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We study the bosonic structure of F-term Nambu-Goto cosmic strings forming in a realistic SO(10)
implementation, assuming standard hybrid inflation. We describe the supersymmetric grand unified theory,
and its spontaneous symmetry breaking scheme in parallel with the inflationary process. We also write the
explicit tensor formulation of its scalar sector, focusing on the subrepresentations singlet under the standard
model, which is sufficient to describe the string structure. We then introduce an ansatz for Abelian cosmic
strings, discussing in details the hypothesis, and write down the field equations and boundary conditions.
Finally, after doing a perturbative study of the model, we present and discuss the results obtained with
numerical solutions of the string structure.
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I. INTRODUCTION

The phenomenology of the early universe gives access
to high energy physics models, such as grand unified
theories (GUTs). Indeed, we know that the spontaneous
symmetry breaking (SSB) down to the standard model
(SM) of such theories around 1016 GeV must produce
topological defects, e.g. cosmic strings [1,2]. The obser-
vation of such objects, for instance in the cosmic micro-
wave background (CMB) [3–7], allows us then to put
constraints on the string energy per unit length, and thus on
the GUTwhich led their formation. In the past, some work
has already been done to study the structures and properties
of such strings, see e.g. [8–13].
In order to have a complete understanding of these

objects, it is necessary to study them in a realistic GUT
context, and not only through toy models which contain
only the minimal field content necessary to describe this
kind of defects. Such a work was done in Ref. [14], without
using a specified GUT, and considering only the bosonic
structure of the strings. We continue this study by consid-
ering a given SO(10) supersymmetric (SUSY) GUT, which
has already been studied in a particle physics and a
cosmological framework [15–25]. We also consider that
the SSB scheme of the GUT takes place during a F-term
hybrid inflation scenario [26–31], where the inflaton
dynamics is driven by the field content of the GUT itself.
Having a complete description of these linear topological

defects can give interesting results. On the one hand, their
macroscopic properties could considerably change in
comparison with the simpler models, which would modify
the current constraints using cosmic strings observations.
On the other hand, it gives access to the parameters of the
GUT itself, and not only to the energy scale of formation of
the strings. For example, having the energy per unit length

of the string as function of the different parameters of the
GUT permits to implement observational constraints on
their ranges.
In a first part, we introduce the SUSY SO(10) GUT

studied, and its SSB scheme in parallel with the inflationary
process. We then focus in Sec. III on the explicit tensor
formulation of the theory. Special attention is payed to the
formulation of the model as a function of the restricted
representations which are singlet under the SM. Some of
the calculations and results of this section are put in
Appendix A. The cosmic strings are studied in Sec. IV,
where we give an ansatz for their structure, and write the
equations of motion as well as the boundary conditions for
all the fields. After writing the model with dimensionless
variables, we perform a perturbative study of the string in
Sec. V. Finally, in Sec. VI, we present and discuss the
numerical solutions of the strings, and their microscopic
and macroscopic properties.

II. SO(10) GUT, HYBRID INFLATION, AND SSB

A. GUT and field content

We focus on a well-studied SO(10) SUSY GUT,
which has already been considered in a particle physics
[15–22,24] and a cosmological [23,25] framework. The
superpotential yields [19,32,33]

W ¼ m
2
Φ2 þmΣΣΣþ λ

3
Φ3

þ ηΦΣΣþ κSðΣΣ −M2Þ; ð1Þ

where Σ and Σ are in the 126 and 126 representations,Φ is
in the 210 representation, and the inflaton S is a singlet of
SO(10). It is the more general singlet term we can write, in
addition with an F-term hybrid inflation coupling involving
the inflaton and Σ and Σ, which are the only fields in
complex conjugate representations. This last term is the*allys@iap.fr
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simplest we can write which reproduces the inflation
phenomenology [29,31]. Additional terms in S2, S3 or
SΦ2 could be added, but they often generate mass or quartic
terms for the inflaton at tree-level, and then spoil the
inflation. A discussion of those terms can be found
in Ref. [23].
All the parameters introduced are complex, but we can

use redefinitions of the phases of the superfields to set m,
mΣ, κ and M real, λ and η still being complex. The explicit
component formulation will be given in Sec. III. The reader
should be reminded that as we work in a SUSY framework,
all the components of the scalar fields are complex.
Note that the purpose of this article is to consider in

details the complete GUT structure of the strings, rather
than focus on the inflation, which is treated at a basic level.
We could also consider an inflation led by fields out of the
GUT sector, and recover the same kind of phenomenology
for the strings. The advantage here is that, inflation being
implemented by the GUT fields, we have a precise relation
between the cosmological evolution and the breaking
scheme of the GUT, see Sec. II C. It is also possible to
refine the model by including additional couplings to
develop the inflationary phenomenology.
This superpotential is sufficient to describe the SSB of

the GUT to the SM symmetry. In addition, a Higgs field in
the 10 representation permits us to implement the electro-
weak symmetry breaking. Its characteristic scale is very
different of that considered in this paper and we can omit it
from now on. Another Higgs field in the 120 representation
of SO(10) can be added in order to recover the complete
SM fermion mass spectrum, but it can be omitted in a first
approximation [20].
From now on, we will focus on the bosonic sector of the

theory, so we will not consider the superfields anymore, and
focus instead on their bosonic part. Also, as we work with
F-term hybrid inflation scenario, we assume that all the
D-terms associated to the gauge generators take identically
vanishing values, with no Fayet-Iliopoulos term [32]. This
condition will permit us to impose some constraints on the
fields thereafter.

B. Lagrangian of the bosonic sector

We take the signature of the metric to be þ2. The
Lagrangian of the bosonic sector gives

L¼−
1

4
TrðFμνFμνÞ− ðDμΦÞ†ðDμΦÞ− ðDμΣÞ†ðDμΣÞ

− ðDμΣÞ†ðDμΣÞ− ð∇μSÞ�ð∇μSÞ−VðΦ;Σ;Σ;SÞ: ð2Þ

The inflaton has no gauge covariant derivative since this is
a singlet of the gauge group. We also take the following
definitions

DμX ¼ ð∇μ þ gAμÞX; ð3Þ

Aμ ¼ −iAa
μτ

a
X; ð4Þ

Fμν ¼ −Fa
μντ

a
X; ð5Þ

Fμν ¼ ∇μAν −∇νAμ þ q½Aμ; Aν�; ð6Þ

where from now on X is a general notation for all scalar
fields, i.e. X ∈ fΣ;Σ;Φ; Sg. We note τaX the action of the
generators of the gauge group in the representation of X, the
index a labeling the 45 generators of SO(10). The 210
representation being real, we can use a basis where
ðτa210Þ† ¼ τa210. It is not the case anymore for the 126
representation, which is complex: ðτa126Þ† is not anymore in
the 126 but in the 126 representation. However, we can
choose a basis where τa

126
¼ −ðτa126Þ†. Independently of the

representation, we have

½τa; τb� ¼ ifabcτc; ð7Þ

with fabc the structure constants of SO(10).
We first focus on the F-term part of the potential. They

are defined by

FX ¼ ∂W
∂X ; ð8Þ

with FX in the conjugate representation of X. It yields

FS ¼ κðΣΣ −M2Þ;
FΦ ¼ mΦþ λðΦ2ÞΦ þ ηðΣΣÞΦ;
FΣ ¼ mΣΣþ ηðΦΣÞΣ þ κSΣ;
FΣ ¼ mΣΣþ ηðΦΣÞΣ þ κSΣ; ð9Þ

where we denote with ðXYÞZ the term in the representation
of Z we can build from the product of the fields X and Y.
See Sec. A 2 for a more detailed explanation about how to
obtain these results.
We finally obtain for the potential

V ¼
X
X

F†
XFX ≡X

X

VX; ð10Þ

which is a sum of positive terms. It gives

VS ¼ κ2ðΣΣ −M2Þ2; ð11Þ

VΦ ¼ m2ΦΦ† þ jηj2ðΣΣÞΦðΣΣÞ†Φ
þ jλj2ðΦ2ÞΦðΦ2Þ†Φ þ ½λη�ðΦ2ÞΦðΣΣÞ†Φ
þmλ�ΦðΦ2Þ†Φ þmη�ΦðΣΣÞ†Φ� þ H:c:; ð12Þ
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VΣ ¼ m2
ΣΣΣ† þ jηj2ðΦΣÞΣðΦΣÞ†Σ þ κ2SS�ΣΣ†

þ ½ηκS�ðΦΣÞΣΣ† þmΣκS�ΣΣ†

þmΣη
�ΣðΦΣÞ†Σ� þ H:c:; ð13Þ

and

VΣ ¼ VΣðΣ ⟷ ΣÞ: ð14Þ
Note that we did not include in what is called V the D-term
contribution to the potential. Indeed, this term having an
identically vanishing value, it does not contribute to the
dynamics of the fields. However, this condition will be
imposed by the following, and gives some constraints on
the fields.

