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We find new spontaneously generated fuzzy extra dimensions emerging from a certain deformation
of N ¼ 4 supersymmetric Yang-Mills theory with cubic soft supersymmetry breaking and mass
deformation terms. First, we determine a particular four-dimensional fuzzy vacuum that may be
expressed in terms of a direct sum of product of two fuzzy spheres, and denote it in short as
S2IntF × S2IntF . The direct sum structure of the vacuum is clearly revealed by a suitable splitting of the
scalar fields in the model in a manner that generalizes our approach in [Phys. Rev. D 92, 025022
(2015)]. Fluctuations around this vacuum have the structure of gauge fields over S2IntF × S2IntF , and this
enables us to conjecture the spontaneous broken model as an effective UðnÞ ðn < N Þ gauge theory on
the product manifold M4 × S2IntF × S2IntF . We support this interpretation by examining the Uð4Þ theory
and determining all of the SUð2Þ × SUð2Þ equivariant fields in the model, characterizing its low energy
degrees of freedom. Monopole sectors with winding numbers ð�1; 0Þ; ð0;�1Þ; ð�1;�1Þ are accessed
from S2IntF × S2IntF after suitable projections, and subsequently equivariant fields in these sectors are
obtained. We indicate how Abelian Higgs type models with vortex solutions emerge after dimensionally
reducing over the fuzzy monopole sectors as well. A family of fuzzy vacua is determined by giving a
systematic treatment for the splitting of the scalar fields, and it is made manifest that suitable
projections of these vacuum solutions yield all higher winding number fuzzy monopole sectors. We
observe that the vacuum configuration S2IntF × S2IntF identifies with the bosonic part of the product of two
fuzzy superspheres with OSPð2; 2Þ ×OSPð2; 2Þ supersymmetry and elaborate on this unexpected and
intriguing feature.

DOI: 10.1103/PhysRevD.93.105019

I. INTRODUCTION

N ¼ 4 supersymmetric Yang Mills (SYM) theory in
four dimensions with the SUðN Þ gauge symmetry group
appears to have a special standing in bridging string
theory to quantum field theory (QFT). As a QFT it has
several appealing properties, among which its conformal
invariance and UV finiteness may be indicated at first
glance. It is invariant under S-duality, interchanging the
coupling constants gYM and 4π

gYM
, and it plays a central

role in gauge/gravity duality as it is the most prominent
example on the conformal field theory (CFT) side for
AdS=CFT correspondence [1,2]. However, it is generally
considered that this theory is not realistic as it has too
much symmetry.
One possible route for accessing phenomenologically

viable models from N ¼ 4 SYM is to consider its
deformations, which supplement the purely quartic
potential of the scalar field sector of the theory with
cubic soft supersymmetry breaking (SSB) and quadratic
mass deformation terms in the scalar fields [3–9]. The

latter break some or all of the supersymmetry as well
as some of the global SUð4ÞR symmetry. These theories
as well as the closely related YM matrix models
[7,10,11] possess fuzzy vacuum solutions, which are
generically given as direct sums of fuzzy spheres
S2
Fð≔⊕ S2FÞ, or that of products of fuzzy spheres S2

F ×
S2
F (≔⊕ S2F × S2F). N ¼ 1� models [3–5] are examples

of models falling into this category with fuzzy sphere
vacua S2

F, while the model given in [6] serves as an
example with the S2

F × S2
F type vacuum. A broader

perspective is gained by first noting that the N ¼ 4
SYM may be obtained by dimensionally reducing the
N ¼ 1 SYM in ten dimensions to four dimensions (see,
for instance, [12]), while the dimensional reduction of
the latter to 0þ 1 dimensions leads to the Banks-
Fischler-Shenker-Susskind (BFSS) matrix model [13]
description of M-theory on flat backgrounds and the
fuzzy sphere vacua S2

F also emerge from the massive
deformations of the BFSS theory, so-called the
Berenstein- Maldacena-Nastase (BMN) matrix model,
which is proposed to give a nonperturbative description
of the M-theory on maximally supersymmetric pp-
wave backgrounds [14,15]. Thus, evidently, a detailed
study of the vacua and low energy structure of the
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aforementioned deformed models is quite central to
assess their potential value from a phenomenological
point of view. With this being one of our intentions, in
the present paper, we determine a family of vacuum
solutions of the form S2

F × S2
F, including all the

monopole sectors, and investigate the low energy
physics in these vacua for the model introduced in
[6]. In order to clearly state our further motivations and
purpose for doing so, we would like to briefly discuss
how such fuzzy vacua may be interpreted as extra
dimensions of an effective gauge theory emerging from
the deformed N ¼ 4 SYM.
In [16] it was shown that the SUðN Þ YM theory in

Minkowski space M4, coupled to a triplet of scalar
fields in the adjoint representation of the gauge group,
dynamically develop extra dimensions in the form of a
fuzzy sphere S2F. To be more precise, the potential
term in the Lagrangian of this model spontaneously
breaks the gauge symmetry, and the vacuum expect-
ation values of the scalar fields form the fuzzy sphere
S2F, while the fluctuations around this vacuum turn out
to be the gauge fields over S2F. Thus, after symmetry
breaking, an effective gauge theory on the manifold
M4 × S2F with a gauge group which is a subgroup of
SUðN Þ is conjectured to emerge. Construction of the
tower of Kaluza-Klein modes of the gauge fields and
an inspection of its low lying modes supports this
interpretation. Nevertheless, there is another comple-
mentary approach in developing the effective gauge
theory interpretation and understanding the low energy
limit in this and a range of other models, which one of
us (S. K.) has recently been engaged in investigating
[17–20]. This, so-called, equivariant parametrization
technique entails imposing proper symmetry conditions
on the fields of the model so that they transform
covariantly under the action of the symmetry group of
the extra dimensions up to gauge transformations of
the emergent model. This simply transcribes, in the
case of Uð2Þ gauge theory over M × S2F, as determin-
ing the gauge fields which remain covariant under
rotations of S2F up to Uð2Þ gauge transformations.
Following this approach endows us with the explicit
equivariant parametrizations of all the fields in the
model and provides evidence for the interpretation of
such models as effective gauge theories, since, sub-
sequently, an effective low energy action may be
obtained by integrating out (i.e., tracing over) the
fuzzy extra dimensions and dimensionally reducing
the theory. The latter leads to Abelian Higgs type
models with new vortex solutions. It is necessary to
note here that what we have just described is essen-
tially an adaptation and application of the coset space
dimensional reduction techniques discussed in [21–23]
(see also [24] in this context). As this has been
discussed thoroughly in our previous work, we refrain

here from rehashing and refer the reader to the referen-
ces [17–20].1 For other related results on equivariant
dimensional reduction [31–37] may be consulted.
Aforementioned deformations of N ¼ 4 SYM may be

viewed to constitute a set of other examples in this context.
In fact, [6] focuses on a particular deformation of N ¼ 4
SYM with both SSB and mass deformation terms, which
completely breaks the supersymmetry and the SUð4Þ R-
symmetry down to a global SUð2Þ × SUð2Þ. This model
has vacuum solutions of the form2 S2

F × S2
F, and to our

knowledge, it was the only example, until very recently,3 in
which a four-dimensional fuzzy vacuum emerges from
deformed N ¼ 4 SYM models. In [6] it was shown that the
S2
F × S2

F type vacuum with background monopole fluxes
leads to fermionic zero modes and mirror fermions are
found to emerge in the low energy limit. In [20], one of us
inspected the low energy structure of the effective gauge
theory on M4 × S2F × S2F with Uð4Þ gauge symmetry using
the equivariant parametrization techniques and found, after
tracing over the fuzzy extra dimension, Abelian Higgs type
models with three independent complex and several real
scalar fields with new generalized vortex solutions. A
complete treatment of the vacuum solutions of this model
with background monopole fluxes and the low energy
physics around such vacua is still missing in the literature,
and this is intended as one of the aims of our present work.
Here we extend the novel approach recently introduced by
one of us in [17], which not only gives us access to all the
fuzzy monopole sectors but also reveals a whole family of
fuzzy vacua with additional novel properties in the low
energy structure. From a geometrical point of view, these
vacua may be viewed as stacks of concentric fuzzy D-
branes carrying magnetic monopole fluxes, although not all

1The results obtained in the context of Aharony-Bergman-
Jafferis-Maldacena (ABJM) models [25,26] appear to have
similarities with those of ours in [17,18,20]. ABJM models
are N ¼ 6 supersymmetric (SUSY), UðN Þ ×UðN Þ Chern-
Simons gauge theories at the level ðk;−kÞ that come together
with scalar and spinor fields in the bifundamental and funda-
mental representation, respectively, of its SUð4Þ R-symmetry
group. In [27,28], a massive deformation of this model, which
preserves the N ¼ 6 SUSY but breaks the R-symmetry to
SUð2Þ × SUð2Þ × Uð1ÞA ×Uð1ÞB × Z2, was investigated. It
turns out that this deformed model has vacuum solutions which
are fuzzy sphere(s) in the bifundamental formulation realized in
terms of the Gomis-Rodriguez-Gomez-Van Raamsdonk-Verlinde
matrices [27]. In [29,30], a certain parametrization for the fields
in the bosonic sector of this model has been suggested, and it was
shown to yield a low energy model in which four complex scalar
fields interact with a sextic potential.

2In fact, to access all possible vacuum configurations as we do
in the present work, one has to refrain from adding a constraint
term to the Lagrangian as encountered in [6], which essentially
forces one to select the vacuum S2F × S2F (see also [17] in this
context).

3In a recent article [7], new four- and six-dimensional fuzzy
vacuum configurations in SSB deformed N ¼ 4 SYM have been
reported.

S. KÜRKÇÜOĞLU and G. ÜNAL PHYSICAL REVIEW D 93, 105019 (2016)

105019-2



the string theoretic aspects [38] may be captured within the
current framework, as already noted in [6]. Thus, it is
possible to view the equivariant gauge field modes that we
obtain in Sec. III (see the ensuing paragraph for a brief
description) as the modes of the gauge fields living on the
world volume of these D-branes, which may perhaps
provide us with a good link to relate the effective gauge
theory and the string theoretic perspectives. Also, we find it
worthwhile to remark that our results apply just as well to
the scalar sector of YM 6-matrix models [7,10,11] whose
global SOð6Þ symmetry could be broken to SUð2Þ ×
SUð2Þ by SSB and/or mass deformation terms, making
our work well connected to the ongoing research in such
string related matrix models.
Having stated our motivations and purpose, we would

like to briefly state how our work is organized and
summarize our essential findings. In Sec. II, we determine
a vacuum solution of the deformed N ¼ 4 SYMmodel that
may be expressed in terms of a particular direct sum of
product of fuzzy spheres. For brevity we denote this
solution as S2IntF × S2IntF . The bosonic part of this model
has six scalars ðΦL

a ;ΦR
a Þ (a ¼ 1, 2, 3) transforming under

the adjoint representation of SUðN Þ and the ð1; 0Þ ⊕ ð0; 1Þ
of SUð2Þ × SUð2Þ. In the same vein to the technique
introduced in [17], we show that the structure of S2IntF ×
S2IntF may be clearly revealed by splitting the scalar fields as
ΦL

a ¼ ϕL
a þ ΓL

a , ΦR
a ¼ ϕR

a þ ΓR
a where the constituents

ðΓL
a ;ΓR

a Þ are defined by utilizing the four scalar fields
ΨL

α , ΨR
α (α ¼ 1, 2) and their Hermitian conjugates, which

are still in the adjoint of the SUðN Þ, but transforming under
the ð1

2
; 0Þ ⊕ ð0; 1

2
Þ of the global symmetry group. Certain

bilinear composites of ΨL;R
α transforming in the ð1; 0Þ ⊕

ð0; 1Þ representation of SUð2Þ × SUð2Þ give the definition
of ðΓL

a ;ΓR
a Þ. In this section we also show that the fluctua-

tions about this vacuum have the structure of gauge fields
over S2IntF × S2IntF and enables us to conjecture that the
spontaneous broken model is an effective UðnÞ ðn < N Þ
gauge theory on the product manifoldM4 × S2IntF × S2IntF . In
Sec. III, we support our conjecture by examining the
Uð4Þ theory and determining all of the SUð2Þ × SUð2Þ-
equivariant fields in the model, which constitute the low
energy degrees of freedom corroborating with the effective
gauge theory interpretation. At this stage, from a purely
group theoretical analysis we encounter the equivariant
spinor modes over S2IntF × S2IntF . We explicitly construct
these modes by utilizing the four component multiplet in
the representation ð1

2
; 0Þ ⊕ ð0; 1

2
Þ of the global symmetry

group. Clearly, these spinorial modes do not constitute
independent dynamical degrees of freedom in the Uð4Þ
effective gauge theory, but it is readily conceived that their
suitable bilinears shall yield the equivariant gauge field
modes on S2IntF × S2IntF . We access the monopole sectors
with winding numbers ð�1; 0Þ; ð0;�1Þ; ð�1;�1Þ from
S2IntF × S2IntF after suitable projections and obtain the

equivariant fields in these sectors as a subset of those of
the parent model. The latter characterizes the low energy
modes of the theory, and making contact with the results of
[20], we show that tracing over the fuzzy monopole sectors
is bound to yield two decoupled Abelian Higgs type
models, each with a Uð1Þ3 gauge symmetry and static
multivortex solutions characterized by three winding num-
bers. In Sec. IV, by examining the splitting of the fields
ðΦL

a ;ΦR
a Þ with the composite part involving k1 þ k2 com-

ponent multiplets transforming under the representation
ðk1−1

2
; 0Þ ⊕ ð0; k2−1

2
Þ of the global symmetry, we determine

a family of fuzzy vacuum solutions. It is manifestly seen
from our results that suitable projections of these vacuum
solutions yield all higher winding number monopole
sectors.
An unexpected feature of the vacuum configuration

S2IntF × S2IntF that we determine is that it identifies with
the bosonic part of the product of two fuzzy superspheres
with OSPð2; 2Þ ×OSPð2; 2Þ supersymmetry. This is espe-
cially interesting and deserves special attention, as it is
completely unintended. In Sec. V we present it by
examining the decomposition of typical superspin irreduc-
ible representations (IRRs) of OSPð2; 2Þ ×OSPð2; 2Þ
under SUð2Þ × SUð2Þ IRR and how a particular typical
IRR of this group matches with the SUð2Þ × SUð2Þ IRR
content of S2IntF × S2IntF . In addition, we also give a con-
struction of the generators of OSPð2; 2Þ ×OSPð2; 2Þ in its
nine-dimensional fundamental atypical representation, by
projecting a relevant set of 16 × 16 matrices, which appear
in our model as building blocks in the construction of the
matrix algebra of the composite fields. We feel that further
research is necessary to uncover whether there is a deeper
physical reason for the appearance of this structure or it is
simply accidental.
A considerable number of the details of the analyses

of Secs. III and IV are relegated to Appendixes A and B.
In Appendix C, we discuss another vacuum solution to
the model, i.e., an attempt to use 4 × 4 matrices as
building blocks to construct ΓL

a and ΓR
a instead of the

16 × 16 matrices used in Sec. II. Although the structure
we encounter looks superficially similar to the one we
obtained in Sec. II, we find that there is in fact a crucial
difference; namely, the objects whose bilinears are ΓL

a

and ΓR
a do not transform as the ð1

2
; 0Þ ⊕ ð0; 1

2
Þ repre-

sentation of SUð2Þ × SUð2Þ. Nevertheless, treating this
model as one in its own right we examine it in some
detail. In particular, we find that the effective Uð4Þ
gauge theory contains no equivariant spinor field modes
at all. This is indeed what we expect, and it corroborates
very well with the fact indicated above, since, reversing
the line of reasoning, the absence of equivariant spinor
field modes implies that the introduction of the
composite fields ΓL

a and ΓR
a with the desired symmetry

properties is not possible. If the latter was possible, it
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would have contradicted the absence of the equivariant
spinor field modes and vice versa.
There are a number of recent interesting articles within

this general setting that we do not want to pass without
mention [39–43]. In [39], for instance, an orbifold projec-
tion of N ¼ 4 SYM theory has been introduced, and extra
dimensions which are twisted fuzzy spheres consistent with
this orbifolding were found to emerge due to the presence
of SSB terms in the model. Authors of [39] have also
discussed what these results may possibly entail for the
standard model as well as the minimal supersymmetric
standard model. A higher dimensional SUðN Þ Yang-Mills
matrix model, similar in vein to the Ishibashi-Kawai-
Kitazawa-Tsuchiya model [44] for type IIB string theory,
was studied in [40]. After an analysis of the spontaneous
symmetry breaking patterns mediated by the appearance of
fuzzy spheres, it was shown that remaining gauge sym-
metry SUð3Þc × SUð2ÞL × Uð1ÞQ couples to all fields of
the standard model and the resulting low energy model is an
extension of the latter. Models involving matrix valued
fields in the adjoint of SUðN Þ have been proposed for
inflation models in [41,42].

