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In this paper the duality correspondence between fermion-antifermion and difermion interaction
channels is established in two (2þ 1)-dimensional Gross-Neveu–type models with a fermion number
chemical potential μ and a chiral chemical potential μ5. The role and influence of this property on the phase
structure of the models are investigated. In particular, it is shown that the chemical potential μ5 promotes
the appearance of dynamical chiral symmetry breaking, whereas the chemical potential μ contributes to the
emergence of superconductivity.
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I. INTRODUCTION

It is well known that relativistic quantum field theory
models with four-fermion (4F) interactions serve as effec-
tive theories for low-energy considerations of different real
phenomena in a variety of physical branches. For example,
themeson spectroscopy, neutron star and heavy-ion collision
physics are often investigated in the framework of (3þ 1)-
dimensional 4F theories [1,2], known as Nambu–Jona-
Lasinio (NJL) models [3]. In particular, low dimensional
4F field theories provide a powerful tool for investigations in
condensed-matter physics. Indeed, physics of (quasi)one-
dimensional organic Peierls insulators (the best known
material of this kind is polyacetylene) is well described in
terms of the (1þ 1)-dimensional 4F Gross-Neveu (GN)
model [4–8]. The quasirelativistic treatment of electrons in
planar systems like high-temperature superconductors or in
graphene (a planarmonoatomic layer of carbon atoms) is also
possible in terms of (2þ 1)-dimensional GNmodels [9–15].
Notice that there are physical effects, which were

observed for the first time just in the framework of NJL-
and GN-type models. In particular, the phenomenon of a
dynamical generation of a fermion mass is well known for
strong interaction physics since the time when Nambu
and Jona-Lasinio [3] proved a dynamical breaking of the
continuous γ5-symmetry on the basis of a generic 4F
interaction theory. Later on, this effect served as the basis
of a qualitatively successful description of the low-energy
meson spectrum of quantum chromodynamics (QCD) [1].
The effect of dynamical symmetry breaking and generation
of a fermion mass is also known in low dimensional,
D ¼ 1þ 1 and D ¼ 2þ 1, GN theories [4,16–18], where
the four-fermion theory is renormalizable and asymptotic
free [4] in the case of D ¼ 1þ 1, whereas for D ¼ 2þ 1
the 4F GNmodels are perturbatively nonrenormalizable but

become renormalizable in the framework of the 1=N
expansion technique [18] (N being the number of fermion
fields). Another example of this kind is the effect of
spontaneous chiral symmetry breaking induced by external
magnetic or chromomagnetic fields. This effect was for the
first time studied also in terms of the (2þ 1)-dimensional
GN model [19].
Note in addition that due to a rather simple structure,

different low dimensional GN models provide a good
laboratory for a deeper study of dense baryon matter
and, in particular, for the consideration of such phenomena
as (color)superconductivity [20,21], charged pion conden-
sation [22,23], etc. Moreover, these theories are very useful
in developing new quantum field theoretical techniques like
the 1=N expansion [18], the optimized perturbation theory
[24,25], and so on.
It is necessary to point out that there is one more, not yet

mentioned above, phenomenon that is still a well-known
feature of only some (1þ 1)-dimensional 4F theories. This
is the duality correspondence between chiral symmetry
breaking and superconductivity [26–29]. [In order to avoid
the prohibition of Cooper pairing as well as spontaneous
breaking of a continuous symmetry in (1þ 1)-dimensional
models [30], the consideration should be performed in the
leading order of the 1=N-technique, i.e. in the large-N limit
assumption. In this case quantum fluctuations, which
would otherwise destroy a long-range order corresponding
to spontaneous symmetry breaking, are suppressed by 1=N
factors.] To formulate this phenomenon, let us imagine that
there is a microscopic 4F theory (for D ¼ 1þ 1 see, e.g.,
[20,29]) which describes a competition between fermion-
antifermion (or chiral) and difermion (or superconducting)
channels of interaction. Moreover, we suppose that the
ground state of the model is characterized by nonzero
fermion number and chiral charge densities (the last is an
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imbalance between densities of left- and right-handed
fermions), i.e. there are two external parameters, fermion
number-μ and chiral charge-μ5 chemical potentials, respec-
tively. Then the duality phenomenon means that the phase
structure of this 4F model is symmetric with respect to the
following simultaneous transformations G1 ↔ G2, μ ↔ μ5
and chiral symmetry breaking ↔ superconductivity (here
G1 and G2 are the coupling constants in the chiral and
superconducting channels, respectively). Thus, there is a
correspondence between properties (phase structure) of
the model, e.g., at G1 < G2 and G1 > G2, etc. Moreover,
knowing condensates and other dynamical and thermody-
namical quantities of the system, e.g. in the chirally broken
phase, one can obtain the corresponding quantities in the
superconducting phase of the model, by simply performing
there the duality transformation.
It is worth noting that in recent years properties of media

with nonzero chiral chemical potential μ5, i.e. chiral media,
attracted considerable interest (see, e.g., [31,32] and refer-
ences therein). In nature, chiral media might be realized in
heavy-ion collisions, compact stars, condensed matter
systems, etc. [31] (see also the review [33]). In particular,
one can expect that in the quark-gluon-plasma phase of
QCD a chirality imbalance is produced, i.e. there appears a
nonzero chiral charge density n5. The combined effect of the
chiral imbalance and of thevery strongmagnetic field,which
can be produced at noncentral heavy ion collision, results in
the so-called chiral magnetic effect (see, e.g., the paper [34]).
It means that theremight be induced an electric current along
the direction of the magnetic field. It is important to note that
this phenomenon is described effectively in the framework of
4Fmodels with a chiral chemical potential μ5, i.e. in terms of
a quantity conjugated to the chiral charge density n5.
Recently, it was established that in planar condensed matter
systems there may exist a phenomenon, which can be
regarded as an analogue of the QCD chiral magnetic effect
[35]. This is the pseudochiral magnetic effect, which can be
observed, e.g., in a distorted graphene sheet under the
influence of external in-plane magnetic field. Indeed, due
to amechanical distortion of the lattice structure of graphene,
there might appear a nonzero chiral charge density n5 (chiral
imbalance) as well as a conserved electric current along the
in-plane external magnetic field (for details, see the paper
[35]). Notice that, similar to the QCD chiral magnetic effect,
onemight expect that the pseudochiralmagnetic effect can be
effectively described in terms of (2þ 1)-dimensional 4F
modelswith nonzero chiral chemical potentialμ5 (in addition
to the usual chemical potential μ). Finally, it is important to
remark that a mechanical distortion of the lattice structure in
graphene-like materials (as well as other external perturba-
tions) can also lead to opening of different superconducting
channels in the system [36].
Thus, it makes sense to study a competition between

chiral symmetry breaking and superconductivity in
(2þ 1)-dimensional quantum field theories with chiral

chemical potential μ5. In particular, it is important to
predict/observe the possible duality relations between these
qualitatively different phenomena accompanied by μ5 in
field theories in spacetime dimensions D > 1þ 1.
In this paper we demonstrate that there exists a dual

correspondence (or dual symmetry) between the phenom-
ena of the chiral symmetry breaking and superconductivity
in the framework of some (2þ 1)-dimensional 4F models.
The consideration is performed at zero temperature T,
however it can be easily generalized to the case T ≠ 0. We
hope that our investigations shed some new light on the
physical effects in planar condensed matter systems.
The paper is organized as follows. In Sec. II a (2þ 1)-

dimensional 4F GN-type model, containing both fermion-
antifermion (or chiral) and difermion (or superconducting)
interaction channels and including two kinds of chemical
potentials, μ, μ5, is presented. Here we show that under
the Pauli-Gürsey transformations of Fermi fields there is a
dual relationship between the relevant 4F structures.Next, the
unrenormalized thermodynamic potential (TDP) of the GN-
type model is given in the leading order of the large-N
expansion. In Sec. III the dual symmetry of the model TDP is
established. It means that it is invariant under the interchange
of couplingconstants,μ,μ5 chemical potentials and chiral and
superconducting condensates.Moreover, the renormalization
of the TDP is performed. Section IV contains a detailed
numerical investigation of various phase portraits with
particular emphasis on the role of the duality symmetry of
the TDP. Some technical details are relegated to Appendices.
Moreover, in Appendix B we present an alternative (2þ 1)-
dimensional GN model with dual relationship between other
chiral and superconducting channels of 4F interaction.

II. THE MODEL AND ITS THERMODYNAMIC
POTENTIAL

Our investigation is based on a (2þ 1)-dimensional GN-
type model with massless fermions belonging to a funda-
mental multiplet of the auxiliary OðNÞ flavor group. Its
Lagrangian describes the interaction both in the fermion-
antifermion and difermion (or superconducting) channels:

L≡ LðG1; G2; μ; μ5Þ ¼
XN
k¼1

ψ̄k½γνi∂ν þ μγ0 þ μ5γ
0γ5�ψk

þG1

N
ð4FÞch þ

G2

N
ð4FÞsc; ð1Þ

where the four-fermion structures ð4FÞch and ð4FÞsc are used,

ð4FÞch ¼
�XN

k¼1

ψ̄kψk

�
2

þ
�XN

k¼1

ψ̄kiγ5ψk

�
2

;

ð4FÞsc ¼
�XN

k¼1

ψT
kCψk

��XN
j¼1

ψ̄ jCψ̄T
j

�
: ð2Þ
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In addition, μ and μ5 in (1) denote a fermion number chemical
potential and a chiral (axial) chemical potential, respectively.
μ is conjugated to a fermion number density n, whereas
μ5 is conjugated to a nonzero density of chiral charge
n5 ¼ nR − nL, which represents an imbalance in densities
of the right- and left-handed fermions. As it is noted above, all
fermion fieldsψk (k ¼ 1;…; N) forma fundamentalmultiplet
of the OðNÞ group. Moreover, each field ψk is a four-
component (reducible) Dirac spinor (the symbol T denotes
the transposition operation). Therefore, in Eqs. (1) and (2) the
quantities γν (ν ¼ 0, 1, 2) and γ5 are matrices in the four-
dimensional spinor space. Moreover, C≡ γ2 is the charge
conjugation matrix. The algebra of these matrices as well as
their particular representations are given in Appendix A.
Clearly, the Lagrangian L is invariant under transformations
from the internal auxiliary OðNÞ group, which is introduced
here in order to make it possible to perform all the
calculations in the framework of the nonperturbative
large-N expansion method. Physically more interesting is
that the model (1) is invariant under transformations from
the UVð1Þ ×Uγ5ð1Þ group, where UVð1Þ is the fermion
number conservation group, ψk → expðiαÞψk (k¼ 1;…;N),
and Uγ5ð1Þ is the group of continuous chiral transforma-
tions, ψk → expðiαγ5Þψk (k ¼ 1;…; N). It means that in the
framework of the model (1) both the particle number density
n ¼ P

N
k¼1 ψ̄kγ

0ψk and the density of chiral charge n5 ¼P
N
k¼1 ψ̄kγ

0γ5ψk are conserved quantities.1

Before studying the thermodynamics of the model, we
would like to point out that there is a so-called duality
correspondence between chiral and superconducting
channels of the model (1). To see this, it is very useful
to form an infinite set F composed of all Lagrangians
LðG1; G2; μ; μ5Þ when the free model parameters G1, G2, μ
and μ5 take arbitrary admissible values, i.e.
LðG1; G2; μ; μ5Þ ∈ F at arbitrary fixed values of coupling
constants G1 > 0, G2 > 0 and chemical potentials μ, μ5.
Then, let us perform in (1) and (2) the so-called Pauli-
Gürsey (PG) transformation of spinor fields [37],

PG∶ ψkðxÞ →
1

2
ð1 − γ5ÞψkðxÞ þ

1

2
ð1þ γ5ÞCψ̄T

k ðxÞ: ð3Þ

Taking into account that all spinor fields anticommute with
each other, it is easy to see that under the action of the
transformations (3) the 4F structures of the Lagrangian (1)
are converted into themselves, i.e.