C. SSB scheme, hybrid inflation and topological defects

We now turn to the cosmological evolution of the GUT,
following Refs. [14,23], and also Ref. [34] for a model very
close to the one we study. The SSB schemes take the
following form

SOð10Þ⟶hΦi
G0 ⟶

hΣi
GSM × Z2; ð15Þ

whereGSM ¼ 3C2L1Y . We use from now on short notations
for the gauge groups, 3C2L1Y meaning SUð3ÞC × SUð2ÞL×
Uð1ÞY , and so on. The Z2 factor appears in addition to the
SM gauge group in order to suppress proton decay [35]. We
assume that the first SSB step happens at EGUT∼1016 GeV,
and the second one slightly below, at E∼ ð1015–1016ÞGeV.
At the onset of inflation, we can assume a very large

value for the inflaton S in comparison with all the other
fields, as it is the case in chaotic inflation. To minimize the
higher order terms containing it in Eqs. (13) and (14), so
that VΣ ∼ jκSΣj2 and VΣ ∼ jκSΣj2, the field Σ and Σ must
take a vanishing value. We thus have VΣ ¼ 0, VΣ ¼ 0 and
VS ¼ κ2M4 at this step. In addition, we assume that the
VEV taken by Φ minimizes VΦ. Different VEVs for Φ
have this property, each one being associated with a
different gauge group at this step G0.
After this first SSB, a false vacuum hybrid inflation

begins. Indeed, the potential verifies V ¼ V0 þ quant corr,
with V0 ¼ κ2M4 and the inflaton slowly rolls along this flat
direction at tree level until it reaches its critical value, thus
ending inflation (see e.g. Ref. [23] for a detailed explan-
ation about this phase). At this point, a new phase transition
takes place, causing a SSB down to the SM gauge group.
We assume the set of VEVs at this last step to be a global
minimum for the potential, i.e. implying V ¼ 0. As
previously, this condition is fulfilled by several set of
VEVs, each one defining an unbroken gauge symmetry.
A careful study of the possible SSB cascades has been

done in [23], including stability of the inflationary valley.
Only two of them are valid and permit us to recover the SM
at low energy. Their respective intermediate symmetry

group is G0 ¼ 3C2L2R1B−L and G0 ¼ 3C2L1R1B−L. For
both these intermediate symmetry groups, the topological
defects produced are monopoles in the first SSB step, and
cosmic strings in the second [36]. The monopoles are
washed out by the inflation, which takes place after their
formation. In this paper, we study the cosmic strings which
form in the SSB fromG0 toGSM × Z2, at the end of inflation.

D. Use of fields singlet under the SM

The VEVs which have a nonvanishing value at the last
stage of SSB define the SM symmetry. It implies that they
must be uncharged under GSM, since they would otherwise
break this symmetry group at this stage. These nonvanish-
ing VEVs thus are singlet under the SM. We will also
assume there is no symmetry restoration, i.e. all fields
acquiring a nonzero VEV at a given step keep it non-
vanishing at later stages. It permits us to impose that all the
nonvanishing VEVs of the SSB cascade are also singlets
under the SM.
We can consider all the restricted representations of the

field content of the GUT we study, and look for subrepre-
sentations which are singlet under the SM. These are very
few [19,33], and are listed below, giving their representa-
tions under the Pati-Salam group (2L2R4C)

Φp ¼ Φð1; 1; 1Þ; σ ¼ Σð1; 3; 10Þ;
Φa ¼ Φð1; 1; 15Þ; σ ¼ Σð1; 3; 10Þ;
Φb ¼ Φð1; 3; 15Þ; S ¼ Sð1; 1; 1Þ: ð16Þ

Considering the 3 representation of 2R, it is sufficient to
take the neutral component of 1R ⊂ 2R, which is what we
will do from now on. For the representations nonsinglet
under 4C, their branching rules on 3C1B−L are

1 ¼ 1ð0Þ;
10 ¼ 1ð2Þ þ 3ð2=3Þ þ 6ð−2=3Þ;
15 ¼ 1ð0Þ þ 3ð−4=3Þ þ 3ð4=3Þ þ 8ð0Þ; ð17Þ

where we denote with nðqÞ the representation of 3C of
dimensions n which has a charge q under 1B−L. For these
representations, we use their subrepresentation singlet of
3C, which is unique. The explicit tensor formulation of
these restricted representations will be given in Sec. III C.
It permits us to describe in a short way the nonvanishing

VEVs appearing after the first SSB scheme and defining
G0, for the two relevant schemes [19,23]. For the first one,
only hΦai takes a nonvanishing value, and the residual
symmetry group is G0

1 ¼ 3C2L2R1B−L. For the second one,
the three restricted representations singlet under the SM
contained in Φ take a nonvanishing expectation value, and
the residual symmetry group is G0

2 ¼ 3C2L1R1B−L.
Finally, and as discussed in Ref. [14], we can restrict the

study of the microscopic structure of the string to a
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configuration where all the fields which are not singlet under
the SM take an identically vanishing value. Indeed, the
potential is at least quadratic in these fields, since it would
otherwise be charged under the SM. So the solutions where
all these fields take a vanishing value is a solution of their
equations of motion. On the other hand, these fields must
have a zero value at infinity since the vacuum is uncharged
under the SM. This shows that the solution discussed
previously is also compatible with the boundary conditions
at infinity.Wewill assume this particular ansatz fromnowon.
For a more detailed discussion about this assumption,
see Ref. [14].

III. EXPLICIT TENSOR FORMULATION

A. Introduction and fields content

In order to have a complete study of the model, including
numerical solution, we need to write it in a component
(here tensor) formulation, which is the purpose of this
whole section. As explained in Sec II D, we will also
restrict the study to only the fields which are singlet under
the SM, which permits us to describe the problem in terms
of only a few complex functions. In order to be as concise
and clear as possible, a part of the calculations and results
are given as an appendix, in Sec. A 1.
The tensor formulation of the field content yields [19,37]:
(i) Σ (126) is a fifth rank antisymmetric tensor Σijklm,

self-dual (in the sense of Hodge duality):

Σijklm ¼ i
5!
ϵijklmabcdeΣabcde; ð18Þ

(ii) Σ (126) is a fifth rank antisymmetric tensor Σijklm,
anti-self-dual:

Σijklm ¼ −
i
5!
ϵijklmabcdeΣabcde; ð19Þ

(iii) Φ (210) is a fourth rank antisymmetric tensor Φijkl,
(iv) S is a singlet

We remind the reader that in the tensor formulation of
SO(10), all the indices go between 1 and 10.

B. Superpotential, F-terms, and potential

The superpotential, defined in Sec. II A, yields

W ¼ 1

2
mΦijklΦijkl þmΣΣijklmΣijklm

þ 1

3
λΦijklΦklmnΦmnij þ ηΦijklΣijmnoΣklmno

þ κSðΣijklmΣijklm −M2Þ ð20Þ

Now, to compute the F-terms, we have to take the
derivatives with respect to the different tensor components

of the fields. However, we have to take into account the fact
that they are not independent (due to the symmetry and
duality properties of the tensors). The way to proceed is
given in Sec. A 1, and the derivatives of the different terms
and the associated notations are written in Sec. A 2.
Explicitly, we find

FS ¼ κðΣijklmΣijklm −M2Þ; ð21Þ

ðFΦÞijkl ¼ mΦijkl þ λΦ½ijjabΦabjkl� þ ηΣ½ijjabcΣjkl�abc;

ð22Þ

ðFΣÞijklm¼mΣΣijklmþ η

2

�
Φ½ijjαβΣαβjklm�

−
i
5!
ϵijklmabcdeΦabαβΣαβcde

�
þ κSΣijklm; ð23Þ

and

ðFΣÞijklm¼mΣΣijklmþ η

2

�
Φ½ijjαβΣαβjklm�

þ i
5!
ϵijklmabcdeΦabαβΣαβcde

�
þ κSΣijklm: ð24Þ

Note that in these F-terms, we cannot obtain FΣ from FΣ by
only changing Σabcde in Σabcde.
We do not write the full tensorial expression of the

potential at this step, which is obtained by injecting the
results of Sec. A 2 in Eq. (11) to (14).

C. Singlet decomposition and D-terms

Let us consider now the restricted representations which
are singlet under the SM. In addition, they are uncharged
under any continuous non-Abelian symmetry which com-
mutes with the SM symmetry. It implies that we can
describe their dynamics by a single complex function. It
yields, e.g.

