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This article is devoted to finding classical point-particle equivalents for the fermion sector of the
nonminimal standard model extension (SME). For a series of nonminimal operators, such Lagrangians are
derived at first order in Lorentz violation using the algebraic concept of Gröbner bases. Subsequently, the
Lagrangians serve as a basis for reanalyzing the results of certain kinematic tests of special relativity that
were carried out in the past century. Thereby, a number of new constraints on coefficients of the
nonminimal SME is obtained. In the last part of the paper we point out connections to Finsler geometry.
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I. INTRODUCTION

The quest for a violation of CPT and Lorentz invariance
in nature keeps going on. Violations of these fundamental
symmetries have evaded their experimental detection so far,
which shows that they are good symmetries in the range of
atomic energies to ultrahigh energies of cosmic rays.
However, there is no compelling physical reason why
these symmetries should be valid to the highest energies
imaginable, i.e., the Planck scale. Indeed, their violations
are motivated by various prototypes of fundamental theo-
ries such as string theory [1–3], loop quantum gravity [4,5],
noncommutative spacetimes [6,7], spacetime foams [8–10],
quantum field theories on spacetimes with nontrivial top-
ology [11,12], and Hořava-Lifshitz gravity [13].
The standard model extension (SME) is a model-

independent framework providing a parametrization of
all possible CPT- and Lorentz-violating operators that
may be present [14]. This concerns not only field operators
of mass dimension 3 or 4, which are comprised in the
minimal SME, but also those of higher dimension being
part of the nonminimal SME [15–17]. Its field-theory
description allows us to compute how measurable quan-
tities are affected by Lorentz violation, which is mandatory
for precise tests. Based on a theorem by Greenberg [18], all
possible CPT-violating operators are included in the SME.
Theoretical questions related to the SME at tree level in the
standard model couplings were tackled in [19–32] while
[33–47] deal with issues connected to quantum corrections.
To date, various minimal and a couple of nonminimal
coefficients have been searched for in experiments. A
yearly updated compilation of recent bounds can be found
in [48] showing that both the field is cutting edge and the
community is very active.
The SME does not only parametrize CPT and Lorentz

violation for particle fields but it includesLorentz violation in
gravity as well [49]. Phenomenological studies were

performed in [50–60], and a number of theoretical questions
were tackled in [61,62]. One of the most important results
obtained for the SME gravity sector is a no-go theorem
proven in [49]. The latter says that explicit Lorentz violation
is incompatible with the geometry of curved spacetime. That
becomesmanifest as a clash between the conversation law of
the energy-momentum tensor of matter and the Bianchi
identities of the curved spacetime manifold considered.
Physically, it means that momentum cannot be transferred
between fields and an explicitly Lorentz-violating back-
ground since the latter does not have any dynamics.
One possible solution is to consider spontaneous Lorentz

violation [63–68], which is dynamical, or to work within a
more general geometric setting than Riemannian geometry.
A promising extension might be Finsler geometry. The
latter is based on a generalized path length functional that
additionally depends on the angle between the line interval
and an intrinsic preferred direction on the manifold
[69–72]. The existence of a link between the SME and
Finsler geometry has been demonstrated, and it has been
explored in a series of articles. The starting point is a
connectionmade between the field-theory description of the
SME and the Lagrangian of a classical, relativistic, pointlike
particle [73]. A procedure was developed and applied to
obtain such Lagrangians for various sectors of the minimal
SME [73–76] and for a single coefficient of the nonminimal
SME [77]. It was shown that by a Wick rotation these
classical Lagrangians are connected to Finsler structures
[78,79]. In this context, thewell-knownRanders space plays
a role and two novel, interesting classes of Finsler spaces
were found,which are knownasb space [78] and the bipartite
spaces [79,80]. Reference [81] provides some models in
mechanics and electrodynamics related tob space and certain
aspects of its desingularization are discussed in [82]. The
article in [83] explores classical analogs of Lorentz-violating
photons, which are rays that satisfy the eikonal equation.
Furthermore, it demonstrates connections to Finsler
geometry that are applied to describe the propagation of*marco.schreck@ufma.br
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Lorentz-violating rays in gravitational backgrounds. In the
recent paper in [84] a scalar field theory is coupled to a
Randers spacetime and its physical implications are ana-
lyzed. Last but not least, there has been a couple of works
applying Finsler geometry to modify relativity, gravity, and
particle physics, amongst them [85–98]. However, these
articles are not directly related to the SME, although itmaybe
possible to map certain of the modifications to SME
coefficients. Particular mathematical aspects of (static)
Finsler spacetimes such as Killing vector fields, geodesics,
causality, and Cauchy hypersurfaces are discussed in the
recent article [99]. Furthermore, the authors comment on
what is known as the optical metric, which is a concept
connected to the studies in [83].
Our knowledge about Finsler structures in connection to

Lorentz violation is mainly restricted to the minimal SME.
Therefore, the current article is devoted to obtaining
classical point-particle analogs within its nonminimal
version. The paper is organized as follows. Section II
reviews the procedure of how to connect the SME field-
theory language to the description of particles in classical
physics. Thereby we introduce the algebraic concept of
Gröbner bases, which will be a formidable tool to obtain
classical Lagrangians in the nonminimal SME. Section III
demonstrates how such a Lagrangian is computed for a
particular nonminimal operator at first order in Lorentz
violation. Additionally, Lagrangians for other operators are
derived and presented. In Sec. IV we restrict these
Lagrangians to their isotropic subsets of coefficients and
investigate the modified kinematics of classical particles
described by such Lagrangians. These results at hand
enable us to obtain a series of new constraints for the
nonminimal SME, based on experimental results of kin-
ematic tests of special relativity. Last but not least, in Sec. V
it is demonstrated how the classical Lagrangians are
connected to Finsler geometry. We obtain a generic
Finsler structure and study some of its mathematical
properties. Finally, all results are concluded in Sec. VI.
Large formulas and calculational details worth mentioning
are relegated to Appendixes A–C. Throughout the paper,
natural units with ℏ ¼ c ¼ 1 will be used unless otherwise
stated. Furthermore, Greek indices always run from 0 � � � 3,
whereas Latin indices run from 1 � � � 3ð4Þ.

II. CLASSICAL LAGRANGIANS OF
THE SME FERMION SECTOR

The current article is based on the SME fermion sector
that was studied in [17] extensively. It is described by the
following action:

S ¼
Z

d4xL; ð2:1aÞ

L ¼ 1

2
ψ̄ðγμi∂μ −mψ þ Q̂Þψ þ H:c: ð2:1bÞ

All fields are defined in Minkowski spacetime with the
metric ημν having a signature ðþ;−;−;−Þ. The spin-1=2
fermion field is denoted by ψ, and γμ are the standard Dirac
matrices satisfying the Clifford algebra fγμ; γνg ¼ 2ημν14
with the unit matrix 14 in four-dimensional spinor space.
The fermion mass is called mψ . The piece Q̂ involves all
Lorentz-violating contributions of arbitrary mass dimen-
sions. It is convenient to decompose the latter into
operators of different spin structures using the Dirac
bilinears; cf. Eq. (2) in [17].
Because of the reasons outlined in the Introduction, it is

mandatory to have classical point-particle analogs of fields
in the SME. The procedure to obtain the corresponding
classical Lagrangians was developed in [73]. In the center
of the method there is a system of five polynomial
equations linking the four-momentum in the field-theory
language to the four-velocity of the relativistic, pointlike
particle in the classical regime. These equations are given
as follows:

RðpÞ ¼ 0; ð2:2aÞ

dp0

dpi
¼ −

ui

u0
; i ∈ f1; 2; 3g; ð2:2bÞ

L ¼ −pμuμ; pμ ¼ −
∂L
∂uμ ; ð2:2cÞ

where pμ is the four-momentum in the field-theory context
and uμ the four-velocity of the classical particle.
Equation (2.2a) describes the dispersion equation resulting
from the SME field theory. It involves the four-momentum
components, the particle mass mψ , and the Lorentz-
violating coefficients. For the minimal SME the polynomial
RðpÞ on its left-hand side is quartic in p0 at most. For the
nonminimal SME the degree of this polynomial can be
arbitrarily large, which makes it more involved to solve the
system of equations. Equation (2.2b) comprises three
individual relationships that describe a correspondence
between the group velocity of the quantum-theoretical
wave packet and the three-velocity of the pointlike particle.
The minus sign on the right-hand side has to be taken into
account to respect the different positions of the spatial
indices. Last but not least, Eq. (2.2c) is called Euler’s
formula. The latter holds since the Lagrangian is supposed
to be positively homogeneous of degree one in the velocity:
LðλuÞ ¼ λLðuÞ, λ > 0. Positive homogeneity is a very
reasonable assumption since it makes the corresponding
action parametrization invariant, which should hold for any
physical system anyhow. We see that there is a direct
correspondence between the four-momentum pμ that is
used in the field-theory language and the canonical
momentum computed via the first partial derivative of
the Lagrangian; see Eq. (2.2c). The latter involves a minus
sign to render the low-energy kinetic energy positive.
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The set of equations stated depends on nine dynamical
quantities: the four-momentum components pμ of the
physical field, the four-velocity components uμ of the
classical, relativistic particle, and the Lagrangian L. In
principle four of these equations are needed to eliminate the
four-momentum, and the remaining one allows for com-
puting L. The most straightforward procedure would be to
express the four-momentum by the four-velocity via
Eqs. (2.2a) and (2.2b) and to insert the result into
Eq. (2.2c). However, experience shows that in practice
this technique works only for very rare cases, e.g., certain

isotropic ones such as for the nonminimal coefficient mð5Þ
00

[77]. For the minimal cases studied in [73] no systematic
procedure was used to solve the equations. However, since
it is computationally more involved to solve the latter for
the nonminimal SME, it would be desirable to have such a
method available. Fortunately, sets of polynomial equations
and systematic solution techniques have been studied in the
fields of algebra and algebraic geometry for several
decades. The approach of dealing with Eqs. (2.2) will
involve a concept that is known as the Gröbner basis.

A. Gröbner basis

This section serves as a recapitulation of some basic
algebraic terms and as an introduction to the notion of
Gröbner bases. Consider a ring ðR;þ; ·Þ with an additionþ
and a multiplication · where these operations can act on
elements of the whole ring. An ideal I is a subset of R with
the following properties:
(1) ðI;þÞ forms a subgroup of ðR;þÞ,
(2) for all i ∈ I and r ∈ R we have both i · r ∈ I

and r · i ∈ I.
That second property means that whenever an element of

the group (regardless of whether it lies in the ideal or not) is
multiplied with an element of the ideal, the result will be in
the ideal. For this reason, an ideal is capable of doing more
than a group. Now, a Gröbner basis is a finite system of
generating functions of an ideal in the polynomial ring
K½X1 � � �Xk� over the field K where the Xi can be
interpreted as a set of k variables. Consider an ideal I that
is generated by a set of n polynomials ff1 � � � fng, i.e.,
I ≡ hf1 � � � fni⊆K½X1 � � �Xk�. An important algebraic
problem is to decide whether a certain polynomial g is
an element of the ideal, which means that it can be
written as a linear combination a1f1 þ � � � þ anfn where
a1 � � � an ∈ K½X1 � � �Xk�. In general, it is cumbersome to
take such a decision based on an arbitrary set of poly-
nomials ff1 � � � fng generating the ideal, i.e., the latter basis
may have been chosen badly to tackle this problem. The
Gröbner basis is much more suitable since it gives a simple
criterion to check whether g ∈ I (see [100] for an intro-
ductory text on Gröbner bases).
The concept of a Gröbner basis was introduced by

Buchberger in his Ph.D. thesis [101] where some years
later he named it after his supervisor Gröbner. At around

the same time, Hironaka developed similar notions that he
needed to prove his famous theorem for algebraic varieties
[102]. The Russian mathematician Gjunter had already
thought about related ideas in the early 20th century, and
his papers have been rediscovered recently; cf. [103] and
references therein.
We do not want to delve into the mathematical theory of

Gröbner bases. For the scope of the paper it is important
that finding a Gröbner basis allows us to solve a polynomial
system of equations efficiently. From the perspective of
mathematics, the solutions of such a system depend on the
generated ideal only but not on the generating functions
chosen. Hence, replacing the (probably) unsuitable basis
obtained from the equations, as they stand, by a Gröbner
basis does not change the solution. Using the Gröbner
basis, the system can be solved step by step for each
variable. The usefulness of this approach will become
evident in practice.
One of the most important of Buchberger’s contributions

was the algorithm that he developed to compute a Gröbner
basis. Nowadays this algorithm or improved versions
of it have already been implemented in various computer
algebra systems. We will mostly work with MATHEMATICA

and perform some cross-checks with MAPLE. For the
algorithm it is essential to introduce an ordering procedure
for the individual monomials that appear in the equations,
based on an ordering of the variables such as x1 > x2 > � � �.
There are several ordering conventions, e.g., the lexico-
graphic or the degree reverse lexicographic one. The
lexicographic scheme was used by Buchberger in his
Ph.D. thesis, but it makes computations quite tedious.
Nevertheless it is the default ordering used by
MATHEMATICA, and it suffices for our purposes.