ð4FÞch ↔
PG ð4FÞsc; ð4Þ

and, moreover, each element (Lagrangian) LðG1; G2; μ; μ5Þ
of the set F is transformed into another element of the set
F according to the following rule:

LðG1; G2; μ; μ5Þ ↔
PG

LðG2; G1;−μ5;−μÞ ∈ F ; ð5Þ

i.e. the set F is invariant under the field transformations
(3). Owing to the relations (4) and (5) there is a connection
between properties of the model at some fixed free model
parameters G1, G2, μ, μ5 and properties of the model in the
case, when G1 ↔ G2 and μ ↔ μ5. In particular, if at some
fixed G1, G2, μ and μ5 we have the chiral symmetry
breaking (CSB) phase, then at G1 ↔ G2 and μ ↔ μ5 one
can definitely predict the superconducting (SC) phase, and
vice versa. Due to this reason, we will call the relations (4)
and (5) the duality property of the model (or duality
correspondence between CSB and SC). Note also that in
Appendix B we present another (2þ 1)-dimensional 4F
model, in which the duality correspondence between
alternative chiral and superconducting channels is realized.
Further on, we will study the role and the influence

of the duality property of the model (1) on its phase
structure. To this end, we introduce the semibosonized
version of Lagrangian (1) that contains only quadratic
powers of fermionic fields as well as auxiliary bosonic
fields σðxÞ, πðxÞ, ΔðxÞ and Δ�ðxÞ,

L ¼ ψ̄k½γνi∂ν þ μγ0 þ μ5γ
0γ5 − σ − iγ5π�ψk

−
Nðσ2 þ π2Þ

4G1

−
N
4G2

Δ�Δ −
Δ�

2
½ψT

kCψk�

−
Δ
2
½ψ̄kCψ̄T

k �: ð6Þ

(Here and in what follows the summations over repeated
indices k ¼ 1;…; N and ν ¼ 0, 1, 2 are implied.) Clearly,
the Lagrangians (1) and (6) are equivalent, as can be seen
by using the Euler-Lagrange equations of motion for
bosonic fields which take the form

σðxÞ¼−2
G1

N
ðψ̄kψkÞ; πðxÞ¼−2

G1

N
ðψ̄kiγ5ψkÞ;

ΔðxÞ¼−2
G2

N
ðψT

kCψkÞ; Δ�ðxÞ¼−2
G2

N
ðψ̄kCψ̄T

k Þ: ð7Þ

One can easily see from (7) that the neutral fields σðxÞ and
πðxÞ are real quantities, i.e. ðσðxÞÞ† ¼ σðxÞ and ðπðxÞÞ† ¼
πðxÞ (the superscript symbol † denotes the Hermitian

1Since for the reducible four-component spinor representation
there is one more Hermitian matrix γ3, which anticommutes
with γν (ν ¼ 0, 1, 2) and γ5, one can consider another continuous
chiral Uγ3ð1Þ transformation group of the spinor fields, ψk →
expðiαγ3Þψk (k ¼ 1;…; N). Alternatively, there exists a 4F
model with another fermion-antifermion and difermion channels
of interaction, which, in addition to UVð1Þ, is invariant under the
continuous chiral Uγ3ð1Þ group (see Appendix B). It is worth
mentioning that in the case of graphene reducible four-
component spinors just describe the two sublattice (or pseudo-
spin) and two valley (or Dirac point) degrees of freedom of the
hexagonal honeycomb lattice of carbon atoms (see e.g. [15] and
references therein).
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conjugation), but the (charged) difermion fields ΔðxÞ
and Δ�ðxÞ are Hermitian conjugated complex quantities,
so that ðΔðxÞÞ† ¼ Δ�ðxÞ and vice versa. Moreover, under
the chiral Uγ5ð1Þ group the fields ΔðxÞ, Δ�ðxÞ are singlets,
but the fields σðxÞ, πðxÞ are transformed in the following
way:

Uγ5ð1Þ∶ σðxÞ → cosð2αÞσðxÞ þ sinð2αÞπðxÞ;
πðxÞ → − sinð2αÞσðxÞ þ cosð2αÞπðxÞ: ð8Þ

Clearly, all the fields (7) are also singlets with respect to the
auxiliary OðNÞ group, since the representations of this
group are real. Moreover, with respect to the parity trans-
formation P,

P∶ ψkðt;x;yÞ→ iγ5γ1ψkðt;−x;yÞ; k¼ 1;…;N; ð9Þ

the fields σðxÞ, ΔðxÞ and Δ�ðxÞ are even quantities, i.e.
scalars, but πðxÞ is a pseudoscalar. If the difermion field
ΔðxÞ has a nonzero ground state expectation value, i.e.
hΔðxÞi ≠ 0, then the Abelian fermion number conservation
UVð1Þ symmetry of the model is spontaneously broken
down and the superconducting phase is realized in the
model. However, if hσðxÞi ≠ 0 then the continuous Uγ5ð1Þ
chiral symmetry of the model is spontaneously broken.
Let us now study the phase structure of the four-fermion

model (1) starting from the equivalent semibosonized
Lagrangian (6). In the leading order of the large-N
approximation, the effective action Seffðσ; π;Δ;Δ�Þ of
the considered model is expressed by means of the path
integral over fermion fields:

expðiSeffðσ;π;Δ;Δ�ÞÞ¼
Z YN

l¼1

½dψ̄ l�½dψ l�exp
�
i
Z

Ld3x
�
;

leading to

Seffðσ; π;Δ;Δ�Þ ¼ −
Z

d3x

�
Nðσ2ðxÞ þ π2ðxÞÞ

4G1

þ N
4G2

ΔðxÞΔ�ðxÞ
�
þ ~Seff : ð10Þ

The term ~Seff in (10) is the fermion contribution to the
effective action and is given by

expði ~SeffÞ ¼
Z YN

l¼1

½dψ̄ l�½dψ l� exp
�
i
Z �

ψ̄kðγνi∂ν þ μγ0

þ μ5γ
0γ5 − σ − iγ5πÞψk −

Δ�

2
ðψT

kCψkÞ

−
Δ
2
ðψ̄kCψ̄T

k Þ
�
d3x

�
: ð11Þ

The ground state expectation values hσðxÞi, hΔðxÞi, etc. of
the composite bosonic fields are determined by the saddle
point equations,

δSeff

δσðxÞ ¼ 0;
δSeff

δπðxÞ ¼ 0;

δSeff

δΔðxÞ ¼ 0;
δSeff

δΔ�ðxÞ ¼ 0: ð12Þ

For simplicity, throughout the paper we suppose that the
above-mentioned ground state expectation values do not
depend on spacetime coordinates, i.e.

hσðxÞi≡M; hπðxÞi≡ π;

hΔðxÞi≡ Δ; hΔ�ðxÞi≡ Δ�; ð13Þ

where M, π, Δ, Δ� are constant quantities. In fact, they are
coordinates of the global minimum point of the thermo-
dynamic potential (TDP) ΩðM; π;Δ;Δ�Þ. In the leading
order of the large-N expansion and using (13) it is defined
by the following expression:Z

d3xΩðM;π;Δ;Δ�Þ

¼−
1

N
SeffðσðxÞ;πðxÞ;ΔðxÞ;Δ�ðxÞÞjσðxÞ¼hσðxÞi;ΔðxÞ¼hΔðxÞi;…:

ð14Þ

The TDP (14) is invariant with respect to chiral Uγ5ð1Þ
symmetry group. So, as it is clear from (8), it depends on
the quantities M and π through the combination M2 þ π2.
Moreover, without loss of generality, one can suppose that
hπðxÞi≡ π ¼ 0. Thus, to find the other ground state
expectation values hσðxÞi etc., it is enough to study the
global minimum point of the TDP ΩðM;Δ;Δ�Þ,

ΩðM;Δ;Δ�Þ≡ΩðM; π;Δ;Δ�Þjπ¼0: ð15Þ

Taking into account the relations (10), (11) and (14), we
have from (15)Z

d3xΩðM;Δ;Δ�Þ

¼
Z

d3x

�
M2

4G1

þ ΔΔ�

4G2

�

þ i
N
ln
�Z YN

l¼1

½dψ̄ l�½dψ l� exp
�
i
Z

d3x

×

�
ψ̄kDψk −

Δ�

2
ðψT

kCψkÞ −
Δ
2
ðψ̄kCψ̄T

k Þ
���

; ð16Þ

where D ¼ γρi∂ρ þ μγ0 þ μ5γ
0γ5 −M. To proceed further,

let us point out again that without loss of generality the
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quantities Δ, Δ� might be considered as real ones.2 So, in
what follows we will suppose that Δ ¼ Δ� ≡ Δ, where Δ
now is already a real quantity.

