III, sn χ ¼ sin x, and
fðxÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mCðxÞ

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2 sin2 x

p
. In accordance with

(35), the supersymmetric pair of finite-gap systems corre-
sponding to the pair of associated Lamé systems (62) is
given by Hamiltonian operators with position-dependent
mass,

H�ðxÞ ¼ −ℏ2m
∓n

2
−3
4

C
d
dx

m
�nþ1

2

C
d
dx

m
∓n

2
−3
4

C : ð69Þ

In the limit k → 1, this pair transforms into a supersym-
metric pair of reflectionless systems of the type Hd
presented in Table II. Since the change of variable function
φðχÞ ¼ cn χdn χ from the family A we discussed in the
previous example and the supersymmetry-generating func-
tion Φ from the family of the systems (67), (68) are related
as Φ ¼ ðφðχÞÞ−n, one can apply the same ordering scheme
with generating function (29) in this case as well to
reproduce kinetic term with position-dependent mass
which generates supersymmetric finite-gap pairs of the
systems (68).
Let us stress that in the way described above we generate

supersymmetric pairs of finite-gap systems from the kinetic
term with position-dependent mass, not introducing apart
any potential term. In this sense, the construction is
somewhat reminiscent of the picture of the generation of
finite-gap systems via angular momentum reduction of a
free motion on the surfaces of revolution that we discussed
in Section IVG. But this provokes the question of whether
or not the potential terms can be introduced separately in
such a way that we still have supersymmetric pairs of finite-
gap systems. This can easily be achieved by exploiting the
not yet utilized ordering prescription corresponding to
Eq. (8) in order to construct a pair of finite-gap systems
related by usual supersymmetry generated by supercharges
which are first-order differential operators. Similarly to (8),
we take

HUþα ≡ 1

2
ð1þ αÞH1=Φ þ 1

2
ð1 − αÞHΦ þ UðχÞ

¼ −ℏ2
d2

dχ2
þW2 þ αℏW 0 þ UðχÞ; ð70Þ

with some still unknown potential UðχÞ, and demand that
the pair HUþα and HU

−α be supersymmetric. This means that
the Hamiltonian operators have to be representable in the
form HU

�α ¼ −ℏ2 d2

dχ2 þW2
α � αℏW 0

α with some superpo-

tential Wα. Equating this with (70) and its analog with α
changed for −α, we find that Wα can be taken in the form
Wα ¼ αW, where for simplicity we set integration constant
equal to zero, and then UðχÞ ¼ ðα2 − 1ÞW2. This can be
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transferred to the case with position-dependent kinetic term
using the procedure described above.
What we obtained based on (70) is, however, a rather

trivial generalization. We develop it further by considering
concrete examples to generalize for the case of nonlinear
supersymmetries based on existence of intertwining oper-
ators which are differential operators of higher order.
Though such a generalization can be realized on the basis
of the ordering presented in (70), we return to the ordering
we discussed before (which corresponds to α2 ¼ 1). Let us
consider first the concrete example of the “inflationary
model” Hb with mðxÞ ¼ 1

ð1−x2Þ2, fðxÞ ¼ 1 − x2, φðχÞ ¼
1

cosh2 χ, xðχÞ ¼ tanh χ, and choose the ordering prescription

based on ς ¼ f−λ corresponding to (29). Take the pair of
the quantum systems with quantum kinetic terms of the
form (35), and supply them by the potential term of the
form uðxÞ ¼ γx2. We obtain two-parametric systems

Hλ;γðxÞ≡ −f1−λ
d
dx

f2λ
d
dx

f1−λ þ γx2; and H1−λ;γ

ð71Þ
as two different quantum analogs of zero-dimensional
version of the classical field system ([11]). According to
(30), we have ΦðλÞ ¼ ðcosh χÞ2λ−1 and W¼ð2λ−1Þ tanhχ.
We denote β ¼ 2λ − 1. After the similarity transformation
and change of variable the Hamiltonian operators Hλ;γðxÞ
and H1−λ;γ transform into the pair H�β;γðχÞ ¼ − d2

dχ2 þ
V�ðχÞ with V�ðχÞ¼ðβ2þγÞ− 1

cosh2 χ ðγþβ2∓βÞ, where

we set again ℏ ¼ 1. Both obtained systems in the pair
are reflectionless hyperbolic systems if coefficients are
chosen such that ðγ þ β2 ∓ βÞ ¼ n�ðn� þ 1Þ≡ Cn� ,
where nþ and n− are some integer numbers (with zero
value corresponding to a free particle case). This gives
λ ¼ 1