II. GAUGE THEORY OVER M × S2IntF × S2IntF

A. The model and some preliminaries

We consider a deformed N ¼ 4 SYM theory with
SUðN Þ gauge symmetry. This model has six anti-
Hermitian scalar fields Φi ði ¼ 1;…; 6Þ transforming in
the adjoint representation of SUðN Þ,

Φi → U†ΦiU; U ∈ SUðN Þ: ð2:1Þ

With the SSB and mass deformation terms the action in the
bosonic sector is given as [6,20]

S ¼
Z

d4xTrN

�
−

1

4g2
F†
μνFμν − ðDμΦiÞ†ðDμΦiÞ

�

−
1

g2L
VðΦLÞ − 1

g2R
VðΦRÞ − 1

g2LR
VðΦL;RÞ; ð2:2Þ

where Fμν ¼ ∂μAν − ∂νAμ þ ½Aμ; Aν� is the curvature of the
suðN Þ valued anti-Hermitian gauge fields Aμ, DμΦi ¼
∂μΦi þ ½Aμ;Φi� is the covariant derivative of Φa, TrN ¼
N −1Tr is the normalized trace, and

VðΦLÞ ¼ TrNFL†
abF

L
ab; FL

ab ¼ ½ΦL
a ;ΦL

b � − ϵabcΦL
c ;

VðΦRÞ ¼ TrNFR†
abF

R
ab; FR

ab ¼ ½ΦR
a ;ΦR

b � − ϵabcΦR
c ;

VðΦL;RÞ ¼ TrNFðL;RÞ†
ab FðL;RÞ

ab ; FðL;RÞ
ab ¼ ½ΦL

a ;ΦR
b �;

ΦL
a ¼ Φa; ΦR

a ¼ Φaþ3ða ¼ 1; 2; 3Þ: ð2:3Þ

Let us note that if we replace the potential terms in (2.2)
with the purely quartic potential

VN¼4ðΦÞ ¼ −
1

4
g2YM

X6
i;j

½Φi;Φj�2; ð2:4Þ

then the action in (2.2) reduces to the bosonic sector of the
N ¼ 4 SYM, which possesses a global SUð4ÞR symmetry
in addition to the local SUðN Þ [1,2].
The model in (2.2) breaks the supersymmetry com-

pletely and the global SUð4ÞR down to a global
SUð2Þ × SUð2Þ. We observe that the scalar fields Φi ≡
ðΦL

a ;ΦR
a Þ transform under the ð1; 0Þ ⊕ ð0; 1Þ representation

of this global symmetry.
Following and generalizing the developments in [17], in

this article, we are going to consider that ΦL
a and ΦR

a are
split in the form

ΦL
a ¼ ϕL

a þ ΓL
a ; ΦR

a ¼ ϕR
a þ ΓR

a ; ð2:5Þ

with the definitions

ΓL
a ¼ −

i
2
ΨL† ~τaΨL; ΓR

a ¼ −
i
2
ΨR† ~τaΨR;

~τa ¼ τa ⊗ 1N ; τa∶ Pauli matrices; ð2:6Þ

where the scalar fieldsΨL andΨR are doublets of the global
SUð2ÞL × SUð2ÞR, transforming under its IRRs ð1

2
; 0Þ and

ð0; 1
2
Þ, respectively. Thus, we may form the 4-component

multiplet

Ψ ¼
�
ΨL

ΨR

�
¼

0
BBB@

ΨL
1

ΨL
2

ΨR
1

ΨR
2

1
CCCA; ð2:7Þ

transforming under the representation ð1
2
; 0Þ ⊕ ð0; 1

2
Þ of the

global symmetry group. We have that all the components
ðΨL

α ;ΨR
α Þ (α ¼ 1, 2) of Ψ are scalar fields; they areN ×N

matrices, transforming adjointly (ΨL;R
α → U†ΨL;R

α U) under
SUðN Þ. Clearly, ðΓL

a ;ΓR
a Þ are bilinears ofΨ’s transforming

under the ð1; 0Þ ⊕ ð0; 1Þ of SUð2ÞL × SUð2ÞR and under
the SUðN Þ gauge symmetry they transform adjointly
(ΓL;R

a → U†ΓL;R
a U) as expected.

The doublets ΨL and ΨR have 4N 2 real degrees of
freedom each, which in total appears to exceed the 6N 2

real degrees of freedom in ðΦL
a ;ΦR

a Þ. Could this mean that
there is something inconsistent about Eqs. (2.5) and (2.6)?
The answer is no. To see why, let us recall that the adjoint
action of SUðN Þ is composed of its left and the right
actions. It is readily observed that, under the right action,
ΨL → ΨLU, ΨR → ΨRU, we have ðΓL

a ;ΓR
a Þ transforming

adjointly, while under the left action ΨL → UΨL,
ΨR → VΨR, with U;V ∈ SUðN Þ, we have ðΓL

a ;ΓR
a Þ

remaining invariant. In other words, both ðΨL;ΨRÞ and
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ðUΨL; VΨRÞ lead to the same ðΓL
a ;ΓR

a Þ. Thus, what
essentially enters into the definition of ðΓL

a ;ΓR
a Þ are the

equivalence classes ðΨL;ΨRÞ ∼ ðUΨL; VΨRÞ. Since each
of the unitary matrices U;V ∈ SUðN Þ have N 2 real
degrees of freedom, this means that each of ΓL

a and ΓR
a

has 4N 2 −N 2 ¼ 3N 2 real degrees of freedom, which
yields exactly the same 6N 2 real degrees of freedom in
ðΓL

a ;ΓR
a Þ as in ðΦL

a ;ΦR
a Þ.

In fact, it can also be shown in a straightforward
manner that the variations with respect to ϕL;R

a , ΨL†
α ,

and ΨR†
α simply reproduce the same equations of

motion as those that emerge from the variations4 of
ΦL;R

a indicating that no new degrees of freedom are
introduced into the model by (2.5). This splitting is
rather premature as it lacks any physical motivation at
the present stage, but our reasons will become clear as
we move forward and show that the model sponta-
neously develops fuzzy extra dimensions, which may
be written as direct sums of the products S2F × S2F as
we shall now demonstrate.

B. The vacuum configuration

The potential terms in (2.2) are positive definite, and
therefore the minimum of the potential is given by the
following equations:

FL
ab ¼ 0; FR

ab ¼ 0; FL;R
ab ¼ 0: ð2:8Þ

Solutions of these types of equations have been discussed
in the literature [6,14,20]. In general, they are given by
N ×N matrices carrying reducible representations of
SUð2Þ × SUð2Þ that decompose into direct sums of its
IRRs. We want to consider such a solution to Eqs. (2.8) in
which we can take advantage of the splitting of the fields
indicated in (2.5) and (2.6) in its construction. Let us
emphasize that, the particular vacuum solution we want to
construct this way exists regardless of our use of relations
given in (2.5) and (2.6) as it is clear from our initial remark.
Keeping these in mind, we can proceed to observe that the
requirements in (2.5) and (2.6) naturally restrict the
possible SUð2ÞL × SUð2ÞR representation that ðΓL

a ;ΓR
a Þ

may carry to the one for which ðΨL
α ;ΨR

α Þ exists. In other
words, ðΓL

a ;ΓR
a Þ may not be in some arbitrary representa-

tion of SUð2Þ × SUð2Þ, since then the corresponding
ðΨL

α ;ΨR
α Þ will not exist in general. Here we consider the

only possible solution for which both ðϕL
a ;ϕR

a Þ and
ðΓL

a ;ΓR
a Þ are nonzero matrices.

We are going to show that the solution fulfilling
Eqs. (2.8) with the structure given in (2.5) and (2.6)
may be written, assuming that N factors in the form
N ¼ ð2lL þ 1Þ × ð2lR þ 1Þ × 16 × n, as

ΦL
a ¼ ðXð2lLþ1Þ

a ⊗ 1ð2lRþ1Þ ⊗ 116 ⊗ 1nÞ
þ ð1ð2lLþ1Þ ⊗ 1ð2lRþ1Þ ⊗ Γ0

a
L ⊗ 1nÞ;

ΦR
a ¼ ð1ð2lLþ1Þ ⊗ Xð2lRþ1Þ

a ⊗ 116 ⊗ 1nÞ
þ ð1ð2lLþ1Þ ⊗ 1ð2lRþ1Þ ⊗ Γ0

a
R ⊗ 1nÞ; ð2:9Þ

up to gauge transformations Φi → U†ΦiU.
In (2.9), ðXð2lLþ1Þ

a ; Xð2lRþ1Þ
a Þ are the anti-Hermitian

generators of SUð2ÞL × SUð2ÞR in the IRR ðlL;lRÞ and
with the commutation relations

½Xð2lLþ1Þ
a ; Xð2lLþ1Þ

b � ¼ ϵabcX
ð2lLþ1Þ
c ;

½Xð2lRþ1Þ
a ; Xð2lRþ1Þ

b � ¼ ϵabcX
ð2lRþ1Þ
c ;

½Xð2lLþ1Þ
a ; Xð2lRþ1Þ

b � ¼ 0: ð2:10Þ

ðΓ0
a
L;Γ0

a
RÞ are conceived, for reasons that will become

clear shortly, as 16 × 16 anti-Hermitian matrices which
satisfy the SUð2ÞL × SUð2ÞR commutation relations

½Γ0
a
L;Γ0

b
L� ¼ ϵabcΓ0

c
L; ½Γ0

a
R;Γ0

b
R� ¼ ϵabcΓ0

c
R;

½Γ0
a
L;Γ0

b
R� ¼ 0; ð2:11Þ

and form a reducible representation of SUð2ÞL × SUð2ÞR.
We will now see that Γ0

a
L and Γ0

a
R can be written as

bilinears of spinors carrying the IRRs ð1
2
; 0Þ and ð0; 1

2
Þ,

respectively. For this purpose, let us introduce four sets of
fermionic annihilation-creation operators ðbα; b†α; cα; c†αÞ
with the anticommutation relations

fbα; b†βg ¼ δαβ; fcα; c†βg ¼ δαβ; ð2:12Þ

and all other anticommutators vanishing. They span the 16-
dimensional Hilbert space H with the basis vectors

jn1; n2; n3; n4i≡ ðb†1Þn1ðb†2Þn2ðc†1Þn3ðc†2Þn4 j0; 0; 0; 0i;
ð2:13Þ

with n1; n2; n3; n4 ¼ 0, 1.
We can now take

Γ0
a
L ¼ −

i
2
ψL†τaψ

L; Γ0
a
R ¼ −

i
2
ψR†τaψ

R; ð2:14Þ

where

ψL ≔
�
b1
b2

�
; ψR ≔

�
c1
c2

�
: ð2:15Þ

It is easy to see that ðΓ0
a
L;Γ0

a
RÞ fulfill the SUð2ÞL ×

SUð2ÞR commutation relations in (2.11). We furthermore
have that4See Appendix A for details.
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½ψL
α ;Γ0

a
L� ¼ −

i
2
ðτaÞαβψL

β ; ½ψ†
α
L;Γ0

a
L� ¼ i

2
ðτaÞβαψ†

β
L;

½ψL
α ;Γ0

a
R� ¼ 0;

½ψR
α ;Γ0

a
R� ¼ −

i
2
ðτaÞαβψR

β ; ½ψ†
α
R;Γ0

a
R� ¼ i

2
ðτaÞβαψ†

β
R;

½ψR
α ;Γ0

a
L� ¼ 0; ð2:16Þ

and therefore ψL and ψR carry the ð1
2
; 0Þ and ð0; 1

2
Þ IRRs

of SUð2ÞL × SUð2ÞR, respectively.
The quadratic Casimir of the representation spanned by

ðΓ0
a
L;Γ0

a
RÞ may be straightforwardly calculated to give

C2 ¼ ðΓ0
a
LÞ2 þ ðΓ0

a
RÞ2 ¼

0
BB@

04 0 0

0 − 3
4
18 0

0 0 − 3
2
14

1
CCA; ð2:17Þ

where we have used

ðΓ0
a
LÞ2 ¼ −

3

4
NL þ 3

2
NL

1N
L
2 ;

ðΓ0
a
RÞ2 ¼ −

3

4
NR þ 3

2
NR

1N
R
2 ; ð2:18Þ

with the number operators on the Hilbert space H given as

NL
1 ¼ b†1b1; NL

2 ¼ b†2b2; NL ¼ NL
1 þ NL

2 ;

NR
1 ¼ c†1c1; NR

2 ¼ c†2c2; NR ¼ NR
1 þ NR

2 ; ð2:19Þ

and we have taken the basis vectors of H oriented in
the order j0000i; j0011i; j0001i; j0010i, j1100i; j1111i;
j1101i; j1110i; j0100i; j0111i; j0101i; j0110i; j1000i;
j1011i; j1001i; j1010i.
We infer from (2.17) and the symmetry of (2.16) under

the exchange of L ↔ R that ðΓ0
a
L;Γ0

a
RÞ has the IRR content

expressed as the following direct sum of IRRs of
SUð2ÞL × SUð2ÞR:

4ð0; 0Þ ⊕ 2

�
1

2
; 0

�
⊕ 2

�
0;
1

2

�
⊕

�
1

2
;
1

2

�
: ð2:20Þ

It is also possible to express ðΓ0
a
L;Γ0

a
RÞ as

Γ0
a
L ¼ Γ0

a ⊗ 14; Γ0
a
R ¼ 14 ⊗ Γ0

a; ð2:21Þ

where

Γ0
a ¼ −

i
2
ψ†τaψ ; ψ ¼

�
ψ1

ψ2

�
≔

�
d1
d2

�
; ð2:22Þ

where dα, d†αðα ¼ 1; 2Þ are fermionic annihilation and
creation operators spanning the Hilbert space Hd with
the basis vectors jm1; m2i ¼ ðd†1Þm1ðd†2Þm2 j0; 0i. We have
N ¼ d†αdα and also that ½Γ0

a; N� ¼ 0. Γ0
a carries a reducible

representation of SUð2Þ which decomposes into IRRs of
SUð2Þ as 00 ⊕ 02 ⊕ 1

2
[where the subscripts 0 and 2 in 00

and 02 are the eigenvalues of the number operator N for the
SUð2Þ singlets] [17]. Since Γ0

a fulfill the SUð2Þ commu-
tation relations, it is clear that ðΓ0

a
L;Γ0

a
RÞ as defined in

(2.21) fulfill the commutation relations in (2.11). It is easily
observed that (2.14) and (2.21) describe unitarily equiv-
alent representations and (2.21) indeed yields identically
the same set of ðΓ0

a
L;Γ0

a
RÞ as in Eq. (2.14) if the basis

vectors of Hd are taken in the order j0; 0i; j1; 1i;
j0; 1i; j1; 0i.
Let us first give the two projectors

P0 ¼
ðΓ0

aÞ2 þ 3
4

3
4

¼ 1 − N þ 2N1N2;

P1
2
¼ −

ðΓ0
aÞ2
3
4

¼ N − 2N1N2; ð2:23Þ

where P0 projects to the singlets and P1
2
projects to the

doublet of Γ0
a, and N1 ¼ d†1d1, N2 ¼ d†2d2, N ¼ N1 þ N2.