Φa ¼ aðxμÞhΦai0; ð25Þ

where aðxμÞ is a complex function of the space-time, and
hΦai0 is a constant vector in the representation space.
Following the conventions of [14], we choose to work with
normalized constant vectors, i.e. with hΦai0hΦai†0 ¼ 1.
We can now write these singlets under the SM in a tensor

formulation [19], following the notations introduced in
Eq. (16),
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8>>>>>>>>>>><
>>>>>>>>>>>:

pffiffiffi
4!

p ¼ Φ1234;
affiffiffiffiffi
4!3

p ¼ Φ5678 ¼ Φ5690 ¼ Φ7890;

bffiffiffiffiffi
4!6

p ¼ Φ1256 ¼ Φ1278 ¼ Φ1290

¼ Φ3456 ¼ Φ3478 ¼ Φ3490;
1ffiffiffiffiffiffi
5!25

p ðiÞð−a−bþcþdþeÞσ ¼ Σaþ1;bþ3;cþ5;dþ7;eþ9;

1ffiffiffiffiffiffi
5!25

p ð−iÞð−a−bþcþdþeÞσ ¼ Σaþ1;bþ3;cþ5;dþ7;eþ9;

ð26Þ

where the complex functions are p, a, b, σ and σ. In the last
two equations, the indices a, b, c, d and e are either 0 or 1.
The D-term condition permits us to impose additional

constraints on the fields. The general expression is

Da ¼ −g
X
X

ðX†τaXXÞ; ð27Þ

for the D-term associated to the generator τa (in the case of
a vanishing Fayet-Iliopoulos term) [32]. The associated
potential in the Lagrangian is

VD ¼ 1

2

X
a

DaDa ð28Þ

As we work in the framework of an F-term theory, all the
D-terms identically vanish. The D-term condition associ-
ated to the generator of 1B−L simplifies a lot since only the
SM singlets associated to Σ and Σ are charged under this
group [see Eqs. (17)], yielding [33,38]

D1B−L
¼

ffiffiffi
3

8

r
ð2σ†σ − 2σ†σÞ ¼ 0: ð29Þ

In addition, as the phase of the inflaton S have been
rephased in order to makeM real, it ensures that the global
minimum of the potential is reached when σσ ¼ M2 ∈ R.
Both these results impose that σ ¼ σ†, which finally
gives σ ¼ σ�.
To summarize, we can write the fields in the VEV

directions defined in Eq. (26)

(
hΣi ¼ hΣi† ¼ σhσi0;
hΦi ¼ ahΦai0 þ bhΦbi0 þ phΦpi0;

ð30Þ

with the normalization conditions giving

hΦpi0hΦpi†0 ¼ 1;

hΦai0hΦai†0 ¼ 1;

hΦbi0hΦbi†0 ¼ 1;

hσi0hσi†0 ¼ hσi0hσi0 ¼ 1: ð31Þ

The other scalar products vanish, since we cannot construct
scalar terms with two fields which are not in conjugate
representations.
Finally, the different contractions between the fields

written in terms of the few complex functions introduced
previously can be found in Appendix A 3.

D. Superpotential and potential in singlet form

We can now write the superpotential and the F-term
scalar potential terms in term of the few complex functions
introduced in the previous section. The superpotential gives

W¼m
2
ðp2þa2þb2ÞþmΣσσ

� þ λ

3

�
a3

9
ffiffiffi
2

p þ ab2

3
ffiffiffi
2

p þ pb2

2
ffiffiffi
6

p
�

þησσ�
�

p

10
ffiffiffi
6

p þ a

10
ffiffiffi
2

p −
b
10

�
þ κSðσσ�−M2Þ: ð32Þ

In a similar way, the potential can be written by using the
expressions given in Sec. A 3 in the Eq. (11) to (14).
However, it is possible to write it in a more conven-
ient form.
For this purpose, we can introduce the F-terms asso-

ciated with the restricted representations singlet under the
SM. Indeed, the only nonvanishing terms in the F-term
associated to Φ are

Fp

2
ffiffiffi
6

p ¼ ðFΦÞ1;2;3;4 ¼
mp

2
ffiffiffi
6

p þ λb2

72
þ ησσ�

120
; ð33Þ

Fa

6
ffiffiffi
2

p ¼ ðFΦÞ5;6;7;8 ¼ ðFΦÞ5;6;9;10 ¼ ðFΦÞ7;8;9;10

¼ ma

6
ffiffiffi
2

p þ λ

3

�
a2

36
þ b2

36

�
þ ησσ�

120
; ð34Þ

and

Fb

12
¼ ðFΦÞ1;2;5;6 ¼ ðFΦÞ1;2;7;8 ¼ ðFΦÞ1;2;9;10
¼ ðFΦÞ3;4;5;6 ¼ ðFΦÞ3;4;7;8 ¼ ðFΦÞ3;4;9;10
¼ mb

12
þ λ

3

�
ab

18
ffiffiffi
2

p þ bp

12
ffiffiffi
6

p
�
−
ησσ�

120
: ð35Þ

FΦ being in the same representation as Φ, they can be
identified as the terms in the representations ofΦp,Φa and
Φb appearing in its branching rules. We also introduce,
without specifying anymore all the sets of indices obtained
by considering the antisymmetric and self-dual configura-
tions [see Eq. (26)],
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Fσ

16
ffiffiffiffiffi
15

p ¼ðFΣÞ1;3;5;7;9

¼ mΣσ

16
ffiffiffiffiffi
15

p þ ησ

960
ffiffiffi
5

p ð
ffiffiffi
6

p
a−2

ffiffiffi
3

p
bþ

ffiffiffi
2

p
pÞþ κSσ

16
ffiffiffiffiffi
15

p :

ð36Þ

Finally, we have

FS ¼ κðσσ� −M2Þ: ð37Þ

These definitions permit us to write the F-term scalar
potential in a simpler form,

V ¼ VΦ þ VΣ þ VΣ þ VS

¼ FΦFΦ
† þ FΣFΣ

† þ FΣFΣ
† þ FSF�

S

¼ jFpj2 þ jFaj2 þ jFbj2 þ 2jFσj2 þ jFSj2: ð38Þ

This formulation of the potential is useful since it shows
explicitly the sum of positive terms. So, when doing only a
static study of the problem as done in Sec. II C, i.e. when
not comparing the different terms, it is possible to work
with these few simplified F-terms only, as often done in the
literature. Note that the F-terms can indeed be recovered
from the usual definition

Fa ¼
∂W
∂a ; ð39Þ

and so on. However, the simple form of the potential given
in Eq. (38) is permitted only because we chose normalized
fields.
Before going on, let us mention that other papers use

different conventions when defining the superpotential
and the kinetic part of the Lagrangian, as well as the
singlet configurations in tensor formulation (which can be
not normalized). The normalization choice we use is
useful to properly recover the Abelian Higgs model in
a given limit discussed in Sec. V B. We give in Sec. A 4
the link between the expressions of the present paper, and
the expressions found in [19,22,23]. All the results
obtained are indeed compatible with the previous works
on the subject.

IV. ABELIAN COSMIC STRINGS

A. Introduction, cosmic strings studied

We now turn to the study of the cosmic strings
which form at the second step of SSB which ends hybrid
inflation, at E ∼ ð1015–1016Þ GeV (see Sec. II C). As we
saw from a cosmological study, the two possible SSBs at
this step are from G0

1 ¼ 3C2L2R1B−L or G0
2 ¼ 3C2L1R1B−L

toGSM × Z2. In both cases, only cosmic strings form at this
stage. As detailed in [14], these strings cannot connect with

monopoles. From now on, we use a set of cylindrical
coordinates ðr; θ; z; tÞ based on the location of the string,
and taken to be locally aligned along the z-axis ar r ¼ 0.
We also focus on strings with fields which are functions
only of r and θ, i.e. Nambu-Goto strings.
In the case of G0

2 → GSM × Z2, only Abelian strings
associated with the generator of 1B−L can form. But in the
other case, G0

1 → GSM × Z2, other non-Abelian-strings
could also form, see e.g. Refs. [9,10,39]. We will focus
in both cases on the Abelian strings which could form,
associated with the generator of 1B−L. As explained in
Sec. III C, only the nonzero VEVs associated to Σ andΣ are
charged under this Abelian group. As these fields are also
the fields which are in conjugate representations and
coupled with the inflaton in the superpotential, these strings
are called single field strings following [14].

B. Ansatz and equation of motion

In order to have unified notation with [14], we call
Uð1Þstr ¼ 1str the Abelian symmetry related with the cosmic
string (1ðB−LÞ here), and τstr the associated generator. As a
first part of the ansatz, we assume that all the fields which are
not singlet under the SM take an identically vanishing value,
since it verifies their equations of motion, as discussed in
Sec. II D. Then, we also assume that the only gauge field
which does not vanish is the one associated with this
generator τstr, which forms the string [2,9,14,39,40]. In
order to simplify the notation, we normalize the charges
associated to 1str ¼ 1B−L to have qΣ ¼ 1 and qΣ ¼ −1.
Thus, the kinetic term, yields [using Eq. (31)]

K ¼ −2jð∇μ − igAstr
μ Þσj2 − jð∇μpÞj2 − jð∇μaÞj2

− jð∇μbÞj2 − jð∇μSÞj2 −
Trðτstr2Þ

4
Fstr
μνFμν str: ð40Þ

The potential written in terms of the complex functions
describing the dynamic of the singlets of the SM can be
found in Sec. III D.
The complete form of the ansatz is [2,9,14,39,40]

8>>>>>>>>><
>>>>>>>>>:

p ¼ pðrÞ;
a ¼ aðrÞ;
b ¼ bðrÞ;
σ ¼ fðrÞeinθ;
Aμ ¼ Astr

θ ðrÞτstrδθμ;
S ¼ SðrÞ;

ð41Þ

where the integer n is the winding number. In this ansatz, f
and Q are real fields, while a, b, p and S are complex. This
ansatz gives the following equations of motion
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2

�
f00 þ f0

r

�
¼ fQ2

r2
þ 1

2

∂V
∂f ;

p00 þ p0

r
¼ ∂V

∂p� ;

a00 þ a0

r
¼ ∂V

∂a� ;

b00 þ b0

r
¼ ∂V

∂b� ;

S00 þ S0

r
¼ ∂V

∂S� ;