III. CALCULATION OF THE TDP

The path integration in the expression (16) is evaluated in
Appendix C,3 so we have for the TDP (16) the following
expression:

ΩðM;ΔÞ≡ΩunðM;ΔÞ

¼ M2

4G1

þ Δ2

4G2

þ i
2

×
Z

d3p
ð2πÞ3 ln½λ1ðpÞλ2ðpÞλ3ðpÞλ4ðpÞ�; ð17Þ

where λ1;…;4ðpÞ are presented in (C8) and superscription
“un” denotes the unrenormalized quantity. Note that the
TDP (17) describes thermodynamics of the model at zero
temperature. Taking into account the expressions (C8), the
TDP (17) can be presented in the form

ΩunðM;ΔÞ ¼ M2

4G1

þ Δ2

4G2

þ i
2

X
η¼�

Z
d3p
ð2πÞ3 lnPηðp0Þ;

ð18Þ

where Pηðp0Þ≡ aþ ηbp0 − 2cp2
0 þ p4

0 and

a ¼ ðμ25 − μ2 þM2 − Δ2Þ2
− 2j~pj2ðμ25 þ μ2 −M2 − Δ2Þ þ j~pj4;

b ¼ 8μμ5j~pj; c ¼ μ25 þ j~pj2 þ μ2 þM2 þ Δ2;

j~pj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ p2

2

q
: ð19Þ

It is clear from (19) that the TDP (18) is an even function of
each of the quantities μ, μ5, M, and Δ, i.e. without loss of
generality we can consider in the following only μ ≥ 0,
μ5 ≥ 0, M ≥ 0, and Δ ≥ 0 values of these quantities.
Moreover, the TDP (18) is invariant with respect to the
so-called duality transformation [28,29],

D∶ G1 ↔ G2; M ↔ Δ; μ ↔ μ5: ð20Þ

Notice that this invariance of the TDP is a consequence of
the rule (5), according to which the 4F Lagrangian (1) is

modified under the Pauli-Gürsey transformation (3) of the
spinor field.
In powers of Δ the fourth-degree polynomial Pηðp0Þ has

the following form:

Pηðp0Þ≡ Δ4 − 2Δ2ðp2
0 − j~pj2 þM2 þ μ25 − μ2Þ

þ ðM2 þ ðj~pj − μ5Þ2 − ðp0 − ημÞ2Þ
× ðM2 þ ðj~pj þ μ5Þ2 − ðp0 þ ημÞ2Þ: ð21Þ

Expanding the right-hand side of (21) in powers of M, one
can obtain an equivalent alternative expression for this
polynomial. Namely,

Pηðp0Þ≡M4 − 2M2ðp2
0 − j~pj2 þ Δ2 þ μ2 − μ25Þ

þ ðΔ2 þ ðj~pj − μÞ2 − ðp0 − ημ5Þ2Þ
× ðΔ2 þ ðj~pj þ μÞ2 − ðp0 þ ημ5Þ2Þ: ð22Þ

Note also that according to the general theorem of algebra,
the polynomial Pηðp0Þ can be presented in the form

Pηðp0Þ≡ ðp0 − pη
01Þðp0 − pη

02Þðp0 − pη
03Þðp0 − pη

04Þ;
ð23Þ

where pη
01, p

η
02, p

η
03 and pη

04 are the roots of this poly-
nomial. The fourth-order polynomial with similar coeffi-
cients a, b, c (19) was studied in our paper [29], where it
was shown that all its roots pη

0i (i ¼ 1;…; 4) are real
quantities (see Appendix B in [29]). The roots pη

0i are the
energies of quasiparticle or quasiantiparticle excitations of
the system. In particular, it follows from (21) that at Δ ¼ 0

ðpη
01; p

η
02ÞjΔ¼0 ¼ ημ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðμ5 − j~pjÞ2

q
;

ðpη
03; p

η
04ÞjΔ¼0 ¼ −ημ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðμ5 þ j~pjÞ2

q
; ð24Þ

whereas it is clear from (22) that at M ¼ 0

ðpη
01; p

η
02ÞjM¼0 ¼ ημ5 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ðμ − j~pjÞ2

q
;

ðpη
03; p

η
04ÞjM¼0 ¼ −ημ5 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ðμþ j~pjÞ2

q
: ð25Þ

Taking into account in (18) the relation (23) as well as the
formula Z

∞

−∞
dp0 lnðp0 − KÞ ¼ iπjKj ð26Þ

(obtained rigorously, e.g., in Appendix B of [23] and
being true up to an infinite term independent of the real
quantity K), it is possible to integrate there over p0. So
the unrenormalized TDP (18) can be presented in the
following form:

2Otherwise, phases of the complex values Δ, Δ� might be
eliminated by an appropriate transformation of fermion fields in
the path integral (16).

3In Appendix C we consider for simplicity the case
N ¼ 1, however the procedure is easily generalized to the case
with N > 1.
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ΩunðM;ΔÞ¼ M2

4G1

þ Δ2

4G2

−
1

4

X
η¼�

Z
d2p
ð2πÞ2 ðjp

η
01jþ jpη

02jþ jpη
03jþ jpη

04jÞ:

ð27Þ

A. Renormalization and phase structure in the
vacuum case: μ= 0, μ5 = 0

First of all, let us obtain a finite, i.e. renormalized,
expression for the TDP (27) at μ ¼ 0 and μ5 ¼ 0, i.e. in
vacuum. Since in this case a thermodynamic potential is
usually called effective potential, we use for it the notation
VunðM;ΔÞ. It follows from (18) and (19) that at μ ¼ 0 and
μ5 ¼ 0 VunðM;ΔÞ looks like

VunðM;ΔÞ ¼ M2

4G1

þ Δ2

4G2

þ i
Z

d3p
ð2πÞ3 ln½ðp

2
0 − E2þÞðp2

0 − E2
−Þ�

≡ M2

4G1

þ Δ2

4G2

−
Z

d2p
ð2πÞ2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~pj2 þ ðM þ ΔÞ2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~pj2 þ ðM − ΔÞ2

q �
; ð28Þ

where E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~pj2þðM�ΔÞ2

p
. [To obtain the second

line of this formula, we have integrated there over p0

according to the relation (26).] It is evident that the
effective potential (28) is an ultraviolet divergent quan-
tity. So, we need to renormalize it. This procedure
consists of two steps: (i) First of all we need to
regularize the divergent integral in (28), i.e. we suppose
there that jp1j<Λ, jp2j < Λ. (ii) Second, we must
suppose also that the bare coupling constants G1 and
G2 depend on the cutoff parameter Λ in such a way that
in the limit Λ→∞ one obtains a finite expression for the
effective potential.

Before performing the steps (i) and (ii) of the renorm-
alization procedure, it is useful to take into account the
following asymptotic expansion at j~pj → ∞:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j~pj2 þ ðM þ ΔÞ2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~pj2 þ ðM − ΔÞ2

q
¼ 2j~pj þ ðM2 þ Δ2Þ

j~pj þOð1=j~pj3Þ: ð29Þ

Then, after construction of the regularized effective poten-
tial VregðM;ΔÞ (see below), we use there the asymptotic
expansion (29) and integrate it over p1 and p2 term by term.
The result reads

VregðM;ΔÞ≡ M2

4G1

þ Δ2

4G2

−
Z

Λ

−Λ

dp1

2π

Z
Λ

−Λ

dp2

2π

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~pj2 þ ðM þ ΔÞ2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~pj2 þ ðM − ΔÞ2

q �

¼ M2

�
1

4G1

−
2Λ lnð1þ ffiffiffi

2
p Þ

π2

�
þ Δ2

�
1

4G2

−
2Λ lnð1þ ffiffiffi

2
p Þ

π2

�
−
2Λ3ð ffiffiffi

2
p þ lnð1þ ffiffiffi

2
p ÞÞ

3π2
þOðΛ0Þ; ð30Þ

where OðΛ0Þ denotes an expression which is finite in the
limit Λ → ∞. Now, we should suppose that the bare
coupling constants G1 and G2 depend on the cutoff
parameter Λ in such a way that in the limit Λ → ∞ one
obtains a finite expressions in the square brackets of (30).
Clearly, to fulfill this requirement it is sufficient to require
that

1

4G1

≡ 1

4G1ðΛÞ
¼ 2Λ lnð1þ ffiffiffi

2
p Þ

π2
þ 1

2πg1
;

1

4G2

≡ 1

4G2ðΛÞ
¼ 2Λ lnð1þ ffiffiffi

2
p Þ

π2
þ 1

2πg2
; ð31Þ

where g1;2 are finite and Λ-independent model parameters
with dimensionality of inverse mass. Since bare couplings
G1 and G2 do not depend on a normalization point, the

same property is also valid for g1;2. Hence, taking into
account in (30) the relations (31) and ignoring there an
infinite M- and Δ-independent constant, one obtains the
following renormalized, i.e. finite, expression VrenðM;ΔÞ
for the effective potential:

VrenðM;ΔÞ ¼ lim
Λ→∞

�
VregðM;ΔÞjG1¼G1ðΛÞ;G2¼G2ðΛÞ

þ 2Λ3ð ffiffiffi
2

p þ lnð1þ ffiffiffi
2

p ÞÞ
3π2

�
: ð32Þ

It should also be mentioned that the effective potential (32)
is a renormalization group invariant quantity.
The fact that it is possible to renormalize the effective

potential of the initial model (1) in the leading order of the
large N-expansion is the reflection of a more general
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property of (2þ 1)-dimensional theories with four-fermion
interactions. Indeed, it is well known that in the framework
of the “naive” perturbation theory (over coupling constants)
these models are not renormalizable. However, as it was
proved in [18], in the framework of nonperturbative large
N-technique these models are renormalizable in each order
of the 1=N-expansion.
The OðΛ0Þ term in (30) can be calculated explicitly, so

we have for the renormalized effective potential VrenðM;ΔÞ
(32) the following expression:

VrenðM;ΔÞ¼ M2

2πg1
þ Δ2

2πg2
þðMþΔÞ3

6π
þjM−Δj3

6π
: ð33Þ

The global minimum point ðM0;Δ0Þ, where M0 ¼ hσðxÞi
and Δ0 ¼ hΔðxÞi, of this function was already investigated
in [38], although in the framework of another (2þ 1)-
dimensional GN model. So, we present at once the phase
structure of the initial model (1) at μ ¼ 0 and μ5 ¼ 0
(see Fig. 1).
In Fig. 1 the phase portrait of the model is depicted

depending on the values of the free model parameters g1
and g2. There the plane ðg1; g2Þ is divided into several areas.
In each area one of the phases (I, II or III) is implemented.
In phase I, i.e. at g1 > 0 and g2 > 0, the global minimum of
the effective potential VrenðM;ΔÞ is arranged at the origin.
So in this case we haveM0 ¼ 0 and Δ0 ¼ 0. As a result, in
phase I both continuous symmetries, chiral Uγ5ð1Þ and
electromagnetic UVð1Þ, remain intact and fermions are
massless. Due to this reason phase I is called symmetric. In
phase II, which is allowed only for g1 < 0, at the global
minimum point the relations M0 ¼ −1=g1 and Δ0 ¼ 0 are

valid. So in this phase chiral Uγ5ð1Þ symmetry is sponta-
neously broken down and fermions acquire dynamically
the mass M0. Finally, in the superconducting phase III,
where g2 < 0, we have spontaneous breaking of the UVð1Þ
symmetry. This phase corresponds to the following values
of the gaps: M0 ¼ 0, Δ0 ¼ −1=g2.
Note also that if g1 ¼ g2 ≡ g and, in addition, g < 0 (it is

just line l in Fig. 1), then the effective potential (33) has two
equivalent global minima. The first one, the point
ðM0 ¼ −1=g;Δ0 ¼ 0Þ, corresponds to a phase with chiral
symmetry breaking. The second one, i.e. the point
ðM0 ¼ 0;Δ0 ¼ −1=gÞ, corresponds to superconductivity.
Clearly, if the cutoff parameter Λ is fixed, then the phase

structure of the model can be described in terms of bare
coupling constantsG1,G2 instead of finite quantities g1, g2.
Indeed, let us first introduce a critical value of the
couplings, Gc ¼ π2

8Λ lnð1þ ffiffi
2

p Þ. Then, as it follows from

Fig. 1 and (31), at G1 < Gc and G2 < Gc the symmetric
phase I of the model is located. If G1 > Gc, G2 < Gc
(G1 < Gc, G2 > Gc), then the chiral symmetry broken
phase II (the superconducting phase III) is realized. Finally,
let us suppose that both G1 > Gc and G2 > Gc. In this case
at G1 > G2 (G1 < G2) we have again the chiral symmetry
broken phase II (the superconducting phase III).
Now, a few comments about the nature of the super-

conductivity (SC) and chiral symmetry breaking (CSB) are
in order. In the framework of the model (1) there are two
well-known mechanisms for appearing of these phenom-
ena, (i) dynamical symmetry breaking, which occurs at
strong couplings, and (ii) Cooper instability of the Fermi
surface, which takes place, in contrast to the case (i), at
weak couplings. If μ ¼ 0 and μ5 ¼ 0, then the initial model
(1) describes effectively the undoped regime of high
temperature cuprate superconductors, etc. (see, e.g., the
papers [11], where the phase structure, similar to the phase
diagram of our Fig. 1, was obtained). In this case the Fermi
surface is absent, so both CSB and SC phases appear
dynamically in the system at a rather strong attraction in
the fermion-antifermion or difermion channels, i.e. at
G1 > Gc and G1 > G2 or at G2 > Gc and G2 > G1,
respectively. Hence, at zero values of chemical potentials
only the mechanism (i) for generating both SC and CSB is
realized in our model.4

The second way, i.e. the mechanism (ii), to break
spontaneously a symmetry can be realized only at nonzero
chemical potentials. For example, if the doping or

FIG. 1. The ðg1; g2Þ-phase portrait of the model at μ ¼ 0 and
μ5 ¼ 0. The notations I, II and III mean the symmetric, the chiral
symmetry breaking (CSB) and the superconducting (SC) phases,
respectively. At g1;2 < 0 the line l is defined by the relation
l≡ fðg1; g2Þ∶g1 ¼ g2g.

4The mechanism of dynamical symmetry breaking at μ ¼ 0 is
well known since the papers by Nambu and Jona-Lasinio [3]. It is
also valid in the framework of other (3þ 1)-dimensional 4F
models with chiral and color superconducting channels of
interaction at μ ¼ 0 [39]. In [39] the bare coupling constants
G1 and G2 are free model parameters. Moreover, strong con-
straints were obtained there on G1 and G2, at which color SC or
CSB is generated dynamically in the models.
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impurities are present in the system, then one must
introduce a finite chemical potential μ. In this case the
Fermi surface can be created. As a result, if there is an
arbitrary small attraction in the SC channel, i.e. even at
G2 < Gc, there appears the so-called Cooper instability of
the Fermi surface, which destroys the normal ground state
in favor of superconductivity. [Below, when discussing the
phase portrait of Fig. 5 (see Sec. IV B 1), we will see that at
μ5 ¼ 0 and μ > 0 both (i) and (ii) mechanisms take part in
forming the phase structure.] If μ ¼ 0 but μ5 ≠ 0, then CSB
can also be generated in the model due to the mechanism
(ii) at arbitrary small values of G1 (see in [32]). This fact
supports the duality correspondence between SC and CSB
in the model (1).

B. Renormalization of the TDP (27) in the general case

To renormalize the TDP (27) in the most general case, it
is necessary to imagine how the integrand of (27), i.e. the
quantity

P
η¼�

P
4
i¼1 jpη

0ij, behaves at asymptotically high
values of j~pj. The properties of the roots pη

0i (i ¼ 1;…; 4)
of the polynomial Pηðp0Þ appearing in (18) can be obtained
both numerically and analytically using the methods of
Appendix B of [29]. So it is easy to show that at j~pj → ∞

1

4

X
η¼�

X4
i¼1

jpη
0ij ¼ 2j~pj þ ðM2 þ Δ2Þ

j~pj þOð1=j~pj3Þ: ð34Þ

Since the asymptotic expansions (34) and (29) coincide,
one can subtract from the integrand of (27) the expression
4ðEþ þ E−Þ, thereby obtaining a convergent integral.
Taking into account this circumstance, we have identically

ΩunðM;ΔÞ ¼ VunðM;ΔÞ − ~ΩðM;ΔÞ; ð35Þ

where VunðM;ΔÞ is the effective potential (28) of the
model in vacuum, i.e. at μ ¼ 0 and μ5 ¼ 0, and

~ΩðM;ΔÞ¼ 1

4

Z
d2p
ð2πÞ2

�X
η¼�

X4
i¼1

jpη
0ij−4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~pj2þðMþΔÞ2

q

−4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~pj2þðM−ΔÞ2

q �
: ð36Þ

It is clear that the term ~ΩðM;ΔÞ in (35) is a convergent
integral and all ultraviolet divergences of the TDP
(27)–(35) are located in the term VunðM;ΔÞ. Hence, we
can renormalize only the first term of (35) in the way of the
previous subsection and obtain finally,

ΩrenðM;ΔÞ ¼ VrenðM;ΔÞ − ~ΩðM;ΔÞ; ð37Þ
where VrenðM;ΔÞ and ~ΩðM;ΔÞ are presented in (33) and
(36), correspondingly.
It was already mentioned above that using the method

presented in Appendix B of the paper [29], the roots pη
0i can

be calculated numerically (at fixed values of j~pj, M, Δ,
etc.). As a result, it is also possible to study numerically the
whole TDP (37). Carrying out this procedure, we have seen
that the global minimum of the TDP ΩrenðM;ΔÞ is always
at the point of the form ðM ≥ 0;Δ ¼ 0Þ or ðM ¼ 0;Δ ≥ 0Þ.
So, to get a more detailed information about the phase
structure of the model, it is sufficient to investigate the
reductions of the TDP (37) on the M and Δ axes,5 i.e. to
consider the functions

F1ðMÞ≡ΩrenðM;Δ ¼ 0Þ ¼ V1ðMÞ − 1

2

Z
d2p
ð2πÞ2

X
η¼�

�
μþ Eη þ jμ − Eηj − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~pj2 þM2

q �

¼ V1ðMÞ −
Z

d2p
ð2πÞ2

X
η¼�

�
Eη −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~pj2 þM2

q
þ ðμ − EηÞθðμ − EηÞ

�
; ð38Þ

F2ðΔÞ≡ΩrenðM ¼ 0;ΔÞ ¼ V2ðΔÞ −
Z

d2p
ð2πÞ2

X
η¼�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ðj~pj þ ημÞ2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~pj2 þM2

q

þ ðμ5 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ðj~pj þ ημÞ2

q
Þθðμ5 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ðj~pj þ ημÞ2

q
Þ
�
; ð39Þ

respectively, where Eη ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðj~pj þ ημ5Þ2

p
and 3πViðxÞ ¼ x3 þ 3x2=ð2giÞ is the reduction of the vacuum effective

potential (33) on theM (in this case i ¼ 1, x ¼ M) orΔ (in this case i ¼ 2, x ¼ Δ) axes. Moreover, to obtain the second line
in (38) we use the evident relations, jxj ¼ xθðxÞ − xθð−xÞ and 1 ¼ θðxÞ þ θð−xÞ. After tedious but straightforward
calculations, the TDP (38) can be presented in the following form (see Appendix D):

5This procedure can be easily performed since the reduction of the roots pη
0i on the M and Δ axes is known [see (24) and (25)].
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F1ðMÞ ¼ M2

2πg1
þ ðμ25 þM2Þ3=2

3π
−
θ
	
μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ μ25

q 

6π

½μ3 − 3μðM2 − μ25Þ þ 2ðμ25 þM2Þ3=2�

−
θ
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 þ μ25

q
− μ



2π

2
64μ25 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ25 þM2

q
þ μ5M2 ln

0
B@μ5 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ25 þM2

q
M

1
CA
3
75

−
θðμ −MÞθ

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ μ25

q
− μ



2π

�
μ5μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −M2

q
− μ5M2 ln

�
μþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −M2

p
M

��
ð40Þ

[at μ5 ¼ 0 this expression coincides with the corresponding
TDP (22) from the paper [12]]. Moreover, comparing the
expressions (38) and (39), we see that the quantity
ΩrenðM ¼ 0;ΔÞ can be easily obtained from the TDP
ΩrenðM;Δ ¼ 0Þ by the substitutions M → Δ, g1 → g2
and μ ↔ μ5, i.e.

F2ðΔÞ ¼ F1ðΔÞjg1→g2;μ↔μ5
: ð41Þ

Clearly, the connection (41) between the reductions of the
TDPΩrenðM;ΔÞ on theM andΔ axes is the consequence of
the duality property (20) of the model.
Next, in order to find the phase structure of the model,

we will determine the global minimum points of the
TDPs F1ðMÞ (40) and F2ðΔÞ (41) and then compare the
minimum values of these functions vs external parameters
μ, μ5, g1, g2.