It is also possible to distinguish between the two inequi-
valent singlets, 00 and 02, using the projectors

P00
¼ −

1

2
ðN − 2ÞP0 ¼ 1 − N − N1N2;

P02
¼ 1

2
NP0 ¼ N1N2 ¼ −

1

2
N þ 1

2
P1

2
: ð2:24Þ

We can now consider the SUð2ÞL × SUð2ÞR IRR rep-
resentation content of (2.9). Clebsch-Gordan decomposi-
tion gives

ðlL;lRÞ ⊗
�
4ð0; 0Þ ⊕ 2

�
1

2
; 0

�
⊕ 2

�
0;
1

2

�
⊕

�
1

2
;
1

2

��

≡ 4ðlL;lRÞ ⊕ 2

�
lL −

1

2
;lR

�
⊕ 2

�
lL þ 1

2
;lR

�

⊕ 2

�
lL;lR −

1

2

�
⊕ 2

�
lL;lR þ 1

2

�

⊕
�
lL −

1

2
;lR −

1

2

�
⊕

�
lL þ 1

2
;lR −

1

2

�

⊕
�
lL −

1

2
;lR þ 1

2

�
⊕

�
lL þ 1

2
;lR þ 1

2

�
: ð2:25Þ

For convenience, we introduce the shorthand notation
DL

a ≔ XL
a þ Γ0

a
L, DR

a ≔ XR
a þ Γ0

a
R for the vacuum solu-

tions (2.9).
In accordance with the decomposition in (2.25), a unitary

transformation puts ðDL
a ;DR

a Þ into the block diagonal form
ðDL

a ;DR
a Þ≡ ðU†DL

aU;U†DR
aUÞ whose entries can be

inferred from the Casimir of IRRs appearing in (2.25)
and their multiplicities (see Appendix A). Therefore, we
may interpret the vacuum configuration of the gauge theory
(2.2) in terms of direct sums of S2F × S2F given as
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S2IntF × S2IntF ∶≡ 4ðS2FðlLÞ × S2FðlRÞÞ ⊕ 2

�
S2F

�
lL −

1

2

�
× S2FðlRÞ

�

⊕ 2

�
S2F

�
lL þ 1

2

�
× S2FðlRÞ

�
⊕ 2

�
S2FðlLÞ × S2F

�
lR −

1

2

��

⊕ 2

�
S2FðlLÞ × S2F

�
lR þ 1

2

��
⊕

�
S2F

�
lL −

1

2

�
× S2F

�
lR −

1

2

��

⊕
�
S2F

�
lL þ 1

2

�
× S2F

�
lR −

1

2

��
⊕

�
S2F

�
lL −

1

2

�
× S2F

�
lR þ 1

2

��

⊕
�
S2F

�
lL þ 1

2

�
× S2F

�
lR þ 1

2

��
: ð2:26Þ

Alluding to our initial remarks after Eq. (2.8), it is necessary to stress once again that the vacuum solution given in (2.26)
exists, independent of the steps taken to construct it in this section, although it appears to be rather cumbersome to predict it
without the given considerations. Conversely, we can state that the existence of the vacuum solution (2.26) may be used to
motivate the splitting of the fields as given in Eqs. (2.5), (2.6) and (2.14), (2.15). In fact, this argument only indicates that
such ΨL and ΨR are available5 to define ðΓL

a ;ΓR
a Þ. However, there is another important fact that ensues from our results in

Sec. III.1, which makes the introduction of ΨL and ΨR a natural as well as a necessary one, and we will see this shortly.
To each summand occurring in (2.26) there corresponds a projection given in the form

Παβ ¼
Y

γ≠α;δ≠β

−ðXL
a þ Γ0

a
LÞ2 − ðXR

a þ Γ0
a
RÞ2 − λLγ ðλLγ þ 1Þ − λRδ ðλRδ þ 1Þ

λLα ðλLα þ 1Þ þ λRβ ðλRβ þ 1Þ − λLγ ðλLγ þ 1Þ − λRδ ðλRδ þ 1Þ ; ð2:27Þ

where α; β; γ; δ ¼ 0;þ;− and λLα , λRα take on the values lL,
lL � 1

2
, lR, lR � 1

2
, respectively. This gives nine projectors.

Note that Παβ does not resolve the repeated summands in
(2.26). For instance, Π00 projects to the sector 4ðS2FðlLÞ×
S2FðlRÞÞ. We will see how the projection to each repeated
summand is accomplished as we proceed.
It is important to note that these projectors may be

expressed, after a unitary transformation, in terms of the
products of the projectors ΠL

α and ΠR
β , which are given as

ΠL
α ¼

Y
γ≠α

−ðXL
a þ Γ0

a
LÞ2 − λLγ ðλLγ þ 1Þ

λLα ðλLα þ 1Þ − λLγ ðλLγ þ 1Þ ;

ΠR
β ¼

Y
δ≠β

−ðXR
a þ Γ0

a
RÞ2 − λRδ ðλRδ þ 1Þ

λRβ ðλRβ þ 1Þ − λRδ ðλRδ þ 1Þ : ð2:28Þ

From (2.28), wemay find thatΠL
0 ,ΠR

0 ,ΠL
�,ΠR

� take the form

ΠL
0 ¼ 1ð2lLþ1Þ ⊗ 1ð2lRþ1Þ ⊗ P0 ⊗ 14 ⊗ 1n;

ΠR
0 ¼ 1ð2lLþ1Þ ⊗ 1ð2lRþ1Þ ⊗ 14 ⊗ P0 ⊗ 1n;

ΠL
� ¼ 1

2

�
�iQL

I þ ΠL
1
2

�
; ΠR

� ¼ 1

2

�
�iQR

I þ ΠR
1
2

�
;

ð2:29Þ

where

QL
I ¼ i

XL
aΓ0

a
L − 1

4
ΠL

1
2

1
2
ðlL þ 1

2
Þ ; QR

I ¼ i
XR
aΓ0

a
R − 1

4
ΠR

1
2

1
2
ðlR þ 1

2
Þ ;

ð2:30Þ

and ΠL
1
2

¼ ΠLþ þ ΠL
−, ΠR

1
2

¼ ΠRþ þ ΠR
−.

As Παβ and ΠL
αΠR

β project to the same subspaces,
they are unitarily equivalent, Παβ ¼ U†ΠL

αΠR
βU, for

some unitary matrix U. Using the notation Παβ ≡
ΠL

αΠR
β to denote this equivalence, we can list these

nine projections onto the distinct IRRs in (2.25) as
given in Table I.
It is possible to splitΠL

0 to the projectorsΠL
00
;ΠL

02
andΠR

0

to ΠR
00
;ΠR

02
as

TABLE I. Projections Παβ.

Projector To the representation

Π00 ≡ ΠL
0ΠR

0
4ðlL;lRÞ

Π0� ≡ ΠL
0ΠR

� 2ðlL;lR � 1
2
Þ

Π�0 ≡ ΠL
�ΠR

0 2ðlL � 1
2
;lRÞ

Π�� ≡ ΠL
�ΠR

� ðlL � 1
2
;lR � 1

2
Þ

Π�∓ ≡ ΠL
�ΠR∓ ðlL � 1

2
;lR ∓ 1

2
Þ

5We also note that it is not always possible to introduceΨL and
ΨR carrying the required symmetry properties. In Appendix C we
discuss a situation of this sort.

EQUIVARIANT FIELDS IN AN SUðN Þ GAUGE … PHYSICAL REVIEW D 93, 105019 (2016)

105019-7



ΠL
00
¼ 1ð2lLþ1Þ ⊗ 1ð2lRþ1Þ ⊗ P00

⊗ 14 ⊗ 1n;

ΠL
02
¼ 1ð2lLþ1Þ ⊗ 1ð2lRþ1Þ ⊗ P02

⊗ 14 ⊗ 1n;

ΠR
00
¼ 1ð2lLþ1Þ ⊗ 1ð2lRþ1Þ ⊗ 14 ⊗ P00

⊗ 1n;

ΠR
02
¼ 1ð2lLþ1Þ ⊗ 1ð2lRþ1Þ ⊗ 14 ⊗ P02

⊗ 1n; ð2:31Þ

where P00
; P02

are given in (2.24). Taking the above
splitting of ΠL

0 and ΠR
0 into account, we can resolve

Π00;Π0�;Π�0 into the projections, which project onto
subspaces carrying a single IRR as given in Table II.
These constitute the 16 projectors onto the fuzzy subspaces
appearing in the right hand side of Eq. (2.26).

C. Gauge theory over M4 × S2IntF × S2IntF

We may now turn our attention back to the vacuum
configuration (2.9). The latter breaks the SUðN Þ gauge
symmetry to a UðnÞ. Clearly, this is the commutant of
ðΦL

a ;ΦR
a Þ given in (2.9). In addition, the global symmetry is

totally broken by the vacuum. As a side remark, we note
that it is still possible to combine a global rotation with a
gauge transformation which leaves the vacuum invariant.
We may introduce the fluctuations ðAL

a ; AR
a Þ about the

vacuum as

ΦL
a ¼ XL

a þ Γ0
a
L þ AL

a ¼ DL
a þ AL

a ;

ΦR
a ¼ XR

a þ Γ0
a
R þ AR

a ¼ DR
a þ AR

a ; ð2:32Þ

where AL
a ; AR

a ∈ uð2lL þ 1Þ ⊗ uð2lR þ 1Þ ⊗ uð4Þ ⊗
uð4Þ ⊗ uðnÞ.
Evaluating FL

ab; F
R
ab; F

L;R
ab , we find

FL
ab ¼ ½DL

a ; AL
b � − ½DL

b ; A
L
a � þ ½AL

a ; AL
b � − ϵabcAL

c ;

FR
ab ¼ ½DR

a ; AR
b � − ½DR

b ; A
R
a � þ ½AR

a ; AR
b � − ϵabcAR

c ;

FL;R
ab ¼ ½DL

a ; AR
b � − ½DR

b ; A
L
a � þ ½AL

a ; AR
b �: ð2:33Þ

This suggests that we can think of AL
a and AR

a as the six
components of a UðnÞ gauge field living on S2IntF × S2IntF

including the two normal components. As it is well known,
in fuzzy gauge theories, it is not possible to completely
eliminate the normal components of the gauge fields
[45–47]. However, it is possible to impose gauge invariant
conditions on the fields which eliminate these normal
components in the commutative limit, lL;lR → ∞.
Following the approaches in [45–47], we introduce the
conditions

ðXL
a þ Γ0

a
L þ AL

a Þ2 ¼ ðXL
a þ Γ0

a
LÞ2 ¼ −ðlL þ γÞ

× ðlL þ γ þ 1Þ1ð2ðlLþγÞþ1Þð4ð2lRþ1ÞnÞ;

ðXR
a þ Γ0

a
R þ AR

a Þ2 ¼ ðXR
a þ Γ0

a
RÞ2 ¼ −ðlR þ γÞ

× ðlR þ γ þ 1Þ1ð2ðlRþγÞþ1Þð4ð2lLþ1ÞnÞ;

ð2:34Þ

where γ ¼ 0;� 1
2
. In the commutative limit, lL;lR → ∞,

(2.34) yields the transversality condition on Γ0
a
L þ AL

a and
Γ0
a
R þ AR

a to be

x̂La ðΓ0
a
L þ AL

a Þ → −γ; x̂Ra ðΓ0
a
R þ AR

a Þ → −γ; ð2:35Þ

as long as AL;R
a are smooth and bounded for lL;lR → ∞

and converge to AL
a ðxÞ; AR

a ðxÞ in this limit. Here we have

i X
L;R
a
l → x̂L;Ra as lL;lR → ∞, with ðx̂La ; x̂Ra Þ being the

coordinates of S2 × S2.
To summarize, we have a UðnÞ gauge theory on

M×S2IntF ×S2IntF . Writing AM ≔ ðAμ;AaÞ, the field strength
tensor takes the form FMN ¼ðFμν;FL

μa;FR
μa;FL

ab;F
R
ab;F

L;R
ab Þ

with

FL
μa ≔ DμΦL

a ¼ ∂μAL
a − ½XL

a þ Γ0
a
L; Aμ� þ ½Aμ; AL

a �;
FR
μa ≔ DμΦR

a ¼ ∂μAR
a − ½XR

a þ Γ0
a
R; Aμ� þ ½Aμ; AR

a �;
ð2:36Þ

and the rest is already given after (2.2) and in (2.33).

III. THE SUð2Þ × SUð2Þ-EQUIVARIANT Uð4Þ
GAUGE THEORY

A. Symmetries and construction of the
equivariant fields

In this section, we investigate the Uð4Þ gauge theory on
M4 × S2IntF × S2IntF . In order to construct the SUð2Þ×
SUð2Þ-equivariant gauge fields, we introduce SUð2Þ ×
SUð2Þ ≈ SOð4Þ symmetry generators under which Aμ is
a scalar, AL

a ; AR
a are SUð2ÞL; SUð2ÞR vectors, and ΨL

α ;ΨR
α

are SUð2ÞL; SUð2ÞR spinors, respectively, up to Uð4Þ
gauge transformations [20]. Our anti-Hermitian symmetry
generators are

TABLE II. Projections to all fuzzy subspaces in the right hand
side of (2.26).

Projector To the representation

ΠL
00
ΠR

00
ðlL;lRÞ

ΠL
00
ΠR

02
ðlL;lRÞ

ΠL
02
ΠR

00
ðlL;lRÞ

ΠL
02
ΠR

02
ðlL;lRÞ

ΠL
00
ΠR

� ðlL;lR � 1
2
Þ

ΠL
02
ΠR

� ðlL;lR � 1
2
Þ

ΠL
�ΠR

00
ðlL � 1

2
;lRÞ

ΠL
�ΠR

02
ðlL � 1

2
;lRÞ

ΠL
�ΠR

� ðlL � 1
2
;lR � 1

2
Þ

ΠL
�ΠR∓ ðlL � 1

2
; lR ∓ 1

2
Þ
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ωL
a ¼ ðXð2lLþ1Þ

a ⊗ 1ð2lRþ1Þ ⊗ 116 ⊗ 14Þ þ ð1ð2lLþ1Þ ⊗ 1ð2lRþ1Þ ⊗ Γ0
a
L ⊗ 14Þ

−
�
1ð2lLþ1Þ ⊗ 1ð2lRþ1Þ ⊗ 116 ⊗ i

LL
a

2

�
;

ωR
a ¼ ð1ð2lLþ1Þ ⊗ Xð2lRþ1Þ

a ⊗ 116 ⊗ 14Þ þ ð1ð2lLþ1Þ ⊗ 1ð2lRþ1Þ ⊗ Γ0
a
R ⊗ 14Þ

−
�
1ð2lLþ1Þ ⊗ 1ð2lRþ1Þ ⊗ 116 ⊗ i

LR
a

2

�
; ð3:1Þ

and ωL
a ¼ XL

a þ Γ0
a
L þ i

2
LL
a , ωR

a ¼ XL
a þ Γ0

a
R þ i

2
LR
a for short. LL

a and LR
a are chosen so that ωL

a and ωR
a satisfy

½ωL
a ;ωL

b � ¼ ϵabcω
L
c ; ½ωR

a ;ωR
b � ¼ ϵabcω

R
c ; ½ωL

a ;ωR
b � ¼ 0: ð3:2Þ

ðLL
a ; LR

a Þ carry the ð1
2
; 1
2
Þ IRR of SUð2Þ × SUð2Þ. These six antisymmetric SUð4Þ matrices generate a SUð2Þ × SUð2Þ

subalgebra in Uð4Þ. The remaining nine symmetric generators of SUð4Þ may be taken as LL
aLR

b . Together with the identity
matrix 14, these 16 matrices form a basis for the fundamental representation of Uð4Þ. In a suitable basis, LL

a and LR
a may be

written to satisfy [20]

LL
aLL

b ¼ iϵabcLL
c þ δab14; LR

aLR
b ¼ iϵabcLR

c þ δab14; ð3:3Þ

so that they can be viewed as two sets of 4 × 4 “Pauli matrices.”
From these facts, it is readily seen that the symmetry generators ðωL

a ;ωR
a Þ have the SUð2Þ × SUð2Þ representation content

ðlL;lRÞ ⊗
�
4ð0; 0Þ ⊕ 2

�
1

2
; 0

�
⊕ 2

�
0;
1

2

�
⊕

�
1

2
;
1

2

��
⊗

�
1

2
;
1

2

�

≡ 4

��
lL þ 1

2
;lR þ 1

2

�
⊕

�
lL þ 1

2
;lR −

1

2

�
⊕

�
lL −

1

2
;lR þ 1

2

�
⊕

�
lL −

1

2
;lR −

1

2

��

⊕ 2

��
lL − 1;lR −

1

2

�
⊕

�
lL − 1;lR þ 1

2

��
⊕ 4

��
lL;lR þ 1

2

�
⊕

�
lL;lR −

1

2

��

⊕ 2

��
lL þ 1;lR −

1

2

�
⊕

�
lL þ 1;lR þ 1

2

��
⊕ 2

��
lL −

1

2
;lR − 1

�
⊕

�
lL þ 1

2
;lR − 1

��

⊕ 4

��
lL −

1

2
;lR

�
⊕

�
lL þ 1

2
;lR

��
⊕ 2

��
lL −

1

2
;lR þ 1

�
⊕

�
lL þ 1

2
;lR þ 1

��

⊕ ðlL − 1;lR − 1Þ ⊕ 2ðlL − 1;lRÞ ⊕ 2ðlL;lR − 1Þ ⊕ 4ðlL;lRÞ ⊕ ðlL þ 1;lR − 1Þ
⊕ 2ðlL þ 1;lRÞ ⊕ ðlL − 1;lR þ 1Þ ⊕ 2ðlL;lR þ 1Þ ⊕ ðlL þ 1;lR þ 1Þ: ð3:4Þ