4
ðCn− − Cnþ þ 2Þ, γ ¼ 1

2
ðCn− þ CnþÞ − β2, and then

V�ðχÞ ¼ 1
2
ðCn− þ CnþÞ − Cn�

1
cosh2 χ. In particular, when

one of the integers n− or nþ is equal to zero, one of the
systems in the pair corresponds to the free particle.
Reflectionless system with coefficient Cn ¼ nðnþ 1Þ in
potenial term can be related to the free particle Hamiltonian
by means of intertwining operator which is a differential
operator of order n. Assuming that nþ > n−, and since the
free particle is characterized by the momentum operator
integral −i d

dχ, the systems with coupling constants Cnþ and
Cn− can be intertwined by differential operators of orders
ðnþ − n−Þ and ðnþ þ n− þ 1Þ, and the composed system
(Hnþ , Hn−) will be described by exotic supersymmetry
generated by supercharges of the indicated differential
orders and by the bosonic integrals composed from Lax-
Novikov operators of these finite-gap systems; see
[54,55,78] for the details.
In the same way, one can take the pair (71) with position-

dependent massmCðxÞ ¼ 1
1−k2 sin2 x corresponding to elliptic

case we discussed above, and change the potential term in
(71) for uðxÞ ¼ γðk2 sin2 x − 1Þ. Then after corresponding
similarity transformation and the change of variable, with
both operations given in terms of fðxÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mCðxÞ

p
, we

find that the choice of the parameters λ ¼ 1
2
− l and

γ ¼ Cn − Cl−1, where l and n are integers, gives us a
completely isospectral pair of the associated Lamé systems
with potentials VþðχÞ ¼ −Cndn2χ − Cldn2ðχ þKÞ þ
l2ð1þ k02Þ and V−ðχÞ ¼ Vþðχ þKÞ. Exotic nonlinear
supersymmetry of the system composed from
Hamiltonians with these associated Lamé potentials of
the most general form is analysed in detail in [54,55].

VI. CONCLUDING REMARKS AND OUTLOOK

In conclusion, we present below some remarks on the
obtained results and discuss some interesting problems for
future research.
A canonical transformation in the phase space ðx; pÞ

generated by a function αðxÞ is given by

gðx; pÞ → Gðx; pÞ ¼ exp αðxÞ⋆gðx; pÞ≡ gðx; pÞ

þ
X∞
n¼1

1

n!
fαðxÞ; f…; fαðxÞ; gðx; pÞgg…g: ð72Þ

Taking a purely imaginary generating function αðxÞ ¼
−i

R
x WðξÞdξ, for g ¼ p this yields a complex transforma-

tion p → P ¼ p − iWðxÞ, having a form of a minimal
coupling with a purely complex “gauge field”
AðxÞ ¼ iWðxÞ. In order for a transformed kinetic term to
be real, we take it (in the case m ¼ 1) in the form h ¼ P̄P,
where the bar denotes a complex conjugation. Then
Hamiltonian operator (5), (6) can also be understood as
a direct quantum analog of the classical term h ¼ P̄P. This
picture with a purely complex U(1) “gauge field” AðxÞ ¼
iWðxÞ is similar to the picture that appears in quasiexactly
solvable systems [79]. It seems therefore to be interesting to
look in more detail for relations between the quantum
quasiexactly solvable systems and the systems with posi-
tion-dependent mass. Such relations could particularly be
relevant in the case of finite-gap systems bearing in mind
that a hidden soð2; 1Þ symmetry plays an important role in
understanding of their properties [54,68], and that quasiex-
act solvability for a broad class of the systems with such a
property is based on finite-dimensional representations of
slð2;RÞ [79–81]. The slð2;RÞ plays also important role in
the theory of periodic quantum systems [55,82].
The kinetic term in (5), (6), and then in (17) has a