B. Example of the minimal SME

As physical quantities are real numbers in general, we
have to consider the polynomial ring R½p0; p1; p2; p3; L�.
The coefficients of polynomial equations that are usually
investigated in mathematics are mere numbers. However,
Eqs. (2.2) involve the four-velocity components uμ, the
particle mass mψ , and at least one Lorentz-violating
coefficient, which are taken to be arbitrary at first.
Therefore, the Gröbner bases will comprise these quantities
as well, which increases the computing time. As a first
example, a minimal fermionic framework shall be consid-
ered that is described by Eq. (2.1) with Q̂jâð3Þμ ¼ −að3Þμγμ.
The corresponding field-theory operator is CPT-odd and of
mass dimension 3. This makes the component coefficients
að3Þμ transform as an observer four-vector with each
component having mass dimension 1.
The corresponding dispersion equation involves the

determinant of the left-hand side of the modified Dirac
equation; cf., for example, Eq. (31) in [17]. The resulting
equation has both positive- and negative-energy solutions

CLASSICAL LAGRANGIANS AND FINSLER STRUCTURES … PHYSICAL REVIEW D 93, 105017 (2016)

105017-3



where the latter correspond to the energy of antiparticles
after the Feynman-Stückelberg reinterpretation [17,29]. For
the special case under consideration, the particle energy is
well known to take the following form:

~EðþÞ − að3Þ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − að3ÞÞ2 þm2

ψ

q
; ð2:3Þ

where p is the spatial momentum and a the spatial part of

the vector coefficient að3Þμ . Since in Minkowski spacetime
these component coefficients just lead to shifts in energy
and spatial momentum, the coefficients for a single particle
species cannot be observed in principle. Note that in the
context of gravity the situation is different [52], which is
why the corresponding framework is still interesting. Now,
Eqs. (2.2) read as follows:

0 ¼ p2
0 − 2að3Þ0 p0 − p2

1 þ 2að3Þ1 p1 − p2
2 þ 2að3Þ2 p2 − p2

3

þ 2að3Þ3 p3 þ ðað3Þ0 Þ2 − ðað3ÞÞ2 −m2
ψ ; ð2:4aÞ

0 ¼ u1p2
0 þ u0p0p1 − ðað3Þ1 u0 þ að3Þ0 u1Þp0; ð2:4bÞ

0 ¼ u2p2
0 þ u0p0p2 − ðað3Þ2 u0 þ að3Þ0 u2Þp0; ð2:4cÞ

0 ¼ u3p2
0 þ u0p0p3 − ðað3Þ3 u0 þ að3Þ0 u3Þp0; ð2:4dÞ

0 ¼ u0p0 þ u1p1 þ u2p2 þ u3p3 þ L: ð2:4eÞ

Four of them have a degree of 2, whereas the final one
has a degree of 1. With the algorithm implemented in
MATHEMATICA, the Gröbner basis can be computed readily.
Thereby we follow two different possibilities. The first is to
carry out the computation based on the variable ordering
p0 > p1 > p2 > p3 > L. This result involves 45 polyno-
mials. Most of them are quite lengthy and they comprise all
variables, which is why they are not very helpful to obtain
the solution of the system. However, there is one particular
polynomial that involves the Lagrangian only, which allows
for computing L immediately,

Lâð3Þμ� ¼ �mψ

ffiffiffiffiffi
u2

p
− að3Þμ uμ: ð2:5Þ

The second possibility investigated was the opposite
variable ordering L > p3 > p2 > p1 > p0. Here the cal-
culation of the Gröbner basis is much faster, and the result
has 12 polynomials only that are much simpler. The
difference to the first method is that among these poly-
nomials there are none that involve only the Lagrangian.
However, a subset of the polynomials can be solved
successively with respect to all the variables in analogy
to a linear system of equations that was brought into
triangular form,

p0 ¼ að3Þ0 �mψu0ffiffiffiffiffi
u2

p ; ð2:6aÞ

p1 ¼ −
u1

u0
p0 þ að3Þ1 þ að3Þ0 u1

u0
; ð2:6bÞ

p2 ¼ −
u2

u0
p0 þ að3Þ2 þ að3Þ0 u2

u0
; ð2:6cÞ

p3 ¼ −
u3

u0
p0 þ að3Þ3 þ að3Þ0 u3

u0
; ð2:6dÞ

L ¼ −ðp0u0 þ p1u1 þ p2u2 þ p3u3Þ: ð2:6eÞ

Inserting these equations into each other step by step leads
to the same result as given in Eq. (2.5), which corresponds
to the Lagrangian obtained in [73]. The particle-antiparticle
property of the fermionic field theory manifests in two
distinct Lagrangians having opposite signs before the first
term. The resulting classical Lagrangian is related to what is
called a Randers structure in Euclidean geometry. We will
come back to this point in more detail in Sec. V.
From the procedure intimated we learn several things.

The variable ordering with p0 the greatest and L the
smallest leads to an equation that can be solved directly
to obtain the Lagrangian. The drawbacks are that it takes
long to obtain the Gröbner basis and the latter involves a
large number of complicated polynomials that are not
needed for our purpose. The reverse ordering of the
variables with L the greatest and p0 the smallest results
in a system of equations that can be solved easily step by
step to compute L at the end. This ordering is preferable as
it produces results quickly and it does not lead to plenty of
useless overhead. Furthermore, each of the equations can
be simplified on its own, which will be helpful for the
nonminimal cases to be studied. Hence, we will work with
the second ordering of variables. Other minimal frame-
works such as the case of the bμ coefficients were tested
successfully using the same algorithm, which opens the
pathway to study the nonminimal SME.

III. CLASSICAL LAGRANGIANS
FOR THE NONMINIMAL SME

The computational technique outlined in the last section
will now be applied to the nonminimal SME. The first
Lagrangian for a nonminimal fermionic framework was
obtained in [77] for the single nonvanishing coefficient

mð5Þ
00 . The latter is associated with a CPT-even Lorentz-

violating operator of mass dimension 5. It was chosen
because it leads to an isotropic dispersion relation, and it
was thought to be the simplest case that could be inves-
tigated in the nonminimal SME fermion sector. The
calculation was carried out nonperturbatively in Lorentz
violation resulting in a quite complicated Lagrangian
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whose properties were difficult to understand. An expan-

sion of L in mð5Þ
00 at first order produced a much more

illuminating result that was suitable to be used in a physics
context. For example, the behavior of the corresponding
charged classical particle in electromagnetic fields was
studied with this first-order Lagrangian.
Therefore, right at the start we will perform an expansion

of the polynomial equations at first order in Lorentz
violation. Note that the validity of such an expansion in
the nonminimal framework breaks down when the particle
energy gets high enough, e.g., comparable to a certain
power of the inverse Lorentz-violating coefficients
involved. This is not considered to be a problem since
for classical physics to be valid, the energy should not be
too high anyhow; i.e., it should be much lower than the
typical energies of a regime where quantum effects will
play a role.

A. Five-dimensional part of the scalar operator m̂

First of all, we are interested in the operator
Q̂jm̂ ¼ −m̂14. The latter transforms as an observer
Lorentz scalar, it is CPT-even, and it only exists in the
nonminimal SME. Hence, there is no Lorentz-violating
dimension-3 analog. It can be decomposed into contribu-
tions of mass dimension d according to

m̂ ¼
X
d odd

m̂ðdÞ ≡ X
d odd

mðdÞα1���αd−3pα1 � � �pαd−3 : ð3:1Þ

In this paper we restrict ourselves to the lowest-dimensional
contributions of the nonminimal SME, which in this case is
the dimension-5 operator m̂ð5Þ ≡mð5Þμνpμpν including the

16 component coefficients mð5Þ
μν that are of mass dimension

−1. The set of coefficients mð5Þ
μν can be regarded as a

symmetric (4 × 4) matrix; i.e., only 10 coefficients are
independent of each other. In analogy to [77], the compo-
nent coefficients are put into distinct groups. The single

coefficient mð5Þ
00 , which was the base of the studies carried

out in [77], will be called “temporal” as it involves two

timelike indices. The set of three coefficients mð5Þ
0i with i ∈

f1 � � � 3g are denoted as “mixed” and the set of six

independent coefficientsmð5Þ
ij for i; j ∈ f1 � � � 3g are named

“spatial.” Such a classification of component coefficients
has proven to be reasonable because the structure of the
resulting equations for the groups differ from each other.
Similar decompositions will be performed for component
coefficients of other Lorentz-violating operators consid-
ered later.
First of all we intend to complement the results given in

[77], i.e., the remaining component coefficients of m̂ð5Þ will
be taken into account. In the latter reference an observer

frame was considered with mð5Þ
00 being the only nonvanish-

ing coefficient. The first-order expansion of the

corresponding Lagrangian is ready to be taken from
Eq. (6.1) in [77],

Lm̂ð5Þ�jtemp ¼ �mψ

� ffiffiffiffiffi
u2

p
þ mψffiffiffiffiffi

u2
p mð5Þ

00 ðu0Þ2 þ…

�
; ð3:2Þ

where the ellipses indicate higher-order contributions in

mψm
ð5Þ
00 . Next, we consider an observer frame with the three

nonvanishing mixed coefficients mð5Þ
0i . At first order in

Lorentz violation, Eqs. (2.2) read as follows:

0 ¼ p2
0 þ 4mψm

ð5Þ
01 p0p1 þ 4mψm

ð5Þ
02 p0p2

þ 4mψm
ð5Þ
03 p0p3 − p2 −m2

ψ ; ð3:3aÞ

0 ¼ ðu1 − 2mψm
ð5Þ
01 u

0Þp2
0 þ ðu0 þ 2mψm

ð5Þ
01 u

1Þp0p1

þ 2mψm
ð5Þ
02 u

1p0p2 þ 2mψm
ð5Þ
03 u

1p0p3; ð3:3bÞ

0 ¼ ðu2 − 2mψm
ð5Þ
02 u

0Þp2
0 þ 2mψm

ð5Þ
01 u

2p0p1

þ ðu0 þ 2mψm
ð5Þ
02 u

2Þp0p2 þ 2mψm
ð5Þ
03 u

2p0p3; ð3:3cÞ

0 ¼ ðu3 − 2mψm
ð5Þ
03 u

0Þp2
0 þ 2mψm

ð5Þ
01 u

3p0p1

þ 2mψm
ð5Þ
02 u

3p0p2 þ ðu0 þ 2mψm
ð5Þ
03 u

3Þp0p3; ð3:3dÞ

0 ¼ p0u0 þ p1u1 þ p2u2 þ p3u3 þ L: ð3:3eÞ

Although the framework considered is nonminimal the
individual equations are mostly quadratic since higher-
order terms in Lorentz violation have been omitted. The
polynomials involve additional products of the field energy
and the spatial momentum components, though. Now the
Gröbner basis of the ideal generated by these polynomials
can be computed. It comprises 66 polynomials, but the
computation time stays within reasonable limits. We pick
the useful polynomials of the basis that allow for a
successive solution of the system. This procedure is
demonstrated in the first part of Appendix A in detail.
At first order in Lorentz violation the resulting Lagrangian
reads

Lm̂ð5Þ�jmixed ¼ �mψ

� ffiffiffiffiffi
u2

p
þ 2mψffiffiffiffiffi

u2
p

X
i

mð5Þ
0i u

i þ…

�
; ð3:4Þ

with the ellipses standing for higher-order terms ofmψm
ð5Þ
0i .

Now a similar computation can be carried out in an

observer frame where the six coefficients mð5Þ
ij involving

only spatial indices are nonvanishing; cf. the second part of
Appendix A. The computed Lagrangian is given by
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Lm̂ð5Þ�jspatial ¼ �mψ

� ffiffiffiffiffi
u2

p
þ mψffiffiffiffiffi

u2
p

X
i;j

mð5Þ
ij u

iuj þ…

�
:

ð3:5Þ

Comparing Eqs. (3.2)–(3.5) with each other we see that
these can be generalized to an arbitrary observer frame

involving the whole set of 10 independent coefficientsmð5Þ
μν .