The adjoint action of ðωL
a ;ωR

a Þ implies the following SUð2Þ × SUð2Þ-equivariance conditions:

½ωL
a ; Aμ� ¼ 0; ½ωL

a ; AL
b � ¼ ϵabcAL

c ; ½ωL
a ;ΨL

α � ¼
i
2
ðτaÞαβΨL

β ;

½ωR
a ; Aμ� ¼ 0; ½ωR

a ; AR
b � ¼ ϵabcAR

c ; ½ωR
a ;ΨR

α � ¼
i
2
ðτaÞαβΨR

β ;

½ωL
a ; AR

b � ¼ 0 ¼ ½ωR
a ; AL

b �; ½ωL
a ;ΨR

α � ¼ 0 ¼ ½ωR
a ;ΨL

α �: ð3:5Þ

For the Uð4Þ theory under investigation, we list the
projectors and the subspaces to which they project in
Table III. In order to avoid the possibility of any
notational confusion, we note that the representation
content of ðωL

a ;ωR
a Þ includes the tensor product with

the IRR ð1
2
; 1
2
Þ as seen in the left hand side of (3.4) and

ΠL
αΠR

β project to the subspaces as listed in Table III,

while in the absence of the gauge symmetry generators
ðLL

a ; LR
a Þ, ΠL

αΠR
β project to the subspaces as listed in

Table II.
We can find the dimension of solution space for

Aμ; AL
a ; AR

a and ΨL
α ;ΨR

α using the Clebsch-Gordan
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decomposition of the adjoint action of ðωL
a ;ωR

a Þ. The
relevant part of this decomposition gives

196ð0; 0Þ ⊕ 336

�
1

2
; 0

�
⊕ 336

�
0;
1

2

�
⊕ 420ð1; 0Þ

⊕ 420ð0; 1Þ…: ð3:6Þ

This means that there are 196 equivariant scalars [i.e.,
rotational invariants under ðωL

a ;ωR
a Þ], 336 equivariant

spinors in each of the IRRs ð1
2
; 0Þ and ð0; 1

2
Þ and 420

vectors in each of the IRRs (1,0) and (0,1). Employing the
matrices

SLi ¼ 12lLþ1 ⊗ 12lRþ1 ⊗ si ⊗ 14 ⊗ 14;

SRi ¼ 12lLþ1 ⊗ 12lRþ1 ⊗ 14 ⊗ si ⊗ 14;

si ¼
�
σi 02

02 02

�
; i ¼ 1; 2; ð3:7Þ

QL
B ¼ XL

aLL
a − i

2
1

lL þ 1
2

; QL
00
¼ ΠL

00
QL

B; QL
02
¼ ΠL

02
QL

B;

QLþ ¼ 1

4lLðlL þ 1ÞΠ
Lþðð2lL þ 1Þ2QL

B þ iÞΠLþ;

QL
− ¼ 1

4lLðlL þ 1ÞΠ
L
−ðð2lL þ 1Þ2QL

B − iÞΠL
−;

QL
F ¼ Γ0

a
LLL

a − i
1

2
ΠL

1
2

;

QL
H ¼ −i

ϵabcXL
aΓ0

b
LLL

cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lLðlL þ 1Þp −

1

2
QL

BI þ i
1

2
ΠL

1
2

;

QL
BI ¼ i

ðlL þ 1
2
Þ2fQL

B;Q
L
I g þ 1

2
ΠL

1
2

2lLðlL þ 1Þ ;

QL
Si
¼ XL

aSLi L
L
a − i

2
SLi

lL þ 1
2

; ð3:8Þ

and L → R in (3.8) for the right constituents, a judicious
choice of a basis for the equivariant scalars can be made so

that they are “idempotents” in the subspace they live in, and
they can be listed as

ΠL
i ΠR

i ; ΠL
i S

R
k ; ΠL

i Q
R
j ; ΠL

i Q
R
Sk
;

QL
jΠR

i ; QL
j S

R
k ; QL

j Q
R
j ; QL

j Q
R
Sk
;

QL
Sk
ΠR

i ; QL
Sk
SRk ; QL

Sk
QR

j ; QL
Sk
QR

Sk
;

SLkΠR
i ; SLk S

R
k ; SLkQ

R
j ; SLkQ

R
Sk
; ð3:9Þ

where i runs over 00;02;þ;−; j runs over 00;02;þ;−;H;F;
and k takes on the values 1,2 and no sum over repeated
indices is implied. Full lists of the equivariant spinors and
vectors are not our immediate corcern in what follows, and
therefore they are relegated to Appendix A.
We note that the index α (α ¼ 1, 2) of ΨL

α and ΨR
α

implying the transformation properties of these fields under
the global symmetry SUð2ÞL × SUð2ÞR, becomes, after
symmetry breaking, the spinor index on S2IntF × S2IntF , just as
the index a (a ¼ 1, 2, 3) of ðΦL

a ;ΦR
a Þ becomes the vector

index. We stress that the pure group theoretical result in
Eq. (3.6) predicts the presence of equivariant spinor fields
in the IRRs ð1

2
; 0Þ and ð0; 1

2
Þ of the symmetry group

SUð2ÞL × SUð2ÞR of the fuzzy extra dimensions S2IntF ×
S2IntF . Their explicit construction, as listed in (A6), is only
facilitated by the splittings of ΦL and ΦR in (2.5) and (2.6).
As it should already be clear from our discussions in
Secs. II A and II B, these spinorial modes do not constitute
independent dynamical degrees of freedom in the Uð4Þ
effective gauge theory. Taking suitable bilinears of these
spinors, we may construct all the equivariant gauge field
modes on S2IntF × S2IntF . In other words, it is in principle
possible to express the “square roots” of the equivariant gauge
field modes through these equivariant spinorial modes.

B. Projection to the monopole sectors

We gain much insight on the structure of the model by
examining projections to its subsectors. We observe that
SF2Int × SF2Int may be projected down to the monopole
sectors

TABLE III. Projections to representations in Eq. (3.4).

Projector To the representation

ΠL
00
ΠR

00
ðlL þ 1

2
;lR þ 1

2
Þ ⊕ ðlL þ 1

2
;lR − 1

2
Þ ⊕ ðlL − 1

2
;lR þ 1

2
Þ ⊕ ðlL − 1

2
;lR − 1

2
Þ

ΠL
00
ΠR

02
ðlL þ 1

2
;lR þ 1

2
Þ ⊕ ðlL þ 1

2
;lR − 1

2
Þ ⊕ ðlL − 1

2
;lR þ 1

2
Þ ⊕ ðlL − 1

2
;lR − 1

2
Þ

ΠL
02
ΠR

00
ðlL þ 1

2
;lR þ 1

2
Þ ⊕ ðlL þ 1

2
;lR − 1

2
Þ ⊕ ðlL − 1

2
;lR þ 1

2
Þ ⊕ ðlL − 1

2
;lR − 1

2
Þ

ΠL
02
ΠR

02
ðlL þ 1

2
;lR þ 1

2
Þ ⊕ ðlL þ 1

2
;lR − 1

2
Þ ⊕ ðlL − 1

2
;lR þ 1

2
Þ ⊕ ðlL − 1

2
;lR − 1

2
Þ

ΠL
00
ΠR

� ðlL þ 1
2
;lR � 1Þ ⊕ ðlL − 1

2
;lR � 1Þ ⊕ ðlL þ 1

2
;lRÞ ⊕ ðlL − 1

2
;lRÞ

ΠL
02
ΠR

� ðlL þ 1
2
;lR � 1Þ ⊕ ðlL − 1

2
;lR � 1Þ ⊕ ðlL þ 1

2
;lRÞ ⊕ ðlL − 1

2
;lRÞ

ΠL
�ΠR

00
ðlL � 1;lR þ 1

2
Þ ⊕ ðlL � 1;lR − 1

2
Þ ⊕ ðlL;lR þ 1

2
Þ ⊕ ðlL;lR − 1

2
Þ

ΠL
�ΠR

02
ðlL � 1;lR þ 1

2
Þ ⊕ ðlL � 1;lR − 1

2
Þ ⊕ ðlL;lR þ 1

2
Þ ⊕ ðlL;lR − 1

2
Þ

ΠL
�ΠR

� ðlL � 1;lR � 1Þ ⊕ ðlL � 1;lRÞ ⊕ ðlL;lR � 1Þ ⊕ ðlL;lRÞ
ΠL

�ΠR∓ ðlL � 1;lRÞ ⊕ ðlL � 1;lR ∓ 1Þ ⊕ ðlL;lRÞ ⊕ ðlL;lR ∓ 1Þ
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S2�F × S2F ¼ ðS2FðlLÞ × S2FðlRÞÞ

⊕
�
S2F

�
lL � 1

2

�
× S2FðlRÞ

�
; ð3:10Þ

S2F × S2�F ¼ ðS2FðlLÞ × S2FðlRÞÞ

⊕
�
S2FðlLÞ × S2F

�
lR � 1

2

��
; ð3:11Þ

S2�F × SF2� ¼ ðS2FðlLÞ × S2FðlRÞÞ

⊕
�
S2F

�
lL � 1

2

�
× S2F

�
lR � 1

2

��
;

ð3:12Þ

with the winding numbers ð�1; 0Þ; ð0;�1Þ; ð�1;�1Þ,
respectively. This is indeed what we have been aiming
at as indicated in the Introduction. We can now probe the
low energy structure of the Uð4Þ model in these monopole
sectors by writing down their equivariant gauge field
modes. In the next section, we will see how to systemati-
cally access all higher winding number monopole sectors.
Let us inspect each of the sectors briefly.

1. S2�F × S2F
The projection (3.13) to this sector is not unique, in the

sense that there is in fact a set of projections which give the
same monopole sector. We may consider, for instance,
the projection

ΠL
00
ΠR

00
þ ΠL

�ΠR
00
: ð3:13Þ

We infer from (3.10) to which IRRs the projection (3.13)
restricts the direct sum given in the right hand side of
(2.25). After this projection, the number of equivariant
fields is greatly reduced, and they can most easily be found
by working out the adjoint action of ðωL

a ;ωR
a Þ, which in this

subspace takes the simple form

��
ðlL;lRÞ ⊕

�
lL � 1

2
;lR

��
⊗

�
1

2
;
1

2

��
⊗2

≡ 8ð0; 0Þ ⊕ 12

�
1

2
; 0

�
⊕ 16ð1; 0Þ ⊕ 16ð0; 1Þ…:

ð3:14Þ

Thus, there are 8 invariants which we read from (3.9) as

ΠL
00
ΠR

00
; ΠL

�ΠR
00
; ΠL

00
QR

00
; ΠL

�Q
R
00
;

QL
00
ΠR

00
; QL

�ΠR
00
; QL

00
QR

00
; QL

�Q
R
00
; ð3:15Þ

16 vectors carrying the (1,0) IRR

ΠR
00
½DL

a ;QL
00
�; ΠR

00
QL

00
½DL

a ;QL
00
�; ΠR

00
fDL

a ;QL
00
g;

QR
00
½DL

a ;QL
00
�; QR

00
QL

00
½DL

a ;QL
00
�; QR

00
fDL

a ;QL
00
g;

ΠR
00
½DL

a ;QL
��; ΠR

00
QL

�½DL
a ;QL

��; ΠR
00
fDL

a ;QL
�g;

QR
00
½DL

a ;QL
��; QR

00
QL

�½DL
a ;QL

��; QR
00
fDL

a ;QL
�g;

ΠR
00
ΠL

00
ωL
a ; ΠR

00
ΠL

�ω
L
a ; QR

00
ΠL

00
ωL
a ; QR

00
ΠL

�ω
L
a ;

ð3:16Þ

and 16 vectors in the (0,1) IRR are

ΠL
00
½DR

a ;QR
00
�; ΠL

00
QR

00
½DR

a ;QR
00
�; ΠL

00
fDR

a ;QR
00
g;

QL
00
½DR

a ;QR
00
�; QL

00
QR

00
½DR

a ;QR
00
�; QL

00
fDR

a ;QR
00
g;

ΠL∓½DR
a ;QR

00
�; ΠL∓QR

00
½DR

a ;QR
00
�; ΠL∓fDR

a ;QR
00
g;

QL∓½DR
a ;QR

00
�; QL∓QR

00
½DR

a ;QR
00
�; QL∓fDR

a ;QR
00
g;

ΠL
00
ΠR

00
ωR
a ; ΠL∓ΠR

00
ωR
a ; QL

00
ΠR

00
ωR
a ; QL∓ΠR

00
ωR
a :

ð3:17Þ

We see that there are 12 equivariant spinors in the IRR
ð1
2
; 0Þ

ΠR
00
ΠL

00
βLαQL

�; ΠR
00
QL

00
βLαΠL

�; ΠR
00
QL

00
βLαQL

�;

QR
00
ΠL

00
βLαQL

�; QR
00
QL

00
βLαΠL

�; QR
00
QL

00
βLαQL

�;

ΠR
00
ΠL

�β
L
αSL2 ; ΠR

00
ΠL

�β
L
αQL

s2; ΠR
00
QL

�β
L
αQL

s2;

QR
00
ΠL

�β
L
αSL2 ; QR

00
ΠL

�β
L
αQL

s2; QR
00
QL

�β
L
αQL

s2; ð3:18Þ

and due to the form of this monopole sector, we find no
equivariant spinors in the IRR ð0; 1

2
Þ.

One, rather trivial alternative to (3.13) is to change ΠR
00

with ΠR
02

in (3.13); this simply amounts to taking
ΠR

00
→ ΠR

02
, QR

00
→ QR

02
in (3.15), (3.16), (3.17), and

(3.18). Another choice is the projector

ΠL
00
ΠR

00
þ ΠL

�ΠR
02
: ð3:19Þ

Equivariant fields in this case can be obtained in a similar
fashion.

2. S2F × S2�F
We observe that the only change in (3.14) is the

replacement of ð1
2
; 0Þ with ð0; 1

2
Þ. Bearing this fact in mind,

results in (3.15) to (3.19) apply with the exchange L ↔ R.

3. S2�F × S2�F
To obtain this monopole sector we can use any one of the

projections

ΠL
i ΠR

j þ ΠL
�ΠR

�; i; j ¼ 00; 02: ð3:20Þ
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In this case, the adjoint action of ðωL
a ;ωR

a Þ yields the
representation content

��
ðlL;lRÞ ⊕

�
lL ∓ 1

2
;lR ∓ 1

2

��
⊗

�
1

2
;
1

2

��
⊗2

≡ 8ð0; 0Þ ⊕ 16ð1; 0Þ ⊕ 16ð0; 1Þ ⊕ � � � : ð3:21Þ

We immediately observe that equivariant spinors are
completely absent in this sector. Taking, for instance,
i; j ¼ 00 we find that 8 scalars can be written as

ΠL
00
ΠR

00
; ΠL

�ΠR
�; ΠL

00
QR

00
; ΠL

�Q
R
�;

QL
00
ΠR

00
; QL

�ΠR
�; QL

00
QR

00
; QL

�Q
R
�; ð3:22Þ

and 16 vectors carrying the (1,0) IRR are

ΠR
00
½DL

a ;QL
00
�; ΠR

00
QL

00
½DL

a ;QL
00
�; ΠR

00
fDL

a ;QL
00
g;

QR
00
½DL

a ;QL
00
�; QR

00
QL

00
½DL

a ;QL
00
�; QR

00
fDL

a ;QL
00
g;

ΠR
�½DL

a ;QL
��; ΠR

�Q
L
�½DL

a ;QL
��; ΠR

�fDL
a ;QL

�g;
QR

�½DL
a ;QL

��; QR
�Q

L
�½DL

a ;QL
��; QR

�fDL
a ;QL

�g;
ΠR

00
ΠL

00
ωL
a ; ΠR

�ΠL
�ω

L
a ; QR

00
ΠL

00
ωL
a ; QR

�ΠL
�ω

L
a ;

ð3:23Þ

while the vectors carrying the (0,1) representation follow
from (3.23) by the exchange L ↔ R.