IV. PHASE STRUCTURE: THE ROLE OF THE
DUALITY INVARIANCE OF THE TDP

Suppose now that at some fixed particular values of the
model parameters, i.e. at g1 ¼ A, g2 ¼ B and μ ¼ α,
μ5 ¼ β, the global minimum of the TDP (37) lies at the
point, e.g., ðM ¼ M0;Δ ¼ 0Þ. It means that for such fixed
values of the parameters the chiral symmetry breaking
(CSB) phase is realized. Then it follows from the duality
invariance of the unrenormalized TDP with respect to the
transformation D (20) that the permutation of the coupling
constant and chemical potential values6 (i.e. at g1 ¼ B,
g2 ¼ A and μ ¼ β, μ5 ¼ α) moves the global minimum of
the TDP ΩrenðM;ΔÞ to the point ðM ¼ 0;Δ ¼ M0Þ, and
the superconducting (SC) phase is originated (and vice
versa). This is the so-called duality correspondence
between CSB and SC phases in the framework of the
model under consideration. Hence, the knowledge of a
phase of the model (1) at some fixed values of external free
model parameters g1, g2, μ, μ5 is sufficient to understand
what phase is realized at rearranged values of external

parameters, g1 ↔ g2, μ ↔ μ5. Moreover, we would like to
emphasize once again that there exists an equality of the
order parameters (condensates), which characterize both
the initial phase and the phase corresponding to rearranged
external parameters. In other words the chiral condensate of
the CSB phase at fixed g1, g2, μ, μ5 is equal to the SC
condensate of the phase at g1 ↔ g2, μ ↔ μ5 (and
vice versa).
The duality transformation (20) of the TDP can also be

applied to the arbitrary phase portrait of the model (see
below). In particular, it is clear that if we have a most
general phase portrait, i.e. the correspondence between any
point ðg1; g2; μ; μ5Þ of the four-dimensional space of
external parameters and possible model phases (CSB,
SC and symmetric phase), then under the duality trans-
formation (g1 ↔ g2, μ ↔ μ5, CSB ↔ SC) this phase
portrait is mapped to itself, i.e. the most general phase
portrait is self-dual. In practice, usually, there are con-
straints on the model parameters. As a result, if the
constraint is dually (non)invariant, then the phase portrait
is also dually (non)invariant.
Below, we will use the dual symmetry of the TDP in

order to explain and construct the phase structure of the
model in different particular cases.

A. Self-dual phase portraits

First of all, taking into account the duality correspondence
between CSB and SC, let us determine its characteristic
features and then find (analytically and numerically) the
phase structure of the model (1) in two particular cases,
(i) μ ¼ μ5 and (ii) g1 ¼ g2. It is evident that both of these
constraints, (i) and (ii), are invariant with respect to the
duality transformation g1 ↔ g2, μ ↔ μ5. Hence, the corre-
sponding phase portraits should be self-dual (amore detailed
explanation of this fact is presented in the next subsection).
In case (i) we want to study the ðg1; g2Þ phase portrait,
whereas in case (ii) the ðμ; μ5Þ phase portrait. It follows from
the duality correspondence that in case (i) the region of the
CSB phase is a mirror image of the SC phasewith respect to
the line g1 ¼ g2 of the ðg1; g2Þ plane. However, in case
(ii) the regions of these phases are arranged mirror sym-
metricallywith respect to the lineμ ¼ μ5 of the plane ðμ; μ5Þ.

6It is evident that the duality transformation D for the
renormalized TDP (37) means g1 ↔ g2, M ↔ Δ, μ ↔ μ5, under
which this TDP is invariant.
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Of course, the specific form of the CSB and SC areas
depends on the values of the external parameters. For
example, at μ ¼ μ5 ¼ 0 the phase structure is presented in
Fig. 1. [Note that in order to obtain this phase portrait it is
sufficient to investigate the behavior of the global minimum
point of the TDP VrenðM;ΔÞ (33) vs the coupling constants
g1 and g2.] However, at fixed μ ¼ μ5 > 0 the phase
structure is presented in Fig. 2, where one can see the
mirror symmetrical arrangement of phases II and III with
respect to the line g1 ¼ g2.
In Figs 3 and 4 the ðμ; μ5Þ-phase portraits of the model

(1) are presented at fixed g1 ¼ g2 ≡ g > 0 and fixed

g1 ¼ g2 ≡ g < 0, respectively. The CSB and SC phases
in these figures are arranged, as defined above, symmet-
rically with respect to the line μ ¼ μ5 of the ðμ; μ5Þ plane. If
g > 0, then at the points of the boundary of phase I in
Fig. 3, the second order phase transition takes place. In this
case it is possible to give exact analytical expressions for
the boundaries of region I in Fig. 3. Indeed, the global
minimum point M0 of the TDP (40) is defined by the
equation ∂F1ðMÞ=∂M ≡MfðMÞ ¼ 0. Inside region II of
Fig. 3 we have M0 > 0 and fðM0Þ ¼ 0. However, on the
boundary between phases I and II one can see that M0 ¼ 0
and, moreover, that fð0Þ ¼ 0. It is the last relation that
defines the boundary equation between I and II phases.
This equation looks like

μ ¼ μ5 exp

�
−

1

gμ5
− 1

�
: ð42Þ

In a similar way it is possible to find the equation for the
boundary between I and III phases of Fig. 3:

μ5 ¼ μ exp

�
−

1

gμ
− 1

�
: ð43Þ

In contrast, on the boundary of phase I of Fig. 4, a phase
transition of the first order takes place. Since on the
boundary between II and III phases of this figure we also
have a first order phase transitions, it is clear that point T of
the phase portrait Fig. 4 is a so-called triple point, i.e. the
point where three different phases, I, II and III, coexist. The
triple point Tof Fig. 4 corresponds to the chemical potential
values μT ¼ μ5T ≈ 1.2=jgj.

FIG. 4. The ðμ; μ5Þ-phase portrait of the model at fixed
coupling constants, such that g1 ¼ g2 ≡ g < 0. The notations
I, II and III are the same as in Fig. 1. The letter T
denotes a triple point.

FIG. 2. The ðg1; g2Þ-phase portrait of the model at fixed
chemical potentials, such that μ ¼ μ5. The notations I, II and
III are the same as in Fig. 1.

FIG. 3. The ðμ; μ5Þ-phase portrait of the model at fixed
coupling constants, such that g1 ¼ g2 ≡ g > 0. The notations
I, II and III are the same as in Fig. 1.
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B. Non-self-dual phase portraits and their dual
transformations

1. The cases μ5 = 0, μ ≠ 0 and μ= 0, μ5 ≠ 0

In these two particular cases the restrictions on the
external model parameters are already not dually invariant,
so the corresponding ðg1; g2Þ-phase portraits are not self-
dual. However, as we shall see, each of these two phase
portraits is a dual mapping of another one.
The ðg1; g2Þ-phase structure of the model at arbitrary

fixed nonzero value of μ (of μ5) and at μ5 ¼ 0 (at μ ¼ 0) is
presented in Fig. 5 (in Fig. 6). Let us first compare Figs. 1
and 5. It is easy to see that if g1> 0, g2 > 0 and μ ¼ μ5 ¼ 0,
then the system is in the symmetric phase I (see Fig. 1).
However, an arbitrary small nonzero value of the chemical
potential μ induces (at μ5 ¼ 0) in this case the super-
conducting phase III (see Fig. 5 as well as Fig. 3 for the
particular case g1 ¼ g2> 0). Note that there is a very simple
explanation of this fact, which is based on the symmetry
breaking mechanism (ii) (see the end of Sec. III A), i.e. on
the Cooper instability of a Fermi surface. Indeed, at g1 > 0,
g2 > 0 and μ > 0 we have a nonzero particle density (see,
e.g., in [12]), so there is a Fermi sea of particles with
energies less or equal to μ (Fermi surface). Evidently, in this
case there is no energy cost for creating a pair of particles
with opposite momenta just over the Fermi surface. Then,
due to an arbitrary weak attraction between these particles
(0 < G2 < Gc), the Cooper pair is formed and UVð1Þ
symmetry is spontaneously broken, as a result of Bose-
Einstein condensation of Cooper pairs. Since in the energy
spectrum of fermions the gap Δ ≠ 0 appears, rather small
external forces are not able to destroy the superconducting
condensate and it is a stable one.
If g1 > 0, g2 < 0, then we have a rather strong inter-

action in the SC channel, i.e. G2>Gc and G1<Gc. As a

result, in this case both at μ ¼ 0 and μ > 0 the dynamical
symmetry breaking mechanism (i) (see the end of
Sec. III A) plays a decisive role in the forming of SC
phenomenon.
Now suppose that g1 < 0 and g2 ≠ 0, i.e. G1 > Gc. [In

particular, the point ðg1; g2Þ might belong to phase II of
Fig. 1, where chiral symmetry is spontaneously broken at
μ ¼ 0, μ5 ¼ 0.] Then it follows from Fig. 5 that at μ5 ¼ 0
there is a sufficiently high critical value μc ≥ 0 of the
chemical potential μ, such that at μ > μc the point
ðμg1; μg2Þ will certainly be in one of the regions III of
Fig. 5. Hence, the growth (at μ5 ¼ 0) of the chemical
potential μ leads to the appearance of the SC phase in
model (1) at arbitrary g1 ≠ 0 and g2 ≠ 0.7 Analyzing in the
same manner Fig. 6, we see that in the opposite case when
μ ¼ 0 but μ5 > 0, the growth (at μ ¼ 0) of the chiral
chemical potential μ5 leads to the appearance of the CSB
phase in model (1) at arbitrary fixed g1 ≠ 0 and g2 ≠ 0.
Indeed, these two properties of the model (1), i.e. (A) the

appearance of the SC at μ5 ¼ 0 and at growing values of μ
as well as (B) the appearance of the CSB at μ ¼ 0 and at
growing values of μ5 (in these two cases it is supposed that
g1 ≠ 0 and g2 ≠ 0 are fixed), are dually connected (or
dually conjugated). To understand this fact, it is necessary
to emphasize once again that (A) follows from the phase
portrait of Fig. 5, whereas (B) is the consequence of the
phase portrait presented in Fig. 6. Now wewill demonstrate
that under the dual transformation D (g1 ↔ g2, μ ↔ μ5,
CSB ↔ SC) the phase portrait of Fig. 5 is transformed into
the phase portrait of Fig. 6 (and vice versa).

FIG. 5. The ðg1; g2Þ-phase portrait of the model at arbitrary
fixed nonzero value μ and at μ5 ¼ 0. The notations I, II and III are
the same as in Fig. 1.

FIG. 6. The ðg1; g2Þ-phase portrait of the model at arbitrary
fixed nonzero value μ5 and at μ ¼ 0. The notations I, II and III are
the same as in Fig. 1.