Trðτstr2Þ
�
Q00 −

Q0

r

�
¼ 2g2f2Q; ð42Þ

where a prime means a derivative with respect to the radial
coordinate 0 ≡ d=dr, and where we introduced the field

QðrÞ ¼ n − gAstr
θ ðrÞ; ð43Þ

which is a real field function of r only. Note that this whole
ansatz is the minimal structure one, which is developed
in [14].
Finally, we can reduce the model to the following

effective Lagrangian

Leff ¼ −2f02 −
Trðτstr2Þ

g2
Q02

2r2
− s0�s − p0�p0

− a0�a0 − b0�b0 −
f2Q2

r2
− Vðσ; a; b; p; sÞ: ð44Þ

C. Boundary conditions

Let consider first the boundary conditions at infinity. For
the scalar fields, they take the nonvanishing VEVs dis-
cussed in Sec. II C, which are a global minimum of the
potential and define the SM gauge symmetry. Their values
will be given in the Sec. VA in a dimensionless form. For
the gauge field, we have

lim
r→∞

Astr
θ ðrÞ ¼ n

g
; ð45Þ

in order to properly cancel Dμσ at infinity, which gives in
term of the field Q

lim
r→∞

QðrÞ ¼ 0: ð46Þ

Concerning the values of the fields at the center of the
strings, topological arguments and symmetry considera-
tions give [2,41]

fð0Þ ¼ 0;

Qð0Þ ¼ n: ð47Þ
For the other fields, the cylindrical symmetry around the
string gives, assuming that they have a nonvanishing value
at the center of the string,

dx
dr

ð0Þ ¼ 0; ð48Þ

for x ¼ p, a, b, and S.
At this point, we have the equations of motion and the

boundary conditions for the whole field content of the
model. So it is completely defined in a mathematical point
of view.

D. Equation of state of the cosmic string

Without solving the equations of motion, it is possible to
obtain the equation of state of the cosmic string. Indeed, we
chose an ansatz for the fields where they only depend on r
and θ. So, nothing in the configuration we are interested in
can depend on internal string world-sheet coordinates, here
locally z and t. The equation of state then gives [2,14]

U ¼ T; ð49Þ

whereU is the energy per unit length and T is the tension of
the string. This equation is the Nambu-Goto equation of
state, which is Lorentz-invariant along the world sheet.
Thus, the only macroscopic parameter we will consider

in the following is the energy per unit length, defined by

U ¼ 2π

Z
rdrL: ð50Þ

V. DIMENSIONLESS MODEL,
PERTURBATIVE STUDY

A. Dimensionless model

To work with a dimensionless model, we introduce the
following new variables (denoted by a tilde)

r ¼ ~r
κM

; f ¼ M ~f; S ¼ mΣ
κ

~S;

a ¼ m
λ
~a; b ¼ m

λ
~b; p ¼ m

λ
~p;

FX ¼ κM2 ~FX; V ¼ κ2M4 ~V; g2 ¼ κ2 ~g2: ð51Þ

Also, we introduce a set of dimensionless parameters,

α1 ¼
m
λM

; α2 ¼
mΣ
κM

; α3 ¼
η

λ
; α4 ¼

η

κ
; ð52Þ

which, in addition to ~g, are the free parameters of the
theory. As α2 and g are real, while the other αi are complex,
the total parameter space of the model is of dimension 7
(the phases of α1, α3 and α4 are not independent).
Finally, the integrated Lagrangian over the radial coor-

dinates ðr; θÞ gives
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−
L
M2

¼ 2π

Z
~rd~r

�
2ð ~f0Þ2 þ Trðτstr2Þ

~g2
Q02

2~r2
þ jα2j2 ~S0� ~S0 þ jα1j2 ~p0� ~p0 þ jα1j2 ~a0� ~a0 þ jα1j2 ~b0� ~b0

þ
~f2Q2

~r2
þ ~Vð ~σ; ~a; ~b; ~p; ~SÞ

�
; ð53Þ

with

~V ¼
���� α21α4α3

����2
����� ~pþ

~b2

6
ffiffiffi
6

p þ α3
α21

~f2

10
ffiffiffi
6

p
����2 þ

���� ~aþ ~a2

9
ffiffiffi
2

p þ
~b2

9
ffiffiffi
2

p þ α3
α21

~f2

10
ffiffiffi
2

p
����2 þ

���� ~bþ
ffiffiffi
2

p
~a ~b
9

þ
~b ~p

3
ffiffiffi
6

p −
α3
α21

~f2

10

����2
�

þ 2jα2j2
���� ~f þ α1α4

α2

~f
10

�
~affiffiffi
2

p − ~bþ ~pffiffiffiffiffi
10

p
�
þ ~S ~f

����2 þ j ~f2 − 1j2: ð54Þ

We can also write in a dimensionless form the sets of
VEVs before and after the end of inflation, obtained as
explained in Sec. II C. The analytical solutions being
cumbersome, we give here only a Taylor expansion. The
expansion parameter we consider is

x ¼ α3
α21

¼ ηλM2

m2
; ð55Þ

which is often small in comparison with unity in such GUT
models. Indeed, we expect the second step of symmetry
breaking to appear at lower energy than the first step, and
we mainly stay in a regime where the coupling constant are
at most of order 1. Note however that even if these
expansions are convenient to describe the VEVs when
x ≪ 1, it is necessary to use the complete analytical
solutions when it is not the case anymore.
For the first SSB scheme, going through G0

2 ¼
3C2L2R1B−L, we have8>>>><

>>>>:

~σ0 ¼ 0;

~a0 ¼ −9
ffiffiffi
2

p
;

~b0 ¼ 0;

~p0 ¼ 0;

ð56Þ

before the end of inflation, and8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

j ~σ1j ¼ 1

~a1 ¼ −9
ffiffiffi
2

p þ x

10
ffiffiffi
2

p

~b1 ¼ −
x
10

~p1 ¼ −
x

10
ffiffiffi
6

p

~S1 ¼ −1þ α1α4
α2

�
9

10
−

x
75

�
ð57Þ

after the end of inflation. We recall that this previous set of
VEVs defines the boundary conditions for the fields at
infinity, as explained in Sec. IV C. The set of VEV for the

scheme going through G0
1 ¼ 3C2L1R1B−L is given in the

Appendix A 5.

B. Toy-model limit

We will compare the results obtained to the Abelian
Higgs model. This toy model contains two scalar fields of
opposite charges under a local U(1) gauge symmetry, Σ and
Σ, and has for Lagrangian1 [2,11,39,40]

L ¼ −ðDμΣÞ†ðDμΣÞ − ðDμΣÞ†ðDμΣÞ

−
1

4
FμνFμν − κ2jΣΣ −M2j2: ð59Þ

In order to describe it in a SUSY formalism, we have to
introduce another field S, uncharged under the local
symmetry, and use for the superpotential

W ¼ κSðΣΣ −M2Þ: ð60Þ
This yields the Lagrangian of Eq. (59) when taking an
ansatz where S identically vanishes. In this toy model, the
characteristic radii are ðκMÞ−1 forΦ andM−1 for the gauge
field (see Appendix A 6).
This toy model can also be recovered from our realistic

model, taking the limit η → 0, and an ansatz where ~S ¼ −1,
and where the fields a, b and p identically take the value
they have at infinity. Indeed, the fields associated toΦ fully
decouple to the string, VΣ and VΣ vanish due to value of ~S
[see e.g. Eq. (54), with α4 ¼ 0], and VS reduces to the
potential term of Eq. (59). Note that we properly recover

1Note that if one wants to use a model where the kinetic part of
the Lagrangian only contains a term in

KΣ ¼ −ðDμΣÞðDμΣÞ; ð58Þ

it possible to make a link between both these toy-model
considering ~f ¼ ffiffiffi

2
p

f, ~κ ¼ κ=2 and ~M ¼ ffiffiffi
2

p
M, labeling with

a tilde the expressions to use in the model with one single kinetic
term. Indeed, the factor 2 in the kinetic term will vanish, and the
superpotential will stay identical.
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the toy-model case in this limit due to the normalization
choice of Eq. (26).