C. Parametrization of fields and comments
on the dimensional reduced action

In all cases that we have discussed in this sub-
section, each summand of the projectors [given in
(3.13), (3.19), (3.20), etc.] splits the equivariant fields
into mutually orthogonal subsectors under the matrix
product. For concreteness, let us briefly discuss the
consequences of this fact for the sector given by the
projection in (3.13). We may write the parametrization
of the fields Aμ as

Aμ ¼
1

2
a1μΠR

00
QL

00
þ 1

2
a2μΠL

00
QR

00
þ i
2
a3μΠL

00
ΠR

00

þ 1

2
ia4μQL

00
QR

00
þ 1

2
b1μΠR

00
QL

� þ 1

2
b2μΠL

�Q
R
00

þ i
2
b3μΠL

�ΠR
00
þ 1

2
ib4μQL

�Q
R
00
; ð3:24Þ

where aiμ and biμ ði ¼ 1;…; 4Þ are Abelian gauge fields.
For AL

a we may write

AL
a ¼ 1

2
ðχ1 þ χ01ÞΠR

00
½DL

a ;QL
00
� þ 1

2
ðχ2 þ χ02 − 1ÞΠR

00
QL

00
½DL

a ;QL
00
� þ i

1

4lL
χ3ΠR

00
fDL

a ;QL
00
g

þ 1

2lL
χ4ΠL

00
ΠR

00
ωL
a þ 1

2
ðχ1 − χ01ÞiQR

00
½DL

a ;QL
00
� þ 1

2
ðχ2 − χ02ÞiQR

00
QL

00
½DL

a ;QL
00
�

þ i
1

4lL
χ03iQ

R
00
fDL

a ;QL
00
g þ 1

2lL
χ04iQ

R
00
ΠL

00
ωL
a

þ 1

2
ðφ1 þ φ0

1ÞΠR
00
½DL

a ;QL
�� þ

1

2
ðφ2 þ φ0

2 − 1ÞΠR
00
QL

�½DL
a ;QL

�� þ i
1

4lL
φ3ΠR

00
fDL

a ;QL
�g

þ 1

2lL
φ4ΠR

00
ΠL

�ω
L
a þ 1

2
ðφ1 − φ0

1ÞiQR
00
½DL

a ;QL
�� þ

1

2
ðφ2 − φ0

2ÞiQR
00
QL

�½DL
a ;QL

��

þ i
1

4lL
φ0
3iQ

R
00
fDL

a ;QL
�g þ

1

2lL
φ0
4iQ

R
00
ΠL

�ω
L
a : ð3:25Þ

ðχi; χ0i;φi;φ0
iÞ, ði ¼ 1;…; 4Þ are real scalar fields over M4.

Parametrization of AR
a may be written by taking L ↔ R

and replacing the scalars ðχi; χ0i;φi;φ0
iÞ with the set

ðλi; λ0i; ϑi; ϑ0iÞ in (3.25).
In Aμ the first and second four terms are mutually

orthogonal under matrix multiplication as they fall into
two distinct projection sectors. Borrowing from the results
of [20], we see that the low energy effective action of this
model consists of two decoupled set of Abelian Higgs type
models with Uð1Þ3 gauge symmetry. In each subspace, we
have three Abelian gauge fields coupled to four complex

scalars which are χ¼ χ1þ iχ2, χ0 ¼ χ01 þ iχ02, λ ¼ λ1 þ iλ2,
λ0 ¼ λ01 þ iλ02 in the first sector and φ ¼ φ1 þ iφ2,
φ0 ¼ φ0

1 þ iφ0
2, ϑ ¼ ϑ1 þ iϑ2, ϑ0 ¼ ϑ01 þ iϑ02 in the second

sector. Gauge fields a3μ and b3μ do not interact with any of
the complex fields, and they entirely decouple from the
model in the lL;lR → ∞ limit. The remaining eight real
scalar fields in each sector interact only with the complex
scalars in the respective sector they belong to. From the
results of [20] in the limit lL;lR → ∞, the interaction
potential in the first sector is given by the sum of the
three terms
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VL ¼ 4

�
jχj2 þ 1

4
ðχ3 þ χ03Þ −

1

4

�
2

þ 4

�
jχ0j2 þ 1

4
ðχ3 − χ03Þ −

1

4

�
2

þ 2ðχ3 þ χ03Þ2jχj2 þ 2ðχ3 − χ03Þ2jχ0j2 þ
1

2
ðχ24 þ χ04

2Þ;

VR ¼ 4

�
jλj2 þ 1

4
ðλ3 þ λ03Þ −

1

4

�
2

þ 4

�
jλ0j2 þ 1

4
ðλ3 − λ03Þ −

1

4

�
2

þ 2ðλ3 þ λ03Þ2jλj2 þ 2ðλ3 − λ03Þ2jλ0j2 þ
1

2
ðλ4 þ λ04Þ;

VL;R ¼ 2ðjχλ0 − χ0λj2 þ jλ̄χ − χ0λ̄0j2Þ þ 1

2
ððjχj2 þ jχ0j2Þðλ032 þ λ04

2Þ þ ðjλj2 þ jλ0j2Þðχ032 þ χ04
2ÞÞ; ð3:26Þ

while in the second sector, we have the potential given in
the form (3.26) with the substitutions χi → φi, χ0i → φ0

i and
λi → ϑi, λ0i → ϑ0i.
Each sector possesses static multivortex solutions

characterized by three winding numbers [20].

IV. GENERALIZATION OF THE MODEL
WITH k-COMPONENT MULTIPLETS

It is possible to search for other vacuum solutions for the
action (2.2). We may generalize the construction of Sec. II
by replacing the doublets ΨL and ΨR in Eq. (2.6) with k1-,
k2-component multiplets of the global SUð2Þ × SUð2Þ as

ΨL ¼

0
BBBBBB@

ΨL
1

ΨL
2

..

.

ΨL
k1

1
CCCCCCA
; ΨR ¼

0
BBBBBB@

ΨR
1

ΨR
2

..

.

ΨR
k2

1
CCCCCCA
; Ψ ¼

�
ΨL

ΨR

�
;

ð4:1Þ
transforming in its ðk1−1

2
; 0Þ and ð0; k2−1

2
Þ IRR, respectively.

Then, Ψ is the k1 þ k2-component multiplet in the repre-
sentation ðk1−1

2
; 0Þ ⊕ ð0; k2−1

2
Þ. Components ΨL

α ;ΨR
β ∈

MatðN Þ; ðα ¼ 1;…; k1Þ; ðβ ¼ 1;…; k2Þ of Ψ are scalar
fields transforming in the adjoint representation of
SUðN Þ as ΨL;R

α → U†ΨL;R
α U. Bilinears ΓL

a and ΓR
a in ΨL

and ΨR are defined similarly as before in the form

ΓL
a ¼ −

i
2
ΨL† ~λLaΨL; ΓR

a ¼ −
i
2
ΨR† ~λRaΨR;

~λL;Ra ¼ λL;Ra ⊗ 1N ; ð4:2Þ
where now λL;Ra are the generators of the spin ðkL;R−1

2
Þ

representation of SUð2Þ.
In Sec. II, we have seen that the vacuum configuration of

our model can be written as the direct sum of products of
fuzzy spheres whose structure is determined by the repre-
sentation content of ðΓ0

a
L;Γ0

a
RÞ with the corresponding

doublet scalar fields taking the form given in (2.15). In
order to generalize the latter, we need k ¼ k1 þ k2 sets of
annihilation-creation operators which satisfy

fbα; b†βg ¼ δαβ; α; β ¼ 1;…; k1;

fcρ; c†σg ¼ δρσ; ρ; σ ¼ 1;…; k2; ð4:3Þ

with all other anticommutators vanishing. Thus, these
operators span the 2k1þk2-dimensional Hilbert space with
the basis vectors

jn1;…;nk1 ;m1;…;mk2i
¼ ðb†1Þn1ðb†2Þn2…ðb†k1Þnk1 ðc

†
1Þm1ðc†2Þm2…ðc†k2Þmk2 j0;0…;0i;

ð4:4Þ

where ni; mj ¼ 0; 1ði ¼ 1;…; k1; j ¼ 1;…; k2Þ. For
ΨL ¼ ψL and ΨR ¼ ψR with

ψL ≔

0
BBB@

b1

..

.

bk1

1
CCCA; ψR ≔

0
BB@

c1

..

.

ck2

1
CCA: ð4:5Þ

It is straightforward to show that Γ0
a
L ¼ − i

2
ψL†λaψ

L and
Γ0
a
R ¼ − i

2
ψR†λaψ

R satisfy the SUð2Þ × SUð2Þ commuta-
tion relations and in addition fulfill

½ψL
α ;Γ0

a
L� ¼ −

i
2
ðλaÞαβψL

β ; ½ψL
α ;Γ0

a
R� ¼ 0;

½ψR
α ;Γ0

a
R� ¼ −

i
2
ðλaÞαβψR

σ ; ½ψR
α ;Γ0

a
L� ¼ 0; ð4:6Þ

implying that ψL
α and ψR

α indeed carry the ðk1−1
2

; 0Þ and

ð0; k2−1
2
Þ IRRs, respectively.

In order to obtain the vacuum configuration in the
present case, we have to first find out the SUð2Þ ×
SUð2Þ IRR content of ðΓ0

a
L;Γ0

a
RÞ. Number operators NL ¼

b†αbα and NR ¼ c†αcα commute with Γ0
a
L and Γ0

a
R. This

means that the number of states in a given sector with
eigenvalues ðnL; nRÞ ½nL ¼ ð0;…; k1Þ; nR ¼ ð0;…; k2Þ� of
NL and NR is equal to the dimension of one of the SUð2Þ ×
SUð2Þ IRR sectors occurring in the decomposition of the
representation of ðΓ0

a
L;Γ0

a
RÞ into the irreducibles of

SUð2Þ × SUð2Þ. Therefore, the IRRs of SUð2Þ × SUð2Þ
that appear in ðΓ0

a
L;Γ0

a
RÞ may be labeled as

ðlk1
n ;l

k2
m Þ ¼

�ðk1n Þ − 1

2
;
ðk2mÞ − 1

2

�
; ð4:7Þ

and the reducible representation carried by ðΓ0
a
L;Γ0

a
RÞ

decomposes into the direct sum
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Lk1k2 ≔
Xk1
n¼0

Xk2
m¼0

⊕ ðlk1
n ;l

k2
m Þ: ð4:8Þ

Since ðkinÞ ¼ ð ki
k−nÞ, we see that lki

n ¼ lki
ki−n. As a conse-

quence, not all the summands in (4.8) are distinct IRRs.
Noting also that lki

ki
2

occurs only once for ki even, we may

rewrite (4.8) as the direct sum of distinct IRRs together with
its multiplicities as

Lk1evenk2even ¼ ðlk1
k1
2

;lk2
k2
2

Þ ⊕ 2
Xk12 −1
n¼0

Xk2
2

m¼0

ðlk1
n ;l

k2
m Þ

⊕ 2
Xk1

2

n¼0

Xk22 −1
m¼0

ðlk1
n ;l

k2
m Þ

¼ ðlk1
k1
2

;lk2
k2
2

Þ ⊕ 4
Xk12 −1
n¼0

Xk22 −1
m¼0

ðlk1
n ;l

k2
m Þ

⊕ 2
Xk12 −1
n¼0

ðlk1
n ;l

k2
k2
2

Þ ⊕ 2
Xk22 −1
m¼0

ðlk1
k1
2

;lk2
m Þ; ð4:9Þ

Lk1oddk2odd ¼ 4
Xk1−12

n¼0

Xk2−12

m¼0

ðlk1
n ;l

k2
m Þ; ð4:10Þ

Lk1evenk2odd ¼ 4
Xk12 −1
n¼0

Xk2−12

m¼0

ðlk1
n ;l

k2
m Þ ⊕ 2

Xk2−12

m¼0

ðlk1
k1
2

;lk2
m Þ: ð4:11Þ

Lk1oddk2even can be obtained by taking k1 ↔ k2 in Eq. (4.11).
With the assumption N ¼ 2k1þk2ð2lL þ 1Þð2lR þ 1Þn,

the vacuum configuration of our SUðN Þ gauge theory can
be written as

ΦL
a ¼ ðXð2lLþ1Þ

a ⊗ 1ð2lRþ1Þ ⊗ 12k1þk2 ⊗ 1nÞ
þ ð1ð2lLþ1Þ ⊗ 1ð2lRþ1Þ ⊗ Γ0

a
L ⊗ 1nÞ;

ΦR
a ¼ ð1ð2lLþ1Þ ⊗ Xð2lRþ1Þ

a ⊗ 12k1þk2 ⊗ 1nÞ
þ ð1ð2lLþ1Þ ⊗ 1ð2lRþ1Þ ⊗ Γ0

a
R ⊗ 1nÞ; ð4:12Þ

up to SUðN Þ gauge transformations.
The Clebsch-Gordan decomposition of the tensor prod-

ucts ðlL;lRÞ ⊗ Lk1evenk2odd , ðlL;lRÞ ⊗ Lk1evenk2even , and
ðlL;lRÞ ⊗ Lk1oddk2odd reveal the vacuum configurations in
terms of direct sums of S2F × S2F. For instance, we have

S2IntF k1odd
× S2IntF k2odd

≔ 4
Xk1−12

n¼0

Xk2−12

m¼0

½S2FðlL þ lk1
n Þ × S2FðlR þ lk2

m Þ ⊕ � � � ⊕ S2FðlL þ lk1
n Þ × S2FðjlR − lk2

m jÞ

⊕ S2FðlL þ lk1
n − 1Þ × S2FðlR þ lk2

m Þ ⊕ � � � ⊕ S2FðlL þ lk1
n − 1Þ × S2FðjlR − lk2

m jÞ

⊕ ..
.

⊕ S2FðjlL − lk1
n jÞ × S2FðlR þ lk2

m Þ ⊕ � � � ⊕ S2FðjlL − lk1
n jÞ × S2FðjlR − lk2

m jÞ�: ð4:13Þ

The remaining two cases are worked out explicitly in
Appendix B.
We easily see from (4.13) and (B1), (B2) that all higher

winding number monopole sectors may be obtained from
suitable projections of S2IntF k1

× S2IntF k2
in a systematic

manner. As a quick example, let us consider the case with

k1 ¼ k2 ¼ 3. Then, ðΓ0
a
L;Γ0

a
RÞ has the representation

content

4½ð0; 0Þ ⊕ ð0; 1Þ ⊕ ð1; 0Þ ⊕ ð1; 1Þ�; ð4:14Þ

and the vacuum configuration takes the form

S2IntF k1¼3 × S2IntF k2¼3 ¼ 4½4S2FðlLÞ× S2FðlRÞ⊕ 2S2FðlLÞ× S2FðlR − 1Þ⊕ 2S2FðlLÞ× S2FðlR þ 1Þ⊕ 2S2FðlL − 1Þ× S2FðlRÞ
⊕ 2S2FðlL þ 1Þ× S2FðlRÞ⊕ 2S2FðlL − 1Þ× S2FðlR − 1Þ⊕ 2S2FðlL − 1Þ× S2FðlR þ 1Þ
⊕ 2S2FðlL þ 1Þ× S2FðlR − 1Þ⊕ 2S2FðlL þ 1Þ× S2FðlR þ 1Þ�: ð4:15Þ

Monopole sectors with winding numbers ð0;�2Þ;
ð�2; 0Þ; ð�2;�2Þ; ð�2;∓ 2Þ are all available through
projections of S2IntF k1¼3 × S2IntF k2¼3. Sectors with winding
numbers, such as ðn; n − 1Þ, appear through projections of
S2IntF k1

× S2IntF k2
for k1 ≠ k2.

Before closing this section, let us also remark that for the
Uð4Þ gauge theory over S2IntF k1¼3 × S2IntF k2¼3 there are no
equivariant spinors. This is quite expected, since, for

k1 ¼ k2 ¼ 3, ΨL and ΨR transform under the IRRs (1,0)
and (0,1), respectively, and under the adjoint action of the
symmetry generators we have

½ωL
a ;ΨL

b � ¼
i
2
ð~λaÞbcΨL

c ¼ ϵabcΨL
c ;

½ωR
a ;ΨR

b � ¼
i
2
ð~λaÞbcΨR

c ¼ ϵabcΨR
c ; ð4:16Þ
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since ð~λaÞbc ¼ −2iϵabc in the adjoint representation of
SUð2Þ. Thus these equivariant field modes are one and
the same as those obtained from the equivariance con-
ditions on ΦL

a and ΦR
a . From our results, we infer that the

equivariant spinor fields over left and right fuzzy extra
dimensions do exist only for both k1 and k2 even integers,
while only left (right) spinor modes exist for k1 (k2) even
only, and these modes do not exist at all for k1 and k2
both odd.