structure similar to that appearing in the quantum problem
of a particle in curved space described by external metric
gμνðxÞ. Removal of ordering ambiguity in the quantum
kinetic term requires the essential ingredient of invariance
under general coordinate transformations. The same
ambiguity happens in flat backgrounds in curvilinear
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coordinates. The invariance under general coordinate trans-
formations is maintained by constructing a quantum kinetic
term in accordance with the prescription: H ¼ p−

μ gμνpþ
μ ,

where p�
μ ¼ g�1=4pμg∓1=4 [48]. An analogous problem

with ordering ambiguity in the kinetic terms appears also in
the context of supersymmetry [49]. Let us stress, however,
that in both indicated cases the analogy with the present
approach to the quantum mechanical systems with PDM
is rather formal since we considered a one-dimensional
case here, which is characterized by a trivial metric.
Nevertheless, the fictitious classical similarity transforma-
tion in the kinetic term we introduced is reminiscent of a
freedom of choice of curvilinear coordinates in higher-
dimensional flat backgrounds.
We showed that the kinetic term with a position-

dependent mass is a natural source to produce the pairs
of quantum systems related by the first-order supercharges.
On the other hand, inclusion of the potential term allows us
to obtain the pairs described by a nonlinear supersymmetry
with supercharges of arbitrary higher order. The appearance
of nonlinear supersymmetry in the systems with position-
dependent mass deserves a further investigation, bearing
particularly in mind a close relation between nonlinear
supersymmetry and quasiexact solvability [54,55,83].
Though finite-gap systems are described by potentials

quadratic in Planck constant ℏ2, this does not mean that all
the systems originating from the kinetic term with position-
dependent mass as in (40) are of this special nature. On the
one hand, finite-gap systems form a very special subclass of
the systems of the form (40): they are characterized by the
presence of a nontrivial Lax-Novikov integral of motion to
be a higher-order differential operator. The latter, however,
can be a rather formal integral in some quantum systems [61]
unlike the case of integrable systems where it plays a
fundamental role [82,84,85]. On the other hand, nonlinear
Riccati equation W2 −W 0 ¼ VðxÞ with unknown function
WðxÞ always has solutions for arbitrary given functionVðxÞ.
A peculiarity of the quantum Bohm potential Q in

the quantum Hamiltonian-Jacobi equation is that it is
proportional to ℏ2:Q¼− ℏ2

2M
R00
R ¼ ℏ2

4MðSgÞðxÞ, where RðxÞ ¼ffiffiffiffiffiffiffiffiffi
ρðxÞp

, g0 ¼ 1
ρ, ðSgÞðxÞ ¼ g000

g0 −
3
2
ðf00f0 Þ2 is the Schwarzian,

and ρðxÞ is the probability density of a quantum state [86].
In (40), the potential term is ℏ2

2M ðW2 −W 0Þ that coincides
with −Q if we make an identification Φ ¼ 1ffiffi

ρ
p . In the

supersymmetric pair (35) in the case of the ordering
prescription with ς ¼ 1 and λ ¼ 0, this identification
corresponds to f ¼ 1=ρ, while for ς ¼ 1 and λ ¼ 1 one
has f ¼ ρ. It would be interesting to investigate this
analogy with the quantum Bohm potential in more detail.
Note that the analogy with the quantum Bohm potential and
its relation to the Schwarzian derivative has allowed us to
apply the approach with the classically fictitious similarity
transformation in the kinetic term developed here to solve,

in [87], the quantum anomaly problem for supersymmetry
with the second-order supercharges [83].
The systems with position-dependent mass were studied

also in the case of spatial dimension D > 1 [24–29],
particularly, in the context of superintegrable systems
[31]. It would be interesting to generalize our approach
in this direction, having in mind, particularly, a generali-
zation of the Mathiew-Lakshamann model forD > 1which
was studied in [63]. The analogy with the quantum problem
of a particle in curved space, as noted above, could be
relevant for such a generalization.
Another interesting generalization of the approach pre-