The result can be cast into the form

Lm̂ð5Þ� ¼�mψ

� ffiffiffiffiffi
u2

p
þmψm̂

ð5Þ
�ffiffiffiffiffi

u2
p þ…

�
; m̂ð5Þ

� ≡mð5Þ
μν uμuν:

ð3:6Þ

Note the asterisk that has been introduced to distinguish

mð5Þ
μν uμuν from the corresponding combination in momen-

tum space, i.e., m̂ð5Þ ≡mð5Þμνpμpν. A few remarks are in
order. First, there are two Lagrangians differing by a global
sign. The plus sign can be understood to be associated with
particles where the minus sign is associated with anti-
particles in the corresponding quantum theory. Second, for
vanishing Lorentz-violating component coefficients, the
standard result L� ¼ �mψ

ffiffiffiffiffi
u2

p
is recovered. Third, the

Lorentz-violating contribution involves the dimensionless
product of the particle mass and the Lorentz-violating
coefficients. Furthermore, the velocity dependence of the
novel contribution differs from that of the standard result.
Fourth, the Lorentz-violating part can be written in a very

compact form where the recently introduced symbol m̂ð5Þ
� is

the mirror image of m̂ð5Þ in momentum space. To obtain the
former from the latter all four-momenta are replaced by
four-velocities and the index positions are adapted. Fifth,
for the Lorentz-violating part to be still perturbative, u2

should be away from zero far enough. This means that the
magnitude of the particle velocity is supposed to be small
enough compared to the speed of light. This is the analog of
the claim for particle momenta and energies to be much
smaller than certain inverse powers of SME coefficients.
As a cross-check for Eq. (3.6), the associated canonical

momentum can be computed according to pμ ¼ −∂L=∂uμ.
It has to fulfill Eqs. (2.2) for the full set of 10 independent

component coefficients mð5Þ
μν at first order in these coef-

ficients. Performing this computation numerically with our
computer algebra system chosen shows that this is the case.

B. Leading nonminimal parts
of the operators â, ĉ, ê, and f̂

The method that we use for computing classical
Lagrangians of the nonminimal SME fermion sector was
demonstrated in the last section in detail, based on the
dimension-5 part of the scalar operator m̂. There are other
interesting operators whose classical-particle equivalents
will be obtained in the current section. This concerns the

leading nonminimal contributions of the vectors âμ, ĉμ, the
scalar ê, and the pseudoscalar f̂; cf. Table I in [17] for a
summary of their properties. The dimensional decomposi-
tions for these operators read as follows:

âμ ¼
X
d odd

âðdÞμ ≡ X
d odd

aðdÞμα1���αd−3pα1 � � �pαd−3 ; ð3:7aÞ

ĉμ ¼
X
d even

ĉðdÞμ ≡ X
d even

cðdÞμα1���αd−3pα1 � � �pαd−3 ; ð3:7bÞ

ê ¼
X
d even

êðdÞ ≡ X
d even

eðdÞα1���αd−3pα1 � � �pαd−3 ; ð3:7cÞ

f̂ ¼
X
d even

f̂ðdÞ ≡ X
d even

fðdÞα1���αd−3pα1 � � �pαd−3 : ð3:7dÞ

As before, we consider field theories based on the action of
Eq. (2.1) for four different choices of the Lorentz-violating
part Q̂,

Q̂jâð5Þμ ¼ −âð5Þμγμ ¼ −að5Þμνϱγμpνpϱ; ð3:8aÞ

Q̂jĉð6Þμ ¼ ĉð6Þμγμ ¼ cð6Þμνϱσγμpνpϱpσ; ð3:8bÞ

Q̂jêð6Þ ¼ êð6Þ14 ¼ eð6Þμνϱpμpνpϱ14; ð3:8cÞ

Q̂jf̂ð6Þ ¼ if̂ð6Þγ5 ¼ ifð6Þμνϱpμpνpϱγ5; ð3:8dÞ

where γ5 ≡ iγ0γ1γ2γ3. The computations are completely
analogous to what we performed for m̂ð5Þ in Sec. III A. The
only difference is that they require more resources and time.
This is especially the case for ĉð6Þμ and f̂ð6Þ. At first order in
Lorentz violation the Lagrangians obtained from the
Gröbner bases can be brought into the following form:

Lâð5Þμ� ¼mψ

�
�

ffiffiffiffiffi
u2

p
−
mψ â

ð5Þ
�

u2
þ…

�
; âð5Þ� ≡að5Þμνϱuμuνuϱ;

ð3:9aÞ

Lĉð6Þμ�¼�mψ

� ffiffiffiffiffi
u2

p
−
m2

ψ ĉ
ð6Þ
�

ðu2Þ3=2þ…

�
; ĉð6Þ� ≡cð6Þμνϱσuμuνuϱuσ;

ð3:9bÞ

Lêð6Þ� ¼mψ

�
�

ffiffiffiffiffi
u2

p
þm2

ψ ê
ð6Þ
�

u2
þ…

�
; êð6Þ� ≡eð6Þμνϱuμuνuϱ;

ð3:9cÞ

Lf̂ð6Þ�¼�mψ

� ffiffiffiffiffi
u2

p
þm4

ψðf̂ð6Þ� Þ2
2ðu2Þ5=2 þ…

�
; f̂ð6Þ� ≡fð6Þμνϱuμuνuϱ:

ð3:9dÞ
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Using pμ ¼ −∂L=∂uμ, these results were checked numeri-
cally to fulfill Eqs. (2.2) at first order in Lorentz violation.
Several remarks are in order. First, all Lagrangians reduce
to the standard result L� ¼ �mψ

ffiffiffiffiffi
u2

p
for vanishing com-

ponent coefficients. Second, because of observer Lorentz
invariance, all relativistic Lagrangians depend on Lorentz
scalars only such as u2 or total contractions of the
component coefficients with four-velocities. The latter
are analogs of the Lorentz-violating operators in momen-
tum space that appear in the dimensional expansions of
Eqs. (3.7). The dimensions of the Lorentz-violating con-
tributions with respect to the velocity are consistent with
the standard term. For example, in Eq. (3.9a) the compo-
nent coefficients are contracted with three velocity four-
vectors, which is why there is no choice other than u2 in the
denominator. Third, since a Lagrangian is of mass dimen-
sion 1, the Lorentz-violating contributions must involve
additional powers of the fermion mass. Fourth, the two
distinct signs, which are connected to the particle-
antiparticle solutions in field theory, appear globally for
the Lagrangians of the m̂, ĉ, and f̂ operators, whereas they
appear before the standard term only in the case of the â
and ê operators. Fifth, according to Eq. (27) in [17], several
operators are related to each other. This explains the
similarities between Eq. (3.9a), Eq. (3.6c) and Eq. (3.6),
Eq. (3.9b). We will come back to this point in more detail
below. Sixth, it is known that the minimal ĉ and f̂ operators

are linked by the perturbative relationship cð4Þμν ≈
−fð4Þμ fð4Þν =2 [104]. Comparing Eq. (3.9b) to Eq. (3.9d) it

is evident that a similar connection holds for ĉð6Þ� and f̂ð6Þ� , at
least at first order in Lorentz violation,

ĉð6Þ� ¼ −
1

2
ðf̂ð6Þ� Þ2 þ…: ð3:10Þ

Because of dimensional consistency, the powers of mψ and
u2 have to be adapted in the corresponding terms of the
Lagrangians. Last but not least, in [88] a classical
Lagrangian was obtained for a particular fermion
dispersion relation modified by a nonminimal operator;
cf. the two-dimensional restriction given by their Eq. (22).
The form of the dispersion law suggests that this is a special

case of âð5Þμ with the identification að5Þ111 ¼ −α=ð2MÞ and
all remaining component coefficients set to zero. Here α is a
dimensionless parameter and M the scale related to new
physics modifying the dispersion relation (presumably the
Planck scale). The corresponding classical Lagrangian is
given by their Eq. (28). Here it must be taken into account
that their convention differs from ours by a global minus
sign of the Lagrangian. Hence, their result can be found as a
special case of the second Lagrangian given in Eq. (3.9a)
when the global sign is adapted.
In [73] various relativistic point-particle Lagrangians of

the minimal SME were obtained. For our purpose, their

Eqs. (8), (9), and (10) are essential, giving the Lagrangians
for the minimal â, ĉ, ê, and f̂ operators. A first-order
expansion in Lorentz violation leads to the results

Lâð3Þμ� ¼ �mψ

ffiffiffiffiffi
u2

p
− âð3Þ� ; âð3Þ� ≡ að3Þμ uμ; ð3:11aÞ

Lĉð4Þμ ¼ −mψ

� ffiffiffiffiffi
u2

p
−

ĉð4Þ�ffiffiffiffiffi
u2

p þ…

�
; ĉð4Þ� ≡ cð4Þμν uμuν;

ð3:11bÞ

Lêð4Þ ¼ mψ ½−
ffiffiffiffiffi
u2

p
þ êð4Þ� þ…�; êð4Þ� ≡ eð4Þμ uμ;

ð3:11cÞ

Lf̂ð4Þ ¼ −mψ

� ffiffiffiffiffi
u2

p
þ ðf̂ð4Þ� Þ2

2
ffiffiffiffiffi
u2

p þ…

�
; f̂ð4Þ� ≡ fð4Þμ uμ;

ð3:11dÞ

where for the last three only one of the two possible signs is
given. Note that the first of these results was also obtained
in Eq. (2.5) to demonstrate the method of Gröbner bases for
a simple example. The latter Lagrangian does not have
higher-order terms in Lorentz violation. Comparing these
minimal results to their nonminimal analogs of Eq. (3.9)
reveals a very similar structure.
Another excellent cross-check for the results is that four

of the Lagrangians can be reduced to two by resorting to the
effective coefficients in the SME fermion sector. Using
field redefinitions in the effective field-theory context it was
shown that certain sets of component coefficients combine
to form observables. The latter combinations are called
effective coefficients. For us the first two of Eqs. (27) in
[17] are important. This concerns the operators êð4Þ, âð5Þ

and m̂ð5Þ, ĉð6Þ. The resulting Lagrangians are expressed in
terms of the effective a and c coefficients as follows:

L
êð4Þ
âð5Þ ≡mψ

�
�

ffiffiffiffiffi
u2

p
−
mψ â

ð5Þ
�

u2
þ êð4Þ� þ…

�

¼ mψ

�
�

ffiffiffiffiffi
u2

p
−
mψ â

ð5Þ
�

u2
þ ημνuμuνê

ð4Þ
�

u2
þ…

�

¼ mψ

�
�

ffiffiffiffiffi
u2

p
−
mψ â

ð5Þ
eff;�

u2
þ…

�
≡ Lâð5Þeff ; ð3:12aÞ

and
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L
m̂ð5Þ
ĉð6Þ ≡�mψ

� ffiffiffiffiffi
u2

p
−
m2

ψ ĉ
ð6Þ
�

ðu2Þ3=2 þ
mψm̂

ð5Þ
�ffiffiffiffiffi

u2
p þ…

�

¼ �mψ

� ffiffiffiffiffi
u2

p
−
m2

ψ ĉ
ð6Þ
�

ðu2Þ3=2 þ
mψημνuμuνm̂

ð5Þ
�

ðu2Þ3=2 þ…

�

¼ �mψ

� ffiffiffiffiffi
u2

p
−
m2

ψ ĉ
ð6Þ
eff;�

ðu2Þ3=2 þ…

�
≡ Lĉð6Þeff ; ð3:12bÞ

with

âð5Þeff;� ≡ ðað5Þeff Þμνϱuμuνuϱ; ĉð6Þeff;� ≡ ðcð6Þeff Þμνϱσuμuνuϱuσ:
ð3:12cÞ

In the definition of the effective coefficients, component
coefficients being part of different operators have different
mass dimension. According to the first of Eqs. (27) in [17],
the operator êð6Þ is linked to the operator âð7Þμ. Since we did
not derive the classical Lagrangian based on âð7Þμ, we
cannot express Eq. (3.9c) via effective coefficients. The
Lagrangian based on f̂ð6Þ, Eq. (3.9d), plays a special role as
well. The operator f̂ is known not to contribute to
observables at linear order in Lorentz violation. This is
why effective coefficients comprising components of f̂
were not introduced in [17], restricting the analysis mainly
to linear order in Lorentz violation, which is difficult
enough.