C. Perturbative study

We now perform a perturbative study of the condensa-
tion of the field Φ in the string, in a certain range of
parameter, following Ref. [14]. For this purpose, consid-
ering the modifications of the fields ~a, ~b and ~p in a
perturbative way when ~f goes from 0 to 1, we obtain the
characteristic scale of variation, e.g. for ~a, of [see Eq. (54)]2

δ ~a0 ¼
ληM2

10
ffiffiffi
2

p
m2

¼ x

10
ffiffiffi
2

p : ð61Þ

As we consider models where the end of inflation appears
at a lower scale than the GUT scale, and with coupling
constant often smaller than unity, this characteristic scale of
variations is in most cases smaller than the scale of
variation of ~f, which is 1. Finally, the ratio between the
characteristic variation of ~a and its dominant contribution at
infinity ~a0 gives [see Eqs. (56) and (57)]

δ ~a0
~a0

¼ ληM2

180m2
¼ x

180
; ð62Þ

which also legitimates the perturbation study. This result is
in accord with Ref. [14], which estimated this term to be of
order x=N, with N the characteristic dimension of the
representations used.
However, we could introduce a more precise estimate for

the condensation of the fields coming from Φ into the core
of the string. Indeed, the value δ ~a0 we computed describes
the differences between the configurations which minimize
the potential in the center of the string and at infinity.
But the actual value of this field ~a results in a competition
between the kinetic and the potential terms. In order to
estimate this value, we can approximate at a linear order the
contribution of this field to the Lagrangian close to the
center of the string to

jα1j2Lpert ≃
�
dδ ~a
d~r

�
2

þ
�

m
κM

�
2

ðδ ~a − δ ~a0Þ2: ð63Þ

Then, whenm=ðκMÞ ≫ 1, we obtain that δ ~a≃ δ ~a0. On the
other hand, when m=ðκMÞ ≪ 1, we obtain at dominant
order that

δ ~a≃
�

m
κM

�
δ ~a0: ð64Þ

To compute the kinetic term, we assume that the character-
istic radius of the fields a, b and p is the same as the

characteristic radius of f, i.e. ðκMÞ−1, since these fields
have a direct coupling in the Lagrangian with f only, and
not Q.
When the perturbative study is possible, we can now

estimate the variation of the energy per unit length of the
string due to the condensation of the additional fields into the
string. For this purpose, it is sufficient to consider the kinetic
contribution of the fields condensing in the core of the string,
i.e. ~a, ~b and ~p. Indeed, without this term, the potential would
only play the role of a Lagrange multiplier for these fields,
and it would not add any contribution to the energy of the
string. An additional way to check this assumption is to
verify that the kinetic and potential contributions of these
fields to the Lagrangian density are similar.
These assumptions finally give a characteristic modifi-

cation to the Lagrangian density of order

δL≃ jα21jðjδ ~aj2 þ jδ ~bj2 þ jδ ~pj2Þ; ð65Þ

since in the Eq. (53), the dimensionless radius used is ~r, in
units of ðκMÞ−1. It yields, considering U0 ≃M2 the energy
per unit length of the toy-model string, and δU the
modification of the energy per unit length of the string
due to the condensation of Φ in the core of the string,

δU
U0

≃
Z

~rd~rδL≃ δL; ð66Þ

which gives

δU
U0

≃ η2M2

60m2
; ð67Þ

when m=ðκMÞ ≫ 1, and

δU
U0

≃ η2

60κ2
; ð68Þ

when m=ðκMÞ ≪ 1. These evaluations of the modification
of the energy per unit length of the string due to its realistic
structure are relevant only when the perturbative approach
is verified, i.e. when x ≪ 1, and also when δU=U0 does not
approach unity.
In Ref. [14], an estimate of the maximal modification of

the energy per unit length from standard toy models was
computed, considering the contribution from the scalar
potential to the energy per unit length due to the con-
densation of the additional field in the core. This maximal
estimate of δU=U0 ≃ η2=ðNκ2Þ, with N the characteristic
dimension of the representations, is compatible with the
results of Eqs. (67) and (68). The two results are very close
in the second case, since as the additional fields barely
condensate in the core of the string, the entire potential
contribution used in Ref. [14] has to be taken into account.
Note that we left aside at this point the contribution of the

inflaton field S. It is possible to check that this contribution
is of same order or lower than the contributions of the fields

2The small parameter we introduced in Eq. (55) in order to
describe with a Taylor expansion the set of VEV at infinity
appears in this characteristic scale of perturbation. This result is
somehow natural, since we consider in both cases the static
configurations which minimize the potential taking into account
the constraint ~f ¼ 0 or ~f ¼ 1.
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a, b and p. On the other hand, it can be understood by the
fact that S has no characteristic scale, which is necessary for
it in order to play the role of the inflaton.

VI. NUMERICAL SOLUTION

A. Implementation in a real case

In order to simplify themodel, we assume in the following
that all the parameters, including λ and η, are real. The
numerical solution then reduces to a parameter space of 5
dimensions, described e.g. by the αi and g which are real.
Given this assumption, the boundary conditions for the
fields at infinity given in Eq. (57) are also real, since x
is real.3

With these real parameters, and since the potential is real,
all the imaginary parts of the fields must appear at least in a
quadratic form. It implies that the configuration where all
the imaginary parts of the fields take an identically
vanishing value is a solution of the equations of motion.
This solution is also compatible with the boundary con-
ditions. We thus consider this ansatz from now on, and
simplify the fields to real ones.
Moreover, the study of theminima of the potential with the

constraint σ ¼ 0 has already been done since it is the
configurations for the nonvanishing VEVs before the end
of inflation. Now, as this configuration is also real, it is
compatiblewith the previous reality assumptiondone. Indeed,
as discussed in [42], the solutions for the fields in the core of
the string result in a competition between the kinetic and the
potential terms, and we expect fields to take values between
the boundary conditions at infinity and the configuration
which minimizes the potential in the center of the string.
We suppose that this assumptionwill not change the results

more than a small numerical factor. On the one hand, if the
coupling constants λ and η were complex, there is no reason
for their real and imaginary parts to be slightly different.
Then, even if wewere taking into account the imaginary part
of the fields (using complex coupling constants), they would
have similar equations of motion than their associated real
part, and so would have comparable contributions.
In order to compute numerical solutions, we use a

successively over-relaxed method to solve the equations
of motion, after writing the whole model on a finite lattice
(see e.g. Ref. [43]). For this purpose, we convert the integral
to a finite range one, introducing a variable ρ ¼ tan r. The
numerical solution solves the equation of motion by min-
imizing the Lagrangian, which reduces to an algebraic
function of the fields after being written on the lattice.
For this purpose, we use successive Newton iterations,
introducing an over-relaxation parameter ω. For example,
computing the root of an equation fðxÞ ¼ 0, the value of x at
the iteration nþ 1 thus gives

xnþ1 ¼ xn − ω
fðxnÞ
f0ðxnÞ : ð69Þ

This whole method is called the successively over-relaxed
Gauss-Seidel iteration. For this kind of problem, keeping
0 < ω < 2 provides that the Lagrangian monotonously
decreases at each step, the convergence being exponential
for values of ω close to 2. The precision of the result can
be evaluated and is of the order of the square root of
the modification of the Lagrangian in one step of over-
relaxation at the end of the implementation, around 10−8 in
our case. Also, we obtain the same numerical values with an
accuracy better than 10−8when either imposing thevalues of
the fields at infinity or only a vanishing condition for the
derivative of the fields. The lattices used contain 2000 nodes.
A scale factor on the radius is used in order to adapt the
characteristic size of this lattice to the one of the string.

B. Range of parameters, high-coupling limit

Let us now discuss the range of parameter chosen for the
numerical solution. This part of the investigation permits us
to test the range of parameters for which the perturbative
expansion is not valid, i.e. a high coupling limit for the
additional fields condensing in the string. This limit is
mainly achieved for large M=m and η and small κ, which
we will consider.
The twomassesm andmΣ are set to be equal, presumably

around EGUT ∼ 1016 GeV, and the energy scale M, charac-
teristic of the end of inflation, takes values between m and
m=20. It is not possible to go to values of M/m larger than 1,
since it is not compatiblewith the cosmological evolutionwe
assumed (i.e. the order of the phase transition). We consider
values of η up to 10, which is already a high coupling inwhat
concerns the GUT sector. Following the discussions of
Ref. [34], we take for κ values between 0.01 and 30. The
upper limit taken for λ is one, but as it has a very small impact
on the string, we leave it aside in most of the results
presented here. The limit where the coupling constants
and the mass ratio go to zero are well defined and described
most in the case by the perturbative expansion, as discussed
below. We considered values of coupling constants λ and η
down to 10−2. For all the solutions, we take g ¼ 1, and a
winding number unity. We also take Trðτstr2Þ ¼ 2=5 [9].
Around 2000 different sets of parameters have been

examined in the whole range discussed above.

C. Toy model limit

To describe the structure of the string, we define different
characteristic radiuses, related to the string itself, or to a
field. When normalizing a field in order for it to have the
value of 1 in the center of the string, and 0 at infinity,
the characteristic radius of this field verifies ϕðrϕÞ ¼ 0.40.
The characteristic radius of the string verifies the same
property for the Lagrangian density L.

3When considering the analytical solutions, this result is valid
only until x ∼ 22.
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The microscopic structure of the toy model string, i.e. the
fields as functions of the radial coordinate ~r, can be found
in Figs. 2 and 3. Still for the toy-model case, we give in Fig. 1
the value of the energy per unit length in unit ofM2, as well
as the characteristic radius in units ofM−1 of f,Q and of the
Lagrangian density of the string, both as functions of κ. We
properly recover the results of Sec. A 6. The energy per unit
length of this toy-model string verifies U ≃ ð1 − 20ÞM2, a
common result found in the literature [8–13,40,43,44]. From
now on, we will compare the results obtained in the realistic
implementation of the cosmic string to these particular
numerical values, taking the associated toy-model for which
all the parameters are the same but η goes to zero.