V. RELATION BETWEEN S2IntF × S2IntF AND

FUZZY SUPERSPACE Sð2;2ÞF × Sð2;2ÞF

It is possible to identify the vacuum configuration given
in Eq. (2.26) as the bosonic (even) part of the fuzzy space

Sð2;2ÞF × Sð2;2ÞF with OSPð2; 2Þ ×OSPð2; 2Þ symmetry. This

observation makes the vacuum configuration Sð2;2ÞF × Sð2;2ÞF
especially interesting since it simply comes out naturally
and we have in no way intended for it to emerge.
In order to reveal this relation, we have to write down the

decomposition of IRRs of OSPð2; 2Þ ×OSPð2; 2Þ under
the SUð2Þ × SUð2Þ IRRs. Irreducible representations of
OSPð2; 1Þ ×OSPð2; 1Þ are characterized by two integer or
half-integer numbers ðJ 1;J 2ÞOSPð2;1Þ×OSPð2;1Þ and it has
the decomposition under the SUð2Þ × SUð2Þ IRRs as

ðJ 1;J 2Þ ¼
�
ðJ 1;J 2Þ⊕

�
J 1 −

1

2
;J 2

�
⊕

�
J 1;J 2 −

1

2

�

⊕
�
J 1 −

1

2
;J 2 −

1

2

��
SUð2Þ×SUð2Þ

: ð5:1Þ

Irreducible representations of OSPð2; 2Þ ×OSPð2; 2Þ
can be divided into two parts. These are the typical
ðJ 1;J 2ÞT and the atypical ðJ 1;J 2ÞA representations.
Typical representations ðJ 1;J 2ÞT are reducible under
the OSPð2; 1Þ ×OSPð2; 1Þ IRRs as

ðJ 1;J 2ÞT ¼ ðJ 1;J 2Þ⊕
�
J 1 −

1

2
;J 2

�
⊕

�
J 1;J 2 −

1

2

�

⊕
�
J 1 −

1

2
;J 2 −

1

2

�
; ð5:2Þ

whereas the atypical ones are irreducible with respect to the
OSPð2; 1Þ ×OSPð2; 1Þ group and in fact ðJ 1;J 2ÞA is
equivalent to the IRR ðJ 1;J 2Þ of OSPð2; 1Þ ×OSPð2; 1Þ.
All these facts follow from the generalization of the
representation theory of OSPð2; 2Þ and OSPð2; 1Þ, which
is extensively discussed in [47–49]. With the help of
Eqs. (5.1) and (5.2), we see that ðJ 1;J 2ÞT of OSPð2; 2Þ ×
OSPð2; 2Þ has the decomposition in terms of the IRRs of
SUð2Þ × SUð2Þ as

ðJ 1;J 2ÞT ¼
�
ðJ 1;J 2Þ ⊕ 2

�
J 1;J 2 −

1

2

�

⊕ 2

�
J 1 −

1

2
;J 2

�
⊕ 4

�
J 1 −

1

2
;J 2 −

1

2

�

⊕ ðJ 1 − 1;J 2Þ ⊕ 2

�
J 1 − 1;J 2 −

1

2

�

⊕ 2
�
J 1 −

1

2
;J 2 − 1

�
⊕ ðJ 1;J 2 − 1Þ

⊕ ðJ 1 − 1;J 2 − 1Þ
�
SUð2Þ×SUð2Þ

;

J 1;J 2 ≥ 1; ð5:3Þ

while the representation ð1
2
; 1
2
ÞT decomposes as

�
1

2
;
1

2

�
T
≡
�
1

2
;
1

2

�
⊕
�
0;
1

2

�
⊕
�
1

2
;0

�
⊕ð0;0Þ

≡
��

1

2
;
1

2

�
þ2

�
0;
1

2

�
⊕2

�
1

2
;0

�
⊕4ð0;0Þ

�
SUð2Þ×SUð2Þ

:

ð5:4Þ

It is now easy to see that, for ðJ 1;J 2ÞT ≡
ðlL þ 1

2
;lR þ 1

2
ÞT , we obtain precisely the same IRR

content from (5.3) as the one that appears for the
vacuum configuration given in (2.25). This means that
S2IntF × S2IntF can be identified with the bosonic part of the

OSPð2; 2Þ ×OSPð2; 2Þ fuzzy space Sð2;2ÞF × Sð2;2ÞF at the
level ðlL þ 1

2
;lR þ 1

2
ÞT .

We further observe that ðJ 1;J 2Þ≡ ðlL þ 1
2
;lR þ 1

2
Þ

IRR of OSPð2; 1Þ ×OSPð2; 1Þ matches with a particular
sector of the representation given in (2.25) and allows us to
identify

�
S2F

�
lL þ 1

2

�
× S2F

�
lR þ 1

2

��

⊕
�
S2FðlLÞ × S2F

�
lR þ 1

2

��

⊕
�
S2F

�
lL þ 1

2

�
× S2FðlRÞ

�
⊕ ðS2FðlLÞ × S2FðlRÞÞ;

ð5:5Þ

with the bosonic part of OSPð2; 1Þ ×OSPð2; 1Þ fuzzy

space Sð2;1ÞF × Sð2;1ÞF . The subsector given in (5.5) may be
seen as the direct sum of two winding number (1,0)
monopole sectors as in (3.10) where one monopole
sector differs from the other by the level of the right fuzzy
spheres.
The superalgebra ospð2; 2Þ × ospð2; 2Þ has 16 gener-

ators Λi
M ≔ ðΛi

a;Λi
μ;Λi

8Þ, i ¼ L, Rwhich satisfy the graded
commutation relations
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½Λi
a;Λi

b�¼ iεabcΛi
c; ½Λi

a;Λi
μ�¼

1

2
ðΣaÞνμΛi

ν; ½Λi
a;Λi

8� ¼0;

½Λi
8;Λ

i
μ�¼ΞμνΛi

ν; fΛi
μ;Λi

νg¼
1

2
ðCΣaÞμνΛi

aþ
1

4
ðΞCÞμνΛi

8;

ð5:6Þ

where

Σa ¼
�
σa 0

0 σa

�
; C ¼

�
C 0

0 −C

�
; Ξ¼

�
0 I2
I2 0

�
;

ð5:7Þ

and C is the two-dimensional Levi-Cività symbol and all
the other graded commutations are zero. The reality
condition implemented by the graded dagger operation
on the generators reads

Λ‡
a ¼Λ†

a ¼Λa; Λ‡
μ ¼−CμνΛν; Λ‡

8 ¼Λ†
8 ¼Λ8; ð5:8Þ

for both the left and the right generators.
Using the representation theory of ospð2; 1Þ and

ospð2; 2Þ, it is rather straightforward to construct the
nine-dimensional fundamental representation ð1

2
; 1
2
ÞA of

ospð2; 2Þ × ospð2; 2Þ which is at the same time the
ð1
2
; 1
2
Þ IRR of ospð2; 1Þ × ospð2; 1Þ. Generators of the

three-dimensional representation of ospð2; 2Þ may be
written as

λa ≔

0
B@ 0 0

0 1
2
σa

1
CA; λ4 ≔

1

2

0
B@

0 0 −1
−1 0 0

0 0 0

1
CA;

λ5 ≔
1

2

0
B@

0 1 0

0 0 0

−1 0 0

1
CA; λ6 ≔

1

2

0
B@

0 0 −1
1 0 0

0 0 0

1
CA;

λ7 ≔
1

2

0
B@

0 1 0

0 0 0

1 0 0

1
CA; λ8 ≔

0
B@

2 0 0

0 1 0

0 0 1

1
CA: ð5:9Þ

Construction of these generators and a detailed exposition
of the properties of the ospð2; 2Þ and ospð2; 1Þ super-
algebras can be found in [17,47]. The 16 generators
ðΛL

M;Λ
R
MÞ in the IRR ð1

2
; 1
2
ÞA can be given as

ΛL
M ≡ λM ⊗ 13; ΛR

a ¼ 13 ⊗ λa; ΛR
4;5 ¼ α ⊗ λ4;5;

ΛR
6;7 ¼ −α ⊗ λ6;7; ΛR

8 ¼ −13 ⊗ λ8; ð5:10Þ
where α ¼ 313 − 2λ8.
The matrices Γ0

a
L;Γ0

a
R; bα; cα; b

†
α; c

†
α; NL; NR constitute a

basis for the 16 × 16matrices acting on the 16-dimensional
module corresponding to the representation space in (2.20)
and coincide with that of (5.4). We can make use of these
matrices to construct generators of the representation ð1

2
; 1
2
ÞA

given in (5.10). To do so, we should restrict to one of the
nine-dimensional submodules with the representation con-
tent ð1

2
; 1
2
Þ ⊕ ð0; 1

2
Þ ⊕ ð1

2
; 0Þ ⊕ ð0; 0Þ. Clearly, there exists a

set of projectors which yield the same representation, and a
particular projector from this set is

P ≔ PL
02
PR

02
þ PL

02
PR

1
2

þ PR
02
PL

1
2

þ PL
1
2

PR
1
2

; ð5:11Þ

where we have PL
02
¼ 14 ⊗ P02

, PL
1
2

¼ 14 ⊗ P1
2
, PR

02
¼

P02
⊗ 14, PR

1
2

¼ P1
2
⊗ 14. Using P, we can restrict to the

nine-dimensional submodule and subsequently get

ΛL
1 ≔ −iPΓ0

1
L; ΛL

2 ≔ iPΓ0
2
L; ΛL

3 ≔ −iPΓ0
3
L;

ΛL
4 ≔ −

1

2
ð ~b1 þ ~b†2Þ; ΛL

5∶ ¼ 1

2
ð ~b†1 − ~b2Þ;

ΛL
6 ≔

1

2
ð ~b1 − ~b†2Þ; ΛL

7 ≔
1

2
ð ~b†1 þ ~b2Þ; ΛL

8 ≔ PN;

ð5:12Þ

and

ΛR
1 ∶¼ −iPΓ0

1
R; ΛR

2 ≔ iPΓ0
2
R; ΛR

3 ≔ iPΓ0
3
R;

ΛR
4 ≔

1

2
ð~c1 þ ~c†2Þ; ΛR

5 ∶¼ −
1

2
ð~c†1 − ~c2Þ;

ΛR
6 ≔

1

2
ð~c1 − ~c†2Þ; ΛR

7 ≔
1

2
ð~c†1 þ ~c2Þ; ΛR

8 ≔−PM;

ð5:13Þ

where

~bα ¼ PbαP; ~b†α ¼ Pb†αP;

~cα ¼ PcαP; ~c†α ¼ Pc†αP: ð5:14Þ
We note in passing that the graded dagger operation on the
matrices given in (5.14) reads

~b‡α ¼ ~b†α; ð ~b†αÞ‡ ¼ − ~bα

~c‡α ¼ ~c†α; ð~c†αÞ‡ ¼ −~cα: ð5:15Þ
Finally, in (5.12) and (5.13), it is understood that the
columns and rows of zero are deleted after the projection,
and therefore,we have 9 × 9matrices ðΛL

M;Λ
R
MÞ as intended.

VI. CONCLUSIONS

In this paper we have studied a particular deformation
of the N ¼ 4 SYM theory with cubic SSB and mass
deformation terms. We have determined a family of
fuzzy vacua which are expressed in terms of direct sums
of the product of two fuzzy spheres. The structure of
these vacuum configurations is revealed by permitting
splittings of the scalar fields that involve the introduction
of k1 þ k2 component multiplets transforming under the
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representation ðk1−1
2

; 0Þ ⊕ ð0; k2−1
2
Þ of the global sym-

metry, and it is found that all fuzzy monopole sectors
over S2F × S2F are systematically accessed thorough pro-
jections of these vacua. Focusing on the simplest
member S2IntF × S2IntF of this family, we have demon-
strated that the fluctuations about this vacuum have
precisely the form of gauge fields, which allowed us
to conjecture that the emerging model is an effective
UðnÞ ðn < N Þ gauge theory on M4 × S2IntF × S2IntF . To
support this interpretation, we have studied the Uð4Þ
model and obtained all the SUð2Þ × SUð2Þ-equivariant
fields, which characterized its low energy degrees of
freedom and also examined the monopole sectors with
winding numbers ð�1; 0Þ; ð0;�1Þ; ð�1;�1Þ in some
detail. We have noted that spinorial modes that naturally
come out of this analysis do not comprise independent
degrees of freedom in the effective theory, but they may
be used to find the “square roots” of the equivariant
gauge field modes. Finally, we have seen that S2IntF ×
S2IntF identifies with the bosonic part of the product of
two fuzzy superspheres with OSPð2; 2Þ ×OSPð2; 2Þ
supersymmetry and discussed how it appears. We would
like to stress that our results apply just as well to Yang
Mills matrix models with the same type of vacua, and
the methods are quite versatile to investigate other
fuzzy vacuum configurations, which may be of physical
interest.
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APPENDIX A: SOME DETAILS
FOR SECS. II AND III

Variation of the action (2.2) with respect to ΦiL
a gives

DμDμΦiL
a þ 1

g2L
ð2fijkΦjL

b FkL
ab − εabcFiL

bcÞ ¼ 0; ðA1Þ

while the variation with respect to ΨlL†
α yields

�
DμDμΦiL

a þ 1

g2L
ð2fijkΦjL

b FkL
ab − εabcFiL

bcÞ
�

× γlmið~τaΨmLÞα ¼ 0; ðA2Þ

where ΦL
a ¼ ΦiL

a λi, ΨL
α ¼ ΨiL

α λi with the anti-Hermitian
SUðN Þ generators λi ði ¼ 1;…;N 2 − 1Þ fulfilling λiλj ¼
− 2

N δij þ ðdijk þ fijkÞλk and γijk ≔ dijk þ fijk for short.
Clearly, these equations imply each other. Variation with
respect to ΦiR

a and ΨlR†
α yield analogous expressions

with L → R.
The block diagonal form ðDL

a ;DR
a Þ indicated shortly

after (2.25) is given as

DL
aDL

a þDR
aDR

a ¼
�
−ðlLðlL þ 1Þ þ lRðlR þ 1ÞÞ1ð2lLþ1Þð2lRþ1Þ4n;

−
��

lL −
1

2

��
lL þ 1

2

�
þ lRðlR þ 1Þ

�
1ð2lLÞð2lRþ1Þ2n;

−
��

lL þ 1

2

��
lL þ 3

2

�
þ lRðlR þ 1Þ

�
1ð2lLþ2Þð2lRþ1Þ2n;

−
�
lLðlL þ 1Þ þ

�
lR −

1

2

��
lR þ 1

2

��
1ð2lLþ1Þð2lRÞ2n;

−
�
lLðlL þ 1Þ þ

�
lR þ 1

2

��
lR þ 3

2

��
1ð2lLþ1Þð2lRþ2Þ2n;

−
��

lL −
1

2

��
lL þ 1

2

�
þ
�
lR −

1

2

��
lR þ 1

2

��
1ð2lLÞð2lRÞn;

−
��

lL þ 1

2

��
lL þ 3

2

�
þ
�
lR −

1

2

��
lR þ 1

2

��
1ð2lLþ2Þð2lRÞn;

−
��

lL −
1

2

��
lL þ 1

2

�
þ
�
lR þ 1

2

��
lR þ 3

2

��
1ð2lLÞð2lRþ2Þn;

−
��

lL þ 1

2

��
lL þ 3

2

�
þ
�
lR þ 1

2

��
lR þ 3

2

��
1ð2lLþ2Þð2lRþ2Þn

�
: ðA3Þ
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The matrices in (3.7) and (3.8) square as

ðQL
BÞ2 ¼ −1ð2lLþ1Þð2lRþ1Þ64; ðQR

BÞ2 ¼ −1ð2lLþ1Þð2lRþ1Þ64; ðQL
�Þ2 ¼ −ΠL

�;

ðQR
�Þ2 ¼ −ΠR

�; ðQL
00
Þ2 ¼ −ΠL

00
; ðQR

00
Þ2 ¼ −ΠR

00
; ðQL

02
Þ2 ¼ −ΠL

02
; ðQR

02
Þ2 ¼ −ΠR

02
;

ðiSLi Þ2 ¼ −ΠL
0 ; ðiSRi Þ2 ¼ −ΠR

0 ; ðQL
Si
Þ2 ¼ −ΠL

0 ; ðQR
Si
Þ2 ¼ −ΠR

0 ; ðQL
FÞ2 ¼ −ΠL

1
2

;

ðQR
FÞ2 ¼ −ΠR

1
2

; ðQL
HÞ2 ¼ −ΠL

1
2

; ðQR
HÞ2 ¼ −ΠR

1
2

; ðQL
BIÞ2 ¼ −ΠL

1
2

; ðQR
BIÞ2 ¼ −ΠR

1
2

;

ðQL
I Þ2 ¼ −ΠL

1
2

; ðQR
I Þ2 ¼ −ΠR

1
2

; ðA4Þ

justifying that they are “idempotents” in the subspace they belong to.
Using the equivariant invariants in (3.9), vectors in the (1,0) IRR may be listed as

ΠR
i ½DL

a ;QL
j �; ΠR

i Q
L
j ½DL

a ;QL
j �; ΠR

i fDL
a ;QL

j g; SRk ½DL
a ;QL

j �; SRkQ
L
j ½DL

a ;QL
j �;

SRk fDL
a ;QL

j g QR
j ½DL

a ;QL
j �; QR

j Q
L
j ½DL

a ;QL
j �; QR

j fDL
a ;QL

j g QR
Sk
½DL

a ;QL
j �;

QR
Sk
QL

j ½DL
a ;QL

j �; QR
Sk
fDL

a ;QL
j g; ΠR

i ½DL
a ;QL

Sk
�; ΠR

i Q
L
0 ½DL

a ;QL
Sk
�; ΠR

i fDL
a ;QL

Sk
g;

SRk ½DL
a ;QL

Sk
�; SRkQ

L
0 ½DL

a ;QL
Sk
�; SRk fDL

a ;QL
Sk
g QR

j ½DL
a ;QL

Sk
�; QR

j Q
L
0 ½DL

a ;QL
Sk
�;

QR
j fDL

a ;QL
Sk
g; QR

Sk
½DL

a ;QL
Sk
�; QR

Sk
QL

0 ½DL
a ;QL

Sk
�; QR

Sk
fDL

a ;QL
Sk
g; ΠR

i ΠL
i ω

L
a ;

SRkΠL
i ω

L
a QR

j ΠL
i ω

L
a QR

Sk
ΠL

i ω
L
a ; ΠR

i S
L
kω

L
a ; SRk S

L
kω

L
a QR

j S
L
kω

L
a QR

Sk
SLkω

L
a ; ðA5Þ

where QL
0 ¼ QL

00
þQL

02
. Equivariant vectors in the (0,1) IRR are obtained from (A5) simply by the exchange L ↔ R.