C. Isotropic parts

In the coming section, the classical Lagrangians derived
will serve as the base for phenomenological studies. To
establish a connection with experiment we choose con-
venient sets of coefficients, which are the isotropic ones;
cf. Eqs. (97) and (98) in [17]. In suitable observer frames,
the Lagrangians of Eq. (3.9) read (see Appendix B for
calculational details)

L
∘ âð5Þeff ¼ −mψ

n ffiffiffiffiffi
u2

p
þmψ ½a∘ ð5Þ0 ðu0Þ2 þ a

∘ ð5Þ
2 u2� u

0

u2

o
;

ð3:13aÞ

L
∘ ĉð6Þeff ¼ mψ

�
−

ffiffiffiffiffi
u2

p
þm2

ψ ½c∘ ð6Þ0 ðu0Þ4 þ c
∘ ð6Þ
2 ðu0Þ2u2

þ c
∘ ð6Þ
4 u4� 1

ðu2Þ3=2
�
; ð3:13bÞ

L
∘ êð6Þ ¼mψ

�
−

ffiffiffiffiffi
u2

p
þm2

ψ ½e∘ ð6Þ0 ðu0Þ2þe
∘ ð6Þ
2 u2�u

0

u2

�
; ð3:13cÞ

L
∘ f̂ð6Þ ¼ −mψ

� ffiffiffiffiffi
u2

p
þm4

ψ ½f
∘ ð6Þ
0 ðu0Þ2 þ f

∘ ð6Þ
2 u2�2 ðu0Þ2

2ðu2Þ5=2
�
:

ð3:13dÞ

The isotropic contributions are denoted by a ring diacritic,
which is a standard notation in this context. The
Lagrangians with a minus sign before the standard term
are given as these will be needed in what follows. The
isotropic Lagrangians depend on u0 and juj only, as
expected. We want to remind the reader that the isotropic
coefficients for f̂ and ê alone (with the latter not being
comprised in the effective operator âeff ) were not intro-
duced in [17]. However, the index structure of both types of
component coefficients is the same as for the operator âð5Þμ.
Hence, we had to introduce

e
∘ ð6Þ
0 ≡ eð6Þ000; e

∘ ð6Þ
2 ≡ eð6Þ0jj; ð3:14aÞ

f
∘ ð6Þ
0 ≡ fð6Þ000; f

∘ ð6Þ
2 ≡ fð6Þ0jj: ð3:14bÞ

IV. EXPERIMENTAL SENSITIVITY ON
LORENTZ-VIOLATING COEFFICIENTS

In the current section, we will obtain experimental
sensitivities on a subset of nonminimal SME coefficients
based on the Lagrangians previously derived. Since these
Lagrangians were obtained to do classical physics based on
the field-theory concept of the SME, we have to consider
kinematic experiments. Reliable tests of particle kinematics
for velocities approaching the speed of light were carried
out in the first and early second half of the 20th century.
Later on, special relativity was commonly accepted to be
the correct theory describing nature, which was why these
classical kinematic tests ceased to be made. Because of an
active search for CPT and Lorentz violation over the recent
decades, tests of special relativity have had their revival.
However, the novel experiments performed rely on differ-
ent techniques such as sophisticated optical setups or
ultrahigh energetic cosmic particles. In accelerator and
collider physics, the laws of special relativity are mostly
used as an input instead of testing them directly.
So far, all Lagrangians have been given for arbitrary

parametrizations of particle trajectories. As from now,
particle worldlines will be parametrized such that u0 ¼ c
and u ¼ v where c is the (reinstated) speed of light and v is
the three-velocity of the particle. Introducing the Lorentz
factor γ ≡ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
with β≡ jvj=c≡ v=c (where pos-

sible confusions with the Dirac matrices shall be avoided)
one obtains

L
∘ ô ¼ mψc2

�
−
1

γ
þ ðmψc2Þr

ðiÞ
1 rðiÞ2 ½i∘0 þ i

∘
2v2 þ i

∘
4v4�r

ðiÞ
3 γr

ðiÞ
4

�
:

ð4:1Þ
For the five operators m̂, âμ, ĉμ, ê, and f̂ considered, the
Lagrangian has been written in a generic form. Here ô
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stands for one of these operators. What has to be inserted

for the wildcard character i and the variables rðiÞk can be
found in Table I. These Lagrangians describe the kinemat-
ics of a free, classical particle subject to isotropic Lorentz
violation based on ô.

A. Kinematic tests of Lorentz invariance

In the kinematic tests of special relativity to be consid-
ered below, charged particles such as electrons and protons
were set up to propagate through both electric and magnetic
fields. Hence, it is necessary to couple particles based on
the free Lagrangian of Eq. (4.1) to an external electromag-
netic field with four-potential ðAμÞ ¼ ðϕ;AÞ. Here ϕ is the
scalar potential and A the vector potential. To do so, the
classical point-particle previously considered is now
assigned an electric charge q (cf. also [76,77]). The
physical situation is described by a Lagrangian of the form

Lem ¼ L
∘ ô þ qv ·A − qϕ: ð4:2Þ

The corresponding Euler-Lagrange equations are then
given by

d
dt
∂Lem

∂v ¼ ∂Lem

∂x ; ð4:3aÞ

d
dt
∂L∘ ô
∂v ¼ dp

dt
¼ d

dt

�∂L∘ ô
∂v

v
v

�
¼ qv ×Bþ qE; ð4:3bÞ

where p is the particle three-momentum. Consider a
magnetic field pointing along the third axis of the coor-
dinate system: B ¼ Bêz. The magnitude of the momentum
does not change, which is why we obtain

1

v
∂L∘ ô
∂v _v ¼ qBv × êz: ð4:4Þ

This equation is solved by a circular trajectory where the
following connection holds between its radius RðBÞ and the
remaining quantities:

qBRðBÞ ¼ −
∂L∘ ô
∂v ¼ −p; ð4:5Þ

with the magnitude p of the three-momentum. Similarly, in
a radial electric field E ¼ Eêr, a charged particle moves on
a circle as well since the electric field generates a central
force. Then the magnitude of the particle momentum stays
constant again, and the equations of motion are

1

v
∂L∘ ô
∂v _v ¼ qEêr: ð4:6Þ

In analogy to the case of a homogeneous magnetic field, the
radius RðEÞ of the trajectory is connected with the electric
field strength E and the remaining physical quantities by

qERðEÞ ¼−v
∂L∘ ô
∂v ¼−pv¼−

p2

mψðvÞ
; mψðvÞ≡p

v
¼1

v
∂L∘ ô
∂v ;

ð4:7Þ

where we have introduced the modified relativistic mass
mψ ðvÞ. There is some important information contained in
Eqs. (4.5) and (4.7). Quantities that can be measured (the
field strengths and the trajectory radius) or quantities
known to a high level of accuracy (particle charge) can
be found on the left-hand sides of these equations. The
right-hand sides comprise the particle dynamics affected by
Lorentz violation. The ultimate goal is to detect non-
vanishing Lorentz-violating coefficients that modify the
particle dynamics.
Because of the reasons mentioned at the beginning of the

current section, we will have to rely on research carried out
decades ago to obtain experimental sensitivities. Although
there is a lot of potential in astrophysical experiments, our
preference is on laboratory tests. The latter run in a
controlled environment, and there are fewer assumptions
that must be used as an input, which leads to more
conservative constraints. Our first choices are experiments
of the type performed in [105,106]. The first of these papers
describes the measurement of electron velocities and
masses for three different β-decay lines of radium. To do
so, electrons are guided through a homogeneous magnetic
and a cylindrical electric field where the measurements in
the magnetic field had been done elsewhere. The paper
focuses on the propagation of electrons through a 90°
segment of a cylindrical capacitor to obtain both the
velocities and masses of electrons according to
Eqs. (4.5) and (4.7). The experimenters put much rigor
into keeping their setup stable, especially the distance
between the capacitor plates. Therefore, they are able to
demonstrate the validity of Einstein’s formula for mass
increase as a function of velocity to an accuracy of
about 1%.
In [106] an apparatus is used to guide electrons and

protons through a 180° bending magnet and a 90° segment
of a cylindrical capacitor. First, electrons are sent through
the apparatus with the magnetic field fixed to a suitable

TABLE I. Parameters for the generic Lagrangian of Eq. (4.1)
for each of the operators in the first column.

Operator ðiÞ rðiÞ1 rðiÞ2 rðiÞ3 rðiÞ4

âð5Þμeff
að5Þμ 1 −1 1 2

ĉð6Þμeff
cð6Þμ 2 1 1 3

êð6Þ eð6Þ 2 1 1 2

f̂ð6Þ fð6Þ 4 −1=2 2 5
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value and the electric field varied such that the electrons hit
the detector. Thereby the electron momentum is obtained
with Eq. (4.5). The corresponding magnetic field value Be,
which will be needed later, is measured with the proton
resonance method. Now it is possible to compute the
electron mass from the electric field strength according
to Eq. (4.7). However, since the latter is difficult to
measure, an approach is followed different from [105].
The whole experiment is repeated for protons; i.e., protons
are used as a reference. Upon sending protons through the
apparatus the electric field is kept fixed and the magnetic
field is adjusted until the protons are detected. With this
being the case, one gains knowledge of the proton
momentum by measuring the magnetic field Bp with the
proton resonance method again. Then the electron mass is
computed from Eq. (4.7) with the electric field eliminated.
Since protons are much more massive than electrons, they
are nonrelativistic, and it suffices to consider relativistic
corrections to their mass at leading order. The measurement
technique is sophisticated, and various error studies are
performed. This leads to a result that is a factor of around
20 better in comparison to [105].

B. Constraints on Lorentz violation

To obtain experimental sensitivities based on tests of
relativistic kinematics described before, the modified par-
ticle momentum is needed. The latter is obtained directly
from the Lagrangian. The result can be written more
conveniently in terms of powers of the Lorentz factor
where the related parameters tðiÞk are listed in Table II,

p
∘ ô ¼ ∂L∘ ô

∂v ¼ γmψv

�
1þ ðmψc2ÞαðiÞ

X6
k¼0

sðiÞk γk
�
: ð4:8Þ

A very useful dimensionless quantity, which was intro-
duced in [105], is

Y ≡ mψðvÞ=mψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2=ðm2

ψc2Þ
q ¼ p=ðmψvÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ p2=ðm2
ψc2Þ

q : ð4:9aÞ

For the special Lagrangians considered it reads as follows:

Y
∘ ô ¼ 1þ ðmψc2ÞαðiÞ

X6
k¼0

sðiÞk γk−2 þ…: ð4:9bÞ

For CPT and Lorentz symmetry conserved, it holds that
Y ¼ 1; i.e., deviations from Y ¼ 1 would indicate non-
vanishing coefficients of the SME. For the isotropic subsets
of the nonminimal operators considered, Y was computed
exactly in β≡ v=c and at leading order in Lorentz

violation. Thereby the same parameters sðiÞk that were
comprised in the particle momentum of Eq. (4.8) reappear.
In [106] measurements for three different values of β were
performed, and we choose β ¼ 0.99. Assuming that a
possible violation of Lorentz invariance hides in the
(average) experimental error Δ ¼ 3.6 × 10−4 of [106],
we would obtain the sensitivity (at 2σ level) on the isotropic
SME coefficients from the condition

				ðmψc2ÞαðiÞ
X6
k¼0

sðiÞk γk−2
				 < 2Δ: ð4:10Þ

The expanded inequality can be solved analytically with
respect to the SME coefficients where the exact inequality
Y < 2Δ is solved numerically as a cross-check. The
deviation from Y ¼ 1 lies in the 2σ interval as long as
the coefficients satisfy the constraints given in Table III.
For the operators m̂ð5Þ, âð5Þμ, ĉð6Þμ, and êð6Þ the two-sided

bounds are asymmetric since Eq. (4.10) has two different
solutions for positive and negative component coefficients.
For f̂ð6Þ the bound is symmetric as the corresponding
Lorentz-violating contributions are quadratic in the com-
ponent coefficients. In Table III the bounds have been
expressed via the Planck energy EPl as well. Because of
their different mass dimensions, the quality of the con-
straints is difficult to be compared to each other. For this
reason we define the characteristic energy scale associated
with each pair of bounds as

ĒðiÞ ≡
�
1

2
ðUðiÞ − LðiÞÞ

�
−1=αðiÞ

; ð4:11Þ

where UðiÞ stands for the upper bound, LðiÞ stands for the
lower bound, and the αðiÞ are given in Table II. The

TABLE II. Parameters that are involved in the modified momentum of Eq. (4.8) and in the first-order expansion of the quantity Y in
Eq. (4.9b).