D. Microscopic structure of the realistic string

In order to show a graphic representation of the fields ~a,
~b, ~p and ~S, we normalize them between 0 and 1, taking 0
for their values at infinity, and 1 for the static configuration
which minimizes the potential at the center of the string, i.e.
for f ¼ 0. For the inflaton field, we choose the configu-
ration which minimizes the potential in the center of the
string for small but not vanishing values of ~f. Indeed, when
~f ¼ 0, the inflaton field has a flat potential at tree level (see
discussion of Sec. II C). We denote these normalized fields
~ar, ~br, ~pr and ~Sr. This additional normalization for these
fields uses the characteristic scale of variation of the
problem: the value of these fields in the center of the

string tends to 1 if the potential term is dominant, and to
zero if the kinetic term is dominant.
Two microscopic structures of cosmic strings are given in

Fig. 2 and Fig. 3. Note that we plot in dashed lines the values

FIG. 1. Energy per unit lengthU and characteristic radius of the
string (RL) and of the fields f andQ (resp. Rf and RQ) for the toy
model limit (η ¼ 0). U is in unit of M2 and the radiuses in
units of M−1.
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FIG. 2. Structure of the cosmic string for m=M ¼ 2 and
κ ¼ λ ¼ η ¼ 1. The values of f and Q cannot be distinguished
between the case η ¼ 1 and η ¼ 0. The curves of ~ar, ~br and ~pr
cannot either be distinguished.

FIG. 3. Structure of the cosmic string for m=M ¼ 2, κ ¼ 0.1
λ ¼ 1 and η ¼ 10. In dashed lines are the values of f andQ in the
toy model limit η ¼ 0. The curves of ~ar and ~br cannot be
distinguished.
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of the fields f and Q in the toy-model limit of these strings.
In the first configuration plotted in Fig. 2, f and Q are very
close to their toy-model values, and cannot be distinguished
from them in the graphic. The values of the fields ~ar, ~br and
~pr are also very close, and the associated curves merge
together. In the second configuration, given in Fig. 2, the
realistic structure of the string causes its radius to lower. In
this configuration, the fields ~ar and ~br are still very close in
values, and cannot be distinguished in the graph. Note that in
the second figure, the fields ~f, ~ar, ~br, ~pr and ~S properly
converge at high radii. In this range, they recover the
behavior they have for the same set of parameters but η ¼ 1.
In both configurations, the value of the perturbation

parameter of order x=10 [see Eq. (61) and the subsequent
discussion] is respectively 1=40 and 1=4, which is in
agreement with the results observed, i.e. minor modifica-
tions from the toy model in Fig. 2, and sizable modifica-
tions in Fig. 3.
The similar behavior of the fields ~ar, ~br and ~pr can also be

understoodwith the perturbative approach. In this limit, only
the linear terms in these fields can be considered in Fa, Fb
andFp, seeEqs. (33)–(35) or (53), and they all have the same

coupling with ~f only. Thus, these fields have very close
values after normalization. In Fig. 3, one can note that the
fields ~ar and ~br still have similar values,which is not the case
anymore for the field ~pr. This difference can be explained by
the fact that ~ar and ~br have quadratic terms in the F-terms,
whereas ~pr only has linear terms. Note that in all these cases,
one can verify that the kinetic and potential contributions to
the Lagrangian density are of the same order.
In order to study the general shape of the microscopic

structure, the radii of the string and of different fields are
given in Fig. 4. As before, two different behaviors appear in
this figure. For η ¼ 0.1, themodification from the toy-model
due to the realistic structure of the string is negligible (see
Fig. 1). For η ¼ 10, important modifications appear for
small values of κ. In this last limit, the perturbative approach
considered before is not valid anymore. We also see that the
coupling of the string-forming Higgs fields with other fields
of higher energy tightens the radius of the string.
To describe the condensation of the fields ~a, ~b, ~p and ~S in

the string, we give in Fig. 5 the values of ~ar, ~br, ~pr and ~Sr in
the center of the string, i.e. at ~r ¼ 0, for different configu-
rations. When the perturbative study is possible, we recover
the behavior discussed in Sec. V C for the fields ~a, ~b and ~p,
with a constant value around 1 for m=ðκMÞ ≫ 1, and a
limit in m=ðκMÞ for m=ðκMÞ ≪ 1. Note that a numerical
coefficient appears in the asymptotic behavior, coming
from the rough estimate done in Eq. (65), and of the form

arð0Þ ∼
βm
κM

; ð70Þ

with β of order ≃0.5.

FIG. 4. Characteristic radius of the string RL, and of the fields
f,Q and a (Rf , RQ and Ra) as functions of κ, obtained for η ¼ 10

in solid lines, and for η ¼ 0.1 in dashed lines. In both case,
m=M ¼ 10 and λ ¼ 1.
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FIG. 5. Value at ~r ¼ 0 of ~ar, ~br, ~pr and ~Sr, as functions of κ.
The different set of parameters is labeled by (m=M; η), with
m=M ¼ 2 and η ¼ 1 in blue, m=M ¼ 2 and η ¼ 10 in red, and
m=M ¼ 10 and η ¼ 1 in green, while λ ¼ 1 in all the configu-
rations. For the blue and green curves, a, b and p cannot be
distinguished and are in solid lines. For the red curves, a and b
cannot be distinguished and are in solid lines, while p is in
dashed-pointed line. In all cases, S is plotted in dashed lines.
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Such a reasoning for the inflaton field S is not as simple,
since its kinetic and potential terms in dimensionless forms
have similar prefactors in the Lagrangian, see Eqs. (53) and
(54). It could explain nevertheless why the inflaton field
never fully condensates in the string, i.e. with values of ~Sr
close to unity. The inflaton also has an asymptotic behavior
in m=ðκMÞ for m=ðκMÞ ≪ 1.
In the previous results, we left aside the study of the

microscopic structure as a function of the parameter λ.
Indeed, varying this parameter from 0.01 to 1 in the
previous configurations only has a minor impact on the
model, and barely modifies the graphic results obtained.

E. Macroscopic properties of the realistic string

Let us turn now to the modifications of the energy per
unit length and the radius of the strings, as functions of the
different GUT parameters. Figure 6 shows the modifica-
tions of the energy per unit length from the toy-model limit,
i.e. ðU −U0Þ=U0 as a function of η where U0 is the energy
of the toy-model associated to the same GUT parameters
(described in Sec. V B) which can be found in Sec. VI C.
Similarly, Fig. 7 shows the evolution of ðRL − RL;0Þ=RL;0,
as a function of η, where RL;0 is defined similarly toU0 and
can be found in Sec. VI C. The results obtained in Sec. V C
are verified, with a behavior proportional to η2 when the
perturbative study is valid.
In addition, we see that the modifications of the radius of

the string are close to the modifications of the energy per
unit length. This result is verified for the whole range of

parameters studied here. It is not particularly relevant to
discuss the small differences between these both curves,
since there is some arbitrariness in the definition of the
radii. Also, an inflection point appears in both these figures
when the radius of the string is modified more than a few
percent. At this point, the decrease of the radius of the
string seems to partially balance the augmentation of the
energy due to the condensation of the additional fields in
the core of the string. It can also be explained by the fact
that the parameter m becomes important in the description
of the string, parameter which is associated with a typical
length ∼m−1 smaller thanM−1 the typical length of the toy-
model string.
The dependencies in κ and m=M of the modification of

the energy per unit length are plotted in 8 and 9 respec-
tively. In both of these figures, the modification of energy
per unit length is divided by η2. We recover the results
obtained in the perturbative study, see Eqs. (67) and (68),
i.e. δU=U0 ≃ η2M2=ð60m2Þ for large m=ðκMÞ, and
δU=U0 ≃ η2=ð60κ2Þ for small m=ðκMÞ. Nonperturbative
sets of parameters are also presented in Fig. 8.
Finally, it is possible to evaluate the numerical parameter

which appears in Eqs. (67) and (68), and was approximate
to 1=60. For the behavior at small κ, we obtain values close
to 1=120 with is in good agreement with the perturbative
result. In the case of large κ, we obtain results around
1=500. However, it is also in good agreement with the
perturbative results after taking into account the additional
parameter β defined in Eq. (70).

δ

FIG. 6. Normalized modifications of the energy per unit length
from the toy model values, δU=U0 as functions of η, for λ ¼ 1,
and for various values of κ and m=M. The constant lines are for
m=M ¼ 2, and the dashed lines for m=M ¼ 10.

FIG. 7. Normalized modifications of the radius of the string
from the toy model values, δRL=RL;0 as functions of η, for λ ¼ 1,
and for various values of κ and m=M. The constant lines are for
m=M ¼ 2, and the dashed lines for m=M ¼ 10.
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In what concerns the macroscopic properties of the
string, we also left aside the variations with respect to
the parameter λ. Indeed, varying this parameter from 0.01 to
1 also barely modifies the graphic results given here.