sented here would be its application to the study of the PT
symmetric quantum systems. Some investigations of the
systems with PDM in the context of PT symmetry were
realized in [21–23].
We showed that some finite-gap periodic elliptic systems

belonging to the broad family of Lamé-Darboux-Treibich-
Verdier systems can be obtained by reduction to the
Seiffert’s spherical spiral and Bernoulli’s lemniscate (for
a special value of the modular parameter), or by angular
momentum reduction of a free particle motion on certain
surfaces of revolution related to the AdS2. These observa-
tions deserve a further, more detailed investigation since
one could expect to obtain an alternative explanation for the
origin of the Lax-Novikov integrals in finite-gap elliptic
systems by analogy as was done for some reflectionless
systems by considering the Aharonov-Bohm effect on
AdS2 [68].
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APPENDIX A

Here we show that the quantum kinetic term of the
form Hα;β;γ ¼ μαDμβDμγ þ μγDμβDμα, with D ¼ d

dx,
αþ β þ γ ¼ −1, μðxÞ ¼ 4mðxÞ, is included into (17) as
a particular case.
Equating Hα;β;γ with (17), we obtain three relations

between coefficients appearing at D2, D and D0 ¼ 1. The

equality of coefficients at D2 yields f ¼
ffiffi
2
μ

q
. Then the

condition −2 μ0
μ2
¼ 2ff0 which appears as the equality of

coefficients at D is satisfied identically. Finally, the
equality of coefficients at 1 ¼ D0 can be reduced to the
equation

ðς0=ςÞ0 − ðς0=ςÞ2 ¼ 1

2
ðαþ γ þ 1Þ μ

00

μ

−
�
αþ γ þ αγ þ 3

4

��
μ0

μ

�
2

; ðA1Þ
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where we have used β ¼ 1 − α − γ. This is a Riccati
equation for the function ðln ςðxÞÞ0 given in terms of
function μðxÞ.
So, for any given PDM mðxÞ ¼ 1=f2ðxÞ, there exists

function ςðxÞ such that the quantum kinetic term (22) can
be presented in the form (17).

APPENDIX B

Jacobi elliptic functions are extended for the values of
the modular parameter k outside the interval (0,1) [57,58].
The sn, cn and dn functions are even under the change
k → −k. We also have

sn ðz; 1=kÞ ¼ k snðz=k; kÞ; cn ðz; 1=kÞ ¼ dn ðz=k; kÞ;
dn ðz; 1=kÞ ¼ cn ðz=k; kÞ; ðB1Þ

and

sn ðz; ik̂Þ ¼ k01sd ðz=k01; k1Þ; cn ðz; ik̂Þ ¼ cd ðz=k01; k1Þ;
dn ðz; ik̂Þ ¼ nd ðz=k01; k1Þ; ðB2Þ

where

k1 ≡ k̂ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k̂2

p ; k01 ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k̂2

p ; k21 þ k01
2 ¼ 1:

ðB3Þ

So, for k ¼ i ¼ i · 1, we have k̂ ¼ 1, k1 ¼ k01 ¼ 1ffiffi
2

p , and

sn ðz; iÞ ¼ 1ffiffiffi
2

p sd ð
ffiffiffi
2

p
z; 1=

ffiffiffi
2

p
Þ;

cn ðz; iÞ ¼ cd ð
ffiffiffi
2

p
z; 1=

ffiffiffi
2

p
Þ;

dn ðz; iÞ ¼ nd ð
ffiffiffi
2

p
z; 1=

ffiffiffi
2

p
Þ: ðB4Þ

Note that this is a special case for elliptic functions, for
which Kð1= ffiffiffi

2
p Þ ¼ K0ð1= ffiffiffi

2
p Þ, and the lattice of semi-

periods of elliptic functions has additional (rotational in
π=2) symmetry. It is for this case the elliptic models we
consider can be reinterpreted at k ¼ i as those correspond-
ing to a motion of a particle on Bernoulli lemniscate.
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