Operator i αðiÞ sðiÞ0 sðiÞ1 sðiÞ2 sðiÞ3 sðiÞ4 sðiÞ5 sðiÞ6

âð5Þμeff
að5Þμ 1 0 0 0 −2ða∘ ð5Þ0 þ a

∘ ð5Þ
2 Þ 0 0 0

ĉð6Þμeff
cð6Þμ 2 −c∘ ð6Þ4

0 −ðc∘ ð6Þ2 þ 2c
∘ ð6Þ
4 Þ 0 3ðc∘ ð6Þ0 þ c

∘ ð6Þ
2 þ c

∘ ð6Þ
4 Þ 0 0

êð6Þ eð6Þ 2 0 0 0 2ðe∘ ð6Þ0 þ e
∘ ð6Þ
2 Þ 0 0 0

f̂ð6Þ fð6Þ 4 0 0 −ð1=2Þðf
∘ ð6Þ
2 Þ2 0

3f
∘ ð6Þ
2 ðf

∘ ð6Þ
0 þ f

∘ ð6Þ
2 Þ 0 −ð5=2Þðf

∘ ð6Þ
0 þ f

∘ ð6Þ
2 Þ2
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computed values can be found in the last column of
Table III. Note that the typical energy scale of the experi-
ment is given by Ēexp ≡ γmψc2 ≈ 3.0 × 10−22EPl. It is
obvious that the sensitivity lies many orders of magnitude
below the Planck scale. Comparing the characteristic
energy scale to the typical energy of the experiment, the
bounds are still better than what would be expected directly
from Ēexp. The reason can be found in the high powers of
the Lorentz factor that are associated with the nonminimal
coefficients, which increases sensitivity. Note also that
bounds on single coefficients can be obtained directly from
the results presented assuming that only one coefficient is
nonzero at a time; cf. [48].
Another possibility of obtaining sensitivities are time-of-

flight measurements. In [107] an experiment at SLAC is
described accelerating electrons until they hit a target to
produce bremsstrahlung resulting in hard gamma rays.
Behind the target, the electron beam is deflected in a
magnet generating visible synchrotron radiation, in addi-
tion. Both radiation pulses travel long distances before
arriving at the detection section. The visible light is
detected directly. The hard gamma rays create positrons
in another target where the experiment is arranged such that
the latter generate Cherenkov radiation to be detected. The
time differences between the synchrotron pulses and the
Cherenkov pulses are measured to test for possible
dispersion effects. Furthermore, in other runs, electrons
are not deflected by the first magnet but they travel in a
long, straight section before being deflected directly in the
vicinity of the detection section. The emitted synchrotron
radiation is detected subsequently. This also allows for
comparing the time of flight of the electrons and the hard
gamma rays.
A few years later, a similar experiment [108] was

performed at SLAC. Again, accelerated electrons hit a
target to produce bremsstrahlung. After doing so, the
electrons travel along a straight section where in some
runs they are accelerated further. Behind the straight section

both the electrons and the bremsstrahlung gamma rays
strike another target to create positrons. Finally, two images
are detected: the first originates from the positrons gen-
erated by the electrons and the second from the positrons
produced by the gamma pulses. A crucial device before the
detector is an rf separator giving a transverse momentum
component to the positrons that depends on their arrival
time. Hence, a different arrival time becomes manifest in a
spatial separation of the images detected. The time-of-flight
difference is then obtained from the data collected.
To use the results of such experiments, we need a

relationship between the particle energy and its velocity.
Based on the Lagrangians in Sec. III C, we compute the
energy of a particle in terms of its four-velocity components
via

E
∘ ô ¼ −

∂L∘ ô
∂u0

				
u0¼c
u¼v

¼ γmψc2
�
1þ ðmψc2ÞαðiÞ

X6
k¼−1

tðiÞk γk
�
:

ð4:12Þ

The parameters tðiÞk are stated in Table IV. Those parameters
in Table II and Table IV connected to the highest power of
the Lorentz factor are equal. This is not surprising since
for large γ these terms dominate and the particle
energy corresponds to the particle momentum to a good
approximation.
Equation (4.12) is understood as a relationship that can

be solved for v to obtain the velocity as a function of the
particle energy. Assuming that a Lorentz-violating signal
hides in the uncertainty of the measurement, we can obtain
sensitivities on the isotropic, nonminimal coefficients
considered. Thereby we use Table I of [108]. The first
two rows give data of test runs that were performed to
check the potential precision of the experiment, amongst
other issues. We choose the data in the third row because
for this run, the electrons have a well-defined energy value
of 15 GeVand the uncertainty in Δv=c is smaller compared

TABLE III. Two-sided bounds for the isotropic parts of the operators âð5Þμeff , ĉð6Þμeff , êð6Þ, and f̂ð6Þ for electrons, obtained from the test of
special-relativity kinematics in [106].

Dimension Sector Unit Lower bound Coefficients Upper bound ĒðiÞ [EPl]

d ¼ 5 Electron GeV−1 −9.4 × 10−2 < a
∘ ð5Þ
0 þ a

∘ ð5Þ
2

< 1.1 × 10−1

E−1
Pl −1.2 × 1018 < a

∘ ð5Þ
0 þ a

∘ ð5Þ
2

< 1.3 × 1018 8.2 × 10−19

d ¼ 6 Electron GeV−2 −17 < c
∘ ð6Þ
0 þ c

∘ ð6Þ
2 þ c

∘ ð6Þ
4

< 19

E−2
Pl −2.6 × 1039 < c

∘ ð6Þ
0 þ c

∘ ð6Þ
2 þ c

∘ ð6Þ
4

< 2.9 × 1039 1.9 × 10−20

d ¼ 6 Electron GeV−2 −1.8 × 102 < e
∘ ð6Þ
0 þ e

∘ ð6Þ
2

< 2.1 × 102

E−2
Pl −2.8 × 1040 < e

∘ ð6Þ
0 þ e

∘ ð6Þ
2

< 3.1 × 1040 5.9 × 10−21

d ¼ 6 Electron GeV−2 −1.3 × 103 < f
∘ ð6Þ
0 þ f

∘ ð6Þ
2

< 1.3 × 103

E−2
Pl −1.9 × 1041 < f

∘ ð6Þ
0 þ f

∘ ð6Þ
2

< 1.9 × 1041 2.3 × 10−21
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to the other data sets. The corresponding result is Δv=c ¼
ð−1.22� 1.05Þ × 10−7 where the 2σ interval reads
f−3.32; 0.88g × 10−7. A Lorentz-violating signal at 2σ
level would have shown up as a Δv=c lying outside of
the interval given. This shall be sufficient to obtain further
conservative sensitivities on the isotropic nonminimal
coefficients considered in this article.
Therefore, one would have to solve Eq. (4.12) with

respect to v for a particular Lagrangian. However, the
polynomials in v on the right-hand side are of third degree
at least, which makes it challenging to solve the equation
analytically. A Taylor expansion in v=c would be unrea-
sonable since the velocities considered lie in the vicinity of
the speed of light. This is why the equation is solved
numerically. Thereby, the Lorentz-violating coefficients are
scanned through looking for a Δv=c that lies outside of the
interval above. For this procedure, we consider only one
nonvanishing coefficient during each scan and set the
remaining ones to zero. For each operator, the bounds

obtained for i
∘
0, i

∘
2 (and i

∘
4 for ĉð6Þμ) are approximately the

same. The reason is that for the bounds the combination of
coefficients related to the highest power of the Lorentz
factor plays the most important role. From Table II it can be
deduced that the latter are mere sums of coefficients with a

global prefactor. Therefore, the constraints are obtained for
these combinations of coefficients. All results are presented
in Table V.
A few remarks on these constraints are in order. First,

there are only one-sided bounds in contrast to the previous
results of Table III. The reason is that the deviation of Y in
Eq. (4.9b) from 1 can be both positive and negative
dependent on the sign of the SME coefficients.
However, the perturbative form of the Lagrangians given
by Eq. (4.1) allows subluminal solutions only. The occur-
rence of the Lorentz factor prohibits superluminal propa-
gation. Besides, this is the reason why a bound on
component coefficients for f̂ð6Þ cannot be obtained in this
context. Second, the current bounds are better than the
constraints of Table III by several orders of magnitude. This
has two reasons: the typical energy scale of the experiment,
Ēexp ≈ 1.2 × 10−18EPl, is larger, and there are higher
powers of the Lorentz factor involved. The latter especially
has a high impact on the constraint for âð5Þμ.

C. Comparison to existing constraints

Only a few current constraints exist on nonminimal
operators in the fermion sector of the SME. The most
important papers that give tabulated results are the data

TABLE V. One-sided bounds for the isotropic parts of the operators âð5Þμeff , ĉð6Þμeff , and êð6Þ for electrons, obtained from the time-of-flight
experiment in [108]. The first is understood as a lower bound and the last two as upper ones.

Dimension Sector Unit Lower bound Coefficients Upper bound ĒðiÞ [EPl]

d ¼ 5 Electron GeV−1 8.0 × 10−7 < a
∘ ð5Þ
0 þ a

∘ ð5Þ
2

E−1
Pl 9.8 × 1012 < a

∘ ð5Þ
0 þ a

∘ ð5Þ
2

1.0 × 10−13

d ¼ 6 Electron GeV−2
c
∘ ð6Þ
0 þ c

∘ ð6Þ
2 þ c

∘ ð6Þ
4

< 4.5 × 10−7

E−2
Pl c

∘ ð6Þ
0 þ c

∘ ð6Þ
2 þ c

∘ ð6Þ
4

< 6.7 × 1031 1.2 × 10−16

d ¼ 6 Electron GeV−2
e
∘ ð6Þ
0 þ e

∘ ð6Þ
2

< 1.6 × 10−3

E−2
Pl e

∘ ð6Þ
0 þ e

∘ ð6Þ
2

< 2.4 × 1035 2.0 × 10−18

TABLE IV. Parameters that are involved in the modified energy of Eq. (4.12).

tðiÞ−1 tðiÞ0 tðiÞ1 tðiÞ2
ô i αðiÞ tðiÞ3 tðiÞ4 tðiÞ5 tðiÞ6

âð5Þμeff
að5Þμ 1 −a∘ ð5Þ2

0 3ða∘ ð5Þ0 þ a
∘ ð5Þ
2 Þ 0

−2ða∘ ð5Þ0 þ a
∘ ð5Þ
2 Þ 0 0 0

ĉð6Þμeff
cð6Þμ 2 0 2c

∘ ð6Þ
2 þ 3c

∘ ð6Þ
4

0 −ð4c∘ ð6Þ0 þ 5c
∘ ð6Þ
2 þ 6c

∘ ð6Þ
4 Þ

0 3ðc∘ ð6Þ0 þ c
∘ ð6Þ
2 þ c

∘ ð6Þ
4 Þ 0 0

êð6Þ eð6Þ 2 e
∘ ð6Þ
2

0 −3ðe∘ ð6Þ0 þ e
∘ ð6Þ
2 Þ 0

2ðe∘ ð6Þ0 þ e
∘ ð6Þ
2 Þ 0 0 0

f̂ð6Þ fð6Þ 4 0 ðf
∘ ð6Þ
2 Þ2 0 −ð1=2Þf

∘ ð6Þ
2 ð8f

∘ ð6Þ
0 þ 9f

∘ ð6Þ
2 Þ

0
3ðf

∘ ð6Þ
0 þ f

∘ ð6Þ
2 Þðf

∘ ð6Þ
0 þ 2f

∘ ð6Þ
2 Þ 0 −ð5=2Þðf

∘ ð6Þ
0 þ f

∘ ð6Þ
2 Þ2
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tables [48] and the basic article [17] investigating the
nonminimal fermion sector. The latter only lists astrophysi-
cal constraints. The latest bounds were obtained in the
muon sector and from the spectroscopy of (anti)hydrogen
and other systems; cf. [109,110]. All these constraints beat
the ones obtained here by many orders of magnitude. On
the one hand, this shows the potential of astrophysical
experiments involving large propagation distances and/or
high energies. On the other hand, it demonstrates the high
precision of spectroscopy experiments, which mainly rely
on comparing frequencies. So both classes of experiments
outreach purely kinematic tests of Lorentz and CPT
invariance. Nevertheless, it is reasonable to have a quanti-
tative comparison of the different experimental techniques
available.