VII. CONCLUSION AND DISCUSSION

In this paper, we performed a complete study of
the realistic structure of cosmic strings forming in a given
SO(10) SUSY GUT. Writing this GUT with tensorial
representations, we showed that it was possible to simplify
this study to a few complex functions describing the
dynamics of the subrepresentations which are singlet under
the SM symmetry. We gave a full ansatz for a string in this
context, and performed a perturbative study of the model
obtained. We then presented numerical solutions of the
string structure, and discussed their microscopic andmacro-
scopic properties, which involve a rich phenomenology.
The numerical results showed that the modification of

the energy per unit length from standard toy model strings
is modified by a factor slightly higher than unity in the high
coupling limit, which is already important with regards to
CMB constraints. Note that we tried to investigate the
largest possible available range of parameters for which the
modifications of the macroscopic properties of the strings is
sizable, see discussion of Sec. VI B. Getting stronger
modifications would require more extreme values of the
parameters, values which would then be questionable for
the reasons discussed above. Whatever, it shows that in this
high-coupling limit, the simplest toy-models seem not to be
appropriate models to describe the macroscopic properties
of the strings, and corrections due to their realistic structure
should be taken into account. In addition, the contribution
of the inflaton field to the macroscopic characteristics of the
strings appears to be negligible. It is an additional indica-
tion that including or not the inflaton in the GUT field
content has no major impact on the cosmic strings
properties.
The perturbative expansion is in very good agreement

with numerical solutions in the wide range of parameters
where this approach is possible. The precise microscopic
structure gives several different criteria to test the pertur-
bative results, and strengthens their relevance. These results
show that a perturbative expansion of the realistic structure
of cosmic strings around the toy-mode one is a reliable
method to study them. It is particularly useful since such
studies are often permitted, especially with the wide
numerical factors coming from the large dimensional
representations used in GUT. It enhances the result that
the modifications of the macroscopic properties of so-
called single-field strings, i.e. with no coupling of the form
βΦΣΣ between the singlets of the SM in the superpotential,
become sizable in a very high coupling limit [14], as it is
the case here. Also, the present work shows that when a
perturbative study is not possible anymore, the modifica-
tions of the structure and properties of the strings can
become important. It strengthens the idea that in the case of
the so-called many-fields strings, i.e. with a coupling of the
form βΦΣΣ [14], a complete study is necessary and should
be done in the future, since no perturbative discussion is
possible in most of the range of parameters.

FIG. 8. Normalized modification of the energy per unit length
from the toy-model values δU=U0, divided by η2, as functions of
κ, for various values of η and m=M, and for λ ¼ 1. The constant
lines are for m=M ¼ 2, and the dashed lines for m=M ¼ 10.

FIG. 9. Normalized modifications of the energy per unit length
from the toy-model values, δU=U0, divided by η2, as functions of
m=M, for various values of η and κ, and for λ ¼ 1. The constant
lines are for η ¼ 0.01, and the dashed lines for η ¼ 0.1. These
curves can be distinguished for κ ¼ 0.01 only.

ERWAN ALLYS PHYSICAL REVIEW D 93, 105021 (2016)

105021-14



In this work, we left aside precise considerations about
the stability of the ansatz we used. We should consider this
in more details in the future. Other properties of the strings
should also be studied in the realistic GUT context
considered here, such as the existence of bosonic currents
in the core of the string [40,42,45–47]. Moreover, and as we
work in a supersymmetric framework, their superpartner
could carry fermionic currents through their zero modes
[42,48–52]. The effect of this complete structure to the
processes of intercommutation [53–58] should also be
investigated, keeping in mind that modifications of such
properties of the cosmic strings could affect the network
evolution, and thus the observational consequences on the
CMB [1,41,59–62]. Finally, the possibility of formation of
non-Abelian strings could also be studied in this context,
and gives some interesting phenomenology [9,10,39].
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APPENDIX A: INTERMEDIATE CALCULATIONS

1. Computation of the derivatives

We present here how to take derivative with respect to the
fields of the GUT in a tensor formulation. We take as an
example the computation of ð∂fΦΣΣgÞ=ð∂ΣÞ. Computing
this derivative, we have to take into account that the different
components of the multiplet Σ are not independent.
Starting from

ΦΣΣ ¼ ΣijklmΦijαβΣαβklm; ðA1Þ

we can use the fact that Σ is self-dual, see Eq. (18), to write

¼ 1

2

�
Σijklm þ i

5!
ϵijklmabcdeΣabcde

�
ΦijαβΣαβklm: ðA2Þ

Now, as Σ is totally antisymmetric, we can write

¼ 1

2

�
Σ½ijklm� þ

i
5!
ϵijklmabcdeΣabcde

�
ΦijαβΣαβklm; ðA3Þ

where the antisymmetrization is on all the indices of Σ.
There is no need to make it appear explicitly in the Levi-
Civita symbol since it is already totally antisymmetric.
Then, we wrote all the component of Σ which are not
independent. It gives after a relabeling of the indices:

ΦΣΣ ¼ Σijklm
1

2

�
Φ½ijjαβΣαβjklm�

−
i
5!
ϵijklmabcdeΦabαβΣαβcde

�
: ðA4Þ

The antisymmetrization of the first product in the paren-
theses is on the indices ði; j; k; l; mÞ, and it is defined by

Φ½ijjαβΣαβjklm� ¼
1

10
ðΦijαβΣαβklm−ΦikαβΣαβjlm−ΦilαβΣαβkjm

−ΦimαβΣαβkljþΦjkαβΣαβilmþΦjlαβΣαβkim

þΦjmαβΣαβkli−ΦklαβΣαβjim−ΦkmαβΣαβjli

þΦlmαβΣαβjkiÞ: ðA5Þ

Finally, we have

∂ðΦΣΣÞ
∂Σ ¼ 1

2

�
Φ½ijjαβΣαβjklm�−

i
5!
ϵijklmabcdeΦabαβΣαβcde

�
:

ðA6Þ

And we can note that this is the term in the 126 representa-
tion in the contraction between the 210 and 126 representa-
tion, since this is totally antisymmetric in its five indices,
and anti-self-dual (it can be checked explicitly using4

ϵabcdeijklmϵ
abcdepqrst ¼ ð5!Þ2δp½aδqbδrcδsdδte�). So, this can be

written

∂ðΦΣΣÞ
∂Σ ¼ ðΦΣÞΣ: ðA8Þ

In fact, this property can also permit us to calculate this
derivative in another manner, by group considerations.
Indeed, we considered the singlet term built from the
product ΦΣΣ, so from 210 × 126 × 126, which can be
written 126 × ð210 × 126Þ. Then, the branching rules for
the second term give [33]

210 × 126 ¼ 10þ 120þ 126þ 320þ � � � : ðA9Þ

But now, the only possibility to have a singlet term from
the contraction of Eq. (A9) with the 126 representation
comes with the product 126 × 126, the other terms giving a
vanishing value. So it is possible to write this singlet term as

1210×126×126∋126 × ð210 × 126Þ126: ðA10Þ

Now, it is straightforward to take the derivative with respect
to the 126, since we already simplified the term we have to

4The general expression is

ϵi1…ikikþ1…inϵ
i1…ikjkþ1…jn ¼ k!ðn − kÞ!δ½ikþ1

jkþ1…δin�
jn : ðA7Þ
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consider, and it gives ðΦΣÞΣ. We see that we could in fact
compute this derivative only by considering the appropriate
part in the product ΦΣ, which here have to be in the 126
representation. So, as this representation is totally anti-
symmetric and anti-self-dual, it was sufficient to take the
antisymmetric anti-self-dual part of this product.5 Indeed, a
tensor which is anti-self-dual or totally symmetric gives a
vanishing expression when contracted with a totally anti-
symmetric or anti-self-dual tensor. This proves in another
method the result of Eq. (A6).
Thus, as the singlet term coming from such a product can

be written in different manner

1210×126×126 ¼ 210 × ð126 × 126Þ210
¼ 126 × ð210 × 126Þ126
¼ 126 × ð210 × 126Þ

126
; ðA11Þ

we can use this method to compute all the derivative we
want in a direct way.

2. Derivative terms and associated notations

Using the methods explained in the former section, we
obtain, in addition to Eq. (A6)

∂ðΦΣΣÞ
∂Σ ¼ðΦΣÞΣ

¼1

2

�
Φ½ijjαβΣαβjklm� þ

i
5!
ϵijklmabcdeΦabαβΣαβcde

�
;

ðA12Þ

∂ðΦΣΣÞ
∂Φ ¼ ðΣΣÞΦ ¼ Σ½ijjabcΣjkl�abc; ðA13Þ

and

∂ðΦΦΦÞ
∂Φ ¼ ðΦΦÞΦ ¼ 3Φ½ijjabΦabjkl�; ðA14Þ

where the antisymmetrization of the different products are
defined as in Eq. (A5), by

Σ½ijjabcΣjkl�abc ¼
1

6
ðΣijabcΣklabc − ΣikabcΣjlabc

− ΣilabcΣkjabc þ ΣjkabcΣilabc

þ ΣjlabcΣkiabc − ΣklabcΣjiabcÞ; ðA15Þ

and

Φ½ijjabΦabjkl� ¼
1

3
ðΦijabΦabkl −ΦikabΦabjl þΦilabΦabjkÞ:

ðA16Þ

3. Selection rules

For the quadratic contractions, we have

hΦihΦi† ¼ pp� þ aa� þ bb�; ðA17Þ

and

hΣihΣi† ¼ hΣihΣi ¼ σσ�; ðA18Þ

which comes from the normalization of the vectors.
The cubic contractions give

hΦΦΦi1 ¼ hΦΦiΦhΦiT ¼ 1

9
ffiffiffi
2

p a3 þ ab2

3
ffiffiffi
2

p þ pb2

2
ffiffiffi
6

p ;