7This was the main result of the paper [12], where the
competition between CSB and SC was studied in the (2þ 1)-
dimensional 4F model at μ ≠ 0, μ5 ¼ 0 without duality
correspondence.
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Note that the application of D to Fig. 5 can be divided
into three more simple steps. (i) First, under permutation
M ↔ Δ in (20) we have renaming of the phases, i.e.
II ↔ III. [For example, in this case the global minimum
point of the CSB phase, i.e. the point ðM0; 0Þ, is trans-
formed into the point ð0;M0Þ and, as a result, the CSB
phase is transformed into the SC phase.] (ii) Second,
performing the μ ↔ μ5 and g1 ↔ g2 transformations in
Fig. 5, we rename the coordinate axes of the figure (after
the duality transformation we have along the vertical axis
the quantity μ5g1 and along the horizontal one the quantity
μ5g2) and change its caption or external conditions, at
which the phase portrait is obtained. (In our case the
caption μ5 ¼ 0 with μ being an arbitrary fixed quantity for

Fig. 5 is replaced by μ ¼ 0 with μ5 being an arbitrary fixed
quantity, i.e. we obtain the caption for Fig. 6.) (iii) Finally,
it is necessary to direct the axis corresponding to the
quantity μ5g1 (to the quantity μ5g2) horizontally (verti-
cally). As a result of this dual transformation of the Fig. 5
we obtain just Fig. 6.
In a similar way it is possible to apply the duality

transformationD to each of the phase portraits presented in
Figs. 1–4. As a result, we see that these phase structures are
self-dual. In the next subsubsections we obtain the phase
structure of the model in other more general non-self-dual
cases, i.e. the ðg1; g2Þ-phase portraits at arbitrary fixed
values of chemical potentials and the ðμ; μ5Þ-phase portraits
at arbitrary fixed values of the coupling constants.

FIG. 7. The ðg1; g2Þ-phase portrait of the model at arbitrary fixed values of μ and for different values of the chiral chemical potential μ5.
(a) The case μ5 ¼ 0.2μ. (b) The case μ5 ¼ 0.7μ. (c) The case μ5 ¼ 1.5μ. (d) The case μ5 ¼ 2.5μ. We use the same designations of the
phases as in Fig. 1.
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2. The ðg1; g2Þ-phase structure at some nontrivial
values of μ and μ5

Let us now fix the fermion number chemical potential
μ ≠ 0 and consider how the ðg1; g2Þ-phase portrait of the
model is evolved vs the chiral chemical potential μ5. This
phase portrait at μ5 ¼ 0 is presented in Fig. 5. In Fig. 7 we
have drawn several ðg1; g2Þ-phase portraits at different
relations between μ5 and μ, (a) μ5 ¼ 0.2μ, (b) μ5 ¼ 0.7μ,
(c) μ5 ¼ 1.5μ, (d) μ5 ¼ 2.5μ. Analyzing Figs. 5 and 7, we
see the following phase evolution of the system vs μ5 at fixed
μ ≠ 0. At μ5 ¼ 0 the SC phase III fills almost the whole
ðμg1; μg2Þ plane (see Fig. 5). It means that at arbitrary fixed
g1 ≠ 0 and g2 ≠ 0 we have superconductivity in the system
at sufficiently high values of μ (see Sec. IV B 1). If μ5 begins
to grow, then for a lot of ðg1; g2Þ points there might occur a
restoration of the initial symmetry (the symmetrical phase I
arises) in the model. However, the further growth of μ5 leads
to the final appearance of the CSB phase. It is the general
property of the chiral chemical potential μ5, which promotes
the chiral symmetry breaking in the system.
Since the above-mentioned constraints (a),…,(d) at

which Fig. 7 were drawn are not invariant under the duality
transformation D (20), we would like to note that the phase
portraits of Fig. 7 are not self-dual. In this case the possible
duality transformation (see Sec. IV B 1) of Fig. 7 might
result in the set of four phase portraits, which are a good
illustration of the evolution of the model phase structure vs
the particle number chemical potential μ at arbitrary fixed
μ5 ≠ 0. It is straightforwardly clear from the dual mapping
of Fig. 7 that at arbitrary fixed values of μ5 > 0 and g1 ≠ 0,
g2 ≠ 0 we have in the system the appearance of super-
conductivity at sufficiently high μ. This property is dually
conjugated to the appearing of the CSB phase at suffi-
ciently high values of μ5, which is a consequence of the
phase portraits Fig. 7 (see the above consideration).

3. The ðμ; μ5Þ-phase structure at some nontrivial
relations between g1 and g2

We have already considered the ðμ; μ5Þ-phase structure of
the model in the case of dually symmetrical constraints on
the coupling constants, i.e. when g1 ¼ g2 (see Figs. 3 and 4).
In the present section, special attention is paid to a more
general case when g1 ≠ g2. Here we construct ðμ; μ5Þ-phase
portraits of the model for qualitatively different represen-
tative relations between g1 and g2. Namely, we fix in each of
the regions of Fig. 1 some representative ðg1; g2Þ point and
draw a corresponding ðμ; μ5Þ-phase diagram. [Note that due
to a duality symmetry of the model, it is sufficient to reduce
the number of the representative ðg1; g2Þ points to three.]
In Fig. 8 the ðμ; μ5Þ-phase portrait corresponds to arbitrary

fixed g1 > 0 and g2 ¼ 0.2g1 [it is clear that at μ ¼ μ5 ¼ 0 the
point ðg1; g2 ¼ 0.2g1Þ lies in the symmetrical region I of
Fig. 1].On the phase boundaries of this figure there are phase
transitions of the second order. In Fig. 9 the ðμ; μ5Þ-phase
portrait corresponds to arbitrary fixed g1 < 0 and g2 ¼ −2g1
[in this case at μ ¼ μ5 ¼ 0 the point ðg1; g2 ¼ −2g1Þ lies in

the CSB region II of Fig. 1]. Finally, in Fig. 10 the ðμ; μ5Þ-
phase portrait corresponds to arbitrary fixed g1 < 0 and g2 ¼
0.5g1 [in this case at μ ¼ μ5 ¼ 0 the point ðg1; g2 ¼ 0.5g1Þ
lies in the SC region III of Fig. 1]. To obtain the ðμ; μ5Þ-phase
portraits of the model when the point ðg1; g2Þ is fixed in the
two remaining areas of Fig. 1, it is enough to perform the
dual mapping of Figs. 9 and 10.
In Figs. 9 and 10 all phase boundaries are the curves of

the first order phase transitions, so the point T on these

FIG. 8. The ðμ; μ5Þ-phase portrait of the model at arbitrary fixed
g1 > 0 and g2 ¼ 0.2g1. The notations I, II and III are the same as
in Fig. 1.

FIG. 9. The ðμ; μ5Þ-phase portrait of the model at arbitrary
fixed g1 < 0 and g2 ¼ −2g1. The notations I, II and III are the
same as in Fig. 1. The letter T denotes a triple point, μT ≈1=jg1j,
μ5T ≈ 0.3=jg1j.
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figures is a triple point, where three phases coexist. The
main conclusion from Figs. 8–10 is that the growth of μ5
(the growth of μ) induces the chiral symmetry breaking
(induces the superconductivity).

V. SUMMARY AND CONCLUSIONS

In this paper, the duality correspondence phenomenon
between CSB and SC, which was found earlier in (1þ 1)-
dimensional 4F theories [26–29], is demonstrated to take
place also in the framework of the (2þ 1)-dimensional 4F
model (1). (An alternative 4F model with other dually
conjugated chiral and superconducting channels of inter-
action is considered in Appendix B.) It contains both
fermion-antifermion (with G1 a bare coupling constant)
and difermion (with G2 a bare coupling constant) inter-
action channels and two kinds of chemical potentials, μ, μ5.
The duality property of the model means that its thermo-
dynamic potential ΩðM;ΔÞ (17) is invariant under the
duality transformation (20). As a result, we have estab-
lished the duality correspondence between CSB and SC
phases of the model (1) (as well as of the alternative model
of Appendix B). Let us suppose, e.g., that for some fixed set
ðg1; g2; μ; μ5Þ of external parameters [the coupling con-
stants g1 and g2 are connected with bare couplings G1;2 by
the relation (31)] the chiral symmetry breaking phase is
realized in the model. Then for rearranged values of
external parameters, g1 ↔ g2, μ ↔ μ5 [or for dually con-
jugated set ðg2; g1; μ5; μÞ], we have the so-called dually
conjugated superconducting phase (and vice versa).
Moreover, it must be emphasized that the chiral condensate
of the CSB phase, realized for the set ðg1; g2; μ; μ5Þ, is equal

to the superconducting condensate of the dually conjugated
SC phase, corresponding to the set of external parameters
with g1 ↔ g2, μ ↔ μ5 (and vice versa). In this way, it is
sufficient to have the information about the ground state of
the initial phase, which is realized for the set ðg1; g2; μ; μ5Þ,
in order to determine the properties of the ground state of
the dually conjugated phase, corresponding to the
rearranged external parameter set ðg2; g1; μ5; μÞ.
In order to study the role and influence of the duality

property on the phase structure of the model, for compari-
son and illustrations, we have demonstrated a variety of
phase portraits in the (μ; μ5)- and ðg1; g2Þ planes. In
particular, if the constraint, under which we obtain a phase
portrait, is dually invariant, i.e. at μ ¼ μ5 or at g1 ¼ g2, then
we have a self-dual phase diagram (see, e.g., Figs. 1–4).
The self-dual phase portrait is mapped into itself under the
duality transformation (it is introduced in Sec. IV B 1), and
its most characteristic feature is the mirror symmetrical
arrangement of the CSB and SC phases with respect to the
line μ ¼ μ5 (or g1 ¼ g2) of the phase diagram.
We have also presented a series of non-self-dual phase

portraits, which do not transform into themselves under the
duality mapping (see Figs. 5–10). The results obtained lead
to the conclusion that the growth of the chiral chemical
potential μ5 promotes the chiral symmetry breaking,8

whereas particle number chemical potential μ induces
superconductivity in the system (see also in [12]).
We hope that our investigations may shed some new light

on physical effects in planar systems like high-temperature
superconductors or graphene.

APPENDIX A: ALGEBRA OF THE γ MATRICES
IN THE CASE OF SO(2,1) GROUP

The two-dimensional irreducible representation of the
(2þ 1)-dimensional Lorentz group SO(2,1) is realized by
the following 2 × 2 ~γ-matrices:

~γ0 ¼ σ3 ¼
�
1 0

0 −1

�
; ~γ1 ¼ iσ1 ¼

�
0 i

i 0

�
;

~γ2 ¼ iσ2 ¼
�

0 1

−1 0

�
; ðA1Þ

acting on two-component Dirac spinors. They have the
properties

Trð~γμ ~γνÞ ¼ 2gμν; ½~γμ; ~γν� ¼ −2iεμνα ~γα;

~γμ ~γν ¼ −iεμνα ~γα þ gμν; ðA2Þ

FIG. 10. The ðμ; μ5Þ-phase portrait of the model at arbitrary
fixed g1 < 0 and g2 ¼ 0.5g1. Notations I, II and III are the same
as in Fig. 1. The letter T denotes a triple point,
μT ≈ 1.6=jg1j, μ5T ≈ 2.2=jg1j.