V. FINSLER STRUCTURES AND
THEIR PROPERTIES

After dealing with mainly phenomenological issues in
the past sections we are now interested in a couple of
theoretical questions. One of the essential results of [73,78]
is that classical Lagrangians associated with the SME
fermion sector can be promoted to Finsler structures.
Considering a manifold M, a Finsler structure can be
understood as the generalization of the integrand in the
path length functional. In general, the latter depends on
both the coordinate x ∈ M and a direction y ∈ TxM where
TxM is the tangent space of the manifold at x. Denoting the
tangent bundle with TM ≡∪x∈MTxM, a Finsler structure
F ¼ Fðx; yÞ∶TM ↦ ½0;∞Þ is characterized by a set of
properties (cf. [71,72]),

(1) Fðx; yÞ > 0 for y ∈ TMnf0g,
(2) Fðx; yÞ ∈ C∞ for y ∈ TMnf0g,
(3) positive homogeneity in y, i.e., Fðx; λyÞ ¼ λFðx; yÞ

for λ > 0, and
(4) the derived metric (Finsler metric)

gij ≡ 1

2

∂2F2

∂yi∂yj ð5:1Þ

is positive definite for y ∈ TMnf0g.
To find a connection between a classical Lagrangian and
such a Finsler structure two procedures have been proposed
[78]. The first is to set u0 ¼ 0, i.e., to restrict the
Lagrangian to its spatial subset. The second procedure
bears resemblance to a Wick rotation. It requires the
introduction of a four-dimensional vector y ¼
ðy1; y2; y3; y4ÞT that is linked to the velocity four-vector
via u0 ¼ iy4, ui ¼ yi for i ∈ f1 � � � 3g. The Lorentz-violat-
ing coefficients have to be treated in a similar manner in this
context. We will follow the second path that will be slightly
adapted to serve its purpose in the nonminimal fermion
sector of the SME.

A. Finsler structure for m̂ð5Þ

Let us first consider m̂ð5Þ with the result given in
Eq. (3.6). A Finsler structure is expected to be found by
the above replacement rules for the four-velocity with
further rules applied to the Lorentz-violating controlling
coefficients. For this case, each coefficient is multiplied by
a factor of ð−iÞq where q is the number of indices equal to
zero. This means that a coefficient gets one factor of −i per
timelike index, and each of the latter is replaced by 4,

mð5Þ
ij ↦mð5Þ

ij ; mð5Þ
0i ↦−imð5Þ

4i ; mð5Þ
i0 ↦−imð5Þ

i4 ; ð5:2aÞ

mð5Þ
00 ↦ ð−iÞ2mð5Þ

44 ¼ −mð5Þ
44 : ð5:2bÞ

In principle, this corresponds to introducing controlling
coefficients in Euclidean space. Partially, the latter are not
equivalent to the original Lorentz-violating coefficients
anymore. After all, the concept of Lorentz symmetry is
lost in Euclidean space. Nevertheless, for simplicity the
new coefficients will still be referred to as the Lorentz-
violating component coefficients. Now, the Finsler struc-
ture to be has the following form:

Fm̂ð5Þ ≡ −
i

mψ
Lm̂ð5ÞþjWick ¼

ffiffiffiffiffi
y2

q
−

mψffiffiffiffiffi
y2

p M̂ð5Þ
� ;

M̂ð5Þ
� ≡ X4

i;j¼1

mð5Þ
ij yiyj; ð5:3Þ

where by the subscript “Wick” we indicate that the
replacement rules for uμ and the Lorentz-violating coef-
ficients have to be applied. Note that this result is defined in
Euclidean space, where Fm̂ð5Þ

does not depend on the
position x. Now the immediate question is whether the
latter fulfills the properties of a Finsler structure. Here it
must be kept in mind that all Lagrangians obtained in the
current paper are perturbative results; i.e., they are only
valid for a sufficiently small dimensionless product of
powers of the particle massmψ and controlling coefficients.

Hence, the latter Fm̂ð5Þ
must be understood as a perturbative

result as well. As long as the second term is much smaller
than the first, property (1) is granted. This even holds for
large components of y. For example, let us suppose that
there is one component ya that dominates all the others.
Then Fm̂ð5Þ

has the following asymptotic behavior (equal
indices are not summed over):

Fm̂ð5Þ ðyaÞ ≈
ffiffiffiffiffiffiffiffiffiffiffi
ðyaÞ2

q
−

mψffiffiffiffiffiffiffiffiffiffiffi
ðyaÞ2

p mð5Þ
aa ðyaÞ2

¼
ffiffiffiffiffiffiffiffiffiffiffi
ðyaÞ2

q
ð1 −mψm

ð5Þ
aa Þ; ð5:4Þ

which is still positive for mψm
ð5Þ
aa ≪ 1. An analogous

argument holds for several dominant coefficients.

CLASSICAL LAGRANGIANS AND FINSLER STRUCTURES … PHYSICAL REVIEW D 93, 105017 (2016)

105017-13



Concerning (2), the function FðyÞ involves the square root,
its inverse, and polynomials in yi. Thus, it is C∞ for
y ∈ TMnf0g. Positive homogeneity, i.e., (3) can be shown
by direct computation,

Fm̂ð5Þ ðλyÞ¼
ffiffiffiffiffiffiffiffiffi
λ2y2

q
−

mψffiffiffiffiffiffiffiffiffi
λ2y2

p X4
i;j¼1

mð5Þ
ij ðλyiÞðλyjÞ¼ λFm̂ð5Þ ðyÞ;

ð5:5Þ

for λ > 0. By the way, this property ensures the nonstand-
ard contribution in FðyÞ to be perturbative even for large
components yi. To show property (4) one has to compute
the derived metric gij of Eq. (5.1), which will be postponed
to a later part of the paper.

B. Finsler structure for âð5Þμ

As a next step, we would like to assign a Finsler structure
to the Lagrangian of the operator âð5Þ given by Eq. (3.9a).
The procedure employed for m̂ð5Þ does not work here since
the Lorentz-violating contribution involves a trilinear
combination of components of y. Therefore, it has to be
adapted where suitable replacement rules are given as
follows:

að5Þijk↦−iað5Þijk; að5Þ0ij↦−að5Þ4ij; að5Þi0j↦−að5Þi4j; að5Þij0↦−að5Þij4;

ð5:6aÞ
að5Þ00i↦ iað5Þ44i; að5Þ0i0↦ iað5Þ4i4; að5Þi00↦ iað5Þi44; að5Þ000↦að5Þ444:

ð5:6bÞ

Hence, in contrast to the case of m̂ð5Þ, there is one factor of i
per each spacelike coefficient. Furthermore, each timelike
coefficient is replaced by 4 just as before. The resulting
Finsler structure to be can then be cast into the form

Fâð5Þμ ≡ −
i

mψ
Lâð5ÞþjWick ¼

ffiffiffiffiffi
y2

q
−
mψ

y2
Âð5Þ
� ;

Âð5Þ
� ≡ X4

i;j;k¼1

að5Þijky
iyjyk: ð5:7Þ

Properties (1) and (2) are valid in analogy to m̂ð5Þ as long as
Lorentz violation is perturbative. Positive homogeneity is
granted by the functional behavior in y,

Fâð5ÞμðλyÞ ¼
ffiffiffiffiffiffiffiffiffi
λ2y2

q
−

mψ

λ2y2
X4
i;j;k¼1

að5ÞijkðλyiÞðλyjÞðλykÞ

¼ λFâð5ÞμðyÞ; ð5:8Þ

for λ > 0. The corresponding derived metric gij will be
obtained later.

C. Generic Finsler structure

A Finsler structure to be can be derived for ĉð6Þμ

according to the method for m̂ð5Þ used in Sec. VA as
the component coefficients of ĉð6Þμ have an even number of
indices. For both êð6Þ and f̂ð6Þ the technique for âð5Þμ works
well since the corresponding component coefficients have
an odd number of indices. The resulting FðyÞ have the
general form

Fô ¼
ffiffiffiffiffi
y2

q
−m

lðiÞ
1
ψ

lðiÞ2
ðy2ÞlðiÞ3

ÔðiÞ
� ; ð5:9Þ

where ðiÞ stands for mð5Þ, að5Þμ, etc.; i.e., effective coef-
ficients will not be used anymore. The values of the

parameters lðiÞ1 � � � lðiÞ3 can be found in Table VI. For each

operator, the generic function ÔðiÞ
� is a proper contraction of

the controlling coefficients (with each timelike index
replaced by 4) and components of y based on the
Euclidean metric [cf. Eq. (5.3) for m̂ð5Þ and Eq. (5.7) for
âð5Þμ]. Care has to be taken for f̂ð6Þ whose contraction must
be squared in addition.
Now this general form of FðiÞ is used to compute the

derived metric. For brevity, we drop the indices of lðiÞ1 and

ÔðiÞ
� , and we introduce the function f ≡ lðiÞ2 =ðy2ÞlðiÞ3 . Based

on its definition in Eq. (5.1), the derived metric takes the
form

gij ¼ δij −
ml1

ψffiffiffiffiffi
y2

p Gð1Þ
ij þm2l1

ψ Gð2Þ
ij ; ð5:10aÞ

Gð1Þ
ij ¼ Ô�

�
f

�
δij−

yiyj
y2

�
þ
�
yi
∂f
∂yjþði↔jÞ

�
þy2

∂2f
∂yi∂yj

�

þ
�∂Ô�
∂yi

�
yjfþy2

∂f
∂yj

�
þði↔jÞ

�
þy2f

∂Ô�
∂yi∂yj ;

ð5:10bÞ

TABLE VI. Parameters for the generic Finsler structure of
Eq. (5.9).

Operator i lðiÞ1 lðiÞ2 lðiÞ3

m̂ð5Þ mð5Þ 1 1 1=2

âð5Þμ að5Þμ 1 1 1

ĉð6Þμ cð6Þμ 2 1 3=2

êð6Þ eð6Þ 2 −1 1

f̂ð6Þ fð6Þ 4 −1=2 5=2
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Gð2Þ
ij ¼ ðÔ�Þ2

�∂f
∂yi

∂f
∂yj þ f

∂2f
∂yi∂yj

�

þ 2fÔ�

�∂f
∂yi

∂Ô�
∂yj þ ði↔jÞ

�

þ f2
�∂Ô�
∂yi

∂Ô�
∂yj þ Ô�

∂2Ô�
∂yi∂yj

�
: ð5:10cÞ

It is reasonable to arrange all terms according to the power
of the particle mass they are multiplied with. A couple of
remarks on the result are in order. First, for vanishing
Lorentz violation, both Gð1Þ and Gð2Þ vanish giving the
standard result gij ¼ δij. Second, by direct inspection, the
symmetry of gij in its indices can be checked. Third, Gð1Þ is
of first order in Lorentz violation, whereas Gð2Þ is of second
order. Based on the perturbative nature of Lorentz viola-
tion, the derived metric is a perturbation of the identity
matrix. The determinants of all main minors of a perturbed
identity matrix lie in the vicinity of 1, since all these
matrices have coefficients of the form “1þ perturbation”
on their diagonals. This renders gij positive definite. Thus,
under the assumptions made, Eq. (5.9) defines a Finsler
structure.
Now some of the mathematical properties of this Finsler

structure can be investigated. The first is to check whether
Eq. (5.9) is just the usual Riemannian structure that was
written in a complicated form. This check can be accom-
plished with the Cartan torsion Cijk and the mean Cartan
torsion Ii that are defined by [71]

Cijk ≡ F
4

∂3F2

∂yi∂yj∂yk ¼
F
2

∂gij
∂yk ; Ii ≡ gjkCijk;

ðgijÞ≡ ðgijÞ−1: ð5:11Þ

Hence, the Cartan torsion is obtained from the Finsler
metric by computing an additional partial derivative with
respect to y. The mean Cartan torsion follows from the
Cartan torsion by a suitable contraction with the inverse
Finsler metric gij. A result for the latter will not be given as
it is highly complicated and not illuminating. It is most
reasonable to obtain the inverse Finsler metric with a
computer algebra system. According to a theorem by
Deicke [111], a Finsler structure defines a Riemannian
space if and only if the Cartan torsion (or the mean Cartan
torsion) vanishes. For the generic Finsler structure of
Eq. (5.9) the Cartan torsion is quite lengthy, which is
why it is shown in Appendix C explicitly. It decomposes
into three main parts. The first two are of first order in
Lorentz violation and the third is of second order.
The general result of Eq. (C1) can be used to obtain the

Cartan torsions for each of the nonminimal cases consid-
ered. Interestingly, for m̂ð5Þ it was found that the first-order
term vanishes, which was surprising. The reason is that for
the specific function f ¼ 1=

ffiffiffiffiffi
y2

p
the second part of the

Finsler metric, Eq. (5.10b), is independent of y, which
makes its first derivative vanish. This is a property of the
particular m̂ð5Þ, and it does not hold for the other operators.
It means that the Finsler structure that is linked to m̂ð5Þ in
the SME fermion sector deviates from Riemannian geom-
etry only at second order in the controlling coefficients. To
understand whether and what implications this has for
physics would be a worthwhile problem to study.
The Finsler structures of the remaining operators have

nonvanishing Cartan torsions at first order in Lorentz
violation except of f̂ð6Þ, which is clear as the leading-order
term of the latter is quadratic at the first place. Hence, none
of these Finsler spaces is Riemannian. Another interesting
quantity useful for classification purposes is the Matsumoto
torsion,

Mijk ≡ Cijk −
1

nþ 1
ðIihjk þ Ijhik þ IkhijÞ;

hij ≡ F
∂2F

∂yi∂yj : ð5:12Þ

It is composed of the Cartan torsion, the mean Cartan
torsion, and the angular metric tensor hij where n is the
dimension of the Finsler space considered. The full result
will not be given as it is very lengthy. However, it can be
constructed fromCijk in Eq. (C1) and hij given by Eq. (C2).
According to a theorem by Matsumoto and Hōjō [112], a
Finsler structure is of Randers or Kropina type1 if and only
if the Matsumoto torsion vanishes. The Matsumoto torsion
for m̂ and f̂ each delivers contributions at second order in
Lorentz violation, whereas for âð5Þμ, ĉð6Þμ, and êð6Þ they are
of first order. Especially the result for m̂ð5Þ is again
interesting as it shows that for the associated Finsler
structure both deviations from a Riemannian and a
Randers/Kropina structure are of higher order.