The 336 equivariant spinors in the IRR ð1
2
; 0Þ parametrized as

ΠR
i ΠL

μ β
L
αQL

ν ; ΠR
i ΠL

ν β
L
αQL

μ ; ΠR
i Q

L
μ β

L
αΠL

ν ; ΠR
i Q

L
ν β

L
αΠL

μ ; ΠR
i Q

L
μ β

L
αQL

ν ; ΠR
i Q

L
ν β

L
αQL

μ ;

ΠR
i S

L
ρ β

L
αΠL

ν ; ΠR
i ΠL

ν β
L
αSLρ ; ΠR

i Q
L
Sρ
βLαΠL

ν ; ΠR
i ΠL

ν β
L
αQL

Sρ
; ΠR

i Q
L
Sρ
βLαQL

ν ; ΠR
i Q

L
ν β

L
αQL

Sρ
;

SRkΠL
μ β

L
αQL

ν ; SRkΠL
ν β

L
αQL

μ ; SRkQ
L
μ β

L
αΠL

ν ; SRkQ
L
ν β

L
αΠL

μ ; SRkQ
L
μ β

L
αQL

ν ; SRkQ
L
ν β

L
αQL

μ ;

SRk S
L
ρ β

L
αΠL

ν ; SRkΠL
ν β

L
αSLρ ; SRkQ

L
Sρ
βLαΠL

ν ; SRkΠL
ν β

L
αQL

Sρ
; SRkQ

L
Sρ
βLαQL

ν ; SRkQ
L
ν β

L
αQL

Sρ
;

QR
jΠL

μ β
L
αQL

ν ; QR
jΠL

ν β
L
αQL

μ ; QR
j Q

L
μ β

L
αΠL

ν ; QR
j Q

L
ν β

L
αΠL

μ ; QR
j Q

L
μ β

L
αQL

ν ; QR
j Q

L
ν β

L
αQL

μ ;

QR
j S

L
ρ β

L
αΠL

ν ; QR
j ΠL

ν β
L
αSLρ ; QR

j Q
L
Sρ
βLαΠL

ν ; QR
j ΠL

ν β
L
αQL

Sρ
; QR

j Q
L
Sρ
βLαQL

ν ; QR
j Q

L
ν β

L
αQL

Sρ
;

QR
Sk
ΠL

μ β
L
αQL

ν ; QR
Sk
ΠL

ν β
L
αQL

μ ; QR
Sk
QL

μ β
L
αΠL

ν ; QR
Sk
QL

ν β
L
αΠL

μ ; QR
Sk
QL

μ β
L
αQL

ν ; QR
Sk
QL

ν β
L
αQL

μ ;

QR
Sk
SLρ βLαΠL

ν ; QR
Sk
ΠL

ν β
L
αSLρ ; QR

Sk
QL

Sρ
βLαΠL

ν ; QR
Sk
ΠL

ν β
L
αQL

Sρ
; QR

Sk
QL

Sρ
βLαQL

ν ; QR
j Q

L
ν β

L
αQL

Sρ
; ðA6Þ

where βLα ¼ 12lLþ1 ⊗ 12lRþ1 ⊗ bα ⊗ 14, βRα ¼ 12lLþ1 ⊗ 12lRþ1 ⊗ cα ⊗ 14, μ ¼ 00; 02, ν ¼ þ;−, ρ ¼ 1, 2, and where
ΠL

00
; QL

00
; SL1 ; Q

L
S1
on the leftmost and ΠL

02
; QL

02
; SL2 ; Q

L
S2
on the rightmost sides in any of these expressions are excluded. For

the equivariant spinors carrying ð0; 1
2
Þ representation, it is enough to take L ↔ R in (A6).

APPENDIX B: SOME DETAILS FOR SEC. IV

The vacuum configuration with ðk1; k2Þ component multiplets can be calculated for the cases k1 ¼ even, k2 ¼ even and
k1 ¼ even, k2 ¼ odd as follows:
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S2IntF k1even
× S2IntF k2even

≔ S2FðlL þ lk1
k1
2

Þ × S2FðlR þ lk2
k2
2

Þ ⊕ � � � ⊕ S2FðlL þ lk1
k1
2

Þ × S2FðjlR − lk2
k2
2

jÞ

⊕ ..
.

⊕ S2FðjlL − lk1
k1
2

jÞ × S2FðlR þ lk2
k2
2

Þ ⊕ � � � ⊕ S2FðjlL − lk1
k1
2

jÞ × S2FðjlR − lk2
k2
2

jÞ

⊕ 4
Xk12 −1
n¼0

Xk22 −1
m¼0

½S2FðlL þ lk1
n Þ × S2FðlR þ lk2

m Þ ⊕ � � � ⊕ S2FðlL þ lk1
n Þ × S2FðjlR − lk2

m jÞ

⊕ ..
.

⊕ S2FðjlL − lk1
n jÞ × S2FðlR þ lk2

m Þ ⊕ � � � ⊕ S2FðjlL − lk1
n jÞ × S2FðjlR − lk2

m jÞ�

⊕ 2
Xk12 −1
n¼0

½S2FðlL þ lk1
n Þ × S2FðlR þ lk2

k2
2

Þ ⊕ � � � ⊕ S2FðlL þ lk1
n Þ × S2FðjlR − lk2

k2
2

jÞ

⊕ ..
.

⊕ S2FðjlL − lk1
n jÞ × S2FðlR þ lk2

k2
2

Þ ⊕ � � � ⊕ S2FðjlL − lk1
n jÞ × S2FðjlR − lk2

k2
2

jÞ�

⊕ 2
Xk22 −1
m¼0

½S2FðlL þ lk1
k1
2

Þ × S2FðlR þ lk2
m Þ ⊕ � � � ⊕ S2FðlL þ lk1

k1
2

Þ × S2FðjlR − lk2
m jÞ

⊕ ..
.

⊕ S2FðjlL − lk1
k1
2

jÞ × S2FðlR þ lk2
m Þ ⊕ � � � ⊕ S2FðjlL − lk1

k1
2

jÞ × S2FðjlR − lk2
m jÞ�: ðB1Þ

S2IntF k1even
× S2IntF k2odd

≔ 4
Xk12 −1
n¼0

Xk2−12

m¼0

½S2FðlL þ lk1
n Þ × S2FðlR þ lk2

m Þ ⊕ � � � ⊕ S2FðlL þ lk1
n Þ × S2FðjlR − lk2

m jÞ

⊕ S2FðlL þ lk1
n − 1Þ × S2FðlR þ lk2

m Þ ⊕ � � � ⊕ S2FðlL þ lk1
n − 1Þ × S2FðjlR − lk2

m jÞ

⊕ ..
.

⊕ S2FðjlL − lk1
n jÞ × S2FðlR þ lk2

m Þ ⊕ � � � ⊕ S2FðjlL − lk1
n jÞ × S2FðjlR − lk2

m jÞ�

⊕ 2
Xk2−12

m¼0

½S2FðlL þ lk1
k1
2

Þ × S2FðlR þ lk2
m Þ ⊕ � � � ⊕ S2FðlL þ lk1

k1
2

Þ × S2FðjlR − lk2
m jÞ

⊕ ..
.

⊕ S2FðjlL − lk1
k1
2

jÞ × S2FðlR þ lk2
m Þ ⊕ � � � ⊕ S2FðjlL − lk1

k1
2

jÞ × S2FðjlR − lk2
m jÞ�: ðB2Þ

APPENDIX C: ANOTHER VACUUM SOLUTION

It is worthwhile to ask whether it is possible to find solutions to equations given in (2.8) in the form

ΦL
a ¼ ðXð2lLþ1Þ

a ⊗ 1ð2lRþ1Þ ⊗ 14 ⊗ 1nÞ þ ð1ð2lLþ1Þ ⊗ 1ð2lRþ1Þ ⊗ ~Γ0
a
L ⊗ 1nÞ;

ΦR
a ¼ ð1ð2lLþ1Þ ⊗ Xð2lRþ1Þ

a ⊗ 14 ⊗ 1nÞ þ ð1ð2lLþ1Þ ⊗ 1ð2lRþ1Þ ⊗ ~Γ0
a
R ⊗ 1nÞ; ðC1Þ

EQUIVARIANT FIELDS IN AN SUðN Þ GAUGE … PHYSICAL REVIEW D 93, 105019 (2016)

105019-19



with the factorization N ¼ ð2lL þ 1Þ× ð2lR þ 1Þ× 4× n

and where ~Γ0
a
L
and ~Γ0

a
R
are 4 × 4 matrices instead of the

16 × 16 matrices determined in Sec. II B, satisfying the
relations in (2.11). The answer to this question is only

superficially affirmative as such ~Γ0
a
L
and ~Γ0

a
R
exist, but

against the very premise of our initial requirement that
~Γ0
a
L
and ~Γ0

a
R
are bilinears of the doublets ΨL and ΨR of

SUð2Þ × SUð2Þ transforming under its ð1
2
; 0Þ and ð0; 1

2
Þ

IRRs. To be more concrete, it turns out that it is possible

to express ~Γ0
a
L

and ~Γ0
a
R

in terms of bilinears of some
matrices χL and χR, which, however, do not transform as
ð1
2
; 0Þ and ð0; 1

2
Þ under SUð2Þ × SUð2Þ. This fact suggests

that we should expect to find no equivariant spinor field
modes at all for the emerging effective Uð4Þ gauge
theory. It appears instructive to examine this case in
some detail.
If we start with two sets of fermionic annihilation-

creation operators dα; d
†
α with

fdα; dβg ¼ 0; fd†α; d†βg ¼ 0;

fdα; d†βg ¼ δαβ; α; β ¼ 1; 2; ðC2Þ

which span the four-dimensional Hilbert space,

jn1; n2i≡ ðd†1Þn1ðd†2Þn2 j0; 0i; n1; n2 ¼ 0; 1; ðC3Þ

and choose the two-component objects

χL ¼
�
χL1
χL2

�
≔

�
d1
d2

�
;

χR ¼
�
χR1
χR2

�
≔

�
d†1
d2

�
; ðC4Þ

then ~Γ0
a
L ¼ − i

2
χL†τaχ

L, Γ0
a
R ¼ − i

2
χR†τaχ

R satisfy

½ ~Γ0
a
L
; ~Γ0

b
L� ¼ ϵabc

~Γ0
c
L
; ½ ~Γ0

a
R
; ~Γ0

b
R� ¼ ϵabc

~Γ0
c
R
;

½ ~Γ0
a
L
; ~Γ0

b
R� ¼ 0: ðC5Þ

However, we find that

½χLα ; ~Γ0
a
L� ¼ −

i
2
ðτaÞαβχLβ ; ½χLα ; ~Γ0

a
R� ≠ 0;

½χRα ; ~Γ0
a
R� ¼ −

i
2
ðτaÞαβχRβ ; ½χRα ; ~Γ0

a
L� ≠ 0: ðC6Þ

Thus, because of the two nonvanishing commutators in
(C6), χL and χR are not transforming in the IRRs ð1

2
; 0Þ and

ð0; 1
2
Þ of SUð2Þ × SUð2Þ, respectively. Bearing this fact in

mind, we can nevertheless continue to work with the

matrices ~Γ0
a
L

and ~Γ0
a
R

satisfying (C5), and investigate
the structure of the emerging model in its own right.
Using the identities

ð ~Γ0
a
LÞ2 ¼ −

3

4
N þ 3

2
N1N2;

ð ~Γ0
a
RÞ2 ¼ 3

4
N −

3

2
N1N2 −

3

4
; ðC7Þ

where N ¼ N1 þ N2, N1 ¼ b†1b1, N2 ¼ b†2b2, the
quadratic Casimir operator can be evaluated and we simply
find

C2 ¼ ð ~Γ0
a
LÞ2 þ ð ~Γ0

a
RÞ2 ¼ −

3

4
14: ðC8Þ

This means that ð ~Γ0
a
L
; ~Γ0

a
RÞ carry the direct sum represen-

tation ð1
2
; 0Þ ⊕ ð0; 1

2
Þ.

The Hilbert space in (C3) has four states: j0; 0i;
j0; 1i; j1; 0i; j1; 1i. ~Γ0

a
L

is reducible with respect to
SUð2ÞL and has two inequivalent singlets, j0; 0i; j1; 1i,
and a doublet, spanned by j0; 1i; j1; 0i. Similarly, ~Γ0

a
R
is

reducible with respect to SUð2ÞR and has two inequivalent
singlets, j0; 1i; j1; 0i, and a doublet, spanned by j0; 0i;
j1; 1i,

~Γ0
a
L
→ ð00; 0Þ ⊕ ð02; 0Þ ⊕

�
1

2
; 0

�
;

~Γ0
a
R
→ ð0; 00Þ ⊕ ð0; 02Þ ⊕

�
0;
1

2

�
: ðC9Þ

Two inequivalent singlets of ~Γ0
a
L
can be distinguished by

the eigenvalues 0,2 of N, since ½ ~Γ0
a
L
; N� ¼ 0. Likewise, the

eigenvalues 0,2 of the operator ð14 − ðN1 − N2ÞÞ distin-

guishes the two inequivalent singlets of ~Γ0
a
R

since

½ ~Γ0
a
R
; 14 − ðN1 − N2Þ� ¼ 0.

Let us define the two projectors

P0 ¼
ð ~Γ0

a
LÞ2 þ 3

4
3
4

¼ −
ð ~Γ0

a
RÞ2
3
4

¼ 1 − N þ 2N1N2;

P1
2
¼ −

ð ~Γ0
a
LÞ2
3
4

¼ ð ~Γ0
a
RÞ2 þ 3

4
3
4

¼ N − 2N1N2; ðC10Þ

where P0 projects to the singlets of ~Γ0
a
L
and to the doublet

of ~Γ0
a
R
, and P1

2
projects to the doublet of ~Γ0

a
L
and to the

singlet of ~Γ0
a
R
. Projections to the inequivalent singlets and

spin up and down components of doublets read
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PL
00
¼−

1

2
ðN−2ÞP0¼1−NþN1N2; PL

02
¼1

2
NP0¼N1N2;

PL
1
2
þ¼P1

2
N1¼N1−N1N2; PL

1
2
−¼P1

2
N2¼N2−N1N2;

PR
00
¼PL

1
2
þ; PR

02
¼PL

1
2
−; PR

1
2
þ¼PL

00
; PR

1
2
−¼PL

02
: ðC11Þ

The Clebsch-Gordan decomposition of the vacuum
configuration proposed in Eq. (C1) is determined as

ðlL;lRÞ ⊗
��

1

2
; 0
�

⊕
�
1

2
; 0
��

≡
�
lL þ 1

2
;lR

�
⊕

�
lL −

1

2
;lR

�
⊕

�
lL;lR þ 1

2

�

⊕
�
lL;lR −

1

2

�
: ðC12Þ

This means that the vacuum configuration can be written as
the direct sum

S2IntF × S2IntF ≡
�
S2F

�
lL þ 1

2

�
× S2FðlRÞ

�

⊕
�
S2F

�
lL −

1

2

�
× S2FðlRÞ

�

⊕
�
S2FðlLÞ × S2F

�
lR þ 1

2

��

⊕
�
S2FðlLÞ × S2F

�
lR −

1

2

��
: ðC13Þ

Projections to each summand in (C13) can be obtained by
adapting the formula in (2.27) to the present case. This
yields the projectors Παβ ≡ fΠþ0;Π−0;Π0þ;Π0−g [see
Eq. (C16) below] which, upon using the suitably adapted
version of (2.28), are unitarily equivalent to the product
ΠL

αΠR
β , which we write as Παβ ≡ ΠL

αΠR
β .