8The properties of the simplest (2þ 1)-dimensional GN and
(3þ 1)-dimensional NJL models under the influence of μ5 were
studied, correspondingly, in the recent papers [40] and [32]. It
was shown there that the chiral chemical potential μ5 plays a role
of the catalyst of dynamical chiral symmetry breaking.
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where gμν ¼ gμν ¼ diagð1;−1;−1Þ, ~γα ¼ gαβ ~γβ, ε012 ¼ 1.
There is also the relation

Trð~γμ ~γν ~γαÞ ¼ −2iεμνα: ðA3Þ

Note that the definition of chiral symmetry is slightly
unusual in (2þ 1)-dimensions [spin is here a pseudoscalar
rather than a (axial) vector]. The formal reason is simply
that there exists no other 2 × 2 matrix anticommuting with
the Dirac matrices ~γν which would allow the introduction of
a γ5-matrix in the irreducible representation. The important
concept of “chiral” symmetries and their breakdown by
mass terms can nevertheless be realized also in the
framework of (2þ 1)-dimensional quantum field theories
by considering a four-component reducible representation
for Dirac fields. In this case the Dirac spinors ψ have the
following form:

ψðxÞ ¼
�

~ψ1ðxÞ
~ψ2ðxÞ

�
; ðA4Þ

with ~ψ1, ~ψ2 being two-component spinors. In the reducible
four-dimensional spinor representation one deals with
4 × 4γ-matrices: γμ ¼ diagð~γμ;−~γμÞ, where ~γμ are given
in (A1). One can easily show that (μ, ν ¼ 0, 1, 2):

TrðγμγνÞ ¼ 4gμν; γμγν ¼ σμν þ gμν;

σμν ¼ 1

2
½γμ; γν� ¼ diagð−iεμνα ~γα;−iεμνα ~γαÞ: ðA5Þ

In addition to the Dirac matrices γμðμ ¼ 0; 1; 2Þ there exist
two other matrices, γ3 and γ5, which anticommute with all
γμ ðμ ¼ 0; 1; 2Þ and with themselves

γ3 ¼ i

�
0; −I
I; 0

�
; γ5 ¼

�
0; I

I; 0

�
; ðA6Þ

with I being the unit 2 × 2 matrix. It is obvious that γ3 ¼
γ0γ1γ2γ5 and γ5 ¼ −γ0γ1γ2γ3.

APPENDIX B: ALTERNATIVE 4F
(2þ 1)-DIMENSIONAL MODEL WITH DUAL

SYMMETRY BETWEEN OTHER
CSB AND SC CHANNELS

Each of the matrices γ3 and γ5 (see Appendix A) can be
selected as a generator for the corresponding Uγ3ð1Þ
and Uγ5ð1Þ chiral group of spinor field transformations.
For example, the Lagrangian (1) is invariant with respect
to Uγ5ð1Þ such that ψkðxÞ→ expðiαγ5ÞψkðxÞ. Alternatively,
it is possible to construct a 4F model with fermion-
antifermion and superconducting channels, symmetric
under Uγ3ð1Þ continuous chiral transformations, ψkðxÞ →
expðiαγ3ÞψkðxÞ (k ¼ 1;…; N). Its Lagrangian, e.g., reads

Lγ3 ≡ Lγ3ðG1; G2; μ; μ3Þ

¼
XN
k¼1

ψ̄k½γνi∂ν þ μγ0 þ μ3γ
0γ3�ψk þ

G1

N
ðf4FÞch

þ G2

N
ðf4FÞsc; ðB1Þ

where the four-fermion structures ðf4FÞch and ðf4FÞsc are
used,

ðf4FÞch ¼
�XN

k¼1

ψ̄kψk

�
2

þ
�XN

k¼1

ψ̄kiγ3ψk

�
2

;

ðf4FÞsc ¼
�XN

k¼1

ψT
k
~Cψk

��XN
j¼1

ψ̄ j
~Cψ̄T

j

�
: ðB2Þ

Here ~C ¼ iCγ3γ5 and μ is the usual particle number
chemical potential [as in (1)]. Since this Lagrangian is
invariant under Uγ3ð1Þ, there exist a corresponding con-
served density of chiral charge n3 ¼

P
N
k¼1 ψ̄kγ

0γ3ψk as
well as its thermodynamically conjugate quantity, the chiral
(or axial) chemical potential μ3. Note that in the framework
of the model (B1) there is also the duality between chiral
and superconducting channels of interaction, i.e. between
ðf4FÞch and ðf4FÞsc four-fermion structures (B2). Indeed,
performing in (B1) and (B2) the modified Pauli-Gürsey
transformation of spinor fields,

fPG∶ ψkðxÞ→
1

2
ð1− γ3ÞψkðxÞþ

1

2
ð1þ γ3Þ ~Cψ̄T

k ðxÞ; ðB3Þ

we see that

ðf4FÞch ↔
ePG ðf4FÞsc;

Lγ3ðG1; G2; μ; μ3Þ ↔
ePG

Lγ3ðG2; G1;−μ3;−μÞ: ðB4Þ

The relations (B4) are the basis for the duality invariance of
the thermodynamic potential of the model (B1).
To verify this, one can use the way of Sec. II. Indeed, the

semibosonized version of Lagrangian (B1) that contains
only quadratic powers of fermionic fields and auxiliary
bosonic fields σðxÞ, ~πðxÞ, ~ΔðxÞ and ~Δ�ðxÞ has the following
form:

Lγ3 ¼ ψ̄k½γνi∂νþμγ0þμ3γ
0γ3−σ− iγ3 ~π�ψk−

Nðσ2þ ~π2Þ
4G1

−
N
4G2

~Δ� ~Δ−
~Δ�

2
½ψT

k
~Cψk�−

~Δ
2
½ψ̄k

~Cψ̄T
k � ðB5Þ

[in (B5) and below the summation over k ¼ 1;…; N is
implied]. On Euler-Lagrange equations for bosonic fields,
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σðxÞ¼−2
G1

N
ðψ̄kψkÞ; ~πðxÞ¼−2

G1

N
ðψ̄kiγ3ψkÞ;

~ΔðxÞ¼−2
G2

N
ðψT

k
~CψkÞ; ~Δ�ðxÞ¼−2

G2

N
ðψ̄k

~Cψ̄T
k Þ; ðB6Þ

the semibosonized Lagrangian (B5) is equivalent to
the 4F Lagrangian (B1). Note also that the bosonic

fields ~ΔðxÞ and ~Δ�ðxÞ are pseudoscalars, whereas
σðxÞ and ~πðxÞ are scalars with respect to parity trans-
formation (9).
Then, the thermodynamic potential Ωγ3ðM;ΔÞ, which

describes the ground state of the model (B1)–(B5), is
analogously defined by the following relation (for conven-
ience, we omit here and below the tilde in fields):

Z
d3xΩγ3ðM;ΔÞ¼

Z
d3x

�
M2

4G1

þ Δ2

4G2

�
þ i
N
ln

�Z YN
l¼1

½dψ̄ l�½dψ l�exp
�
i
Z

d3x

�
ψ̄kDγ3ψk−

Δ
2
ðψT

k
~CψkÞ−

Δ
2
ðψ̄k

~Cψ̄T
k Þ
���

;

ðB7Þ

where Dγ3 ¼ γρi∂ρ þ μγ0 þ μ3γ
0γ3 −M. In writing down

this expression, we used the same arguments that were used
in the derivation of the thermodynamic potential in the
framework of the model (1) [see the derivation of (16) in
Sec. II]. Path integration in the expression (B7) is evaluated
in Appendix C so we have for the TDP (B7) the following
expression:

Ωγ3ðM;ΔÞ¼ M2

4G1

þ Δ2

4G2

þ i
2

Z
d3p
ð2πÞ3 ln½

~λ1ðpÞ~λ2ðpÞ~λ3ðpÞ~λ4ðpÞ�; ðB8Þ

where ~λ1;…;4ðpÞ are presented in (C11). Comparing this
thermodynamic potential with the TDPΩðM;ΔÞ (17) of the
model (1), we see that

Ωγ3ðM;ΔÞ ¼ ΩðM;ΔÞjμ5→μ3
: ðB9Þ

As a result, it is clear that the TDP Ωγ3ðM;ΔÞ of
the 4F model (B1) is invariant under the following dual
transformation:

G1 ↔ G2; M ↔ Δ; μ ↔ μ3: ðB10Þ

Furthermore, to find phase portraits of model (B1), it is
sufficient to perform in all Figs. 1–10 the replacement
μ5 → μ3.