D. Covariantly constant background coefficients
and Berwald spaces

This last section shall give us further insight on the
mathematical properties of the Finsler structures previously
introduced. Therefore, the generic Finsler structure of
Eq. (5.9) is promoted to exist on a curved manifold; i.e.,
the Euclidean metric is replaced by a Riemannian metric
rij ¼ rijðxÞ, and the component coefficients are taken to be
position-dependent functions,

Fô ↦ FôðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rijðxÞyiyj

q
−m

lðiÞ
1
ψ

lðiÞ2
ðrijðxÞyiyjÞl

ðiÞ
3

ÔðiÞ
� ðxÞ:

ð5:13Þ

1A Kropina structure is defined by Fðx; yÞ ¼ α2=β with α ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aijðxÞyiyj

q
and β ¼ biðxÞyi where aijðxÞ is a Riemannian

metric and biðxÞ a 1-form.
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The fermion massmψ is kept constant. In principle, it could
be absorbed by the component coefficients but we will

leave it as is. In ÔðiÞ
� ðxÞ there is no rij as long as the indices

of the (originally) Lorentz-violating component coeffi-
cients are kept as lower ones. In principle, it is also possible
to promote the Minkowski metric ημν in the Lagrangian
to a curved spacetime metric gμνðxÞ and to perform
the Wick rotation afterwards. This is demonstrated with
the Lagrangian for m̂ð5Þ, and it can be carried out for the
remaining Lagrangians in an analog manner. Promoting the
Lagrangian to a curved spacetime leads to

Lm̂ð5Þ� ↦ Lm̂ð5Þ�ðxÞ

¼ �mψ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμνðxÞuμuν

q
þ mψm̂

ð5Þ
� ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gμνðxÞuμuν
p þ…

�
;

ð5:14Þ

with m̂ð5Þ
� given in Eq. (3.6) where now the coefficients

mð5Þ
μν ðxÞ are functions depending on the spacetime coor-

dinates. A Wick rotation then results in

Fm̂ð5Þ ðxÞ≡ −
i

mψ
Lm̂ð5ÞþðxÞjWick

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rijðxÞyiyj

q
−

mψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rijðxÞyiyj

q M̂ð5Þ
� ðxÞ; ð5:15Þ

where M̂ð5Þ
� is stated in Eq. (5.3) with coordinate-dependent

coefficients mð5Þ
ij ðxÞ. Therefore, the correspondence

between the components of the pseudo-Riemannian metric
gμν and the Riemannian metric rij can be obtained by a
direct comparison. For brevity, we omit the coordinate
dependence of the metric components,

gμνuμuν ¼ g00ðu0Þ2 þ 2g0ku0uk þ gklukul

¼ g00ðiy4Þ2 þ 2g0kðiy4Þyk þ gklykyl

¼ −g00ðy4Þ2 þ 2ig0ky4yk þ gklykyl¼! − rijyiyj;

ð5:16Þ

where ðk; lÞ ∈ f1 � � � 3g and ði; jÞ ∈ f1 � � � 4g. Therefore,
the spatial components of gμν are directly related to some of
the components of rij. The correspondence between the
components with two timelike indices involves a minus
sign where the correspondences for components with one
timelike index are even complex. Hence, the Wick rotation
is given by the following transformation rules:

u0 ¼ iy4; uk ¼ yk; ð5:17aÞ

g00 ¼ r44; g0k ¼ ir4k; gkl ¼ −rkl: ð5:17bÞ

After applying these rules, the resulting bilinear form is
reinterpreted as Riemannian with real yi and real metric
components rij, as usual. The behavior of g0k shows that it
is difficult to interpret the corresponding Riemannian space
from a physics point of view. One must take into account
that the physical world is based on a (pseudo)-Riemannian
manifold, though. The Riemannian space can be used for
computations to avoid issues arising from the Lorentzian
signature of the metric. However, it lacks a physical
interpretation. Based on the Finsler structure, we can arrive
back at the Lagrangian by an anti-Wick rotation. This
means that the Finsler structure must be multiplied by imψ

and that the inverse of Eqs. (5.17) has to be applied.
Thereby, no particular form for rij is assumed. For practical
reasons, it is easier to Wick rotate the Lagrangian in
Minkowski spacetime and to promote the resulting
Finsler structure to a curved Riemannian manifold after-
wards. This is advantageous because, e.g., there are then no
mixed components g0k that have a complex transforma-
tion law.

With the Riemann-Finsler structure of Eq. (5.13) at hand,
we want to understand an aspect whose importance
especially for b space was pointed out in [78]. Consider
coefficients that are parallel with respect to the Riemannian
metric rij, which means that their covariant derivatives
based on rij are supposed to vanish. In [78] such spaces
were demonstrated to be of Berwald type, which will be
elaborated on after introducing a set of important quantities
in this context.
In what follows, we use the conventions and definitions

of [71]. First of all, the formal Christoffel symbols of the
second kind for the Riemannian metric tensor rij and the
Finsler metric tensor gij are obtained as follows:

~γijk ≡ 1

2
ril
�∂rlk
∂xj þ

∂rlj
∂xk −

∂rjk
∂xl

�
; ð5:18aÞ

γijk ≡ 1

2
gil
�∂glk
∂xj þ

∂glj
∂xk −

∂gjk
∂xl

�
: ð5:18bÞ

An important quantity for studying the geodesic equations
in a Riemann-Finsler space are the spray coefficients
Gi ≡ γijkyjyk. Also, the Chern connection is needed. It
comprises the nonlinear connection Ni

j and can be
obtained according to

Γi
jk ≡ 1

2
gil
�
δglk
δxj

þ δglj
δxk

−
δgjk
δxl

�
; ð5:19aÞ

δ

δxk
≡ ∂

∂xk − Ni
k
∂
∂yi ; Ni

j ≡ 1

2

∂Gi

∂yj : ð5:19bÞ

Note the similar structure of the Christoffel symbols and the
Chern connection. Coming back to a Berwald space, the
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latter is a Finsler space whose Chern connection coeffi-
cients Γi

jk in natural coordinates do not have any depend-
ence on y. Under that condition, the object known as the
h-v part of the Chern curvature vanishes identically,

Pj
i
kl ≡ −F

∂Γi
jk

∂yl ¼ 0: ð5:20Þ

The second derivatives of the spray coefficients with
respect to the components of y vanish as well, which is
why γijk ¼ ~γijk. Hence, the Christoffel symbols of the
Finsler metric tensor reduce to the usual Riemannian
Christoffel symbols. In turn, this is equivalent to a vanish-
ing Berwald curvature bPj

i
kl,

bPj
i
kl ≡ −F

∂bΓi
jk

∂yl ¼ 0; bΓi
jk ≡ 1

2

∂2Gi

∂yj∂yk ; ð5:21Þ

with the Berwald connection bΓi
jk. The tangent spaces of a

Berwald space are linearly isometric to a common
Minkowski space.2 All these properties mentioned make
Berwald spaces very special Finsler spaces “that are more
properly Finslerian, but only slightly so,” which is an
accurate statement taken from [71].
One of themost important results of [78] is the proof that b

space is Berwald if its component coefficients are covariantly
constant. It was then conjectured that this holds in general
and also in the opposite direction; i.e., any Berwald space
would have r-parallel coefficients associated with it. For
Randers space such a statement is known to hold in both
directions; cf. the references given in [78]. Therefore, with
the above definitions at hand we would like to investigate
whether Eq. (5.13) also gives rise to a Berwald space in case
the component coefficients are covariantly conserved. There
exist several possibilities of performing the calculation. We
decide to check the spray coefficients for a possible depend-
ence on y. This is reasonable as due to the homogeneity
properties of the Finsler structure, the spray coefficients are
supposed to collapse in complexity when the Christoffel
symbols are contractedwith two components of y. Hence, the
spray coefficients (with their index pulled down) can be
brought into the form

Gi ¼ γijkyjyk ¼
1

2

�
1

2

∂2F2

∂yi∂xk y
k þ 1

2

∂2F2

∂yi∂xl y
l −

∂F2

∂xi
�

¼ 1

2

�
2

∂
∂xk

�
F
∂F
∂yi

�
yk − 2F

∂F
∂xi

�

¼
�∂F
∂xk

∂F
∂yi þ F

∂2F
∂yi∂xk

�
yk − F

∂F
∂xi : ð5:22Þ

Useful formulas to compute derivatives of Eq. (5.13) are

∂fðy2Þ
∂xk ¼ f0ðy2Þ ∂rij∂xk y

iyj; ð5:23aÞ

∂fðy2Þ
∂yk ¼ 2f0ðy2Þrijyj: ð5:23bÞ

The procedure is to obtain γijkyjyk according to Eq. (5.22)
and to pull its free index up with the inverse Finsler metric
gij. Finally, the property of component coefficients parallel
to rij has to be employed. This means that their covariant
derivativesDi based on the Riemannian metric rij vanishes.
Explicitly, for a two-, three-, and four-index object that
statement reads as follows:

Dkm
ð5Þ
ij ¼ ∂mð5Þ

ij

∂xk − ð~γlkimð5Þ
lj þ ~γlkjm

ð5Þ
il Þ¼! 0; ð5:24aÞ

Dla
ð5Þ
ijk ¼

∂að5Þijk

∂xl − ð~γmlia
ð5Þ
mjk þ ~γmlja

ð5Þ
imk þ ~γmlka

ð5Þ
ijmÞ¼! 0;

ð5:24bÞ

Dmc
ð6Þ
ijkl ¼

∂cð6Þijkl

∂xm − ð~γnmic
ð6Þ
njkl þ ~γnmjc

ð6Þ
inkl

þ ~γnmkc
ð6Þ
ijnl þ ~γnmlc

ð6Þ
ijknÞ¼! 0; ð5:24cÞ

where all coefficients are understood to depend on x.
Solving these relations with respect to the partial derivative
of the coefficients leads to a set of replacement rules.
Thereby, all partial derivatives of component coefficients
that occur in Gi are replaced by the corresponding sums of
Christoffel symbols ~γijk contracted with component coef-
ficients. Even for m̂ð5Þ the computation is arduous, and it
seems to be challenging to reduce it to an elegant formula
such as Eq. (25) in [78], which is valid for b space.
However, note that the Finsler metric in Eq. (5.10) and the
Cartan torsion of Eq. (C1) are much more involved than
their b-space counterparts given by Eqs. (10) and (13) in the
latter paper. The largest computational issues are related to
the inverse Finsler metric that cannot be expressed in a
compact form. This only allows us to demonstrate numeri-
cally (with 100-digit accuracy) that the spray coefficients
based on the Finsler metric are the same as the spray
coefficients based on rij.

Therefore, there is strong evidence that in case the
component coefficients are parallel with respect to the
Riemannian metric rij, the Finsler structure of Eq. (5.13) is
Berwald. This means that the corresponding geodesic
equations are not influenced by the Lorentz-violating
background but they are just governed by the
Riemannian metric rij. The latter especially holds in

2Here the term “Minkowski space” is not to be confused with
physical spacetime but with a mathematical space endowed with
a Minkowski norm; cf. [71].
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Euclidean space when the coefficients are constant. The
corresponding property in Minkowski spacetime is that a
classical particle still moves on a straight line for a constant
Lorentz-violating background.
This result further supports the conjecture made in [78].