ðA19Þ

hΦΦiΦhΦi† ¼ 1

9
ffiffiffi
2

p a2a� þ
�

1

6
ffiffiffi
6

p ð2b�bpþ b2p�Þ

þ 1

9
ffiffiffi
2

p ð2b�baþ b2a�Þ
�
; ðA20Þ

and

hΣΣΦi1 ¼ hΦΣiΣhΣi† ¼ hΦΣiΣhΣi† ¼ hΦihΣΣi†Φ
¼ σσ�

�
1

10
ffiffiffi
6

p pþ 1

10
ffiffiffi
2

p a −
1

10
b

�
: ðA21Þ

Finally, the quartic contractions give

hΦΦiΦhΦΦiTΦ ¼ a4

164
þ a2b2

27
þ 7b4

648
þ 2ab2p

27
ffiffiffi
3

p þ b2p2

54
;

ðA22Þ

hΦΦiΦhΦΦi†Φ ¼ðaa�Þ2
164

þ7ðbb�Þ2
648

þ 1

162
ða�2b2þa2b�2þ4aa�bb�Þ

þbb�pp�

54
þ 1

27
ffiffiffi
3

p ðabb�p� þa�b�bpÞ;

ðA23Þ

hΦΣiΣhΦΣi†
Σ
¼hΦΣiΣhΦΣi†Σ
¼ 1

600
σσ�ð

ffiffiffi
3

p
a−

ffiffiffi
6

p
bþpÞð

ffiffiffi
3

p
a−

ffiffiffi
6

p
bþpÞ�

¼ 1

600
σσ�j

ffiffiffi
3

p
a−

ffiffiffi
6

p
bþpj2; ðA24Þ

5In a similar way we decompose a rank two tensor in its
symmetric and antisymmetric part, we can decompose a tensor in
its self-dual and anti-self-dual part.
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hΦΦiΦhΣΣi†Φ ¼ a2σσ�

180
þ b2σσ�

120
−
abσσ�

45
ffiffiffi
2

p −
bpσσ�

30
ffiffiffi
6

p ;

ðA25Þ

and

hΣΣiΦhΣΣi†Φ ¼ 1

60
ðσσ�Þ2: ðA26Þ

4. Alternative formulation

We do here the correspondence with [19,22,23], with a
tilde to denote the alternative notations. These papers take
the following definitions:

W¼ ~m
4!
Φ2þ ~mΣ

5!
ΣΣþ

~λ

4!
Φ3þ ~η

4!
ΦΣΣþ κS

�
ΣΣ
5!

−M2

�
;

ðA27Þ

and

8>>>>>>>>>><
>>>>>>>>>>:

~p ¼ Φ1234;

~a ¼ Φ5678 ¼ Φ5690 ¼ Φ7890;
~b ¼ Φ1256 ¼ Φ1278 ¼ Φ1290

¼ Φ3456 ¼ Φ3478 ¼ Φ3490;
1ffiffiffiffi
25

p ~σ ¼ Σ1;3;5;7;9;

1ffiffiffiffi
25

p ~σ ¼ Σ1;3;5;7;9;

ðA28Þ

where we did not note all the possible configuration for Σ
and Σ. The link between the different definitions is

8>>>>>>><
>>>>>>>:

~m
4!

¼ m
2
;

~mΣ

5!
¼ mΣ;

~λ

4!
¼ λ

3
;

8>>>>><
>>>>>:

~η

4!
¼ η;

~κ

5!
¼ κ;ffiffiffiffi
5!

p
~M ¼ M;

ðA29Þ

and

8>>>>>><
>>>>>>:

~p ¼ pffiffiffiffi
4!

p ;

~a ¼ affiffiffiffiffiffiffi
4!3

p ;

~b ¼ bffiffiffiffiffiffiffi
4!6

p ;

8>><
>>:

~σ ¼ σffiffiffiffi
5!

p ;

~σ ¼ σffiffiffiffi
5!

p :
ðA30Þ

Thus, expressing them with these particular conventions,
we obtain

W ¼ ~mð ~p2 þ 3~a2 þ 6~b2Þ þ 2~λð ~a3 þ 3 ~p ~b2 þ 6~a ~b2Þ
þ ~mΣ ~σ ~σþ~η ~σ ~σð ~pþ 3~a − 6~bÞ þ ~κsð ~σ ~σ − ~M2Þ;

ðA31Þ

for the superpotential, and

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

Fp ¼ 1

2
ffiffiffi
6

p ð2 ~m ~pþ6~λ ~b2 þ ~η ~σ ~σÞ;

Fa ¼
1

6
ffiffiffi
2

p ½3ð2 ~m ~aþ2~λð2~b2 þ ~a2Þ þ ~η ~σ ~σÞ�;

Fb ¼
1

12
½6ð2 ~m ~bþ2~λ ~bð2~aþ ~pÞ − ~η ~σ ~σÞ�;

Fσ ¼
1

2
ffiffiffiffiffi
30

p ½ ~σð ~mΣ þ ~ηð ~pþ 3~a − 6~bÞ þ ~κsÞ�;

Fσ ¼
1

2
ffiffiffiffiffi
30

p ½ ~σð ~mΣ þ ~ηð ~pþ 3~a − 6~bÞ þ ~κsÞ�;

FS ¼ ~κð ~σ ~σ − ~M2Þ;

ðA32Þ

for the F-terms. References [19,23] also introduce different
F-terms, which are defined by, e.g.

~F ~a ¼
∂W
∂ ~a : ðA33Þ

They are related to the F-terms by

8>>>>>><
>>>>>>:

Fp ¼ 1

2
ffiffiffi
6

p ~F ~p;

Fa ¼
1

6
ffiffiffi
2

p ~F ~a;

Fb ¼
1

12
~F ~b;

8>>>>><
>>>>>:

Fσ ¼
1

2
ffiffiffiffiffi
30

p ~F ~σ;

Fσ ¼
1

2
ffiffiffiffiffi
30

p ~F ~σ;

FS ¼ ~F ~S:

ðA34Þ

Finally, as functions of these ~F-terms, the potential terms
are

VΦ ¼ FΦFΦ
† ¼ 1

24
~F ~p

~F�
~p þ

1

72
~F ~a

~F�
~a þ

1

144
~F ~b

~F�
~b
;

ðA35Þ

and

VΣ ¼ VΣ ¼ FΣFΣ
† ¼ 1

120
~F ~σ

~F�
~σ: ðA36Þ

At this point, we can note that the potential cannot be
obtained simply by summing the square of the norms of the
~F terms, but that some numerical coefficients appear. It is
particularly important when comparing the values of these
different potential terms, since these coefficients can
considerably modify the results obtained.
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5. Set of VEV for the scheme of G0
2

The values of the nonvanishing VEV for the SSB scheme
going through G0

2 ¼ 3C2L1R1B−L are8>>>><
>>>>:

~σ0 ¼ 0;

~a0 ¼ −18
ffiffiffi
2

p
;

~b0 ¼ �18i;

~p0 ¼ 9
ffiffiffi
6

p
;

ðA37Þ

before the end of inflation, and8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

~σ1 ¼ 1;

~a1 ¼ −18
ffiffiffi
2

p
þ ð 1

50
� i

25
Þxffiffiffi

2
p ;

~b1 ¼ �18iþ
�

3

100
� i
100

�
x;

~p1 ¼ 9
ffiffiffi
6

p
−
ð 1
25
� 9i

50
Þxffiffiffi

6
p ;

~S1 ¼ −1þ α1α3
α2

�
4� 3i
1500

�
½xþ ð540� 270iÞ�;

ðA38Þ

after the end of inflation.

6. Characteristic radii for the toy-model string

Using the Lagrangian of Eq. (59), two characteristic
radius appear for this toy-model limit. Indeed, writing the
equations of motion for f and Q in a dimensionless form,
we obtain

2

�
d2f
d~r2

þ 1

~r
df
d~r

�
¼ fQ2

~r2
þ 2fðf2 − 1Þ; ðA39Þ

and

Trðτstr2Þ
�
d2Q
d~r2

−
1

~r
dQ
d~r

�
¼ 2g2

κ2
f2Q: ðA40Þ

The first equation is properly written in a dimensionless
form, and as ~r ¼ rκM, we identify the characteristic radius
of the field f to be rf ∼ κM−1. In regard to the field Q, we
obtain a properly dimensionless equation of motion after
introducing ρ ¼ ~r=κ, yielding

Trðτstr2Þ
�
d2Q
dρ2

−
1

ρ

dQ
dρ

�
¼ 2g2f2Q: ðA41Þ

It gives the characteristic radius for Q to be rQ ∼M−1,
since ρ ¼ rM.
Taking into account the previous results, we can broadly

evaluate their contribution to the Lagrangian density, from
Eq. (44). The contribution of the field f is of order κ2M4,
and the one of the field Q of order M4 [we estimate g and
Trðτstr2Þ to be of order unity]. So, in the limit κ ≥ 1, the
main contribution of the Lagrangian density comes from
the field f, and for κ ≤ 1, the main contribution comes from
the field Q. It means that in both cases, the characteristic
radius of the string will be either rf ∼ ðκMÞ−1, or
rQ ∼M−1, see Sec. VI C. Note that whatever the limit
we consider, the characteristic energy per unit length of the
string is always of order M2.
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