APPENDIX C: THE PATH INTEGRATION OVER
ANTICOMMUTING FIELDS

Let us calculate the following path integral over anti-
commuting four-component Dirac spinor fields ψðxÞ, ψ̄ðxÞ:

IΓ ¼
Z

½dψ̄ �½dψ � exp
�
i
Z

d3x

�
ψ̄DΓψ −

Δ
2
ðψTCΓψÞ

−
Δ
2
ðψ̄CΓψ̄TÞ

��
; ðC1Þ

where C is the charge conjugation matrix, C ¼ γ2. Since in
the 4 × 4 spinor space the product matrix CΓ should be an
antisymmetric one, it is clear that the Γmatrix in (C1) might
be, e.g., the unit matrix 1s in the spinor space or Γ ¼ iγ3γ5

(for notations see Appendix A), etc. Note in addition
that at Γ ¼ 1s and DΓ ¼ D [see in (16)] the integral
IΓ is equal to the argument of the ln-function in the
formula (16) in the particular case N¼ 1, whereas at Γ¼
iγ3γ5 and DΓ ¼Dγ3 [see (B7)] the integral IΓ is equal to the
argument of the ln-function in the formula (B7) also in the
particular case N ¼ 1. Recall, there are general Gaussian
path integrals [41]:Z

½dψ � exp
�
i
Z

d3x

�
−
1

2
ψTAψ þ ηTψ

��

¼ ðdetðAÞÞ1=2 exp
�
−
i
2

Z
d3x½ηTA−1η�

�
; ðC2Þ

Z
½dψ̄ � exp

�
i
Z

d3x

�
−
1

2
ψ̄Aψ̄T þ η̄ψ̄T

��

¼ ðdetðAÞÞ1=2 exp
�
−
i
2

Z
d3x½η̄A−1η̄T �

�
; ðC3Þ

where A is an antisymmetric operator in coordinate
and spinor spaces, and ηðxÞ, η̄ðxÞ are anticommuting spinor
sources which also anticommute with ψ and ψ̄ . First, let us
integrate in (C1) over ψ-fields with the help of the relation
(C2) supposing there that A ¼ ΔCΓ, ψ̄DΓ ¼ ηT , i.e.
η ¼ DT

Γψ̄
T . Then

IΓ ¼ ðdetðΔCΓÞÞ1=2
Z

½dψ̄ � exp
�
−
i
2

Z
d3xψ̄

× ½ΔCΓþDΓðΔCΓÞ−1DT
Γ �ψ̄T

�
: ðC4Þ

Second, the integration over ψ̄-fields in (C4) can be easily
performed with the help of the formula (C3), where one
should put A ¼ ΔCΓþDΓðΔCΓÞ−1DT

Γ and η̄ ¼ 0. As a
result, we have
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IΓ ¼ ðdetðΔCΓÞÞ1=2ðdet½ΔCΓþDΓðΔCΓÞ−1DT
Γ�Þ1=2

¼ ðdet½Δ2ðCΓÞ2 þDΓðCΓÞ−1DT
ΓCΓ�Þ1=2: ðC5Þ

We evaluate the expression (C5) in two cases, (i) when Γ ¼
1s andDΓ ¼ D, whereD is presented in (16), and (ii) when
Γ ¼ iγ3γ5 and DΓ ¼ Dγ3 , where Dγ3 is given in (B7).
(i) The case Γ¼1s and DΓ¼D¼γρi∂ρþμγ0 þ

μ5γ
0γ5−M.—Taking into account the relations ð∂νÞT¼

−∂ν andC−1ðγνÞTC¼−γν (ν¼ 0, 1, 2), we obtain from (C5)

I1s ¼ ðdet½−Δ2 þDþD−�Þ1=2 ≡ ðdetBÞ1=2; ðC6Þ

where D� ¼ γνi∂ν −M � ðμγ0 þ μ5γ
0γ5Þ. Using the gen-

eral relation detB ¼ expðTr lnBÞ, we get from (C6):

ln I1s ¼
1

2
Tr lnðBÞ ¼ 1

2

X4
i¼1

Z
d3p
ð2πÞ3 lnðλiðpÞÞ

Z
d3x:

ðC7Þ
(A more detailed consideration of operator traces is pre-
sented in Appendix A of the paper [42].) In this formula the
symbol Tr means the trace of an operator both in the
coordinate and internal spaces. Moreover, λiðpÞ
(i ¼ 1;…; 4) in (C7) are four eigenvalues of the 4 × 4

Fourier transformation matrix B̄ðpÞ of the operator B from
(C6). Namely,

λ1;…;4ðpÞ ¼ M2 − j~pj2 þ p2
0 − μ2 þ μ25 − Δ2

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ðp2

0 − j~pj2Þ þ ðjμjj~pj � jμ5jp0Þ2
q

;

ðC8Þ
where j~pj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ p2

2

p
. It is clear from these relations that

λ1;…;4ðpÞ are even functions vs μ and/or μ5. So, it is enough
to take into account only nonnegative values of the chemical
potentials μ and μ5.
(ii) The case Γ¼iγ3γ5 and DΓ ¼ Dγ3 ¼ γρi∂ρ þ μγ0þ

μ3γ
0γ3 −M.—In this case C−1DT

ΓC¼ γρi∂ρ−μγ0þ
μ3γ

0γ3−M. Then it follows from (C5) that

IΓ ¼ ðdet½−Δ2 þ ~Dþ ~D−�Þ1=2 ≡ ðdetBÞ1=2; ðC9Þ

where ~D� ¼ γνi∂ν −M � ðμγ0 þ μ3γ
0γ3Þ. Then, similar to

(C7), it is easy to find that in the case under consideration

ln IΓ ¼ 1

2
Tr lnðBÞ ¼ 1

2

X4
i¼1

Z
d3p
ð2πÞ3 lnð

~λiðpÞÞ
Z

d3x;

ðC10Þ

where ~λiðpÞ (i ¼ 1;…; 4) are four eigenvalues of the 4 × 4

Fourier transformation matrix B̄ðpÞ of the operator B from
(C9). It turns out that the eigenvalues ~λiðpÞ are connected
with the eigenvalues λiðpÞ (C8) by the simple relations

~λiðpÞ ¼ λiðpÞjμ5→μ3
: ðC11Þ

APPENDIX D: EVALUATION OF THE
FUNCTION F1ðMÞ (38)

To calculate the improper convergent integral in (38)
we first use there a polar coordinate system, i.e.R
d2p ¼ 2π

R
∞
0 pdp, and then restrict the p-integration

region by Λ (suppose in addition that Λ ≫ μ; μ5;M). As
a result, we come to the regularized expression F1ΛðMÞ of
the TDP (38), F1ΛðMÞ ¼ V1ðMÞ þ I1 þ Iþ þ I−, where

I1 ¼ −
Z

Λ

0

pdp
2π

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðpþ μ5Þ2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðp − μ5Þ2

q

− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

q �
; ðD1Þ

I� ¼ −
Z

Λ

0

pdp
2π

	
μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðp� μ5Þ2

q 

× θ

	
μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðp� μ5Þ2

q 

: ðD2Þ

Due to the presence of the θðxÞ-functions in (D2) and
sufficiently high values of the cutoff parameter
Λ ≫ μ; μ5;M, the quantities I� indeed do not depend on
Λ. Moreover, it is evident that Iþ is a nonzero quantity only

in the case μ >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ μ25

q
. Hence, substituting q ¼ pþ μ5

for the Iþ-integration in (D2), we have

Iþ ¼ −
θ
	
μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ μ25

q 

2π

×
Z ffiffiffiffiffiffiffiffiffiffi

μ2−M2
p

μ5

ðq − μ5Þ
�
μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ q2

q �
dq: ðD3Þ

[The upper limit in the integral (D3) corresponds to a value
of the momentum p, where the θ-function of the integrand
for Iþ from (D2) is equal to zero, i.e. to a value of p
determined by the condition μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðpþ μ5Þ2

p
.]

It is convenient to present the quantity I− from (D2) as a
sum of two integrals, I− ¼ i1 þ i2, where

i1 ¼ −
Z

μ5

0

pdp
2π

�
μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðp − μ5Þ2

q �

× θ

�
μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðp − μ5Þ2

q �
; ðD4Þ

i2 ¼ −
Z

Λ

μ5

pdp
2π

�
μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðp − μ5Þ2

q �

× θ

�
μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðp − μ5Þ2

q �
: ðD5Þ
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It is clear that i2 is a nonzero quantity only at μ > M. Then,
performing in the integral (D5) the substitution q ¼ p − μ5,
we obtain

i2 ¼ −
θðμ −MÞ

2π

Z ffiffiffiffiffiffiffiffiffiffi
μ2−M2

p

0

ðqþ μ5Þ
�
μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ q2

q �
dq:

ðD6Þ

Obviously, we have i1 ≡ 0 at μ < M. To evaluate i1 at
other values of μ, we should, first, substitute q ¼ μ5 − p
in the integral (D4) and then consider two different regions

of the parameter μ, (i) ω1 ¼ fμ∶M < μ <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ μ25

q
g,

(ii) ω2 ¼ fμ∶
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ μ25

q
< μg. As a result, we have

i1 ¼ −
θðμ −MÞθ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ μ25

q
− μ

�
2π

Z ffiffiffiffiffiffiffiffiffiffi
μ2−M2

p

0

ðμ5 − qÞ
�
μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ q2

q �
dq

−
θ

�
μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ μ25

q �
2π

Z
μ5

0

ðμ5 − qÞ
�
μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ q2

q �
dq: ðD7Þ

Summing the expressions (D3), (D6) and (D7), we have

Iþ þ I− ¼ −
μ5θðμ −MÞθ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ μ25

q
− μ

�
π

Z ffiffiffiffiffiffiffiffiffiffi
μ2−M2

p

0

�
μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ q2

q �
dq

−
θðμ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ μ25

q
Þ

π

�
μ5

Z
μ5

0

�
μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ q2

q �
dqþ

Z ffiffiffiffiffiffiffiffiffiffi
μ2−M2

p

μ5

�
μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ q2

q �
qdq

�
: ðD8Þ

To calculate the I1-term of the regularized TDP F1ΛðMÞ, it is useful to present I1 as a sum of three integrals, each one
corresponds to some square root expression of the integrand in (D1). Then, substituting q ¼ pþ μ5 and q ¼ p − μ5 in two
of these integrals, it is possible to present I1 in the form

−2πI1 ¼
�Z

0

μ5

þ
Z

Λ

0

þ
Z

Λþμ5

Λ

�
ðq − μ5Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þM2

q
dq − 2

Z
Λ

0

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þM2

q
dq

þ
�Z

0

−μ5
þ
Z

Λ

0

þ
Z

Λ−μ5

Λ

�
ðqþ μ5Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þM2

q
dq

¼ 2

Z
μ5

0

ðμ5 − qÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þM2

q
dqþ

Z
Λþμ5

Λ
ðq − μ5Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þM2

q
dqþ

Z
Λ−μ5

Λ
ðqþ μ5Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þM2

q
dq: ðD9Þ

Since Λ ≫ μ; μ5;Δ, we can use
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ Δ2

p
¼ qþ Δ2=ð2qÞ þ � � � in the last two terms of (D9). Then, after integrations one

can see that the sum of these two last integrals in (D9) is equal to zero in the limit Λ → ∞. Hence,

lim
Λ→∞

I1 ¼ −
1

π

Z
μ5

0

dqðμ5 − qÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þM2

q
¼ −

M3

3π
þ
ðμ25 þM2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ25 þM2

q
3π

−
μ25

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ25 þM2

q
2π

−
μ5M2

2π
ln

2
64μ5 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ25 þM2

q
M

3
75:

ðD10Þ
Finally, performing in (D8) trivial table integrations and using the relation

F1ðMÞ ¼ lim
Λ→∞

F1ΛðMÞ ¼ V1ðMÞ þ lim
Λ→∞

I1 þ Iþ þ I−; ðD11Þ

we obtain from (D11), (D8) and (D10) the expression (40) [the function V1ðMÞ is given in the text below (39)].
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