The conjecture is interesting since it could provide a
criterion allowing us to decide when geodesic motion of
a particle in the presence of Lorentz violation differs from
the Lorentz-invariant case. In [49] it was noted that
covariantly conserved coefficients are related to only a
very special class of curved manifolds such as paralleliz-
able ones. However, even if a manifold is not parallelizable
globally, the result obtained would still be valid locally.
Besides, having a manifold that differs from a parallelizable
one only slightly, it is reasonable to assume that Lorentz-
violating deviations from conventional particle motion are
suppressed.
Covariantly constant coefficients may still show up in

particle motion if there exists an additional electric or
magnetic field, as pointed out for Minkowski spacetime in
[76,77] and at the beginning of Sec. IV. In fact, the fields
deliver additional degrees of freedom to reveal the
r-parallel Lorentz-violating background. The Lorentz-
violating effects on particle motion are then suppressed
by the field strengths involved, though.

VI. CONCLUSIONS AND OUTLOOK

In the current paper, we obtained classical point-particle
equivalents to a series of operators of the nonminimal SME
fermion sector. The calculations were carried out at first
order in Lorentz violation, and they relied on the algebraic
concept of Gröbner bases to solve the resulting nonlinear
systems of equations. All Lagrangians are characterized by
the standard square root term plus a Lorentz-violating
contribution that comprises suitable contractions of the
controlling coefficients with four-velocity components.
These first-order expansions are much more illuminating
and practical than the nonperturbative result found for the
nonminimal, isotropic coefficient mð5Þ

00 in [77]. This shows
that in the context of classical Lagrangians of the non-
minimal SME, it seems to be more reasonable to perform
studies based on perturbative Lorentz violation.
The Lagrangians computed served as a basis for phe-

nomenological studies. Thereby, we relied on classical,
kinematic tests of special relativity carried out in the middle
of the past century. The first type of experiments, which we
considered, measured the mass increase of an electron for
relativistic velocities. In the second type the time of flight
for hard gamma rays was compared to the time of flight for
relativistic electrons. Both types of experiments confirmed
the validity of special relativity to a certain accuracy. This
allowed for deriving constraints on the isotropic component
coefficients of the nonminimal operators considered. The
sensitivity is still far away from the Planck scale, which

leaves plenty of room for improvement by future kinematic
experiments.
Finally, it was demonstrated that the classical Lagrangians

are connected to Finsler structures in analogy to the minimal
SME fermion sector. Expressions for the Finsler metric, the
Cartan torsion, and the Matsumoto torsion were obtained,
which allowed for their classification. The structures con-
sidered are neither Riemannian nor of Randers or Kropina
type.An interesting andunexpected result is that the structure
associated with the dimension-5 operator m̂ deviates from a
Riemannian or a Randers/Kropina structure only at second
order in Lorentz violation. This result may have important
implications for the motion of classical particles in a
gravitational background in case they are subject to such a
particular type of Lorentz violation. Last but not least, it was
found that the Finsler structures promoted to a curved
background are of Berwald type in case the component
coefficients are covariantly constant with respect to the
Riemannian metric of the curved manifold. This provides
a link between the nature of coefficients and the geometry of
the Finsler space associated. It also supports the general
conjecture made in [78] on covariantly conserved coeffi-
cients. Additionally, another interesting thought was brought
up in [78]. For r-parallel coefficients there could be a
coordinate redefinition that allows one to remove these
coefficients from the Finsler structure. This would be
reminiscent of field redefinitions eliminating unphysical
coefficients from the SME.
There are a couple of interesting problems still to be

solved. The first question is whether and how Lagrangians
for the nonminimal operators b̂ð5Þμ, d̂ð6Þμ, ĝð6Þμν, and Ĥð5Þμν

can be derived. These cases are calculationally more
involved than the operators considered within the paper.
Second, the phenomenological studies performed relied on
experiments testing the kinematic laws of particles directly.
Applying the same technique to alternative experiments
may provide fruitful opportunities of obtaining an even
better set of constraints. The third issue is to study particle
propagation in a curved background based on the classical
Lagrangians calculated.
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APPENDIX A: OBTAINING THE CLASSICAL
LAGRANGIAN OF m̂ð5Þ

Here it will be outlined how to obtain the Lagrangian for
the dimension-5 part of the operator m̂; cf. Eq. (3.6). First,
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we will work in an observer frame with the mixed

coefficients mð5Þ
0i ≠ 0 only. The Gröbner basis is computed

for the ordering L > … > p0 of the variables; it comprises
66 polynomials. From these polynomials one has to find
five suitable ones to solve the initial equations successively.
A reasonable choice is such that the first equation depends
on p0 only, the second on both p0 and p1, etc. Then the first
equation can be solved with respect to p0 and the second
with respect to p1, etc. This leads to a chain of replacement
rules that can be inserted into Euler’s formula for the
Lagrangian to obtain the latter step by step,

ðp0Þð0Þ ¼ 0; ðA1aÞ

ðp0Þð2;3Þ ¼� mψ sgnðu0Þ
½ðu0Þ2−u2�3=2

×

�
u0½ðu0Þ2−u2�−2mψu2

X
i

mð5Þ
0i u

i

�
; ðA1bÞ

p1 ¼
p0

ðu0Þ2 ð2mψfmð5Þ
01 ½ðu0Þ2 þ ðu1Þ2� þmð5Þ

02 u
1u2

þmð5Þ
03 u

1u3g − u0u1Þ; ðA1cÞ

p2 ¼
p0

ðu0Þ2 ð2mψfmð5Þ
02 ½ðu0Þ2 þ ðu2Þ2� þmð5Þ

03 u
2u3g− u0u2Þ

− 2mψm
ð5Þ
01

u2

u0
p1; ðA1dÞ

p3 ¼
u3

u2
ðp2 − 2mψm

ð5Þ
02 p0Þ þ 2mψm

ð5Þ
03 p0; ðA1eÞ

L ¼ −ðu0p0 þ u1p1 þ u2p2 þ u3p3Þ; ðA1fÞ

with the sign function

sgnðxÞ≡

8>><
>>:

1 for x > 0

0 for x ¼ 0

−1 for x < 0:

ðA1gÞ

We obtain three solutions for p0 where the first is trivial.
After a final expansion in the Lorentz-violating component
coefficients, the remaining ones lead to the two possible
Lagrangians stated in Eq. (3.4). To obtain Eq. (3.5) we
choose an observer frame with the spatial component

coefficients mð5Þ
ij ≠ 0. For that case the Gröbner basis is

computed with respect to the ordering p0 > … > L. A
single polynomial of this basis comprises L only.
Therefore, we obtain the equation

0 ¼
�
1þ 2mψ

�X
i

mð5Þ
ii

��
L2

−
�
1þ 2mψ

X
i

mð5Þ
ii

�
m2

ψ ½ðu0Þ2 − u2�

þ 2m3
ψ

X
i;j

mð5Þ
ij u

iuj: ðA2Þ

Solving the latter with respect to L and performing a
successive expansion at first order in Lorentz violation
leads to Eq. (3.5).
This demonstrates both methods that can be used to

obtain classical Lagrangians from Gröbner bases. In
comparison to the second method, the first does not provide
the solution directly. Nevertheless, the first is preferable for
a number of reasons. Each of the equations obtained via the
first technique can be simplified and expanded separately,
whereas the second method may deliver a high-order
polynomial that may possibly not be easy to solve.
Furthermore, the first method seems to deliver a Gröbner
basis faster with less polynomials. Hence, for all the
remaining cases we will proceed according to the first.

APPENDIX B: ISOTROPIC PARTS
OF THE LAGRANGIANS

The current section shall outline the derivation of the
isotropic Lagrangians in Sec. III C. It is understood that
equal indices are not summed over. Consider the operator

âð5Þeff whose isotropic component coefficients can be found
in Eq. (97) of [17]. The first isotropic part is governed by

the single coefficient ðað5Þeff Þ000 ≡ a
∘ ð5Þ
0 and all others vanish-

ing. For such a configuration we obtain

âð5Þeff;�ja∘ ð5Þ
0

¼ a
∘ ð5Þ
0 ðu0Þ3: ðB1Þ

The second part is based on the coefficients ðað5Þeff Þ0jj
including their symmetric set of index permutations.
There are nine of such permutations, three for each j.
Denoting each of these component coefficients with ξ and
setting the remaining ones to zero leads to

âð5Þeff;�ja∘ ð5Þ
2

¼ 3ξu0u2 ¼ a
∘ ð5Þ
2 u0u2: ðB2Þ

The operator ĉð6Þeff has three isotropic parts given in Eq. (98)
of [17]. The first is made up by a single nonvanishing

controlling coefficient ðcð6Þeff Þ0000 ≡ c
∘ ð6Þ
0 ,

ĉð6Þeff;�jc∘ð6Þ
0

¼ c
∘ ð6Þ
0 ðu0Þ4: ðB3Þ

The second is composed of the coefficients ðcð6Þeff Þ00jj and
related ones by symmetric index permutations. In total
there are 18 of such permutations, six for each j. Denoting
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each of these coefficients with ζ where the others are
supposed to vanish results in

ĉð6Þeff;�jc∘ð6Þ
2

¼ 6ζðu0Þ2u2 ¼ c
∘ ð6Þ
2 ðu0Þ2u2: ðB4Þ

There is a third isotropic part made up by the coefficients

ðcð6Þeff Þjjkk and related ones by symmetries. For each j and k
with j < k there are six permutations leading to 18 in total.

Using the notation ðcð6Þeff Þjjkk ≡ ψ for j ≠ k and ðcð6Þeff Þjjjj ≡
3ψ with all others set to zero we have that

ĉð6Þeff;�jc∘ð6Þ
4

¼ 3ψu4 ¼ c
∘ ð6Þ
4 u4: ðB5Þ

The index structure of the component coefficients for êð6Þ

and f̂ð6Þ is the same as of âð5Þμ, which is why the isotropic
parts can be derived analogously for these cases. These
results are used to obtain the isotropic Lagrangians in
Sec. III C. Pulling indices up and down does not change the
isotropic coefficients.

APPENDIX C: CARTAN TORSION

For the generic Finsler structure of Eq. (5.9), the Cartan
torsion is computed according to the definition given by
Eq. (5.11). After arranging terms properly with respect to
powers of mψ and y2 the result reads as follows:

2

F
Cijk ¼

ml1
ψffiffiffiffiffi
y2

p
�
1

y2
Cijyk − Cð1Þijk

�
þm2l1

ψ Cð2Þijk; ðC1aÞ

Cij¼ Ô�

�
f

�
δij−

yiyj
y2

�
þ
�
yi

∂f
∂yjþði↔jÞ

�
þy2

∂2f
∂yi∂yj

�
þ
�∂Ô�
∂yj

�
yifþy2

∂f
∂yi

�
þði↔jÞ

�
þy2f

∂2Ô�
∂yi∂yj ; ðC1bÞ

Cð1Þijk ¼
∂Ô�
∂yk

�
f

�
δij −

yiyj
y2

�
þ
�
yi

∂f
∂yj þ ði↔jÞ

�
þ y2

∂2f
∂yi∂yj

�

þ Ô�

� ∂f
∂yk

�
δij −

yiyj
y2

�
−

f
y4

½y2ðδikyj þ ði↔jÞÞ − 2yiyjyk�

þ
�
δik

∂f
∂yj þ yi

∂2f
∂yj∂yk þ ði↔jÞ

�
þ 2yk

∂2f
∂yi∂yj þ y2

∂3f
∂yi∂yj∂yk

�

þ
� ∂2Ô�
∂yj∂yk

�
yif þ y2

∂f
∂yi

�
þ ∂Ô�

∂yj
�
δikf þ yi

∂f
∂yk þ 2yk

∂f
∂yi þ y2

∂2f
∂yi∂yk

�

þ ði↔jÞ
�
þ 2ykf

∂2Ô�
∂yi∂yj þ y2

∂f
∂yk

∂2Ô�
∂yi∂yj þ y2f

∂3Ô�
∂yi∂yj∂yk ; ðC1cÞ

Cð2Þijk ¼ 2Ô�
∂Ô�
∂yk

�∂f
∂yi

∂f
∂yj þ f

∂2f
∂yi∂yj

�

þ ðÔ�Þ2
��∂f

∂yi
∂2f

∂yj∂yk þ ði↔jÞ
�
þ ∂f
∂yk

∂2f
∂yi∂yj þ f

∂3f
∂yi∂yj∂yk

�

þ 2

�
Ô�

∂f
∂yk þ f

∂Ô�
∂yk

��∂f
∂yi

∂Ô�
∂yj þ ði↔jÞ

�
þ 2f

∂f
∂yk

�∂Ô�
∂yi

∂Ô�
∂yj þ Ô�

∂2Ô�
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Finally, the generic result for the angular metric tensor that is needed for the Matsumoto torsion in Eq. (5.12) is given by
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