For the projectors ΠL
0 ;ΠR

0 ;ΠL
�;ΠR

�, we have the explicit
forms

ΠL
0 ¼ 1ð2lLþ1Þ ⊗ 1ð2lRþ1Þ ⊗P0⊗ 1n;

ΠR
0 ¼ 1ð2lLþ1Þ ⊗ 1ð2lRþ1Þ ⊗P1

2
⊗ 1n;

ΠL
� ¼ 1

2

�
�iQL

I þΠL
1
2

�
; ΠR

� ¼ 1

2

�
�iQR

I þΠR
1
2

�
; ðC14Þ

where

QL
I ¼ i

XL
a
~Γ0
a
L − 1

4
ΠL

1
2

1
2
ðlL þ 1

2
Þ ; QR

I ¼ i
XR
a
~Γ0
a
R − 1

4
ΠR

1
2

1
2
ðlR þ 1

2
Þ : ðC15Þ

In observation of the relations given in (C11), we see that

Π�0 ≡ ΠL
�ΠR

0 ¼ ΠL
�; Π0� ≡ ΠL

0ΠR
� ¼ ΠL

�; ðC16Þ

while all other products vanish. Therefore, ΠR
�;ΠL

� are
simply the required four projectors. For convenience, we
list them in the table below.

Projector To the representation

ΠL
� ¼ 1

2
ð�iQL

I þ ΠL
1
2

Þ ðlL � 1
2
;lRÞ

ΠR
� ¼ 1

2
ð�iQR

I þ ΠR
1
2

Þ ðlL;lR � 1
2
Þ

At this stage we can consider the fluctuations about the
vacuum configuration (C1)

ΦL
a ¼ XL

a þ ~Γ0
a þ AL

a ≔ DL
a þ AL

a ;

ΦR
a ¼ XR

a þ ~Γ0
a þ AR

a ≔ DR
a þ AR

a ; ðC17Þ

where AL
a ;AR

a ∈ uð2lL þ 1Þ⊗ uð2lR þ 1Þ⊗ uð4Þ⊗ uðnÞ.
We can view AL

a and AR
a (a ¼ 1, 2, 3) as the six

components of a UðnÞ gauge field on S2IntF × S2IntF since
FL
ab; F

R
ab; F

L;R
ab take the form of the curvature tensor

FL
ab ¼ ½DL

a ; AL
b � − ½DL

b ; A
L
a � þ ½AL

a ; AL
b � − ϵabcAL

c ;

FR
ab ¼ ½DR

a ; AR
b � − ½DR

b ; A
R
a � þ ½AR

a ; AR
b � − ϵabcAR

c ;

FL;R
ab ¼ ½DL

a ; AR
b � − ½DR

b ; A
L
a � þ ½AL

a ; AR
b �: ðC18Þ

Adapting the discussion, starting with Eq. (2.34), it can be
seen that only four of these six gauge fields constitute
independent degrees of freedom in the commutative
limit, lL;lR → ∞.
The emerging model has the structure of a UðnÞ gauge

theory on M × S2IntF × S2IntF with the gauge fields AM ¼
ðAμ; AaÞ and corresponding field strength tensor FMN ¼
ðFμν; FL

μa; FR
μa; FL

ab; F
R
ab; F

L;R
ab Þ. We can quickly glance over

some of the essential features of the Uð4Þ gauge theory
on M × S2IntF × S2IntF .
For the Uð4Þ theory, taking the symmetry generators ωL

a

and ωR
a ,

ωL
a ¼ ðXð2lLþ1Þ

a ⊗ 1ð2lRþ1Þ ⊗ 14 ⊗ 14Þ
þ ð1ð2lLþ1Þ ⊗ 1ð2lRþ1Þ ⊗ ~Γ0

a
L ⊗ 14Þ

−
�
1ð2lLþ1Þ ⊗ 1ð2lRþ1Þ ⊗ 14 ⊗ i

LL
a

2

�
; ðC19Þ

ωR
a ¼ ð1ð2lLþ1Þ ⊗ Xð2lRþ1Þ

a ⊗ 14 ⊗ 14Þ
þ ð1ð2lLþ1Þ ⊗ 1ð2lRþ1Þ ⊗ ~Γ0

a
R ⊗ 14Þ

−
�
1ð2lLþ1Þ ⊗ 1ð2lRþ1Þ ⊗ 14 ⊗ i

LR
a

2

�
; ðC20Þ

with ðLL
a ; LR

a Þ the same as before, we can construct the
SUð2Þ × SUð2Þ-equivariant fields. The SUð2Þ × SUð2Þ
representation content of ðωL

a ;ωR
a Þ follows from the
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Clebsch-Gordan expansion

ðlL;lRÞ ⊗
��

1

2
; 0

�
⊕

�
1

2
; 0

��
⊗

�
1

2
;
1

2

�
≡ 2

�
lL;lR þ 1

2

�
⊕ 2

�
lL;lR −

1

2

�
⊕ 2

�
lL þ 1

2
;lR

�

⊕ 2

�
lL −

1

2
;lR

�
⊕

�
lþ 1;lR −

1

2

�
⊕

�
lþ 1;lR þ 1

2

�

⊕
�
l − 1;lR −

1

2

�
⊕

�
l − 1;lR þ 1

2

�
⊕

�
lL −

1

2
;lR − 1

�

⊕
�
lL þ 1

2
;lR − 1

�
⊕

�
lL þ 1

2
;lR þ 1

�

⊕
�
lL −

1

2
;lR þ 1

�

≔ I: ðC21Þ
ΠL

�;ΠR
� ∈ Matðð2lL þ 1Þ × ð2lR þ 1Þ × 4 × 4Þ project to the representations in the decomposition (C21) as given in the

table below.

Projector To the representation

ΠL
� ¼ 1

2
ð�iQL

I þ ΠL
1
2

Þ ðlL;lR þ 1
2
Þ ⊕ ðlL;lR − 1

2
Þ ⊕ ðlL � 1;lR þ 1

2
Þ ⊕ ðlL � 1;lR − 1

2
Þ

ΠR
� ¼ 1

2
ð�iQR

I þ ΠR
1
2

Þ ðlL þ 1
2
;lRÞ ⊕ ðlL þ 1

2
;lR � 1Þ ⊕ ðlL − 1

2
;lRÞ ⊕ ðlL − 1

2
;lR � 1Þ

The SUð2Þ × SUð2Þ-equivariance conditions indicate that Aμ; AL
a ; AR

b satisfy the relevant adapted version of (3.5). As
before, we can determine the dimensions of solution spaces for Aμ; AL

a , and AR
a using the Clebsch-Gordan decomposition of

the adjoint action of ðωL
a ;ωR

a Þ. We find

I ⊗ I ≡ 24ð0; 0Þ ⊕ 52ð1; 0Þ ⊕ 52ð0; 1Þ ⊕ � � � : ðC22Þ
This means that there are 24-invariants. The solution space for each of AL

a ; AR
a is 52-dimensional. We further see that there

are no spinor representations ð1
2
; 0Þ or ð0; 1

2
Þ occurring in (C22). This corroborates perfectly with our initial expectations, in

view of the fact that ðΓ0
a
L;Γ0

a
RÞ cannot be expressed through a bilinear of fields with the desired symmetry properties. If the

latter was possible, it would have contradicted the absence of the equivariant spinor field modes and vice versa.
A suitable set of 24 invariants is given by the following matrices:

ΠLþ; QLþ; ΠL
−; QL

−; ΠRþ; QRþ; ΠR
−; QR

−; QL
F; QL

H; QR
F; QR

H; ΠLþQR
B; ΠL

−QR
B;

ΠRþQL
B; ΠR

−QL
B; QLþQR

B; QL
−QR

B; QL
FQ

R
B; QL

HQ
R
B; QRþQL

B; QR
−QL

B; QR
FQ

L
B; QR

HQ
L
B; ðC23Þ

where QL
�, Q

L
F, Q

L
H, Q

L
BI are in same formal form as (3.8) and likewise for the set of matrices QR.

A set of 52 linearly matrices transforming under the (1,0) representation may be provided as

½DL
a ;QLþ�; QLþ½DL

a ;QLþ�; fDL
a ;QLþg; QR

B½DL
a ;QLþ�; QR

BQ
Lþ½DL

a ;QLþ�; QR
BfDL

a ;QLþg;
½DL

a ;QL
−�; QL

−½DL
a ;QL

−�; fDL
a ;QL

−g; QR
B½DL

a ;QL
−�; QR

BQ
L
−½DL

a ;QL
−�; QR

BfDL
a ;QL

−g;
½DL

a ;QL
F�; QL

F½DL
a ;QL

F�; fDL
a ;QL

Fg; QR
B½DL

a ;QL
F�; QR

BQ
L
F½DL

a ;QL
F�; QR

BfDL
a ;QL

Fg;
½DL

a ;QL
H�; QL

H½DL
a ;QL

H�; fDL
a ;QL

Hg; QR
B½DL

a ;QL
H�; QR

BQ
L
H½DL

a ;QL
H�; QR

BfDL
a ;QL

Hg;
ΠRþ½DL

a ;QL
B�; ΠRþQL

B½DL
a ;QL

B�; ΠRþfDL
a ;QL

Bg; QRþ½DL
a ;QL

B�; QRþQL
B½DL

a ;QL
B�;

QRþfDL
a ;QL

Bg; ΠR
−½DL

a ;QL
B�; ΠR

−QL
B½DL

a ;QL
B�; ΠR

−fDL
a ;QL

Bg; QR
−½DL

a ;QL
B�;

QR
−QL

B½DL
a ;QL

B�; QR
−fDL

a ;QL
Bg; QR

F½DL
a ;QL

B�; QR
FQ

L
B½DL

a ;QL
B�; QR

FfDL
a ;QL

Bg;
QR

H½DL
a ;QL

B�; QR
HQ

L
B½DL

a ;QL
B�; QR

HfDL
a ;QL

Bg; ΠLþωL
a ; ΠL

−ω
L
a ; QR

BΠLþωL
a ;

QR
BΠL

−ω
L
a ; ΠRþωL

a ; ΠR
−ω

L
a ; QRþωL

a ; QR
−ω

L
a ; QR

Fω
L
a ; QR

Hω
L
a ; ðC24Þ

while a linearly independent set transforming as (0,1) is obtained from (C24) by taking L ↔ R.
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Monopole sectors exist in this case too and they can be
accessed by projecting from S2IntF × S2IntF . We have, for
instance,

SF2
L�

× SF2R� ¼
�
S2FðlLÞ × S2F

�
lR � 1

2

��

⊕
�
S2F

�
lL � 1

2

�
× S2FðlRÞ

�
; ðC25Þ

SF2L;2 × SF2R;0 ¼
�
S2F

�
lL þ 1

2

�
× S2FðlRÞ

�

⊕
�
S2F

�
lL −

1

2

�
× S2FðlRÞ

�
; ðC26Þ

SF2L;0 × SF2R;2 ¼
�
S2FðlLÞ × S2F

�
lR þ 1

2

��

⊕
�
S2FðlLÞ × S2F

�
lR −

1

2

��
; ðC27Þ

with the winding numbers ð�1;�1Þ; ð2; 0Þ; ð0; 2Þ,
respectively.
We can project to the ð�1;�1Þ sector using

ð1 − ΠL∓Þð1 − ΠR∓Þ: ðC28Þ

This projection leaves us with 8 equivariant scalars

ΠL
�; ΠR

�; QL
�; QR

�; QR
BΠL

�;

QR
BQ

L
�; QL

BΠR
�; QL

BQ
R
�; ðC29Þ

and 16 vectors carrying the (1,0) representation,

½DL
a ;QL

��; QL
�½DL

a ;QL
��; fDL

a ;QL
�g;

QR
B½DL

a ;QL
��; QR

BQ
L
�½DL

a ;QL
��; QR

BfDL
a ;QL

�g;
ΠR

�½DL
a ;QL

B�; ΠR
�Q

L
B½DL

a ;QL
B�; ΠR

�fDL
a ;QL

Bg;
QR

�½DL
a ;QL

B�; QR
�Q

L
B½DL

a ;QL
B�; QR

�fDL
a ;QL

Bg;
ΠL

�ω
L
a ; QR

BΠL
�ω

L
a ; ΠR

�ω
L
a ; QR

�ω
L
a ; ðC30Þ

and another 16 carrying the (0,1) IRR which are obtained
from (C30) by L ↔ R.
For the winding number sector (2,0) in Eq. (C26), we can

use the projection operator

ð1 − ΠRþÞð1 − ΠR
−Þ: ðC31Þ

In this case, the relevant part of the Clebsch-Gordan
expansion gives the result 12ð0;0Þ⊕ 28ð1;0Þ⊕ 24ð0;1Þ.
Equivariant scalars may be given as the following subset of
those in (C23):

ΠLþ; ΠL
−; QLþ; QL

−; QL
F; QL

H;

QR
BΠLþ; QR

BΠL
−; QR

BQ
Lþ; QR

BQ
L
−;

QR
BQ

L
F; QR

BQ
L
H: ðC32Þ

The 28 vectors which carry the (1,0) IRR can be given as

½DL
a ;QLþ�; QLþ½DL

a ;QLþ�; fDL
a ;QLþg; QR

B½DL
a ;QLþ�; QR

BQ
Lþ½DL

a ;QLþ�; QR
BfDL

a ;QLþg;
½DL

a ;QL
−�; QL

−½DL
a ;QL

−�; fDL
a ;QL

−g; QR
B½DL

a ;QL
−�; QR

BQ
L
−½DL

a ;QL
−�; QR

BfDL
a ;QL

−g;
½DL

a ;QL
F�; QL

F½DL
a ;QL

F�; fDL
a ;QL

Fg; QR
B½DL

a ;QL
F�; QR

BQ
L
F½DL

a ;QL
F�; QR

BfDL
a ;QL

Fg;
½DL

a ;QL
H�; QL

H½DL
a ;QL

H�; fDL
a ;QL

Hg; QR
B½DL

a ;QL
H�; QR

BQ
L
H½DL

a ;QL
H�; QR

BfDL
a ;QL

Hg;
ΠLþωL

a ; ΠL
−ω

L
a ; QR

BΠLþωL
a ; QR

BΠL
−ω

L
a ; ðC33Þ

while there are 24 matrices which carry the (0,1) IRR, and they may be listed as

ΠLþ½DR
a ;QR

B�; ΠLþQR
B½DR

a ;QR
B�; ΠLþfDR

a ;QR
Bg; QLþ½DR

a ;QR
B�; QLþQR

B½DR
a ;QR

B�;
QLþfDR

a ;QR
Bg; ΠL

−½DR
a ;QR

B�; ΠL
−QR

B½DR
a ;QR

B�; ΠL
−fDR

a ;QR
Bg; QL

−½DR
a ;QR

B�;
QL

−QR
B½DR

a ;QR
B�; QL

−fDR
a ;QR

Bg; QL
F½DR

a ;QR
B�; QL

FQ
R
B½DR

a ;QR
B�; QL

FfDR
a ;QR

Bg;
QL

H½DR
a ;QR

B�; QL
HQ

R
B½DR

a ;QR
B�; QL

HfDR
a ;QR

Bg; ΠLþωR
a ; ΠL

−ω
R
a ; QLþωR

a ;

QL
−ω

R
a ; QL

Fω
R
a ; QL

Hω
R
a : ðC34Þ

To describe the monopole sectors with the winding number (0,2), it is sufficient to make the exchange L ↔ R.
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